
Bluetooth for Programmers

Albert Huang
albert@csail.mit.edu

Larry Rudolph
rudolph@csail.mit.edu

Bluetooth for Programmers
by Albert Huang and Larry Rudolph

Copyright © 2005 Albert Huang, Larry Rudolph

TODO

Table of Contents
Preface...vi

1. About this book...vi
2. Audience...vi
3. Organization of This Book..vi
4. Acknowledgments...vi

4.1. Albert’s acknowledgments... vii
4.2. Larry’s acknowledgments... vii

1. Introduction ..1

1.1. Understanding Bluetooth as a software developer..1
1.2. Bluetooth Programming Concepts..2

1.2.1. Choosing a communication partner..2
1.2.2. Choosing a transport protocol..4
1.2.3. Port numbers and the Service Discovery Protocol...6
1.2.4. Communicating using sockets..10

1.3. Useful things to know about Bluetooth...12
1.3.1. Communications range...12
1.3.2. Communications Speed..13
1.3.3. Radio Frequencies and Channel Hopping..13
1.3.4. Bluetooth networks - piconets, scatternets, masters, and slaves...................................14
1.3.5. Bluetooth Profiles + RFCs..15

2. Bluetooth programming with Python - PyBluez...17

2.1. Choosing a communication partner..17
2.2. Communicating with RFCOMM..18
2.3. Communicating with L2CAP..20

2.3.1. Maximum Transmission Unit...21
2.3.2. Best-effort transmission..22

2.4. Service Discovery Protocol...22
2.4.1. Dynamically allocating port numbers..24
2.4.2. Advertising a service..24
2.4.3. Searching for and browsing services..26

2.5. Advanced usage..27
2.5.1. Asynchronous socket programming withselect ...27
2.5.2. Asynchronous device discovery...28
2.5.3. The_bluetooth module..29

3. C programming with libbluetooth ..32

3.1. Choosing a communication partner..32
3.1.1. Compiling the example...33
3.1.2. Representing Bluetooth addresses..33
3.1.3. Choosing a local Bluetooth adapter..34
3.1.4. Scanning for nearby devices...34
3.1.5. Determining the user-friendly name of a nearby device..35
3.1.6. Error handling...36

3.2. RFCOMM sockets..36
3.2.1. Addressing structures...39
3.2.2. Establishing a connection...39

iii

3.2.3. Using a connected socket...40
3.3. L2CAP sockets..41

3.3.1. Byte ordering..43
3.3.2. Maximum Transmission Unit...44

3.4. Service Discovery Protocol...44
3.4.1. Dynamically assigned port numbers..45
3.4.2. SDP data structures...45
3.4.3. Advertising a service..47
3.4.4. Searching and browsing for a service...51

3.5. Advanced BlueZ programming...56
3.5.1. Asynchronous socket programming withselect ...56
3.5.2. HCI sockets..56
3.5.3. L2CAP Best-effort transmission..57
3.5.4. SCO audio sockets..60

4. Bluetooth development tools...61

4.1.hciconfig ...61
4.2.hcitool ..64
4.3.sdptool ..65
4.4.hcidump ..67
4.5. l2ping ..68
4.6.rfcomm ..69
4.7.uuidgen ..70
4.8. Obtaining BlueZ and PyBluez..70

5. Microsoft Windows..71

5.1. Programming with the Microsoft Bluetooth API..71
5.1.1. Header files and linked libraries...72
5.1.2. Initializing the Windows Sockets API..72
5.1.3. Error checking..72
5.1.4. Data structures..73

5.2. Choosing a remote device...74
5.2.1. Representing Bluetooth addresses as strings..77

5.3. RFCOMM sockets..78
5.4. Service Discovery Protocol...83

5.4.1. Advertising a service..83
5.4.2. Searching for services...84

6. Other platforms and programming languages...86

6.1. Symbian OS / Nokia Series 60..86
6.1.1. Capabilities and Limitations...87
6.1.2. Choosing a device...87
6.1.3. Bluetooth sockets..88

6.2. OS X..90
6.3. Java - JSR 82...91

6.3.1. Choosing a device...92
6.3.2. RFCOMM...92
6.3.3. OBEX...92

iv

List of Tables
1-1. A comparison of the requirements that would lead us to choose certain protocols. Best-effort streams

communication is not shown because it reduces to best-effort datagram communication................5
1-2. Port numbers and their terminology for various protocols...6
1-3. The three Bluetooth power classes...12
2-1.select events..28
4-1. Inquiry Scan and Page Scan...63

v

Preface

1. About this book

There are loads and loads of material already out there about Bluetooth. The problem with all of them is
that they just have too much information. Specifically, they try to tellall about Bluetoothwhen most of
the time, we’re only interested in a tiny fraction.

This book purposefully and happily leaves out a great deal of information about Bluetooth. A lot of
concepts are simplified and described in ways that make sense, not necessarily the ways they’re laid out
in the Bluetooth specification. The key is that they’re described in the simplest way possible so that you
as a programmer can start working with those concepts.

This book is not meant to be a be-all-end-all guide to Bluetooth programming. Instead, it’s meant to
serve as a stepping stone, the first foothold on which programmers interested in working with Bluetooth
can start from. Once you’ve read through and understood the concepts and techniques in this book, you’ll
have enough knowledge to start creating your own functional Bluetooth applications that can
interoperate with many other Bluetooth devices. If you find yourself wanting to know more about the
inner-workings and nitty-gritty details of Bluetooth, you’ll also be well prepared to tackle the more
complex and technical documents like the Bluetooth specification itself, which gives you enough
information to build your own Bluetooth chip from scratch.

2. Audience

This book targets the computer programmer looking for an introduction to Bluetooth and how to
program with it in Linux. It assumes no previous knowledge of Bluetooth (you may have never even
heard of it before picking up this book), but does assume that you have experience with either C or
Python, and have access to and can use a Linux development environment.

Because Bluetooth programming shares much in common with network programming, there will be
frequent references and comparisons to concepts in network programming such as sockets and the
TCP/IP transport protocols. It helps to have a basic understanding of these concepts as the comparisons
will help solidify your understanding of Bluetooth programming.

3. Organization of This Book

TODO

vi

Preface

4. Acknowledgments

TODO

4.1. Albert’s acknowledgments

TODO

4.2. Larry’s acknowledgments

TODO

vii

Chapter 1. Introduction

Bluetooth isa way for devices to wirelessly communicate over short distances.Wireless communication
has been around since Marconni and everyone knows about wifi or 802.11 digital wireless
communication, but the short distances and protocols are what distinguish bluetooth. A comprehensive
set of documents, called the Bluetooth Specifications, describes in gory detail exactly how they
accomplish this, but the basic idea is about wireless, short-range communication.

By pushing the gory details aside, the fundamentals of bluetooth programming can be understood.
Following this understanding comes the basics of iits programming concepts. With a firm grip on the
foundations, one can then comfortably explore the rest of bluetooth. In short, our goal is to help the
reader get started.

1.1. Understanding Bluetooth as a software developer

We show how to connect one Bluetooth device to another and how to transfer data between the two.
Connecting devices is more difficult than in the more common internet protocols where the distinction
between wired and wireless connections are usually not relevant to the application programmer. Since
Bluetooth is about connecting to nearby devices, the programmer must know about finding nearby
devices. From that point on, programming is nearly the same as socket programming.

So what is the difficulty? Actually, not much except the unusually wide scope of Bluetooth. There is so
much in the Bluetooth specification, that one does not know what detail is import for the typical case and
what detail can be ignored until later. Technology specifications, especially ones that are given folksy
names, often refer to something very specific and with a narrow scope. Ethernet, for example, describes
how to connect a bunch of machines together to form a simple network, but that’s about it. TCP/IP
describe two specific communication protocols that form the basis of the Internet, but they’re just two
protocols. Similarly, HTTP is the basis behind the World-Wide-Web, but also boils down to a simple
protocol. But if someone asked you to describe the Internet, where would you start? What would you
explain? You might describe Ethernet, TCP/IP, email, or the World-Wide-Web, or all of them at once.
The hard part is knowing where to start because there is so much to describe at so many different levels.
On the other hand, if a software developer approached you and wanted to know about Internet
programming - how to connect one computer on the Internet to the other and send data back and forth,
you probably wouldn’t bother describing the details of Ethernet or email, precisely because they are both
technologies aren’t central to answering that question. Sure, you might mention email as an example of
what Internet programming can accomplish, or describe Ethernet to give context on how the connections
are implemented, but what you’d really want to describe is TCP/IP programming.

In many ways, the word Bluetooth is like the word Internet because it encompasses a wide range of
subjects. Similar to Ethernet or USB, Bluetooth defines a lot of physical on-the-wire stuff like on which
radio frequencies to transmit and how to modulate and demodulate signals. Similar to Voice-over-IP
protocols used in many Internet applications, Bluetooth also describes how to transmit audio between

1

Chapter 1. Introduction

devices. But Bluetooth also specifies everything in between! It’s no wonder that the Bluetooth
specifications are thousands upon thousands of pages.

We jump right into the heart of the matter by presenting the subset of programming concepts addressed
in the subsequent chapters. Some Bluetooth technology details are then described, but only after the
fundamentals are covered.

1.2. Bluetooth Programming Concepts

Bluetooth is for communication between devices that are physically close. Internet programming, on the
otherhand, is for communication between devices regardless of their proximity; communicating with the
device in the same room is no different than communicating with one that is on the other side of the
world. This contrast with the well-known internet programming will be exploited throughout the rest of
this chapter; Bluetooth concepts will be contrasted with those of Internet programming. The vast
majority of network programmers are already familiar with TCP/IP to some degree and because
Bluetooth programming shares so much in common with Internet programming.

Although Bluetooth was designed from the ground up, independent of the Ethernet and TCP/IP
protocols, it is quite reasonable to think of Bluetooth programming in the same way as Internet
programming. Fundamentally, they have the same principles of one device communicating and
exchanging data with another device.

The different parts of network programming can be separated into several components

• Choosing a device with which to communicate

• Choosing a communicate protocol

• Initiating an outgoing connection

• Accepting an incoming connection

• Sending and receiving data

Some of these components do not always apply. In the connectionless model, for example, there is no
notion of establishing a connection. Some parts can be trivial in certain scenarios and quite complex in
another. If the address of a server is hard-coded into a client program, for example, then choosing a
device is no choice at all. In other cases, the program may need to consult numerous lookup tables and
perform several queries before it knows its final communication endpoint.

1.2.1. Choosing a communication partner

Every Bluetooth chip ever manufactured is imprinted with a globally unique 48-bit address, refered to as
theBluetooth addressor device address. This is identical in nature to the MAC addresses of Ethernet1,
and both address spaces are actually managed by the same organization - the IEEE Registration

2

Chapter 1. Introduction

Authority. These addresses, assigned at manufacture time, are intended to be unique and remain static for
the lifetime of the chip. It conveniently serves as the basic addressing unit in all of Bluetooth
programming.

For one Bluetooth device to communicate with another, it must have some way of determining the other
device’s Bluetooth address. The Bluetooth address is used at all layers of the Bluetooth communication
process, from the low-level radio protocols to the higher-level application protocols. In contrast, TCP/IP
network devices, use Ethernet as their data link layer discarding the 48-bit MAC address at higher layers
of the communication process and switch to using IP addresses. The principle remains the same however,
in that the unique identifying address of the target device must be known in order to communicate with it.

A client program may not have advance knowledge of the target address of the server to which it must
establish a connection. In Internet programming, a host name, such aswww.kernel.org , is usually
known or supplied by the user, but must be translated to a physical IP address using the Domain Name
System (DNS). In Bluetooth, the user will typically supply some user-friendly name, such as “My
Phone", and the client translates this to a numerical address by searching nearby Bluetooth devices and
checking the name of each device.

1.2.1.1. Device Name

Humans do not deal well with 48-bit numbers like0x000EED3D1829 (in much the same way we do not
deal well with numerical IP addresses like 64.233.161.104), and so Bluetooth devices will almost always
have a user-friendly name. This name is usually shown to the user in lieu of the Bluetooth address to
identify a device, but ultimately it is the Bluetooth address that is used in actual communication. For
many machines, such as cell phones and desktop computers, this name is configurable and the user can
choose an arbitrary word or phrase. There is no requirement for the user to choose a unique name, which
can sometimes cause confusion when many nearby devices have the same name. When sending a file to
someone’s phone, for example, the user may be faced with the task of choosing from 5 different phones,
each of which is named "My Phone".Is there a limit on the length of a device name?

Names in Bluetooth differ from Internet names in that there is no central naming authority; names can be
the same. Nevertheless, the client program still has to translate from a user-friendly name to the
underlying numerical address. In TCP/IP, translation involves contacting a local nameserver, issuing a
query, and waiting for a result. In Bluetooth, there are no nameservers. A client will instead broadcast
inquiries to nearby devices and query each detected device for its user-friendly name. The client then
chooses whichever device has a name that matches the one supplied by the user.

1.2.1.2. Searching for nearby devices

THIS SHOULD REALLY BE A SIDE NOTE

Device discovery, the process of searching for and detecting nearby Bluetooth devices is often a
confusing and irritating subject for Bluetooth developers and users. Why’s that, you might ask? Well, the

3

Chapter 1. Introduction

source of this aggravation stems from the fact that it can take a long time to detect nearby Bluetooth
devices. To be specific, given a Bluetooth cell phone and a Bluetooth laptop sitting next to each other on
a desk, it will usually take an average of 5 seconds before the phone detects the presence of the laptop,
and it sometimes can take as long as 10-15 seconds. This might not seem like that much time, but put in
context it is suprising. It takes 5 to 15 seconds from the start of the search and during this period the
phone is changing frequencies more than a thousand times a second and there are only 79 possible
frequencies2 on which it can transmit. It is a wonder why they don’t find each other in the blink of an eye.
The technical reasons for this aren’t very interesting. It’s mostly due to the result of a strangely designed
search algorithm. Suffice to say, device discovery may often take much longer than one can imagine.

1.2.2. Choosing a transport protocol

Once our client application has determined the address of the host machine to which it wants to connect,
it must specify the transport protocol to use. This section describes the Bluetooth transport protocols
closest in nature to the most commonly used Internet protocols. There are only three considered here.

DiagramBoth Bluetooth and Internet programming involve using numerous different transport
protocols, some of which are stacked on top of others. In TCP/IP, many applications use either TCP or
UDP, both of which rely on IP as an underlying transport. TCP provides a connection-oriented method of
reliably sending data in streams, and UDP provides a thin wrapper around IP that unreliably sends
individual datagrams of fixed maximum length. There are also protocols like RTP for applications such
as voice and video communications that have strict timing and latency requirements. While Bluetooth
does not have exactly equivalent protocols, it does provide protocols which can often be used in the same
contexts as some of the Internet protocols.

1.2.2.1. RFCOMM

The RFCOMM protocol provides roughly the same service and reliability guarantees as TCP. Although
the specification explicitly states that it was designed to emulate RS-232 serial ports (to make it easier for
manufacturers to add Bluetooth capabilities to their existing serial port devices), it is quite simple to use
it in many of the same scenarios as TCP.

In general, applications that use TCP are concerned with having a point-to-point connection over which
they can reliably exchange streams of data. If a portion of that data cannot be delivered within a fixed
time limit, then the connection is terminated and an error is delivered. Along with its various serial port
emulation properties that, for the most part, do not concern network programmers, RFCOMM provides
the same major attributes of TCP.

The choice of port numbers is the biggest difference between TCP and RFCOMM from a network
programmer’s perspective. Whereas TCP supports up to 65,535 open ports on a single machine,
RFCOMM only allows 30. This has a significant impact on how to choose port numbers for server
applications. It is discussed below.

4

Chapter 1. Introduction

1.2.2.2. L2CAP

The L2CAP (link layer common access protocol)check this acronymis similar to the UDP internet
protocol. UDP is for situations in which reliable delivery of every packet is not crucial and to avoid the
additional overhead incurred by TCP. Specifically, UDP is chosen for its best-effort, simple datagram
semantics. These are the same criteria that L2CAP satisfies as a communications protocol.

L2CAP, by default, provides a connection-oriented3 protocol that sends individual datagrams of fixed
maximum length. The default maximum packet size is 672 bytes, but this can be negotiated up to 65535
bytes. Being fairly customizable, L2CAP can be configured for varying levels of reliability. To provide
this service, the transport protocol that L2CAP is built on4 employs a transmit/acknowledgement
scheme, where unacknowledged packets are retransmitted. There are three policies an application can
use:

• never retransmit

• retransmit until success or total connection failure (the default)

• drop a packet and move on to queued data if a packet hasn’t been acknowledged after a specified time
limit (0-1279 milliseconds). This is useful when data must be transmitted in a timely manner.

Never retransmitting and dropping packets after a timeout are often referred to asbest-effort
communications. Trying to deliver a packet until it has been acknowledged or the entire connection fails
is known asreliablecommunications. Although Bluetooth does allow the application to use best-effort
instead of reliable communication, several caveats are in order. The reason for this is that adjusting the
delivery semantics for a single L2CAP connection to another device affectsall L2CAP connections to
that device. If a program adjusts the delivery semantics for an L2CAP connection to another device, it
should take care to ensure that there are no other L2CAP connections to that device. Additionally, since
RFCOMM uses L2CAP as a transport, all RFCOMM connections to that device are also affected. While
this is not a problem if only one Bluetooth connection to that device is expected, it is possible to
adversely affect other Bluetooth applications that also have open connections.

L2CAP serves as a suitable transport protocol when the application does not need the streams-based
nature of RFCOMM. It can be used in many of the same situations as UDP. That is, sending and
receiving packets. The tableTable 1-1illustrates the choices.

Table 1-1. A comparison of the requirements that would lead us to choose certain protocols.
Best-effort streams communication is not shown because it reduces to best-effort datagram
communication.

Requirement Internet Bluetooth

Reliable, streams-based TCP RFCOMM

Reliable, datagram TCP RFCOMM or L2CAP with
infinite retransmit

Best-effort, datagram UDP L2CAP (0-1279 ms retransmit)

5

Chapter 1. Introduction

1.2.2.3. Higher-level protocols, including OBEX: Object Exchange

There are many higher-level Bluetooth communication mechanisms. They are higher-level in the sense
that they handled by devices drivers or other operating system facilities and usually not part of the
application program. The application program is not involved in the actual transfer of the bits and bytes.
We mention this protocol in passing only because of its popularity. There are many other protocols

OBEX, orObject Exchangeis a very popular protocol for exchanging information between Bluetooth
devices. Rather than transmitting messages, packets, or some other arbitrary collection of bytes, the
OBEX protocol transfers anObjectthat is recognized by the operating system. A picture, audio clip,
ring-tone, text, or even an application program, are just a few examples of objects.

As usual, a destination device is choosen, a stream connection is opened, the bytes of the object are
streamed over, the connection closed, and the object then handled in a prescribed fashion, such as in a
default directory when the device is a computer or the message mailbox when the device is a phone.

1.2.3. Port numbers and the Service Discovery Protocol

A port is used to allow multiple applications on the same device to simultaneously utilize the same
transport protocol. Almost all Internet transport protocols in common usage are designed with the notion
of port numbers. Bluetooth is no exception, but uses slightly different terminology. In L2CAP, ports are
calledProtocol Service Multiplexers, and can take on odd-numbered values between 1 and 32767. Don’t
ask why they have to be odd-numbered values, because you won’t get a convincing answer. In
RFCOMM,channels1-30 are available for use. These differences aside, both protocol service
multiplexers and channels serve the exact same purpose that ports do in TCP/IP. Port numbers (1-1023)
in the L2CAP protocol are reserved and cannot to be used for custom applications and protocols
RFCOMM, having far fewer ports, has no such restriction. SeeTable 1-2for a summary. Throughout the
rest of this book, the wordport is used instead of protocol service multiplexer and channel, mostly for
clarity.

Table 1-2. Port numbers and their terminology for various protocols

protocol terminology reserved/well-known
ports

dynamically
assigned ports

TCP port 1-1024 1025-65535

UDP port 1-1024 1025-65535

RFCOMM channel none 1-30

L2CAP PSM odd numbered 1-4095 odd numbered 4097 -
32765

In Internet programming, server applications traditionally make use of well known port numbers that are
chosen and agreed upon at design time. Client applications will use the agreed port number to connect to
a server. The main disadvantage to this approach is that it is not possible to run two server applications

6

Chapter 1. Introduction

which both use the same port number. Due to the relative youth of TCP/IP and the large number of
available port numbers to choose from, this has not yet become a serious issue.

THIS DISTINCTION WITH PORTS SHOULD BE HIGHLIGHTED MORE

The Bluetooth transport protocols have far fewer available port numbers than Internet protocols.
Consequently, Bluetooth programming must address the issue port number selection. It is not practical to
choose an arbitrary port number at design time, as there will be conflicts. Of course RFCOMM’s 30 port
limit demands a different approach to allocation. L2CAP’s 15,000 port limit is also not very large and
there is a greater than 50% chance of port number collision with just 7 server applications. In this case,
the application designer clearly should not arbitrarily choose port numbers. Bluetooth attempt at a
general solution is theService Discovery Protocol(SDP).

It is still possible to write applications using pre-allocated port numbers, and that is probably fine for
one’s first attempt at Bluetooth programming, but it is not a viable long term solution. The Bluetooth
approach is to assign ports at runtime and follow a publish-subscribe model.?? Someplace earlier,
should explain host, server, client where it is the client that initiates the connection and the host or server
accept connections. ??The host machine operates theSDP server, that uses one of the few L2CAP
reserved port numbers. At runtime, a server application can register its service with the SDP server and
receive a dynamically assigned port number. Service registration includes a description of the service.
Client applications can query the SDP server (using the well defined port number) on a particular device.
If the description of the service requested matches a registered service, then the client will get back the
associated port that it must use to access that server.

1.2.3.1. Service ID

One might wonder how clients know which service description is the one they seek. The easy answer
would be to just assign every single service a unique identifier and be done with it. In otherwords, at
design time rather than agreeing upon a port number the server and client applications agree upon a
unique identifier. This approach has been done before, and the Internet Engineering Task Force has a
standard method for developers to independently come up with their own 128-bit Universally Unique
Identifiers (UUID). This is the basic idea around which SDP revolves, and this identifier is called the
service’sService ID. Specifically, a developer chooses this UUID at design time and when the program is
run, it registers its Service ID with the SDP server for that device. A client application trying to find a
specific service would query the SDP server on each device it finds to see if the device offers any
services with that same UUID.

UUIDs are typically referred to as a hyphen-separated series of digits of the form
"XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX", where each ’X’ is a hexadecimal digit.
The first segment of 8 digits corresponds to bits 1-32 of the UUID, the next segment of 4 digits is bits
33-36, and so on.

7

Chapter 1. Introduction

1.2.3.2. Service Class ID list

Although a Service ID by itself can take us a pretty long way in terms of identifying services and finding
the one we want, it’s really meant for custom applications built by a single development team. The
Bluetooth designers wanted to distinguish between these custom applications and classes of applications
that all do the same thing. For example, two different companies might both release Bluetooth software
that provides audio services over Bluetooth. Even though they’re completely different programs written
by different people, they both do the same thing. To handle this, Bluetooth introduces a second UUID,
called theService Class ID. Now, the two different programs can just advertise the same Service Class
ID, and all will be well in Bluetooth Land. Of course, this is only useful if the two companies agree on
which Service Class ID to use.

Another thought to consider is this: what if I have a single application that can provide multiple services?
For example, many Bluetooth headsets can function as a simple headphone and speaker, and advertise
that service class; but they also are capable of controlling a phone call - ansewring an incoming call,
muting the microphone, hanging up, and so on. Although it’s possible to just register two separate
services in this case, each with a specific service class, the Bluetooth designers chose to allow every
service to have a list of service classes that the service provides. So while a single service can only have
oneService ID, it can have manyService Class IDs.

NOTE: Technically, the Bluetooth specification demands that every SDP service record have a Service
Class ID list with at least one entry. This is an annoying restriction that serves no purpose except increase
the complexity. The Linux Bluetooth implementation does not enforce this demand.

Bluetooth Reserved UUIDs

Similar to the way L2CAP and TCP have reserved port numbers for special purposes,
Bluetooth also has reserved UUIDs. These are mostly used for identifying predefined
service classes, but also for transport protocols and profiles (Bluetooth profiles are
described inSection 1.3.5). Usually, you’ll see them referred to as 16-bit or 32-bit values,
but they do correspond to full 128-bit UUIDs.

To get the full 128-bit UUID from a 16-bit or 32-bit number, take theBluetooth Base UUID
(00000000-0000-1000-8000-00805F9B34FB) and replace the leftmost segment with
the 16-bit or 32-bit value. Mathematically, this is the same as:

128_bit_UUID= 16_or_32_bit_number* 296 + * Bluetooth_Base_UUID

1.2.3.3. SDP attributes

So far, we’ve described SDP as a way to figure out the port associated with a particular application
service on a device, using a Service ID or a Service Class ID as a lookup key. SDP is more general than

8

Chapter 1. Introduction

that; it is an information database. Every record advertised by SDP is actually a list ofattributes, where
each attribute is in turn an[ID, value] pair. The attributeID is a 16-bit unsigned integer that specifies
the type of attribute, and the actual attribute data is described in thevaluefield. A client application
looking for a service can search on any of these attributes, although most will usually search on the two
already mentioned.

The data in thevaluefield is not restricted to only UUIDs, and can also be an integer, a boolean value, a
text string, a list of any of those types, or even a list of lists. Attributes values can be of variable length --
up to 4 GB long, although you’d have to be a little crazy to actually try that. All of this makes SDP a
powerful way of describing services, but also makes it a bit complicated and sometimes tedious.

Bluetooth defines several reserved attribute IDs which always have a special meaning, leaving the rest
can be used any way. Some of the more common reserved attributes are:

Service class ID list

A list of service class UUIDs that the service provides.

Service ID

A single UUID identifying the specific service.

Service Name

A text string containing the name of the service.

Service Description

A text string describing the service provided.

Protocol descriptor list

A list of protocols and port numbers used by the service.

Profile descriptor list

A list of Bluetooth profile descriptor that the service complies with. Bluetooth Profiles are described
in Section 1.3.5. Each descriptor consists of a UUID and a version number.

DIAGRAM!!!

1.2.3.4. Is SDP even necessary?

In this section, we’ve seen how to avoid the pitfalls of fixed port numbers and how a client program can
use SDP to find a specific service and its associated port. Knowing this, we should also keep in mind that
SDP is not even required to create a Bluetooth application. It is perfectly possible to revert to the TCP/IP
way of assigning port numbers at design time and hope to avoid port conflicts, and this might often be
done to save some time. In controlled settings such as the computer laboratory or an in-house project,

9

Chapter 1. Introduction

this is quite reasonable. Ultimately, however, to create a portable application that will run in the greatest
number of scenarios, the application should use dynamically assigned ports and SDP.

1.2.4. Communicating using sockets

Given the address of a device, the transport protocol, and the port, Bluetooth programming is essentially
the tried and true network programmers friend: sockets. A server application waiting for an incoming
Bluetooth connection is conceptually the same as a server application waiting for an incoming Internet
connection, and a client application attempting to establish an outbound connection behaves the same
whether it is using RFCOMM, L2CAP, TCP, or UDP. For this reason, extending the socket programming
framework to encompass Bluetooth is a natural approach. In this section, we’ll give a brief introduction
to the concepts behind socket programming. Like the rest of this chapter, we won’t distract you with any
code yet, just give an overview of what’s involved. Note that we have covered all the basic properties; we
promised that it will be straight forward.

1.2.4.1. Introducing the Socket

DIAGRAM!!! A socketin network programming represents the endpoint of a communication link. The
idea is that from a software application’s point of view, all data being passing through the link must go
into or come out of the socket. First used in the 4.2BSD operating system, sockets have since become the
de-facto standard for network programming.

To establish a Bluetooth connection, a program must firstcreate a socket that will serve as the endpoint
of the connection. Sockets are used for all types of network programming, so the first thing to do is
specify what kind of socket it’s going to be. In Bluetooth programming, we’ll almost always be creating
either L2CAP or RFCOMM sockets, so that all data sent over the sockets will be sent using the correct
protocol.

When first created, the socket is not yet connected and can’t be used yet for communication. To connect
to it, however, the application must decide if the socket will be used as a server socket to listen for
incoming connections, or as a client socket to establish an outgoing connection. The process of
connecting the socket depends on this choice, so we’ll look at each case separately.

1.2.4.2. Client sockets

Client sockets are easy to understand and straightforward to use. Once the socket has been created, the
client program only needs to issue theconnect command, specifying to which device to connect and on
which port. The operating system then takes care of all the lower level details, reserving resources on the
local Bluetooth adapter,?? searching for the remote device ??, forming apiconet, and establishing a
connection. Once the socket is connected, it can be used for data transfer.

10

Chapter 1. Introduction

1.2.4.3. Server / Listening sockets

To get a useful data connection from a server socket (also called listening sockets), three steps are
required of the server application. First, it mustbind the socket to local Bluetooth resources, specifying
which Bluetooth adapter and which port number to use5. Second, the socket must be placed into
listening mode. This indicates to the operating system that it should listen for connection requests on
the adapter and port number chosen during the bind step. Finally, the application uses the bound and
listening socket toaccept incoming connections.

One of the major differences between a server socket and a client socket is that the server socket first
created by the application can never be used for actual communication. Instead, what happens is each
time the server socket accepts a new incoming connection, it spawns a brand-new socket that represents
the newly established connection. The server socket then goes back to listening for more connection
requests, and the application should use the newly created socket to communicate with the client.
DIAGRAM!!! ?? not sure that the server socket can never be used for communication. It is poor
practice, but if only one client at a time, I believe it workds. ??

1.2.4.4. Communicating using a connected socket

Once a Bluetooth application has a connected socket, using it to communicate it simple. Thesend and
receive commands are used to ... well, send and receive data. When the application is finished, it
simply invokes theclose command to disconnect the socket. Closing a listening server socket unbinds
the port and stops accepting incoming connections.

1.2.4.5. Nonblocking sockets with select

TODO

1.2.4.6. Socket summary

To briefly summarize, socket programming is a multi-step process that involves 8 main operations.

Create

Allocates an unconnected socket.

Connect (client)

Establishes an outgoing connection. Implicitly forms a piconet if necessary.

Bind (server)

Reserves a port number on a local Bluetooth adapter.

11

Chapter 1. Introduction

Listen (server)

Instructs the operating system to begin accepting incoming connections.

Accept (server)

Waits for incoming connections.

Receive

Receive incoming data on a Bluetooth connection.

Send

Send data to the remote device of a Bluetooth connection.

Close

Disconnects a connected socket, or shuts down a listening socket.

1.3. Useful things to know about Bluetooth

One does not need to know very much about section

1.3.1. Communications range

Bluetooth devices are divided into three power classes, the only difference between them is the
transmission power levels used.Table 1-3summarizes their differences. Almost all Bluetooth-enabled
cell phones, headsets, laptops, and other consumer-level Bluetooth devices are class 2 devices. There are
many class 1 USB devices for sale to consumers. It is the higher class that determines the properties. If a
class 1 USB device communicates with a class 2 Bluetooth cell phone, the range of the Bluetooth radio is
limitted by the cell phone. Class 3 Bluetooth device are rare, as their limited range heavily restricts their
usefulness.

Table 1-3. The three Bluetooth power classes

Power class Transmission power level Advertised range

1 100 mW 100 meters

2 2.5 mW 10 meters

3 < 1 mW < 1 meter

The ranges listed here are only rough estimates used for advertising purposes. In practice, one can see a
much larger range when there aren’t many obstructions between two devices, and a smaller range when
there’s a lot of radio interference or objects in between. People are actually quite good at blocking

12

Chapter 1. Introduction

Bluetooth signals, mostly because water (which constitues around 60% of the human body) does a great
job absorbing radio waves at the frequencies used by Bluetooth. Distance is only related to the
transmission power. Further distances may have higher error rates and a device might be seen outside its
low-error operating range.

1.3.2. Communications Speed

It is also difficult to give a reliable estimate on the bandwidth of a Bluetooth communications channel,
but ballpark figures do help. Theoretically, two Bluetooth devices have a maximum assymetric data rate
of 723.2 kilobits per second (kb/s) and a maximum symmetric data rate of 433.9 kb/s. Here, asymmetric
means that only one Bluetooth device is transmitting, and symmetric means that both are transmitting to
each other. In practice, the transfer rates are likely to be a bit less since there’s always going to be noise
on wireless communications channels as well as some transport protocol overhead on each packet
transmitted.

Like all wireless communications methods, the strength of a Bluetooth signal deteriorates quadratically
with the distance from the source. Since weaker signals are much more likely to be corrupted by noise,
the maximum communication speed between two Bluetooth devices is strongly limited by how far apart
they are. Unless you can closely control the distance and obstructions between two Bluetooth devices,
it’s a good idea to design a protocol that can tolerate lower communication speeds or dropped packets.

Bluetooth devices that conform to the Bluetooth 2.0 specification, which was released in late 2004, have
a theoretical limit triple that of older devices (2178.1 kb/s asymmetric, 1306.9 kb/s symmetric), but at the
time of this writing (October, 2005) there aren’t very many Bluetooth 2.0 devices available on the
market, and the vast majority of existing devices are limited by the older data rates.

1.3.3. Radio Frequencies and Channel Hopping

Bluetooth devices all operate in the 2.4 GHz frequency band. This means that it uses the same radio
frequencies as microwaves, 802.11, and some cordless phones (the kind that attach to land lines, not cell
phones). What makes Bluetooth different from the other technologies is that it divides the 2.4 GHz band
into 79 channels and employs channel hopping techniques so that Bluetooth devices are always changing
which frequencies they’re transmitting and receiving on.

DIAGRAM!! For comparison, take a look at the way 802.11b and 802.11g work. Both of these wireless
networking technologies divide the 2.4 GHz band into 14 channels that are 5 MHz wide. When a
wireless network is setup, the network administrator chooses one of these channels and all 802.11
devices on that wireless network will always transmit on the radio frequency for that channel (sometimes
this is done automatically by the wireless access point). If there are many wireless networks in the same
area, like in an apartment building where every apartment has its own wireless router, then chances are
that some of these networks will collide with each other and their overall performance will suffer.

13

Chapter 1. Introduction

Bluetooth, like 802.11, divides the 2.4 GHz band into channels, but that’s where the similarity ends. For
starters, Bluetooth has 79 channels instead of 14, and the channels are narrower (1 MHz wide instead of
5 MHz). The big difference, though, is that Bluetooth devices never stay on the same channel. An
actively communicating Bluetooth device changes channels every 625 microseconds (1600 times per
second). It tries to do this in a fairly random order so that no one channel is used much more than any
other channel. Of course, two Bluetooth devices that are communicating with each other must hop
channels together so that they’re always transmitting and receiving on the same frequencies.

Supposedly, all this hopping around makes Bluetooth more robust to interference from nearby sources of
evil radio waves, and allows for many Bluetooth networks to co-exist in the same place. Newer versions
of Bluetooth (1.2 and greater) go even further and useadaptive frequency hopping, where devices will
specifically avoid channels that are noisy and have high interference, (e.g. a channel that coincides with a
nearby 802.11 network). How much it actually helps is debatable, but it certainly makes Bluetooth a lot
more complicated than the other wireless networking technologies.

1.3.4. Bluetooth networks - piconets, scatternets, masters,
and slaves

To support the intricacies of a pseudorandom channel hopping scheme, the Bluetooth designers came up
with some even more confusing terminology that you might hear a lot, but doesn’t matter all that much
when developing Bluetooth software. Since it’s mentioned in a lot of Bluetooth literature, we’ll describe
it here, but don’t put too much effort into remembering it.

DIAGRAM!! Two or more Bluetooth devices that are communicating with each other and using the
same channel hopping configuration (so that they’re always using the same frequencies) form a
Bluetoothpiconet. A piconet can have up to 8 devices total. That’s pretty straightforward. But how do
they all agree on which frequencies to use and when to use them? That’s where themastercomes in. One
device on every piconet is designated the master, and has two roles. The first is to tell the other devices
(theslaves) which frequencies to use - the slaves all agree on the frequencies dictated by the master. The
second is to make sure that the devices communicate in an orderly fashion by taking turns.

DIAGRAM!! To better understand the master device’s second role, we’ll compare it again with how
802.11 works. In 802.11, there is no such thing as an orderly way of transmitting. If a device has a data
packet to send to another, it waits until no other device is transmitting, then waits a little more, and then
transmits. If the recipient got the message, then it replies with an acknowledgment. If the sender doesn’t
get the acknowledgment, then it tries again. You can see how this can get messy when a lot of 802.11
devices are trying to transmit at the same time. Bluetooth, on the other hand, uses a turn-based
transmission scheme, where the master of a piconet essentially informs every device when to transmit,
and when to keep quiet. The big advantage here is that the data transfer rates on a Bluetooth piconet will
be somewhat predictable, since every device will always have its turn to transmit. It’s like the difference
between a raucous town meeting where everyone is shouting to get their voice heard, and a moderated
discussion where the moderator gives everyone who raises their hands a chance to speak.

14

Chapter 1. Introduction

The last bit of Bluetooth networking terminology here is thescatternet. It’s theoretically possible for a
single Bluetooth device to participate in more than one piconet. In practice, a lot of devices don’t support
this ability, but it is possible. When this happens, the two different piconets are collectively called a
scatternet. Despite the impressive name, don’t get too excited because scatternets don’t really do a whole
lot. In fact, they don’t do anything at all. In order for two devices to communicate, they must be a part of
the same piconet. Being part of the same scatternet doesn’t help, and the device that joins the two
piconets (by participating in both of them) doesn’t have any special routing capabilities. Scatternet is just
a name, and nothing more.

To be clear, the reason all this talk about piconets, scatternets, masters, and slaves doesn’t matter is that
for the most part, all of this network formation and master-slave role selection is handled automatically
by Bluetooth hardware and low-level device drivers. As software developers, all we need to care about is
setting up a connection between two Bluetooth devices, and the piconet issue is taken care of for us. But
it does help to know what the terms mean.

1.3.5. Bluetooth Profiles + RFCs

Along with the simple TCP, IP, and UDP transport protocols used in Internet programming, there are a
host of other protocols to specify, in great detail, methods to route data packets, exchange electronic
mail, transfer files, load web pages, and more. Once standardized by the Internet Engineering Task Force
in the form of Request For Comments (RFCs)6, these protocols are generally adopted by the wider
Internet community. Similarly, Bluetooth also has a method for proposing, ratifying, and standardizing
protocols and specifications that are eventually adopted by the Bluetooth community. The Bluetooth
equivalent of an RFC is a Bluetooth Profile.

Due to the short-range nature of Bluetooth, the Bluetooth Profiles tend to be complementary to the
Internet RFCs, with emphasis on tasks that can assume physical proximity. For example, there is a profile
for exchanging physical location information7, a profile for printing to nearby printers8, and a profile for
using nearby modems9 to make phone calls. There is even a specification for encapsulating TCP/IP
traffic in a Bluetooth connection, which really does reduce Bluetooth programming to Internet
programming.

If you find yourself needing to implement one of the Bluetooth Profiles, you can find the specification
and all the details for that particular profile on the Bluetooth website http://www.bluetooth.org/spec,
where they are freely distributed.

Notes
1. http://www.ietf.org/rfc/rfc0826.txt

2. The device discovery process actually only uses 24 of the 79 channels, which makes it even sillier

3. The L2CAP specification actually allows for both connectionless and connection-based channels, but
connectionless channels are rarely used in practice. Since sending “connectionless" data to a device
requires joining its piconet, a time consuming process that is merely establishing a connection at a

15

Chapter 1. Introduction

lower level, connectionless L2CAP channels afford no advantages over connection-oriented
channels.

4. Asynchronous Connection-Less logical transport.

5. Most computers only have one Bluetooth adapter, so choosing a Bluetooth adapter isn’t much of a
choice at all

6. http://www.ietf.org/rfc.html

7. Local Positioning Profile

8. Basic Printing Profile

9. Dial Up Networking Profile

16

Chapter 2. Bluetooth programming with Python
- PyBluez

It’s time to get our hands dirty and learn how to implement each of the parts introduced in the previous
chapter. We’re going to use Python as an expository tool. Why Python, you might ask? Why not Java, or
C, or (insert your favorite language here)? There are two answers to that question. The short answer is
that it’s just plain easy, as we’ll soon find out. The long answer is that Python is a versatile and powerful
dynamically typed object oriented language, providing syntactic clarity along with built-in memory
management so that the programmer can focus on the algorithm at hand without worrying about memory
leaks or matching braces. Additionally, there’s no need to worry about compiling object files or linking
against libraries or setting the correct classpaths because, for our purposes, Python "Just Works".

This paragraph should be a side bar or somethingThe only tricky part we have to deal with before
getting started is making sure that we add Bluetooth support to Python. Although Python has a large and
comprehensive standard library, Bluetooth is not yet part of the standard distribution. Enter PyBluez, a
Python extension that provides Python programmers with access to system Bluetooth resources on
GNU/Linux computers. Once we have this installed, as described inTODO, we’re ready to get up and
running.

Note: If you’re not very comfortable with Python, don’t worry! The examples use only the simplest
parts of Python possible. The examples look like pseudocode but are fully functioning programs.

2.1. Choosing a communication partner

Following the steps outlined inChapter 1, the first action a Bluetooth program should take is to choose a
communication partner.Example 2-1shows a Python program that looks for a nearby device with the
user-friendly name “My Phone". An explanation of the program follows.

Example 2-1. findmyphone.py

from bluetooth import *

target_name = "My Phone"
target_address = None

nearby_devices = discover_devices()

for address in nearby_devices:
if target_name == lookup_name(address):

target_address = address
break

if target_address is not None:

17

Chapter 2. Bluetooth programming with Python - PyBluez

print "found target bluetooth device with address ", target_address
else:

print "could not find target bluetooth device nearby"

A Bluetooth device is uniquely identified by its address, so choosing a communication partner amounts
to picking a Bluetooth address. If only the user-friendly name of the target device is known, then two
steps must be taken to find the correct address. First, the program must scan for nearby Bluetooth
devices. The functiondiscover_devices does this and returns a list of addresses of detected devices.
Next, the program useslookup_name to connect to each detected device, request its user-friendly name,
and compare the result to the desired name. In this example, we just assumed that the user is always
looking for the Bluetooth device named "My Phone", but we could also display the names of all the
Bluetooth devices and prompt the user to choose one. Pretty easy, right?

PyBluez represents a Bluetooth address as a string of the form "xx:xx:xx:xx:xx", where each x is a
hexadecimal character representing one byte of the 48-bit address, with the most significant byte listed
first. Bluetooth devices in PyBluez will always be identified using an address string of this form. In the
previous example, if the target device had address "01:23:45:67:89:AB", we might see the following
output:

python findmyphone.py
found target bluetooth device with address 01:23:45:67:89:AB

discover_devices is used in this example without any arguments, which should be sufficient for most
situations, but there are a couple ways we can tweak it. When a Bluetooth device is detected during a
scan, its address is cached for up to a few minutes. By default,discover_devices will return
addresses from this cache in addition to devices that were actually detected in the current scan. To avoid
these cached results, set theflush_cache parameter toTrue . We can also control the amount of time
thatdiscover_devices spends scanning with theduration parameter, which is specified in integer
units of 1.28 seconds. This somewhat strange number is a consequence of the Bluetooth specification -
device scans always last a multiple ofexactly1.28 seconds. It’s usually not a good idea to decrease this
below the default value of 8 (10.24 seconds).

lookup_name also takes a parameter that controls how long it spends searching. Iflookup_name is not
able to determine the user-friendly name of the specified Bluetooth device within a default value of 10
seconds, then it gives up and returnsNone. Setting thetimeout parameter, a floating point number
specified in seconds, adjusts this timeout.

An important property of Bluetooth to keep in mind is that wireless communication is never perfect, so
discover_devices() will sometimes fail to detect devices that are in range, andlookup_name()

will sometimes returnNone when it shouldn’t. Unfortunately, it’s impossible for the program to know
whether these failures were a result of a bad signal or if the remote devices really aren’t there any more.
In these cases, it may be a good idea to try a few times, or to adjust the search durations.

18

Chapter 2. Bluetooth programming with Python - PyBluez

2.2. Communicating with RFCOMM

Example 2-2andExample 2-3show the basics of how to establish a connection using an RFCOMM
socket, transfer some data, and disconnect. In the first example, a server application waits for and accepts
a single connection on RFCOMM port 1, receives a bit of data and prints it on the screen. The second
example, the client program, connects to the server, sends a short message, and then disconnects.

Example 2-2. rfcomm-server.py

from bluetooth import *

port = 1

server_sock=BluetoothSocket(RFCOMM)
server_sock.bind(("",port))
server_sock.listen(1)

client_sock, client_info = server_sock.accept()
print "Accepted connection from ", client_info

data = client_sock.recv(1024)
print "received [%s]" % data

client_sock.close()
server_sock.close()

Example 2-3. rfcomm-client.py

from bluetooth import *

server_address = "01:23:45:67:89:AB"
port = 1

sock=BluetoothSocket(RFCOMM)
sock.connect((server_address, port))

sock.send("hello!!")

sock.close()

In the socket programming model, a socket represents an endpoint of a communication channel. Sockets
are not connected when they are first created, and are useless until a call to eitherconnect (client
application) oraccept (server application) completes successfully. Once a socket is connected, it can be
used to send and receive data until the connection fails due to link error or user termination.

A Bluetooth socket in PyBluez is represented as an instance of theBluetoothSocket class, and almost
all communications will use methods of this class. The constructor takes in only one parameter
specifying the type of socket. This can be eitherRFCOMM, as used in these examples, orL2CAP, which is

19

Chapter 2. Bluetooth programming with Python - PyBluez

described in the next section. The construction of the socket is the same for both client and server
sockets.

An RFCOMM BluetoothSocket used to accept incoming connections must be attached to operating
system resources with thebind method.bind takes in a single parameter - a tuple specifying the
address of the local Bluetooth adapter to use and a port number to listen on. Usually, there is only one
local Bluetooth adapter or it doesn’t matter which one to use, so the empty string indicates that any local
Bluetooth adapter is acceptable. Once a socket is bound, a call tolisten puts the socket into listening
mode and it is then ready to accept incoming connections with theaccept method.

accept returns two values - a brand newBluetoothSocket object connected to the client, and the
connection information as aaddress , port pair - address corresponds to the Bluetooth address of the
connected client andport is the port number on the client’s side of the connection.

Client programs do not need to callbind or the other two server-specific functions, but instead use the
connect method to establish an outgoing connection. Likebind , connect also takes a tuple specifying
an address and port number, but in this case the address can’t be empty and must be a valid Bluetooth
address. InExample 2-3, the client tries to connect to the Bluetooth device with address
“01:23:45:67:89:AB" on port 1. This example, andExample 2-2, assumes that all communication
happens on RFCOMM port 1.Section 2.4shows how to dynamically choose ports and use SDP to search
for which port a server is operating on.

Once a socket is connected, thesend andrecv methods can be used to, well... send and receive data.
recv takes a parameter specifying the maximum amount of data to receive, specified in bytes, and
returns the next data packet on the connection. To send a packet of data over a connection, simply pass it
to send , which queues it up for delivery.

Once an application is finished with its Bluetooth communications, it can disconnect by calling the
close method on a connected socket. So how does one side detect when the other has disconnected?
Therecv method will return an empty string. This is the only case whererecv does that, which makes
it a reliable way of knowing when the connection has been terminated.

We’ve left out error handling code in these examples for clarity, but the process is fairly straightforward.
If any of the Bluetooth operations fail for some reason (e.g. connection timeout, no local bluetooth
resources are available, etc.) then aBluetoothError is raised with an error message indicating the
reason for failure.

2.3. Communicating with L2CAP

Example 2-4andExample 2-5demonstrate the basics of using L2CAP as a transport protocol. You’ll
notice that using L2CAP sockets is almost identical to using RFCOMM sockets.

20

Chapter 2. Bluetooth programming with Python - PyBluez

Example 2-4. l2cap-server.py

from bluetooth import *

port = 0x1001

server_sock=BluetoothSocket(L2CAP)
server_sock.bind(("",port))
server_sock.listen(1)

client_sock,address = server_sock.accept()
print "Accepted connection from ",address

data = client_sock.recv(1024)
print "received [%s]" % data

client_sock.close()
server_sock.close()

Example 2-5. l2cap-client.py

from bluetooth import *

sock=BluetoothSocket(L2CAP)

bd_addr = "01:23:45:67:89:AB"
port = 0x1001

sock.connect((bd_addr, port))

sock.send("hello!!")

sock.close()

Aside from passing inL2CAPas a parameter to theBluetoothSocket constructor instead ofRFCOMM,
the only major difference between these examples and the RFCOMM examples from the previous
section is the choice of port number. Remember that in L2CAP, we’re strictly limited to odd-valued port
numbers between 4097 and 32765. Usually, we’ll use hexadecimal notation when referring to L2CAP
port numbers, just because they tend to look a little cleaner.

2.3.1. Maximum Transmission Unit

As a datagram-based protocol, packets sent on L2CAP connections have an upper size limit. Although
this has a small default value of 672 bytes, it can be adjusted. Each device at the endpoint of a connection
maintains anincoming maximum transmission unit (MTU), which specifies the maximum size packet it
can receive. If both devices adjust their incoming MTU settings, then it is possible to change the MTU of

21

Chapter 2. Bluetooth programming with Python - PyBluez

the entire connection beyond the 672 byte default up to 65535 bytes and as low as 48 bytes. In PyBluez,
theset_l2cap_mtu function is used to adjust this value.

set_l2cap_mtu(l2cap_sock, new_mtu)

This method is fairly straightforward, and takes two parameters.l2cap_sock should be a connected
L2CAP BluetoothSocket , andnew_mtu is an integer specifying the incoming MTU for the local
computer. Calling this function affects only the specified socket, and does not change the MTU for any
other socket. Here’s an example of how we might use it to raise the MTU:

l2cap_sock = BluetoothSocket(L2CAP)
.
. # connect the socket. This must be done before setting the MTU!
.

set_l2cap_mtu(l2cap_sock, 65535)

If you do find yourself using this function, don’t forget that both devices involved in a connection should
raise their MTU settings. It is possible for each side to have a different MTU, but that just gets confusing.

2.3.2. Best-effort transmission

Although we expressed reservations about using best-effort L2CAP channels inSection 1.2.2.2, there are
some cases where we might prefer best-effort semantics over reliable semantics. For example, if we’re
sending time-critical data such as audio or video data, it may be more important to forget about a few bad
packets and keep sending at a constant data rate so that the connection doesn’t "skip". Adjusting the
reliability semantics of a connection in PyBluez is also a simple task, and can be done with the
set_packet_timeout function.

set_packet_timeout(address, timeout)

set_packet_timeout takes a Bluetooth address and a timeout, specified in milliseconds, as input and
tries to adjust the packet timeout for all L2CAP and RFCOMM connections to that device. The process
must have superuser privileges, and there must be an active connection to the specified address. The
effects of adjusting this parameter will last as long as any active connections are open, including those
which outlive the Python program. If all connections to the specified Bluetooth device are closed and
new ones are re-established, then the connection reverts to the default of never timing out.

2.4. Service Discovery Protocol

So far we’ve seen how to detect nearby Bluetooth device and establish the two main types of data
transport connections, all using fixed Bluetooth address and port numbers that were determined at design
time. To build a truly robust Bluetooth application service, we should use dynamically allocated port
numbers. In doing so, we also need to give client applications a way to determine which port the service
is running on. After all, what’s the point of having a server running on a random port if the clients can’t

22

Chapter 2. Bluetooth programming with Python - PyBluez

find it? Here, we’ll see how to use the Service Discovery Protocol (SDP) for this purpose. To get started,
Example 2-6andExample 2-7show the RFCOMM client and server fromSection 2.2modified to use
dynamic port numbers and SDP. An explanation follows the examples.

Example 2-6. rfcomm-server-sdp.py

from bluetooth import *

port = get_available_port(RFCOMM)

server_sock=BluetoothSocket(RFCOMM)
server_sock.bind(("",port))
server_sock.listen(1)

advertise_service(server_sock, "Bluetooth Serial Port",
service_classes = [SERIAL_PORT_CLASS],
profiles = [SERIAL_PORT_PROFILE])

client_sock, client_info = server_sock.accept()
print "Accepted connection from ", client_info

data = client_sock.recv(1024)
print "received [%s]" % data

client_sock.close()
server_sock.close()

Example 2-7. rfcomm-client-sdp.py

import sys
from bluetooth import *

service_matches = find_service(name = "Bluetooth Serial Port",
uuid = SERIAL_PORT_CLASS)

if len(service_matches) == 0:
print "couldn’t find the service!"
sys.exit(0)

first_match = service_matches[0]
port = first_match["port"]
name = first_match["name"]
host = first_match["host"]

print "connecting to ", host

sock=BluetoothSocket(RFCOMM)
sock.connect((host, port))
sock.send("hello!!")
sock.close()

23

Chapter 2. Bluetooth programming with Python - PyBluez

You’ll notice right away that these examples aren’t much different from the ones we saw inSection 2.2.
Instead of hard-coding a port number, the server dynamically allocates a port number. After creating a
bound and listening socket, the server then advertises an SDP service and continues on in the same
manner as the previous examples. The client, instead of hardcoding a Bluetooth address and port number,
searches for a service record and uses that information to establish a connection. In the next few pages,
we’ll see some more details on how all this happens.

2.4.1. Dynamically allocating port numbers

Instead of using a predetermined port number, a Bluetooth server application can use the
get_available_port function to find an unused port number.

free_port = get_available_port(protocol)

This function takes a single parameter,protocol , which can be eitherL2CAPor RFCOMMand specifies
which protocol the application will use. It checks each port starting from the lowest number and returns
the first one that isn’t being used. The server application can then usefree_port in a call tobind . If no
ports are available at all, then it returnsNone.

get_available_port only identifies free ports, and doesn’t reserve them, so your application should
make a call tobind immediately afterwards. It is possible that, in the few milliseconds of time between
identifying the free port and binding it, another application could sneak by and "steal" the port number. If
this happens,bind will raise aBluetoothError , so you can just repeat the process. This should almost
never happen, but if you want to have a completely bug-free program that guards against this problem,
you could do the following:

from bluetooth import *
socket = BluetoothSocket(RFCOMM)
while True:

free_port = get_available_port(RFCOMM)
try:

socket.bind(("", free_port))
break

except BluetoothError:
print "couldn’t bind to ", free_port

listen, accept, and the rest of the program...

24

Chapter 2. Bluetooth programming with Python - PyBluez

2.4.2. Advertising a service

Once an application has a bound and listening socket, it can advertise a service with the local SDP server.
This is done with theadvertise_service function.

advertise_service(sock, name, service_id="", service_classes=[],
profiles=[], provider="", descrption="")

Only the first two parameters to this function,sock andname are required, and the rest have empty
defaults.

sock

A BluetoothSocket object that must already be bound and listening.

name

A short text string describing the name of the service.

service_id

Optional. The service ID of the service, specified as a string of the form
"XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX", where each ’X’ is a hexadecimal
digit.

service_classes

Optional. A list of service class IDs, each of which can be specified as a full 128-bit UUID in the
form "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX", or as a reserved 16-bit UUID
in the form "XXXX". A number of predefined UUIDs can be used here, such as
SERIAL_PORT_CLASS, or BASIC_PRINTING_CLASS. See the PyBluez documentation for a full list
of predefined service class IDs.

profiles

Optional. A list of profiles. Each item of the list should be a (uuid , version) tuple. A number of
predefined profiles can be used here, such asSERIAL_PORT_PROFILE, or LAN_ACCESS_PROFILE.
See the PyBluez documentation for a full list of predefined profiles.

provider

Optional. A short text string describing the provider of the service.

description

Optional. A short text string describing the actual service.

Calling advertise_service will register a service record with the local SDP server. To unregister the
service, use the functionstop_advertising .

stop_advertising(sock)

25

Chapter 2. Bluetooth programming with Python - PyBluez

This function takes a single parameter,sock , which is the socket originally used to advertise the service.
Another way to unregister a service is to simply close the socket, which will automatically can
stop_advertising .

2.4.3. Searching for and browsing services

To find a single service, or get a listing of services on one or multiple nearby Bluetooth devices, we use
the functionfind_service .

results = find_service(name = None, uuid = None, address = None)

Without any arguments at all,find_service returns a listing of all services offered by all nearby
Bluetooth devices. If there are a lot of Bluetooth devices in range, this could take a long time! Three
optional parameters to this function can be used to filter the search results:

name

Optional. Restricts search results to services with this name. In the special case that this is
"localhost" , then the local SDP server is searched.

uuid

Optional. Restricts search results to services with any attribute value matching thisuuid . Note that
the matching UUID could be either the service ID, or an entry in the service class ID list, or an
entry in the profiles list.

address

Optional. Only searches the Bluetooth device with thisaddress .

The results of this search is a list of dictionary objects. Each dictionary has eight keys, which describe
the corresponding service. The value for a key may beNone, which indicates that it wasn’t specified in
the service record. The keys and their values are:

"host"

The bluetooth address of the device advertising the service

"name"

The name of the service being advertised.

"description"

A description of the service.

"provider"

The provider of the service.

26

Chapter 2. Bluetooth programming with Python - PyBluez

"protocol"

A text string indicating which transport protocol the service is using. This can take on one of three
values:"RFCOMM", "L2CAP" , or "UNKNOWN".

"port"

If "protocol" is either"RFCOMM"or "L2CAP" , then this is an integer indicating which port
number the service is running on.

"service-classses"

A list of service class IDs, in the same format as used foradvertise_service

"profiles"

A list of profiles, in the same format as used foradvertise_service

2.5. Advanced usage

Although the techniques described in this chapter so far should be sufficient for most Bluetooth
applications with simple and straightforward requirements, some applications may require more
advanced functionality or finer control over the Bluetooth system resources. This section describes
asynchronous Bluetooth communications and the_bluetooth module.

2.5.1. Asynchronous socket programming with select

In the communications routines described so far, there is usually some sort of waiting involved. During
this time, the controlling thread blocks and can’t do anything else, such as respond to user input or
display progress information. To avoid these pitfalls ofsynchronousprogramming, it is possible to use
multiple threads of control, with one thread dedicated to each task that requires some waiting. That can
get quite hairy and complicated, though, so instead we’ll turn to usingasynchronoustechniques as a
solution.

The first step in asynchronous programming is to switch the sockets tonon-blockingmode, so that all the
operations that would block (wait) beforehand return immediately instead. The idea is "Don’t wait for
something to happen. Just get it started and we’ll figure it out later". To switch a socket into
non-blocking mode, use thesetblocking method and pass itFalse . Conversely, to switch back into
blocking mode, pass itTrue . For example:

from bluetooth import *
sock = BluetoothSocket(RFCOMM)
sock.setblocking(False)
s.bind(("", get_available_port(RFCOMM)))
...

27

Chapter 2. Bluetooth programming with Python - PyBluez

Thesetblocking method must be called on every socket that you want to switch to nonblocking mode.
This includes sockets that are returned by theaccept method.

The next step in asynchronous programming is the "Figure it out" step, where the program determines if
anything happened. The idea here is to consolidate all of the things a program can wait on into one place.
Then, when anything happens, some data is received or the user types something or a timer fires, the
program can deal with it immediately. To do this, we can use theselect module, which comes as part
of the standard Python distribution. Within theselect module is theselect function, which is what
we’ll be using extensively.

from select import *

can_rd, can_wr, has_exc = select(to_read, to_write, to_exc, [timeout])

select can wait for three different types of events - read events, write events, and exceptions. The first
three parameters are lists of objects - which list an object is in determines which type of eventselect

will detect for that object. An object can be in multiple lists. As soon asselect detects an event, it
returns three more lists, each of which contains objects from the original lists where event activity was
detected. The fourth parameter toselect is optional and specifies a timeout as a floating point number
in seconds. If no events are detected before the timeout elapses, thenselect returns three empty lists.

So what exactly are the different types of events? Some of these should be pretty obvious, but others have
been shoehorned in.Table 2-1summarizes which list to put a socket in for detecting specific events.

Table 2-1.select events

event list

outgoing connection established (client) write

data received on socket read

incoming connection accepted (server) read

can send data (i.e. send buffer not full) write

disconnected read

You’ll notice a couple things here. First, the third list for exceptions isn’t used at all.select is meant to
be used for all different types of objects, and the third list is used elsewhere, just not in Bluetooth.
Second, we didn’t mention searching for nearby devices or SDP. We’ll talk about the device discovery
process next, but unfortunately there aren’t yet any asynchronous techniques for SDP. In this case, you’ll
have to rely on threads for non-blocking operations, but hopefully that will change in the future.

2.5.2. Asynchronous device discovery

Asynchrously searching for nearby devices and determining their user-friendly names can also be done
with select , but is a bit more complicated and involves the use of a new class, the

28

Chapter 2. Bluetooth programming with Python - PyBluez

DeviceDiscoverer . Example 2-8shows an example of how to useselect andDeviceDiscoverer

for this purpose.

Example 2-8. asynchronous-inquiry.py

from bluetooth import *
from select import *

class MyDiscoverer(DeviceDiscoverer):
def pre_inquiry(self):

self.done = False

def device_discovered(self, address, device_class, name):
print "%s - %s" % (address, name)

def inquiry_complete(self):
self.done = True

d = MyDiscoverer()
d.find_devices(lookup_names = True)

while True:
can_read, can_write, has_exc = select([d], [], [])

if d in can_read:
d.process_event()

if d.done: break

To asynchronously detect nearby bluetooth devices, create a subclass ofDeviceDiscoverer and
override thepre_inquiry , device_discovered , andinquiry_complete methods. To start the
discovery process, invokefind_devices , which returns immediately.pre_inquiry is called
immediately before the actual inquiry process begins.

Call process_event to have theDeviceDiscoverer process pending events, which can be either a
discovered device or the inquiry completion. When a nearby device is detected,device_discovered is
invoked, with the address and device class of the detected device. Iflookup_names was set in the call to
find_devices , thenname will also be set to the user-friendly name of the device. For more information
about device classes, see https://www.bluetooth.org/foundry/assignnumb/document/baseband. The
DeviceDiscoverer class can be used directly with theselect module.

2.5.3. The _bluetooth module

Thebluetooth module provides classes and utility functions useful for the most common Bluetooth
programming tasks. More advanced functionality can be found in the_bluetooth extension module,
which is little more than a thin wrapper around the BlueZ C API described in the next chapter. Lower
level Bluetooth operations, such as establishing a connection with the actual Bluetooth microcontroller

29

Chapter 2. Bluetooth programming with Python - PyBluez

on the local machine and reading signal strength information, can be performed with the_bluetooth

module in almost cases without having to resort to the C API.

2.5.3.1. HCI sockets

An HCI socket, created by calling thehci_open_dev function, represents a direct connection to the
microcontroller on a local Bluetooth adapter. This allows complete control over almost all Bluetooth
functionality that the adapter has to offer, and is often useful for low-level tweaking.

hci_sock = hci_open_dev([adapter_number])

The function takes a single optional parameter specifying which local Bluetooth adapter to use. The first
Bluetooth adapter is 0, the second is 1, and so on. If you don’t care which one to use (or if you only have
a single Bluetooth adapter), then you can leave this out.

Communicating with the microcontroller consists of sending commands and receiving events. A
command is composed of three parts - anOpcode Group Field(OGF), anOpcode Command Field
(OCF), and the command parameters, which are different for each command. The OGF specifies the
general category of command, such as device control, or link control. The OCF specifies the exact
command within the OGF category. There are dozens of combinations that can be used here, all of which
are neatly laid out in the Bluetooth specification.

Most operations will have arequest-replyformat, where an event is generated by the microcontroller
immediately after the command. This event contains the result of the command (the microcontroller’s
reply to the user’s request), and typically indicates whether the command succeeded or not along with
relevant information. Operations that follow this format can be performed using thehci_send_req

function.

reply = hci_send_req(hci_sock, ogf, ocf, event, reply_len,
[params], [timeout])

The first three parameters to this function are the HCI socket to use, and the OGF and OCF of the
command.event specifies the type of event to wait for, andreply_len specifies the size of the reply
packet, in bytes, to expect from the microcontroller.params is optional because some commands don’t
take any parameters, and if specified should be a packed binary string.timeout , also optional, specifies
in millseconds how long to wait for the request to complete. The function returns an unprocessed binary
string containing the microcontroller’s reply.

As with the OGF and OCF fields, the exact details on how to pack the parameters, which event to wait
for, and how to interpret the reply are all defined in the Bluetooth specification, and it would be too
boring to list them here. Needless to say, examples do help, so TODO

Example 2-9. Reading the user-friendly name of a local Bluetooth adapter

TODO

30

Chapter 2. Bluetooth programming with Python - PyBluez

31

Chapter 3. C programming with libbluetooth

There are reasons to prefer developing Bluetooth applications in C instead of in a high level language
such as Python. The Python environment might not be available or might not fit on the target device;
strict application requirements on program size, speed, and memory usage may preclude the use of an
interpreted language like Python; the programmer may desire finer control over the local Bluetooth
adapter than PyBluez provides; or the project may be to create a shared library for other applications to
link against instead of a standalone application. As of this writing, BlueZ is a powerful Bluetooth
communications stack with extensive APIs that allows a user to fully exploit all local Bluetooth
resources, but it has no official documentation. Furthermore, there is very little unofficial documentation
as well. Novice developers requesting documentation on the official mailing lists1 are typically rebuffed
and told to figure out the API by reading through the BlueZ source code. This is a time consuming
process that can only reveal small pieces of information at a time, and is quite often enough of an
obstacle to deter many potential developers.

This chapter presents a short introduction to developing Bluetooth applications in C with BlueZ. The
tasks covered in chapter 2 are now explained in greater detail here for C programmers.

3.1. Choosing a communication partner

A simple program that detects nearby Bluetooth devices is shown inExample 3-1. The program reserves
system Bluetooth resources, scans for nearby Bluetooth devices, and then looks up the user friendly name
for each detected device. A more detailed explanation of the data structures and functions used follows.

Example 3-1. simplescan.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/socket.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_lib.h>

int main(int argc, char **argv)
{

inquiry_info *ii = NULL;
int max_rsp, num_rsp;
int dev_id, sock, len, flags;
int i;
char addr[19] = { 0 };
char name[248] = { 0 };

dev_id = hci_get_route(NULL);
sock = hci_open_dev(dev_id);

32

Chapter 3. C programming withlibbluetooth

if (dev_id < 0 || sock < 0) {
perror("opening socket");
exit(1);

}

len = 8;
max_rsp = 255;
flags = IREQ_CACHE_FLUSH;
ii = (inquiry_info*)malloc(max_rsp * sizeof(inquiry_info));

num_rsp = hci_inquiry(dev_id, len, max_rsp, NULL, &ii, flags);
if(num_rsp < 0) perror("hci_inquiry");

for (i = 0; i < num_rsp; i++) {
ba2str(&(ii+i)->bdaddr, addr);
memset(name, 0, sizeof(name));
if (hci_read_remote_name(sock, &(ii+i)->bdaddr, sizeof(name),

name, 0) < 0)
strcpy(name, "[unknown]");
printf("%s %s\n", addr, name);

}

free(ii);
close(sock);
return 0;

}

3.1.1. Compiling the example

To compile our program, invokegcc and link againstlibbluetooth

gcc -o simplescan simplescan.c -lbluetooth

3.1.2. Representing Bluetooth addresses

typedef struct {
uint8_t b[6];

} __attribute__((packed)) bdaddr_t;

The basic data structure used to specify a Bluetooth device address is thebdaddr_t , which is simply a
packed array of six bytes. All Bluetooth addresses in BlueZ will be stored and manipulated asbdaddr_t

structures. Two convenience functions,str2ba andba2str can be used to convert between strings and
bdaddr_t structures.

int str2ba(const char *str, bdaddr_t *ba);
int ba2str(const bdaddr_t *ba, char *str);

33

Chapter 3. C programming withlibbluetooth

str2ba takes a string of the form “XX:XX:XX:XX:XX:XX", where each XX is a hexadecimal number
specifying one byte of the 6-byte address, and packs it into abdaddr_t . ba2str does exactly the
opposite.

3.1.3. Choosing a local Bluetooth adapter

Local Bluetooth adapters are assigned identifying numbers starting with 0, and a program must specify
which adapter to use when allocating system resources. Usually, there is only one adapter or it doesn’t
matter which one is used, so passingNULL to hci_get_route will retrieve the resource number of the
first available Bluetooth adapter.

int hci_get_route(bdaddr_t *addr);

This function actually returns the resource number of any adapter whose Bluetooth address does not
match the one passed in as a parameter, so by passing inNULL, the program essentially asks for any
available adapter. If there are multiple Bluetooth adapters present, and we know which one we want, then
we can usehci_devid .

int hci_devid(const char *addr);

Unlike its counterpart,hci_devid returns the resource number of the Bluetooth adapter whose address
matches the one passed in as a parameter. This is one of the few places where a BlueZ function uses a
string representation to work with a Bluetooth address instead of abdaddr_t structure.

Once the program has chosen which adapter to use in scanning for nearby devices, it must allocate
resources to use that adapter. This can be done with thehci_open_dev function.

int hci_open_dev(int dev_id);

To be more specific, this function opens a socket connection to the microcontroller on the specified local
Bluetooth adapter. Keep in mind that this isnot a connection to a remote Bluetooth device, and is used
specifically for controlling the local adapter. Later on, inSection 3.5, we’ll see how to use this type of
socket for more advanced Bluetooth operations, but for now we’ll just be using it for the device inquiry
process. The result returned byhci_open_dev is a handle to the socket. On error, it returns -1 and sets
errno .

Note: Although tempting, it is not a good idea to hard-code the device number 0, because that is not
always the id of the first adapter. For example, if there were two adapters on the system and the first
adapter (id 0) is disabled, then the first available adapter is the one with id 1.

34

Chapter 3. C programming withlibbluetooth

3.1.4. Scanning for nearby devices

After choosing the local Bluetooth adapter to use and allocating system resources, the program is ready
to scan for nearby Bluetooth devices. In the example,hci_inquiry performs a Bluetooth device
discovery and returns a list of detected devices and some basic information about them in the variableii .

int hci_inquiry(int dev_id, int len, int max_rsp, const uint8_t *lap,
inquiry_info **ii, long flags);

Here, the function doesn’t actually use the socket opened in the previous step. Instead,hci_inquiry

takes the resource number returned byhci_get_route (or hci_devid) as its first parameter. Most
other functions we’ll see will use the socket opened byhci_open_dev , but this one creates its own
internal socket. The inquiry lasts for at most 1.28 *len seconds, and at mostmax_rsp devices will be
returned in the output parameterii , which must be large enough to accommodatemax_rsp results. We
suggest using amax_rsp of 255 for a standard 10.24 second inquiry.

If flags is set toIREQ_CACHE_FLUSH, then the cache of previously detected devices is flushed before
performing the current inquiry. Otherwise, ifflags is set to 0, then the results of previous inquiries may
be returned, even if the devices aren’t in range anymore.

The inquiry_info structure is defined as

typedef struct {
bdaddr_t bdaddr;
uint8_t pscan_rep_mode;
uint8_t pscan_period_mode;
uint8_t pscan_mode;
uint8_t dev_class[3];
uint16_t clock_offset;

} __attribute__ ((packed)) inquiry_info;

For the most part, only the first entry - thebdaddr field, which gives the address of the detected device -
is of any use. Occasionally, there may be a use for thedev_class field, which gives information about
the type of device detected (i.e. if it’s a printer, phone, desktop computer, etc.) and is described in the
Bluetooth Assigned Numbers2. The rest of the fields are used for low level communication, and are not
useful for most purposes. If you’re interested, the Bluetooth specification has all the gory details.

3.1.5. Determining the user-friendly name of a nearby device

Once a list of nearby Bluetooth devices and their addresses has been found, the program determines the
user-friendly names associated with those addresses and presents them to the user. The
hci_read_remote_name function is used for this purpose.

35

Chapter 3. C programming withlibbluetooth

int hci_read_remote_name(int hci_sock, const bdaddr_t *addr, int len,
char *name, int timeout)

hci_read_remote_name tries for at mosttimeout milliseconds to use the sockethci_sock to query
the user-friendly name of the device with Bluetooth addressaddr . On success,
hci_read_remote_name returns 0 and copies at most the firstlen bytes of the device’s user-friendly
name intoname.

hci_read_remote_name only tries to resolve a single name, so a program will typically invoke it many
times to get a list of all the use-rfriendly names of nearby Bluetooth devices.

3.1.6. Error handling

So far, all the functions introduced return an integer on completion. If the function succeeds in doing
whatever it was the program requested, then the return value is always greater than or equal to 0. If the
function fails, then the return value is -1 and theerrno global variable is set to indicate the type of error.
This is true of all thehci_ functions, as well as for all of the socket functions described in the next few
sections.

In the examples, we’ve left out error checking for clarity, but a robust program should examine the return
value of each function call to check for potential failures. A simple way to incorporate error handling is
to use thestrerror function to print out what went wrong, and then exit. For example, consider the
following snippet of code:

int dev_id = hci_get_route(NULL);
if(dev_id < 0) {

fprintf(stderr, "error code %d: %s\n", errno, strerror(errno));
exit(1);

}

If we ran this bit of code on a machine that does not have a Bluetooth adapter, we might see the
following output:

error code 19: No such device

This might not be the best error message to show an actual user, but it should give you an idea of how to
add error handling to your Bluetooth programs. For more information about usingerrno , consult a book
on Linux programming.

36

Chapter 3. C programming withlibbluetooth

3.2. RFCOMM sockets

As with Python, establishing and using RFCOMM connections boils down to the same socket
programming techniques introduced inSection 1.2.4, which are also widely used in Internet
programming. To get us started,Example 3-2andExample 3-3show how to establish a connection using
an RFCOMM socket, transfer some data, and disconnect. For simplicity, the client is hard-coded to
connect to01:23:45:67:89:AB .

Example 3-2. rfcomm-server.c

#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/rfcomm.h>

int main(int argc, char **argv)
{

struct sockaddr_rc loc_addr = { 0 }, rem_addr = { 0 };
char buf[1024] = { 0 };
int s, client, bytes_read;
int opt = sizeof(rem_addr);

// allocate socket
s = socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM);

// bind socket to port 1 of the first available
// local bluetooth adapter
loc_addr.rc_family = AF_BLUETOOTH;
loc_addr.rc_bdaddr = *BDADDR_ANY;
loc_addr.rc_channel = (uint8_t) 1;
bind(s, (struct sockaddr *)&loc_addr, sizeof(loc_addr));

// put socket into listening mode
listen(s, 1);

// accept one connection
client = accept(s, (struct sockaddr *)&rem_addr, &opt);

ba2str(&rem_addr.rc_bdaddr, buf);
fprintf(stderr, "accepted connection from %s\n", buf);
memset(buf, 0, sizeof(buf));

// read data from the client
bytes_read = read(client, buf, sizeof(buf));
if(bytes_read > 0) {

printf("received [%s]\n", buf);
}

// close connection
close(client);

37

Chapter 3. C programming withlibbluetooth

close(s);
return 0;

}

Example 3-3. rfcomm-client.c

#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/rfcomm.h>

int main(int argc, char **argv)
{

struct sockaddr_rc addr = { 0 };
int s, status;
char dest[18] = "01:23:45:67:89:AB";

// allocate a socket
s = socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM);

// set the connection parameters (who to connect to)
addr.rc_family = AF_BLUETOOTH;
addr.rc_channel = (uint8_t) 1;
str2ba(dest, &addr.rc_bdaddr);

// connect to server
status = connect(s, (struct sockaddr *)&addr, sizeof(addr));

// send a message
if(status == 0) {

status = write(s, "hello!", 6);
}

if(status < 0) perror("uh oh");

close(s);
return 0;

}

Those who read through the previous chapter will notice that the examples have the same flow and
structure used by the corresponding Python examples inSection 2.2. Additionally, the seasoned Internet
programmer will notice that these two examples are almost exactly the same as corresponding examples
used in TCP programming. The primary differences are in the way the sockets are created, and the
addressing structures used. First, thesocket function is used to allocate a socket.

int socket(int domain, int type, int protocol);

38

Chapter 3. C programming withlibbluetooth

For RFCOMM sockets, the three parameters to thesocket function call should always be:
AF_BLUETOOTH, SOCK_STREAM, andBTPROTO_RFCOMM. The first,AF_BLUETOOTHspecifies that it
should be a Bluetooth socket. The second,SOCK_STREAM, requests a socket with streams-based delivery
semantics. The third,BTPROTO_RFCOMM, specifically requests an RFCOMM socket. Thesocket

function creates the RFCOMM socket and returns an integer which is used as a handle to that socket.

3.2.1. Addressing structures

To establish an RFCOMM connection with another Bluetooth device, incoming or outgoing, create and
fill out a struct sockaddr_rc addressing structure. Like thestruct sockaddr_in that is used in
TCP/IP, the addressing structure specifies details for client sockets (which device and port to connect to)
as well as for listening sockets (which adapter to use and which port to listen on).

struct sockaddr_rc {
sa_family_t rc_family;
bdaddr_t rc_bdaddr;
uint8_t rc_channel;

};

Therc_family field specifies the addressing family of the socket, and will always beAF_BLUETOOTH.
For an outgoing connection,rc_bdaddr andrc_channel specify the Bluetooth address and port
number to connect to, respectively. For a listening socket,rc_bdaddr specifies the address of the local
Bluetooth adapter to use andrc_channel specifies the port number to listen on. If you don’t care which
local Bluetooth adapter to use for the listening socket, then you can useBDADDR_ANYto indicate that any
local Bluetooth adapter is acceptable.

3.2.2. Establishing a connection

Once created, a socket must be connected in order to be of any use. The procedure for doing this is
depends on whether the application is accepting incoming connections (server sockets), or whether it’s
creating outbound connections (client sockets). Client sockets are simpler, and the process only requires
making a single call to theconnect function.

int connect(int sock, const struct sockaddr *server_info,
socklen_t infolen);

The first parameter,sockfd , should be a socket handle created by thesocket function. The second
parameter should point to astruct sockaddr_rc addressing structure filled in with the details of the
server’s address and port number. Remember that you’ll have to cast it into astruct sockaddr * to
avoid compiler errors. Finally, the last parameter should always besizeof(struct sockaddr_rc)

for RFCOMM sockets. Theconnect function uses this information to establish a connection to the
specified server and returns once the connection has been established, or an error occured.

39

Chapter 3. C programming withlibbluetooth

Server sockets are a bit more complicated and involve three steps instead of just one. After the server
socket is created, it must be bound to a local Bluetooth adapter and port number with thebind function.

int bind(int sock, const struct sockaddr *info, socklen_t infolen);

sock should be the server socket created byconnect . info should point to astruct sockaddr_rc

addressing structure filled in with the local Bluetooth adapter to use, and which port number to use.
addrlen should always besizeof(struct sockaddr_rc) .

Next, the application takes the bound socket and puts it into listening mode with thelisten function.

int listen(int sock, int backlog);

In between the time an incoming Bluetooth connection is accepted by the operating system and the time
that the server application actually takes control, the new connection is put into a backlog queue. The
backlog parameter specifies how big this queue should be. Usually, a value of 1 or 2 is fine.

Once these steps have completed, the server application is ready to accept incoming connections using
theaccept function.

int accept(int server_sock, struct sockaddr *client_info,
socklen_t *infolen);

Theaccept function waits for an incoming connection and returns a brand new socket. The returned
socket represents the newly established connection with a client, and is what the server application
should use to communicate with the client. Ifclient_info points to a validstruct sockaddr_rc

structure, then it is filled in with the client’s information. Additionally,infolen will be set tosizeof(

struct sockaddr_rc) . The server application can then make another call toaccept and accept more
connections, or it can close the server socket when finished.

3.2.3. Using a connected socket

Once a socket is connected, using it to send and receive data is straightforward. Thesend function
transmits data, therecv function waits for and receives incoming data, and theclose function
disconnects a socket.

ssize_t send(int sock, const void *buf, size_t len, int flags);
ssize_t recv(int sock, void *buf, size_t len, int flags);
int close(int sock);

Both functions take four parameter, the first being a connected Bluetooth socket. Forsend , the next two
parameters should be a pointer to a buffer containing the data to send, and the amount of the buffer to
send, in bytes. Forrecv , the second two parameters should be a pointer to a buffer into which incoming

40

Chapter 3. C programming withlibbluetooth

data will be copied, and an upper limit on the amount of data to receive. The last parameter,flags ,
should be set to 0 for normal operation in bothsend andrecv .

send returns the number of bytes actually transmitted, which may be less than the amount requested. In
that case, the program should just try again starting from wheresend left off. Similarly, recv returns the
number of bytes actually received, which may be less than the maximum amount requested. The special
case whererecv returns 0 indicates that the connection is broken and no more data can be transmitted or
received.

Once a program is finished with a connected socket, callingclose on the socket disconnects and frees
the system resources used by that connection.

3.3. L2CAP sockets

Using L2CAP sockets is quite similar to using RFCOMM sockets, with the major differences in the
addressing structure and the availability of a few more options to control.Example 3-4andExample 3-5
demonstrate how to establish an L2CAP channel and transmit a short string of data. For simplicity, the
client is hard-coded to connect to “01:23:45:67:89:AB".

Example 3-4. l2cap-server.c

#include <stdio.h>
#include <string.h>
#include <sys/socket.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/l2cap.h>

int main(int argc, char **argv)
{

struct sockaddr_l2 loc_addr = { 0 }, rem_addr = { 0 };
char buf[1024] = { 0 };
int s, client, bytes_read;
int opt = sizeof(rem_addr);

// allocate socket
s = socket(AF_BLUETOOTH, SOCK_SEQPACKET, BTPROTO_L2CAP);

// bind socket to port 0x1001 of the first available
// bluetooth adapter
loc_addr.l2_family = AF_BLUETOOTH;
loc_addr.l2_bdaddr = *BDADDR_ANY;
loc_addr.l2_psm = htobs(0x1001);

bind(s, (struct sockaddr *)&loc_addr, sizeof(loc_addr));

// put socket into listening mode

41

Chapter 3. C programming withlibbluetooth

listen(s, 1);

// accept one connection
client = accept(s, (struct sockaddr *)&rem_addr, &opt);

ba2str(&rem_addr.l2_bdaddr, buf);
fprintf(stderr, "accepted connection from %s\n", buf);

memset(buf, 0, sizeof(buf));

// read data from the client
bytes_read = read(client, buf, sizeof(buf));
if(bytes_read > 0) {

printf("received [%s]\n", buf);
}

// close connection
close(client);
close(s);

}

Example 3-5. l2cap-client.c

#include <stdio.h>
#include <string.h>
#include <sys/socket.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/l2cap.h>

int main(int argc, char **argv)
{

struct sockaddr_l2 addr = { 0 };
int s, status;
char *message = "hello!";
char dest[18] = "01:23:45:67:89:AB";

if(argc < 2)
{

fprintf(stderr, "usage: %s <bt_addr>\n", argv[0]);
exit(2);

}

strncpy(dest, argv[1], 18);

// allocate a socket
s = socket(AF_BLUETOOTH, SOCK_SEQPACKET, BTPROTO_L2CAP);

// set the connection parameters (who to connect to)
addr.l2_family = AF_BLUETOOTH;
addr.l2_psm = htobs(0x1001);

42

Chapter 3. C programming withlibbluetooth

str2ba(dest, &addr.l2_bdaddr);

// connect to server
status = connect(s, (struct sockaddr *)&addr, sizeof(addr));

// send a message
if(status == 0) {

status = write(s, "hello!", 6);
}

if(status < 0) perror("uh oh");

close(s);
}

For simple usage scenarios, the primary differences betweeen using RFCOMM sockets and L2CAP
sockets are the parameters to theconnect function, and the addressing structure used. Forconnect , the
first parameter should still beAF_BLUETOOTH, but the next two parameters should beSOCK_SEQPACKET

andBTPROTO_L2CAP, respectively.SOCK_SEQPACKETis used to indicate a socket with reliable
datagram-oriented semantics where packets are delivered in the order sent.BTPROTO_L2CAPsimply
specifies the L2CAP protocol.

For connect , bind , andaccept , L2CAP sockets use thestruct sockaddr_l2 addressing structure.
It differs only slightly from thestruct sockaddr_rc used in RFCOMM sockets.

struct sockaddr_l2 {
sa_family_t l2_family;
unsigned short l2_psm;
bdaddr_t l2_bdaddr;

};

The first field,l2_family should always beAF_BLUETOOTH. Thel2_psm field specifies an L2CAP
port number, andl2_bdaddr denotes the address of either a server to connect to, a local adapter and
port number to listen on, or the information of a newly connected client, depending on context.

3.3.1. Byte ordering

Since Bluetooth deals with the transfer of data from one machine to another, the use of a consistent byte
ordering for multi-byte data types is crucial. Unlike network byte ordering, which uses a big-endian
format, Bluetooth byte ordering is little-endian, where the least significant bytes are transmitted first.
BlueZ provides four convenience functions to convert between host and Bluetooth byte orderings.

unsigned short int htobs(unsigned short int num);
unsigned short int btohs(unsigned short int num);
unsigned int htobl(unsigned int num);
unsigned int btohl(unsigned int num);

43

Chapter 3. C programming withlibbluetooth

These functions convert 16 and 32 bit unsigned integers between the local computer’s intenal byte
ordering (host order) and Bluetooth byte ordering. The function names describe the conversion. For
example,htobs stands for Host to Bluetooth Short, indicating that it converts a short 16-bit unsigned
integer from host order to Bluetooth order. The first place we’ll find a use for it is in specifying the port
number in thestruct sockaddr_l2 structure. We didn’t need it for the RFCOMM addressing
structure because RFCOMM port numbers can be represented using a single byte, but representing an
L2CAP port number requires two bytes. Other places the byte-order conversion functions may be used
are in communicating with the Bluetooth microcontroller, performing low level operations on transport
protocol sockets, and implementing higher level Bluetooth profiles such as the OBEX file transfer
protocol.

3.3.2. Maximum Transmission Unit

Occasionally, an application may need to adjust the maximum transmission unit (MTU) for an L2CAP
connection and set it to something other than the default of 672 bytes. This is done with thestruct

l2cap_options structure, and thegetsockopt andsetsockopt functions.

struct l2cap_options {
uint16_t omtu;
uint16_t imtu;
uint16_t flush_to;
uint8_t mode;

};

int getsockopt(int sock, int level, int optname, void *optval,
socklen_t *optlen);

int setsockopt(int sock, int level, int optname, void *optval,
socklen_t optlen);

Theomtu andimtu fields of thestruct l2cap_options are used to specify theoutgoing MTUand
incoming MTU, respectively. The other two fields are currently unused and reserved for future use. To
adjust the MTU for a connection, a program should first usegetsockopt to retrieve the existing L2CAP
options for a connected socket. After modifying the options,setsockopt should be used to apply the
changes. For example, a function to do all of this might look like this:

int set_l2cap_mtu(int sock, uint16_t mtu) {
struct l2cap_options opts;
int optlen = sizeof(opts);
int status = getsockopt(s, SOL_L2CAP, L2CAP_OPTIONS, &opts, &optlen);
if(status == 0) {

opts.omtu = opts.imtu = mtu;
status = setsockopt(s, SOL_L2CAP, L2CAP_OPTIONS, &opts, optlen);

}
return status;

};

44

Chapter 3. C programming withlibbluetooth

3.4. Service Discovery Protocol

The last step to building a robust Bluetooth application is making use of the Service Discovery Profile
(SDP). The examples in this chapter so far have relied on hard-coded port numbers - not a good long
term solution. Additionally, client applications wishing to connect to a server have no way of
programitcally finding out which nearby Bluetooth devices can provide the services they need. This
section describes how to dynamically assign port numbers to server applications at runtime, and how to
advertise and search for Bluetooth services using SDP.

3.4.1. Dynamically assigned port numbers

The best way to get a dynamically assigned port number is actually to try binding toeverypossible port
and stopping whenbind doesn’t fail. Aside from seeming a bit ugly, there’s nothing wrong with this
approach, and it will always work as long as a free port number is available. The following code snippet
illustrates how to do this for RFCOMM sockets.

int sock, port, status;
struct sockaddr_rc to_bind;
sock = socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM);
to_bind.rc_family = AF_BLUETOOTH;
to_bind.rc_bdaddr = *BDADDR_ANY;
for(port = 1; port <= 30; port++) {

to_bind.rc_channel = port;
status = bind(sock, (struct sockaddr *)&to_bind, sizeof(to_bind));
if(status == 0) break;

}

The process for L2CAP sockets is almost identical, but tries odd-numbered ports 4097-32767 (0x1001 -
0x7FFF) instead of ports 1-30.

For Linux kernel versions 2.6.7 and greater, it’s possible to simply set the port number to 0 when filling
out a socket addressing structure that gets passed to bind (astruct sockaddr_rc for RFCOMM, or a
struct sockaddr_l2 for L2CAP). During the call tobind , the kernel automatically chooses an
available port number. To find out what port the kernel chose, use thegetsockname function. This is
probably a bit cleaner than exhaustively checking each port, but it’s not guaranteed to be portable,
especially on embedded and handheld devices that tend to use older kernels.

3.4.2. SDP data structures

Working with SDP in C can be a bit laborious because it requires using a few more data structures to
represent the data being passed back and forth between the application and an SDP server. Before getting
into the details of how to register and search for services, here’s a quick overview of the major data

45

Chapter 3. C programming withlibbluetooth

structures needed. If you’re the type that likes to dive straight into examples, you may want to skip ahead
to the next section and come back to this part for reference.

sdp_record_t

This represents a single service record advertised by an SDP server. It is a container data type used
to consolidate all of the information in a service record. There are a number of functions used to
manipulate thesdp_record_t , as we’ll see later on.

sdp_session_t

This represents a connection to an SDP server, and is like a socket with SDP-specific functionality.
Like thesdp_record_t , we won’t have to deal directly with the data fields of this type, and will
instead use helper functions introduced later on.

uuid_t

All UUIDs are represented and manipulated asuuid_t data types. We’ll often have to write code to
fill them in, and there are three functions that we can use.

uuid_t* sdp_uuid128_create(uuid_t *uuid, const void *data);
uuid_t* sdp_uuid32_create(uuid_t *uuid, uint32_t data);
uuid_t* sdp_uuid16_create(uuid_t *uuid, uint16_t data);

Despite their names, all three functions create a 128-bit UUID. The difference is in whether the
UUID is a reserved number or not. For unreserved UUIDs that a developer creates, use the
sdp_uuid128_create function, which converts the 128-bits of memory starting atdata into a
uuid_t . For 32-bit and 16-bit reserved UUIDs, use thesdp_uuid32_create and
sdp_uuid16_create functions, respectively.

sdp_list_t

Since SDP has very few fixed-length fields, pretty much everything is represented as a linked list of
items, where each item can be of many different types, even other linked lists.sdp_list_t is a
straightforward implementation of a linked list, with a number utility functions.

typedef struct _sdp_list sdp_list_t;
struct _sdp_list {

sdp_list_t *next;
void *data;

};

sdp_list_t *sdp_list_append(sdp_list_t *list, void *data);

void sdp_list_free(sdp_list_t *list, sdp_free_func_t f);

Thesdp_list_t data type is used as both a pointer to an entire list, and a pointer to an individual
node in the list. It has two fields:next points to the next node in the list, anddata points to the
data stored at a single nodde.

Thesdp_list_append function is used both for adding nodes to a list, and for allocating new
lists. To create a new linked list, setlist to NULL, and the function allocates and returns a new list.

46

Chapter 3. C programming withlibbluetooth

To allocate and append a new node to the list, pass in the original list and the data element for the
new node.

Once you’re finished with a list, free the memory used by the list with thesdp_list_free

function. When freeing a list, you can pass it a pointer to another function, which will be called on
every data element in the list. The idea is that you can create a custom function to free the data
elements, or use an existing function likefree . If you don’t pass in a function, and leavef set to
NULL, thensdp_list_free does not modify or deallocate the data elements.

sdp_profile_desc_t

Thesdp_profile_desc_t is used only when describing the Bluetooth profile that a service
record adheres to.

typedef struct {
uuid_t uuid;
uint16_t version;

} sdp_profile_desc_t;

If a service advertises compliance with a Bluetooth profile, then it should advertise the UUID of that
profile, and the version number of the profile that it complies with.

sdp_data_t

An SDP service record consists of a list of entries, where each entry consists of an attribute / value
pair. Thesdp_data_t data type represents avalueof that pair. Since the value can be of many
different types (8-bit integer, 16-bit integer, text string, UUID, etc.) and can even be another
sdp_data_t , this data type can be fairly complicated to deal with. It also has a few helper
functions that will come in handy.

sdp_data_t * sdp_data_alloc(uint8_t dtd, const void *value);
sdp_attr_add(sdp_record_t *rec, uint16_t attr, sdp_data_t *data);
sdp_data_free(sdp_data_t *data);

Thesdp_data_alloc function is used to allocate a newsdp_data_t . Thedtd parameter
specifies the type of data being allocated, and can take on one 32 different values. We’ll only be
using a few of them in our examples, but you can also checkbluetooth/sdp.h for the full list.

3.4.3. Advertising a service

Advertising a service can be broken up into two steps. The first step consists of building the service
record that will be advertised, and the second step involves connecting to the local SDP server and
actually registering the service. Building the service record can take up a fair amount of code, mostly
because of the awkward way that data structures are handled in C, but everything after that is pretty
simple.Example 3-6shows a helper function that builds the service record and registers it with the local
SDP server. It advertises a service called "Roto-Rooter Data Router" running on RFCOMM port 11. The
service claims to be in the Serial Port class of services, and also adheres to the Serial Port Profile.

47

Chapter 3. C programming withlibbluetooth

Additionally, it has a service ID of "00000000-0000-0000-00000000ABCD", which is poorly chosen,
but easy to read.

Example 3-6. Advertising a service

#include <bluetooth/bluetooth.h>
#include <bluetooth/sdp.h>
#include <bluetooth/sdp_lib.h>

sdp_session_t *register_service()
{

uint32_t svc_uuid_int[] = { 0, 0, 0, 0xABCD };
uint8_t rfcomm_port = 11;
const char *service_name = "Roto-Rooter Data Router";
const char *service_dsc = "An experimental plumbing router";
const char *service_prov = "Roto-Rooter";

uuid_t root_uuid, l2cap_uuid, rfcomm_uuid, svc_uuid, svc_class_uuid;
sdp_list_t *l2cap_list = 0,

*rfcomm_list = 0,
*root_list = 0,
*proto_list = 0,
*access_proto_list = 0,
*svc_class_list = 0,
*profile_list = 0;

sdp_data_t *channel = 0;
sdp_profile_desc_t profile;
sdp_record_t record = { 0 };
sdp_session_t *session = 0;

// PART ONE

// set the general service ID
sdp_uuid128_create(&svc_uuid, &svc_uuid_int);
sdp_set_service_id(&record, svc_uuid);

// set the service class
sdp_uuid16_create(&svc_class_uuid, SERIAL_PORT_SVCLASS_ID);
svc_class_list = sdp_list_append(0, &svc_class_uuid);
sdp_set_service_classes(&record, svc_class_list);

// set the Bluetooth profile information
sdp_uuid16_create(&profile.uuid, SERIAL_PORT_PROFILE_ID);
profile.version = 0x0100;
profile_list = sdp_list_append(0, &profile);
sdp_set_profile_descs(&record, profile_list);

// make the service record publicly browsable
sdp_uuid16_create(&root_uuid, PUBLIC_BROWSE_GROUP);
root_list = sdp_list_append(0, &root_uuid);
sdp_set_browse_groups(&record, root_list);

// set l2cap information

48

Chapter 3. C programming withlibbluetooth

sdp_uuid16_create(&l2cap_uuid, L2CAP_UUID);
l2cap_list = sdp_list_append(0, &l2cap_uuid);
proto_list = sdp_list_append(0, l2cap_list);

// register the RFCOMM channel for RFCOMM sockets
sdp_uuid16_create(&rfcomm_uuid, RFCOMM_UUID);
channel = sdp_data_alloc(SDP_UINT8, &rfcomm_channel);
rfcomm_list = sdp_list_append(0, &rfcomm_uuid);
sdp_list_append(rfcomm_list, channel);
sdp_list_append(proto_list, rfcomm_list);

access_proto_list = sdp_list_append(0, proto_list);
sdp_set_access_protos(&record, access_proto_list);

// set the name, provider, and description
sdp_set_info_attr(&record, service_name, service_prov, service_dsc);

// PART TWO

// connect to the local SDP server, register the service record, and
// disconnect
session = sdp_connect(BDADDR_ANY, BDADDR_LOCAL, 0);
sdp_record_register(session, &record, 0);

// cleanup
sdp_data_free(channel);
sdp_list_free(l2cap_list, 0);
sdp_list_free(rfcomm_list, 0);
sdp_list_free(root_list, 0);
sdp_list_free(access_proto_list, 0);

return session;
}

int main()
{

sdp_session_t* session = register_service();
// The rest of the program here
sdp_close(session);
return 0;

}

After declaring a whole mess of local variables that will be used to store the different data elements of
the service record, we start off by setting the Service ID usingsdp_uuid128_create and
sdp_set_service_id .

uuid_t* sdp_uuid128_create(uuid_t *uuid, const void *data);
void sdp_set_service_id(sdp_record_t *rec, uuid_t uuid);

49

Chapter 3. C programming withlibbluetooth

There are no reserved Service IDs in Bluetooth, so we always specify it as a full 128-bit number.
Conveniently, a program can store the Service ID as an array of four 32-bit integers before converting it
to theuuid_t data type, since that array takes up exactly 128-bits of memory. Then, pass the newly
createduuid_t to sdp_set_service_id , which fills in the appropriate field of the service recordrec ,
also passed in as a parameter.

Once the Service ID is done, move on to create the Service Class List. For this example, the service
advertises the reservedSERIAL_PORT_CLASSin its list of Service Classes. Since it’s a reserved class,
usesdp_uuid16_create to allocate the UUID. This is also the first place we encounter the
sdp_list_t , which is used to store the list of UUIDs.sdp_set_service_classes can then be used
to apply the changes to the service record.

uuid_t* sdp_uuid16_create(uuid_t *uuid, uint16_t data);
sdp_list_t* sdp_list_append(sdp_list_t* list, void* data);
void sdp_set_service_classes(sdp_record_t* rec, sdp_list_t* class_list);

The flow of data here is also straightforward.sdp_uuid16_create creates a Service Class ID, which is
then passed tosdp_list_append to create a new linked list (as mentioned earlier, appending a data
element toNULLcreates a new list). This list is then passed tosdp_set_service_classes , which
actually sets the Service Class List for the service record.

Creating and setting the Profile Descriptor List is similar, but instead of creating a list of UUIDs, we
create a list ofsdp_profile_desc_t data structures, which are described earlier.
sdp_set_profile_descs can then be used to set this list in the service record.

void sdp_set_profile_descs(sdp_record_t* rec, sdp_list_t* profile_list);

By now, you should have gotten the general idea of how to fill in a service record data structure. First,
create an intermediate data structure that contains the information to set. Then, use one of the service
record helper functions to apply the changes to the mastersdp_record_t data structure. Lather, rinse,
repeat. There are a few more of these helper functions in the example, and we’ll quickly go over them
here.

void sdp_set_browse_groups(sdp_record_t* rec, sdp_list_t* browse_list);
void sdp_set_access_protos(sdp_record_t* rec, sdp_list_t* proto_list);
void sdp_set_info_attr(sdp_record_t* rec, const char* name,

const char* provider, const char* description);

The first of these is used to make the service record publicly browseable. By passing it a list that has a
single UUID with valuePUBLIC_BROWSE_GROUP, the application flags the service record for public
browsing. Remote Bluetooth devices requesting a list of all available services (which we’ll see how to do
in the next section), will get this service record in the reply as a result of setting the public browse group.

sdp_set_access_protos is used to set which transport protocols are advertised in the service record,
and is also where the port number being used by the server application gets defined. This one is a bit
tricky because it actually takes a list of lists of lists (3 deep). The first inner list is supposed to represent a

50

Chapter 3. C programming withlibbluetooth

protocol stack, but you’ll almost never have more than one of these. Within each protocol stack list,
you’ll have one list for each transport protocol used by the service. Since RFCOMM is built on top of
L2CAP, all RFCOMM applications always have at least an L2CAP list, and an RFCOMM list. The third
inner lists contain the details for the protocol list, and usually has one or two items. The first item should
be a UUID identifying the protocol. If the second item is present, it should be asdp_data_t specifying
the port number used by the service. Thedtd field of thesdp_data_t should beSDP_UINT8 for
RFCOMM ports, andSDP_UINT16 for L2CAP ports. Confusing, isn’t it? The example code should
actually work in most cases with minor modifications, so don’t get too hung up on figuring it all out.

Thesdp_set_info_attr function can be used to set three fields all at once, all of them text fields.
name should be the name of the service provided,provider is supposed to be the provider of the
service, anddescription describes the service. All three of these fields are meant to be
human-readable and not interpreted or specially parsed by Bluetooth programs, so they can really be
whatever you want them to be. Setting any of the three parameters toNULLcauses it to not be included in
the service record.

Finally, we’re done constructing the service record! Congratulate yourself, and breathe a sigh of relief.
The rest of advertising a service is easy, and we only need three more functions.

sdp_session_t *sdp_connect(const bdaddr_t *src, const bdaddr_t *dst,
uint32_t flags);

int sdp_record_register(sdp_session_t *session, sdp_record_t *rec,
uint8_t flags);

int sdp_close(sdp_session_t *session);

First, use thesdp_connect function to connect to the SDP server running on the local machine. The
first parameter,src , should always beBDADDR_ANY, the second parameter should always be
BDADDR_LOCAL, and the third parameter should always be0. Later on, we’ll use different values for
these parameters, but they should always be the same when advertising a service.

sdp_connect returns a pointer to a newly allocatedsdp_session_t , which represents a connection to
the local SDP server. This pointer then gets passed tosdp_record_register along with the service
record that we so carefully constructed. This function finishes the registration process, and the program
is now free to go on with the rest of its tasks. The service record will stay registered and advertised until
the program exits or closes the connection to the local SDP server by callingsdp_close .

3.4.4. Searching and browsing for a service

The process of searching for services involves two steps - detecting all nearby devices with a device
inquiry, and connecting to each of those devices in turn to search for the desired service. You might say,
"well why isn’t there way to broadcast service searches?" and to that, I would say, "Good question!".
Despite Bluetooth’s piconet abilities, there is no way for a device to (metaphorically) shout out, "Does
anyone have a printer!? Anyone?? A/S/L??" Instead, a client application has to do the equivalent of
walking up to each nearby device and saying, "Excuse me, can I have a minute? Yes, do you have a
printer available? No? Okay, sorry to bother."

51

Chapter 3. C programming withlibbluetooth

The first step, detecting all nearby devices, was covered inSection 3.1, so we’ll just skip that and move
right on to the second step. Once connected to the SDP server on a remote Bluetooth device, a client can
search on a specific UUID. The remote device should then return a list of all services that have that
UUID anywhere in the service record. The UUID could match the record’s Service ID, one of its Service
Classes, or even the transport protocol used by the service.Example 3-7shows how to search a single
device to see if it has an RFCOMM service with UUID00000000-0000-0000-0000-00000000ABCD .
An explanation follows.

Note: Browsing, or requesting a list of all services a device has to offer, is actually a special case of
searching. All publicly available services on a device will have the reserved UUID
PUBLIC_BROWSE_GROUPas an attribute, so searching for that UUID is equivalent to asking for all
services on a device.

Example 3-7. Searching for a service using SDP

#include <stdio.h>
#include <stdlib.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/sdp.h>
#include <bluetooth/sdp_lib.h>

int main(int argc, char **argv)
{

uint32_t svc_uuid_int[] = { 0, 0, 0, 0xABCD };

int status;
bdaddr_t target;
uuid_t svc_uuid;
sdp_list_t *response_list, *search_list, *attrid_list;
sdp_session_t *session = 0;
uint32_t range = 0x0000ffff;
uint8_t port = 0;

if(argc < 2)
{

fprintf(stderr, "usage: %s <bt_addr>\n", argv[0]);
exit(2);

}
str2ba(argv[1], &target);

// connect to the SDP server running on the remote machine
session = sdp_connect(BDADDR_ANY, &target, 0);

sdp_uuid128_create(&svc_uuid, &svc_uuid_int);
search_list = sdp_list_append(0, &svc_uuid);
attrid_list = sdp_list_append(0, &range);

// get a list of service records that have UUID 0xabcd
response_list = NULL;

52

Chapter 3. C programming withlibbluetooth

status = sdp_service_search_attr_req(session, search_list, \
SDP_ATTR_REQ_RANGE, attrid_list, &response_list);

if(status == 0) {
sdp_list_t *proto_list;
sdp_list_t *r = response_list;

// go through each of the service records
for (; r; r = r->next) {

sdp_record_t *rec = (sdp_record_t*) r->data;

// get a list of the protocol sequences
if(sdp_get_access_protos(rec, &proto_list) == 0) {

// get the RFCOMM port number
port = sdp_get_proto_port(proto_list, RFCOMM_UUID);

sdp_list_free(proto_list, 0);
}
sdp_record_free(rec);

}
}
sdp_list_free(response_list, 0);
sdp_list_free(search_list, 0);
sdp_list_free(attrid_list, 0);
sdp_close(session);

if(port != 0) {
printf("found service running on RFCOMM port %d\n", port);

}

return 0;
}

The example starts off by connecting to a specific Bluetooth device (the one with address
01:23:45:67:89:AB using thesdp_connect function that we saw in the previous section.

sdp_session_t *sdp_connect(const bdaddr_t *src, const bdaddr_t *dst,
uint32_t flags);

This time around, thedst parameter tosdp_connect is set to the address of the remote Bluetooth
device. If your application needs to use a specific local Bluetooth adapter to conduct the search, then pass
its address in as thesrc parameter, but otherwise just leave it set toBDADDR_ANY. Don’t worry about the
flags parameter, it doesn’t really do much so just leave it at 0. If the system isn’t able to connect to the
remote SDP server, thensdp_connect returnsNULL instead of a valid pointer.

Once connected, the client program prepares to send its search query by creating two lists. The first list
contains the UUIDs that the client is searching for. In this example, the client uses
sdp_uuid128_create to make a single UUID. Often, your program will be searching for a standard

53

Chapter 3. C programming withlibbluetooth

reserved UUID. In those cases, you can use thesdp_uuid16_create or sdp_uuid32_create

functions described earlier in the chapter. If your program needs to search on more than one UUID at a
time, then just append more of them to the list, and only service records matching every UUID will be
returned.

You can use the second list to control exactly what attribute/value pairs of matching service records that
an SDP server returns during a search, but usually we just want the SDP server to send us everything it
has for matching service records. To do this, just populate it with a single 32-bit integer with value
0xFFFF .

Search terms in hand, the client progrram sends the search query using the
sdp_service_search_attr_req function.

int sdp_service_search_attr_req(sdp_session_t* session,
const sdp_list_t* uuid_list, sdp_attrreq_type_t reqtype,
const sdp_list_t* attrid_list, sdp_list_t **response_list);

The first parameter to this function should be a pointer to thesdp_session_t created above.
uuid_list should be the list of UUIDs just created, andattrid_list should be the list containing the
single 32-bit integer also just created. Leavereqtype set toSDP_ATTR_REQ_RANGE, and pass the
address of aNULLpointer in asresponse_list . This last one is an output parameter, which will point
to a newly allocatedsdp_list_t when the function completes.sdp_service_search_attr_req

returns 0 when the search completed successfully (which doesn’t necessarily mean that it got any results,
just that it communicated with the SDP server successfully), and -1 on failure.

After a successful search, the client program will then have a linked list of service records to parse
through. If you read the previous section on advertising a service, these are the samesdp_record_t

data structures that were created by the server application. This time, however, the program is on the
receiving side and must slog through them to find what it needs.

Note: The last node of an sdp_list_t linked list has NULL as its next field. To iterate through a list,
a program can traverse the next links until it reaches NULL.

Extracting information out of ansdp_record_t involves a number of helper functions. Typically, you
won’t access the data structure directly, but will instead use functions namedsdp_get_ATTR, where
ATTRwill be some attribute, such assdp_get_service_classes .

Since a client program is primarily interested in figuring out how to connect to the service being
advertised by the SDP server, it should focus its attention on the the list of transport protocols in the
service record. To get to this list, use the functionssdp_get_access_protos and
sdp_get_proto_port .

int sdp_get_access_protos(const sdp_record_t *rec,
sdp_list_t **proto_list);

54

Chapter 3. C programming withlibbluetooth

int sdp_get_proto_port(const sdp_list_t *proto_list, int proto_uuid);

To determine which port a service is running on, pass asdp_record_t from the search results into
sdp_get_access_protos along with the address of aNULLpointer.proto_list is an output
parameter, and will point to a newly allocatedsdp_list_t when the function completes successfully.
This list represents all protocols and ports advertised in the service record.sdp_get_proto_port can
then be used to extract the port number. Pass it the protocol list and eitherRFCOMM_UUID(for RFCOMM
services), orL2CAP_UUID(for L2CAP services). The function returns the port number used by the
service, or 0 if it couldn’t find one.

Figuring out the port number that a service is running on is usually the most important part of searching
with SDP, so in that respect we’re all done. Other attributes of an advertised service record can also be
useful, however, and the following helper functions can be used to access them.

Service ID

int sdp_get_service_id(const sdp_record_t *rec, uuid_t *uuid);

The service ID will be stored in output parameteruuid , which should point to a validuuid_t .

Service Class List

int sdp_get_service_classes(const sdp_record_t *rec,
sdp_list_t **service_class_list);

service_class_list should be the address of aNULLpointer, which will be changed to point to
a newly allocatedsdp_list_t . This will be a list ofuuid_t data structures, each of which is the
UUID of a service class of the service record.

Profile Descriptor List

int sdp_get_profile_descs(const sdp_record_t *rec,
sdp_list_t **profile_descriptor_list);

profile_descriptor_list should be the address of aNULLpointer, which will be changed to
point to a newly allocatedsdp_list_t . This will be a list ofsdp_profile_desc_t data
structures, each of which is describes a Bluetooth Profile that the service adheres to.

Service Name, Service Provider, and Service Description

int sdp_get_service_name(const sdp_record_t *rec, char *buf, int len);
int sdp_get_service_desc(const sdp_record_t *rec, char *buf, int len);
int sdp_get_provider_name(const sdp_record_t *rec, char *buf, int len);

55

Chapter 3. C programming withlibbluetooth

All three of these functions copy a text string into the output parameterbuf . Thelen is a size limit,
but it’s not quite what you might expect. If the actual attribute is longer thanlen bytes, then all
three functions will fail and return -1. Otherwise, the full attribute text is copied into the buffer. It’s
probably best to just set this to a large, healthy number.

3.5. Advanced BlueZ programming

TODO

3.5.1. Asynchronous socket programming with select

TODO

3.5.2. HCI sockets

In addition to the L2CAP and RFCOMM sockets described in this chapter, BlueZ provides a number of
other socket types. The most useful of these is the Host Controller Interface (HCI) socket, which
provides a direct connection to the microcontroller on the local Bluetooth adapter. This socket type,
introduced in sectionSection 3.1, can be used to issue arbitrary commands to the Bluetooth adapter.
Programmers requiring precise control over the Bluetooth controller to perform tasks such as
asynchronous device discovery or reading signal strength information should use HCI sockets.

The simplest way to create an HCI socket is to usehci_open_dev in conjunction with
hci_get_route , both of which were described earlier in the chapter.

The semantics of using a HCI socket are fairly simple. The host computer can send commands to the
microcontroller by writing to the socket, and the microcontroller generates events to indicate command
responses and other status changes. These events can then be read from the socket.

A command consists of three parts - an Opcode Group Field that specifies the general category the
command falls into, an Opcode Command Field that specifies the actual command, and a series of
command-specific parameters. Events have two parts - an Event Code that specifies the type of event,
and a series of parameters that depend on the event code. If you wanted to get down and dirty with the
Bluetooth specification, you could programatically pack and unpack commands and events, and use
send andrecv for all your communication. For the less adventurous, there are also thehci_send_cmd

andhci_send_req functions.

int hci_send_cmd(int sock, uint16_t ogf, uint16_t ocf, uint8_t clen,
void *cparam);

56

Chapter 3. C programming withlibbluetooth

struct hci_request {
uint16_t ogf;
uint16_t ocf;
int event;
void *cparam;
int clen;
void *rparam;
int rlen;

};
int hci_send_req(int sock, struct hci_request *req, int timeout);

Thehci_send_cmd is used to send a single command to the Bluetooth microcontroller, and
hci_send_req is used to both send a command and wait for a response. Forhci_send_cmd , sock is
an open HCI socket,ogf is the Opcode Group Field,ocf is the Opcode Command Field, andclen

specifies the length in bytes of the command parameterscparam .

hci_send_request takes most of its parameters in thestruct hci_request data structure.ogf ,
ocf , cparam , andclen take on the same meaning as before.event specifies the Event Code of the
event to wait for, andrlen should be the size of therparam buffer, which will be filled in with the event
parameters. When usinghci_send_request , timeout specifies the maximum numer of milliseconds
to wait for the command to complete before timing out. To never timeout, use 0 instead.Example 3-8in
the next section demonstrates how to usehci_send_request .

BlueZ also provides a host of convenience functions which are more or less short wrappers around the
hci_send_cmd andhci_send_request functions with hard-coded parameters. For example, to
change the user-friendly name of a local Bluetooth adapter, you could usehci_write_local_name .
All of these functions are prefixed withhci_, and can be found in thehci_lib.h header file.

We’re not going to bother listing all the gory details of the commands you can send to your Bluetooth
microcontroller, or list all the HCI functions available because if you find yourself programming at such
a low level, you’d be best served by going straight to the Bluetooth Core Specification, which has a well
written section on using HCI and all the commands, events, and parameters available. Once you know
which command or event you’re looking for, browsing through thehci.h andhci_lib.h header files
should make it obvious which functions and data structures to use.

3.5.3. L2CAP Best-effort transmission

By default, L2CAP provides reliable transmission guarantees using a transmit/acknowledge scheme. The
sender of a packet always waits for an acknowledgement from the receiver before sending the next
packet, so that packets will either be reliably delivered in order, or the connectin fails. To change the
semantics of a connection to a best-effort transmission policy, we can adjust theflush timeoutof a
connection, which is the amount of time that a device waits for a packet acknowledgement before
moving on to the next packet. The details of changing this value are a little complicated, however.

57

Chapter 3. C programming withlibbluetooth

Multiple L2CAP and RFCOMM connections between two devices are actually logical connections
multiplexed on a single, lower level connection3 established between them. There is only one flush
timeout for each of these lower level connections, and adjusting it affectsall L2CAP and RFCOMM
connections between the two devices. Most existing Bluetooth profiles and applications do not make use
of this option, but it is possible to do so using HCI sockets in BlueZ.Example 3-8shows how change the
.

A handle to the underlying connection is first needed to make this change, but the only way to obtain a
handle to the underlying connection is to query the microcontroller on the local Bluetooth adapter. Once
the connection handle has been determined, a command can be issued to the microcontroller instructing
it to make the appropriate adjustments.

Example 3-8. set-flush-to.c

#include <unistd.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_lib.h>

int set_flush_timeout(bdaddr_t *ba, int timeout)
{

int err = 0, dd;
struct hci_conn_info_req *cr = 0;
struct hci_request rq = { 0 };

struct {
uint16_t handle;
uint16_t flush_timeout;

} cmd_param;

struct {
uint8_t status;
uint16_t handle;

} cmd_response;

// find the connection handle to the specified bluetooth device
cr = (struct hci_conn_info_req*) malloc(

sizeof(struct hci_conn_info_req) +
sizeof(struct hci_conn_info));

bacpy(&cr->bdaddr, ba);
cr->type = ACL_LINK;
dd = hci_open_dev(hci_get_route(&cr->bdaddr));
if(dd < 0) {

err = dd;
goto cleanup;

}

58

Chapter 3. C programming withlibbluetooth

err = ioctl(dd, HCIGETCONNINFO, (unsigned long) cr);
if(err) goto cleanup;

// build a command packet to send to the bluetooth microcontroller
cmd_param.handle = cr->conn_info->handle;
cmd_param.flush_timeout = htobs(timeout);
rq.ogf = OGF_HOST_CTL;
rq.ocf = 0x28;
rq.cparam = &cmd_param;
rq.clen = sizeof(cmd_param);
rq.rparam = &cmd_response;
rq.rlen = sizeof(cmd_response);
rq.event = EVT_CMD_COMPLETE;

// send the command and wait for the response
err = hci_send_req(dd, &rq, 0);
if(err) goto cleanup;

if(cmd_response.status) {
err = -1;
errno = bt_error(cmd_response.status);

}

cleanup:
free(cr);
if(dd >= 0) close(dd);
return err;

}

int main(int argc, char **argv)
{

bdaddr_t target;
int timeout;

if(argc < 3) {
fprintf(stderr, "usage: set-flush-to <addr> <timeout>\n");
exit(2);

}

str2ba(argv[1], &target);
timeout = atoi(argv[2]);
return set_flush_timeout(&target, timeout);

}

Setting the flush timeout for a connection involves two steps. First, the program usesioctl to retrieve a
connection handle to the lower level Bluetooth connection with another device. Second, it uses
hci_send_request (described in the HCI sockets section) to send the adjustment command to the
local Bluetooth microcontroller.

59

Chapter 3. C programming withlibbluetooth

On success, the packet timeout for the low level connection to the specified device is set totimeout *

0.625 milliseconds. A timeout of 0 is used to indicate infinite, and is how to revert back to a reliable
connection. The bulk of this example is comprised of code to construct the command packets and
response packets used in communicating with the Bluetooth controller. The Bluetooth Specification
defines the structure of these packets and the magic number0x28 .

3.5.4. SCO audio sockets

TODO

Notes
1. http://www.bluez.org/lists.html (http://www.bluez.org/lists.html)

2. https://www.bluetooth.org/foundry/assignnumb/document/baseband

3. Bluetooth terminology refers to this as the ACL connection

60

Chapter 4. Bluetooth development tools

Note: need to re-word this introduction now that the chapter is after 2 and 3

There are three major parts of the Bluetooth subsystem in Linux - the kernel level routines, the
libbluetooth development library, and the user level tools and daemons. Roughly speaking, the kernel
part is responsible for managing the Bluetooth hardware resources that are attached to a machine,
wrestling with all the different types of bluetooth adapters that are out there, and presenting a unified
interface to the rest of the system that allows any Bluetooth application to work with any Bluetooth
hardware.

The libbluetooth development library takes the interface exposed by the Linux kernel and provides a
set of convenient data structures and functions that can be used by Bluetooth programmers. It abstracts
some of the most commonly performed operations (such as detecting nearby Bluetooth devices) and
provides simple functions that can be invoked to perform common tasks.

The user-level tools are the programs that a typical end-user or programmer might use to leverage the
computer’s Bluetooth capabilities, while the daemons are constantly running programs that use the
Bluetooth development library to manage the system’s Bluetooth resources in the ways configured by the
user. The BlueZ developers strive to make these tools and daemons as straightforward to use as possible,
while also providing enough flexibility to meet every user’s needs. As a software developer, you’ll be
interacting with the user-level tools the most, so we’ll focus on introducing them in this chapter.

There are six command-line tools provided with BlueZ that are indispensable when configuring
Bluetooth on a machine and degugging applications. We’ll give some short descriptions here on how
they’re useful, and show some examples on how to use them. For full information on how to use them,
you should consult themanpages that are distributed with the tools, or invoke each tool with the-h flag.
This section serves mainly to give you an idea of what the tools are and which one to use for what
scenario.

4.1. hciconfig

hciconfig is used to configure the basic properties of Bluetooth adapters. When invoked without any
arguments, it will display the status of the adapters attached to the local machine. In all other cases, the
usage follows the form:

hciconfig <device> <command> <arguments...>

where <device> is usuallyhci0 (hci1 specificies the second Bluetooth adapter if you have two,hci2 is
the third, and so on). Most of the commands require superuser privileges. Some of the most useful ways
to use this tool are:

61

Chapter 4. Bluetooth development tools

Display the status of recognized Bluetooth adapters

hciconfig
hci0: Type: USB

BD Address: 00:0F:3D:05:75:26 ACL MTU: 192:8 SCO MTU: 64:8
UP RUNNING PSCAN ISCAN
RX bytes:505075 acl:31 sco:0 events:5991 errors:0
TX bytes:25758 acl:24 sco:0 commands:1998 errors:0

Each Bluetooth adapter recognized by BlueZ is displayed here. In this case, there is only one
adapter,hci0 , and it has Bluetooth Address00:0F:3D:05:75:26 . The "UP RUNNING" part on
the second line indicates that the adapter is enabled. "PSCAN" and "ISCAN" refer to Inquiry Scan
and Page Scan, which are described a few paragraphs down. The rest of the output is mostly
statistics and a few device properties.

Enable / Disable an adapter

Theup anddown commands can be used to enabled and disable a Bluetooth adapter. To check
whether or not a device is enabled, usehciconfig without any arguments.

hciconfig hci0 down
hciconfig
hci0: Type: USB

BD Address: 00:0F:3D:05:75:26 ACL MTU: 192:8 SCO MTU: 64:8
DOWN
RX bytes:505335 acl:31 sco:0 events:5993 errors:0
TX bytes:25764 acl:24 sco:0 commands:2000 errors:0

hciconfig hci0 up
hciconfig
hci0: Type: USB

BD Address: 00:0F:3D:05:75:26 ACL MTU: 192:8 SCO MTU: 64:8
UP RUNNING PSCAN ISCAN
RX bytes:505075 acl:31 sco:0 events:5991 errors:0
TX bytes:25758 acl:24 sco:0 commands:1998 errors:0

Display and change the user-friendly name of an adapter.

Thename command is fairly straightforward, and can be used to display and change the
user-friendly name of the Bluetooth adapter.

hciconfig hci0 name
hci0: Type: USB

BD Address: 00:0F:3D:05:75:26 ACL MTU: 192:8 SCO MTU: 64:8
Name: ’Trogdor’

hciconfig hci0 name ’StrongBad’
hciconfig hci0 name
hci0: Type: USB

BD Address: 00:0F:3D:05:75:26 ACL MTU: 192:8 SCO MTU: 64:8
Name: ’StrongBad’

62

Chapter 4. Bluetooth development tools

"Hide" an adapter, or show it to the world.

The Inquiry Scan and Page Scan settings for a Bluetooth adapter determine whether it is detectable
by nearby Bluetooth devices, and whether it will accept incoming connection requests, respectively.
Don’t be confused by the names! These control whether the adapterrespondsto inquiries and to
pages (connection requests), not whether it makes them.1

Table 4-1. Inquiry Scan and Page Scan

Inquiry Scan Page Scan Interpretation command

On On This is the default. The
adapter is detectable by
other Bluetooth devices,
and will accept
incoming connection
requests

piscan

Off On Although not detectable
by other Bluetooth
devices, the adapter still
accepts incoming
connection requests by
devices that already
know the Bluetooth
address of the adapter.

pscan

On Off The adapter is detectable
by other Bluetooth
devices, but it wil not
accept any incoming
connections. This is
mostly useless.

iscan

Off Off The adapter is not
detectable by other
Bluetooth devices, and
will not accept any
incoming connections.

noscan

For example, the following invocation disables both Inquiry Scan and Page Scan for the first
Bluetooth adapter.

hciconfig hci0 noscan

There are many more ways to usehciconfig , all of which are described in the help text (hciconfig

-h) and the man pages (man hciconfig). The key thing to remember is thathciconfig is the tool to

63

Chapter 4. Bluetooth development tools

use for any non-connection related settings for a Bluetooth adapter.

NOTE: Changes made byhciconfig are only temporary, and the effects are erased after a reboot or
when the device is disabled and enabled again.hcid.conf should be used To make a change permanent
(e.g. to permanently change the user-friendly name).

NOTE: The namehciconfig comes from the term Host Controller Interface (HCI). It refers to the
protocol that a computer uses to communicate with the Bluetooth microcontroller that resides on the
computer’s Bluetooth adapter. HCI is used to do all the dirty work of configuring the adapter and setting
up connections. The commandshciconfig andhcitool are so named to emphasize that they are used
for the low-level Bluetooth operations that, while important, can’t actually be used for communicating
with other Bluetooth devices.

4.2. hcitool

hcitool has two main uses. The first is to search for and detect nearby Bluetooth devices, and the
second is to test and show information about low-level Bluetooth connections. In a sense,hcitool picks
up wherehciconfig ends - once the Bluetooth adapter starts communicating with other Bluetooth
devices.

Detecting Nearby Bluetooth devices

hcitool scan searches for nearby Bluetooth devices and displays their addresses and
user-friendly names.

hcitool scan
Scanning ...

00:11:22:33:44:55 Cell Phone
AA:BB:CC:DD:EE:FF Computer-0
01:23:45:67:89:AB Laptop
00:12:62:B0:7B:27 Nokia 6600

In this invocation, four Bluetooth devices were fuond. Detecting the addresses of nearby Bluetooth
devices and looking up their user-friendly names are actually two separate processes, and
conducting the name lookup can often take quite a long time. If you don’t need the user-friendly
names, thenhcitool inq is useful for only performing the first part of the search - finding the
addresses of nearby devices.

Testing low-level Bluetooth connections

hcitool can be used to create piconets of Bluetooth devices and show information about locally
connected piconets. Remember that piconets are just an ugly consequence of Bluetooth’s fancy
frequency hopping techniques. When we’re writing Bluetooth software, we won’t have to worry

64

Chapter 4. Bluetooth development tools

about these low level details, just like we won’t have to worry about instructing the Bluetooth
adapter on which radio frequencies to use. So for application programming, this part ofhcitool is
strictly of educational use, because BlueZ automatically takes care of piconet formation and
configuration in the process of establishing higher-level RFCOMM and L2CAP connections.

If you’re curious about usinghcitool for basic piconet configuration, then thehcitool cc and
hcitool con commands are the first places to start.hcitool cc forms a piconet with another
device, and is fairly straightforward to use. For example, to join a piconet with the device
00:11:22:33:44:55

hcitool cc 00:11:22:33:44:55:66

hcitool con can then be used to show information about existing piconets.

hcitool con
Connections:

< ACL 00:11:22:33:44:55 handle 47 state 1 lm MASTER

Here, the output ofhcitool con tells us that the local Bluetooth adapter is the master of one
piconet, and the device 00:11:22:33:44:55 is a part of that piconet. For details on the rest of the
output, see thehcitool documentation.

NOTE: A fairly common mistake is to try to usehcitool to create data transport connections
between two Bluetooth devices. It’s important to know that even if two devices are part of the same
piconet, a higher-level connection needs to be established before any application-level data can be
exchanged. Creating the piconet is only the first step in the communications process.

4.3. sdptool

sdptool has two uses. The first is for searching and browsing the Service Discovery Protocol (SDP)
services advertised by nearby devices. This is useful for seeing what Bluetooth profiles are implemented
by another Bluetooth device such as a cellular phone or a headset. The second is for basic configuration
of the SDP services offered by the local machine.

Browsing and searching for services

sdptool browse [addr] retrieves a list of services offered by the Bluetooth device with address
addr . Leavingaddr out causessdptool to check all nearby devices. Iflocal is used for the
address, then the local SDP server is checked instead. Each service record found is then briefly
described. A typical service record might look like this:

sdptool browse 00:11:22:33:44:55

65

Chapter 4. Bluetooth development tools

Browsing 00:11:22:33:44:55
Service Name: Bluetooth Serial Port
Service RecHandle: 0x10000
Service Class ID List:

"Serial Port" (0x1101)
Protocol Descriptor List:

"L2CAP" (0x0100)
"RFCOMM" (0x0003)

Channel: 1
Language Base Attr List:

code_ISO639: 0x656e
encoding: 0x6a
base_offset: 0x100

Profile Descriptor List:
"Serial Port" (0x1101)

Version: 0x0100

Here, the device00:11:22:33:44:55 is advertising a single service called "Bluetooth Serial Port"
that’s operating on RFCOMM channel 1. The service has the UUID 0x1101, and also adheres to the
Bluetooth Serial Port Profile, as indicated by the profile descriptor list at the bottom. In general, this
information should be sufficient for an application to determine whether or not this is the service
that it’s looking for (has UUID 0x1101), and how to connect to it (use RFCOMM channel 1).

sdptool search can be used to search nearby devices for a specific service, but it can only look
for a handful of predefined services. It is not able to search for a service with an arbitrary UUID,
this must be done programmatically. Because of this,sdptool browse will generally be more
useful for testing and debugging applications that use SDP (e.g. to check that a service is being
advertised correctly).

Basic service configuration

sdptool add <name> can be used to advertise a set of predefined services, all of which are
standardized Bluetooth Profiles. It cannot be used to advertise an arbitrary service with a
user-defined UUID, this must be done programatically. This means it won’t be very useful for
advertising a custom service.

sdptool del <handle> can be used to un-advertise a local service. The SDP server maintains a
handle for each service that identifies it to the server - essentially a pointer to the service record.
To find the handle, just look at the description of the service usingsdptool browse and look for
the line that says "Service RecHandle: ". Using the example above, the Serial Port service has the
handle0x10000 , so if we were using that machine, we could issue the following command to stop
advertising the service:

sdptool del 0x10000

sdptool also provides commands for modifying service records (e.g. to change a UUID), that you
could actually use, but probably don’t want to. These, along with theadd anddel commands exist

66

Chapter 4. Bluetooth development tools

more so that programmers can look at the source code ofsdptool for examples on how to do the
same in their own applications. Advertising and configuring services with C and Python are
described in later chapters of this book, but you can always download the BlueZ source code at
http://www.bluez.org and see how it’s done withsdptool .

4.4. hcidump

For low-level debugging of connection setup and data transfer,hcidump can be used to intercept and
display all Bluetooth packets sent and received by the local machine. This can be very useful for
determining how and why a connection fails, and lets us examine at exactly what stage in the connection
process did communications fail.hcidump requires superuser privileges.

When run without any arguments,hcidump displays summaries of Bluetooth packets exchanged
between the local computer and the Bluetooth adapter as they appear. This includes packets on device
configuration, device inquiries, connection establishment, and raw data. Incoming packets are preceded
with the ">" greater-than symbol, and outgoing packets are preceded with the "<" less-than symobl. The
length of each packet (plen) is also shown. For example, if we startedhcidump in one command shell
and issued the commandhcitool inq in another, the output ofhcidump might look like this:

hcidump
HCI sniffer - Bluetooth packet analyzer ver 1.23
device: hci0 snap_len: 1028 filter: 0xffffffff
< HCI Command: Inquiry (0x01|0x0001) plen 5
> HCI Event: Command Status (0x0f) plen 4
> HCI Event: Inquiry Result (0x02) plen 15
> HCI Event: Inquiry Complete (0x01) plen 1

Here, we can see that one command (Inquiry) was sent out instructing the Bluetooth adapter to search for
nearby devices, and three packets of size 5, 4, and 15 bytes were received: information on the status of
the command, an inquiry result indicating that a nearby device was detected, and another status packet
once the inquiry completed. You’ll notice that used this way,hcidump only provides basic summaries of
the packets, which is not always enough for debugging. One option is to use the-X flag, which causes
hcidump to display the raw contents of every packet in hexadecimal format along with their ASCII
decodings. Used in the above example, we might see the following:

hcidump -X
HCI sniffer - Bluetooth packet analyzer ver 1.23
device: hci0 snap_len: 1028 filter: 0xffffffff
< HCI Command: Inquiry (0x01|0x0001) plen 5

0000: 33 8b 9e 08 00 3....
> HCI Event: Command Status (0x0f) plen 4

0000: 00 01 01 04

67

Chapter 4. Bluetooth development tools

> HCI Event: Inquiry Result (0x02) plen 15
0000: 01 26 75 05 3d 0f 00 01 02 00 00 01 3e d6 1f .&u.=.......>..

> HCI Event: Inquiry Complete (0x01) plen 1
0000: 00 .

Okay, so unless you’ve memorized the Bluetooth specification and can decode the raw binary packets in
your head, maybe that’s not as useful as we’d like. Whilehcidump -X is great for very low-level
debugging of raw packets, the-V option gives us a nice compromise.hcidump -V will display as much
information as it can gather from each packet, and summarize the ones it can’t interpret. If used together
with -X , it will still provide all the information for packets that it can decode, but will also show the raw
hexadecimal data for all the other packets (these tend to be application-level data packets). Repeating our
example once again, we might see this:

hcidump -X -V
HCI sniffer - Bluetooth packet analyzer ver 1.23
device: hci0 snap_len: 1028 filter: 0xffffffff
< HCI Command: Inquiry (0x01|0x0001) plen 5

lap 0x9e8b33 len 8 num 0
> HCI Event: Command Status (0x0f) plen 4

Inquiry (0x01|0x0001) status 0x00 ncmd 1
> HCI Event: Inquiry Result (0x02) plen 15

bdaddr 00:0F:3D:05:75:26 mode 1 clkoffset 0x1fd5 class 0x3e0100
> HCI Event: Inquiry Complete (0x01) plen 1

status 0x00

Now, we see the packets decoded according to the Bluetooth specification, which are probably mostly
meaningless to you right now, but would make sense if you found the need to read the parts of the
Bluetooth specification on device inquiry. Since this is a simple example,hcidump is able to fully
decode each packet, so we don’t see any raw hexadecimal data.

As with the other utilities, there are many more ways to usehcidump for debugging and low-level
display of Bluetooth packet communication that you can find out by reading the help text included with
BlueZ.

4.5. l2ping

l2ping sends echo packets to another Bluetooth device and waits for a response. An echo packet is a
special type of L2CAP packet that contains no meaningful data - when a Bluetooth device receives an
echo packet, it should just send (echo) the packet back to the originator. This is useful for testing and
analyzing L2CAP communications with another Bluetooth device. If two devices are communicating,
but seem a little sluggish, thenl2ping can provide timing information on how long it takes to send and
receive packets of a certain size. The only required parameter is the address of the Bluetooth device to
"ping". For example, to send echo packets to the device01:23:45:67:89:AB :

68

Chapter 4. Bluetooth development tools

l2ping -c 5 01:23:45:67:89:AB
Ping: 01:23:45:67:89:AB from 00:D0:F5:00:0E:B5 (data size 44) ...
44 bytes from 01:23:45:67:89:AB id 0 time 60.87ms
44 bytes from 01:23:45:67:89:AB id 1 time 55.97ms
44 bytes from 01:23:45:67:89:AB id 2 time 50.96ms
44 bytes from 01:23:45:67:89:AB id 3 time 51.94ms
44 bytes from 01:23:45:67:89:AB id 4 time 48.93ms

l2ping continues sending packets until stopped by pressingCtrl-C . Other command line arguments let
us control the size of the packets sent, the delay between packets, how many to send, and so on. For
details on how to use these capabilities, invokel2ping -h .

4.6. rfcomm

Therfcomm tool lets us establish arbitrary RFCOMM connections and treat them like serial ports.
Although the RFCOMM protocol was described in the previous chapter as a general purpose transport
protocol, one of its original purposes was to emulate a serial port connection between two devices. The
idea was that device manufacturers who had serial-port capable devices would only need to add a
Bluetooth chip to the end of the serial port controller, which requires much less modification to the
original device than replacing the serial port controller. In fact, Bluetooth was even marketed as a
"wireless serial cable". To utilize the serial-port emulation capabilities of Bluetooth in Linux, we use the
rfcomm tool.

rfcomm can be used to connect to another device or to listen for incoming connections. A special device
file is created for each connection, which user-level programs can read and write to like regular files.
Data written to the device file is transmitted over Bluetooth, and reading from the device file retrieves the
data received over the connection. When the device file is closed, the Bluetooth connection is terminated.

To listen for an incoming connection, we first choose which device file to bind it to. Typically, we’ll use
/dev/rfcommX , whereX ranges from 0 - 9. Next, we choose an RFCOMM port number to listen on. To
listen on RFCOMM port 20 and connect it to/dev/rfcomm0 , we’d use therfcomm listen command
like this:

rfcomm listen /dev/rfcomm0 20

Similarly, to establish an outgoing connection and serial port, we’d use therfcomm connect command,
but we would also specify the address of the Bluetooth device to connect to:

rfcomm connect /dev/rfcomm0 01:23:45:67:89:AB 20

Keep in mind that in both these examples, the special device file/dev/rfcomm0 is not a valid file until
therfcomm commands successfully complete. The other way of usingrfcomm to establish outgoing

69

Chapter 4. Bluetooth development tools

connections is to use therfcomm bind command to create the device file, and only establish the
Bluetooth connection when a separate program tries to access the device file. For example:

rfcomm bind /dev/rfcomm0 01:23:45:67:89:AB 20

Usingrfcomm in this way is sort of saying "When a program opens /dev/rfcomm0, make a connection to
the Bluetooth device 01:23:45:67:89:AB and send all data through that file. But if no program ever
access that file, don’t bother making the connection"

4.7. uuidgen

TODO

4.8. Obtaining BlueZ and PyBluez

Note: this should be an appendix

Instructions for installing the BlueZ development libraries can be found at the BlueZ website:
htp://www.bluez.org (http://www.bluez.org). Most modern Linux distributions should have this packaged
somehow. For example, on Debian-based systems:

apt-get install libbluetooth1-dev bluez-utils

On Fedora:

yum install bluez-devel

Similarly, instructions for installing PyBluez can be found at the PyBluez website:
http://org.csail.mit.edu/pybluez. PyBluez is included with a few Linux distributions, but TODO

Notes
1. The idea is that Inquiry Scan and Page Scan control whether the adapterscansfor inquiries and

pages, in the same way that you might use your eyes to scan around to see if anyone is talking to you.
Confusing!

70

Chapter 5. Microsoft Windows

Note: TODO: introduce this better

Bluetooth programming in Microsoft Windows is unfortunately complicated because there are several
competing Bluetooth stacks to choose from. Prior to Windows XP Service Pack 1, no version of
Windows had native support for Bluetooth and virtually all Bluetooth applications would come as part of
a larger package containing some sort of Bluetooth device and software stack. One of the more popular
Bluetooth development environments to choose from was, and still is, the Widcomm Bluetooth SDK.

With the introduction of Service Pack 1, Microsoft began natively supporting Bluetooth in Windows XP.
Many devices are now natively supported, and can be programmed using the Platform SDK, which is
available for download from the Microsoft website. However, by introducing their own Bluetooth
drivers, libraries, and APIs, Microsoft also caused a fair amount of confusion for many Bluetooth users.
Frequently, devices that shipped with a different Bluetooth stack and API would find their way onto a
platform with the Microsoft stack. All of a sudden, two completely separate sets of software applications
would be vying for control of a single Bluetooth device. The best way to solve that problem would be to
remove one of the competing software stacks so that the other could have unfettered access to the local
Bluetooth devices. Additionally, writing Bluetooth software without shipping an entire Bluetooth stack
complete with drivers and Bluetooth adapter meant you faced one of two choices:

• Write software for a single API, and hope that the end-user has the correct Bluetooth stack.

• Write software for multiple APIs, a more reliable but also much more time-consuming and expensive
approach.

So which is the better way to go? To that, we respond with the classic answer, "well, it depends on what
you’re looking for". First, you should determine whether you actually have a choice. Although more
recent versions of Windows have support for Bluetooth, older version such as Windows 98, ME, and
2000, still require a third-party Bluetooth stack. Additionally, the Microsoft Bluetooth stack only
provides support for the RFCOMM transport protocol. Audio applications that use SCO connections will
need to use a different API. Finally, developers looking to use higher level Bluetooth profiles such as the
File Transfer Profile or the Object Push Profile may find it easier to use a third party API that already
provides abstractions and API support for those profiles as opposed to completely re-implementing them.

Although the Microsoft Bluetooth stack is more limited than its more mature competitors, it does have
the advantage of coming standard with newer versions of Windows. For this reason, and because it is
freely distributed from the Microsoft website, we’ll give a brief overview of what’s involved when
programming with it. We won’t cover how to set up a development environment, since doing so is
already described in many other places, and instead assume that the interested reader already has a
working installation of Microsoft Visual C++ and the Microsoft Windows XP Platform SDK.

71

Chapter 5. Microsoft Windows

5.1. Programming with the Microsoft Bluetooth API

The Microsoft Bluetooth API is effectively an extension of the Windows Sockets 2 API, which is usually
used for Internet programming. Using it for Bluetooth programming is identical in nature to the methods
we’ve seen in previous chapters, with the main differences lying in the layout of the data structures and
the syntactic details.

5.1.1. Header files and linked libraries

To enable use of the Bluetooth extensions, thewinsock2.h andws2bth.h header files must be
included, and in that order. Additionally, the program must be linked againstws2_32.lib . These file are
all included with the Windows Platform SDK.

5.1.2. Initializing the Windows Sockets API

As with all programs using the Windows Sockets 2 API, some initialization code is required before the
use of any socket functions. Your program should define and invoke something similar to the following
function before using any Bluetooth resources.

#include <winsock2.h>
#include <ws2bth.h>

void initialize_windows_sockets() {
WSADATA wsaData;
WORD wVersionRequested = MAKEWORD(2, 0);
if(WSAStartup(wVersionRequested, &wsaData) != NO_ERROR) {

fprintf(stderr, "Error initializing window sockets!\n");
ExitProcess(2);

}
}

This only needs to be invoked once per process. Once your program is finished using Bluetooth
resources, it should callWSACleanup to release resources used by the Windows Sockets 2 API.

int WSACleanup(void);

5.1.3. Error checking

All of the functions introduced in this section, with the exception ofWSAStartup , returnNO_ERRORon
success andSOCKET_ERRORon failure. If something went wrong, the functionWSAGetLastError can

72

Chapter 5. Microsoft Windows

be used to retrieve an error code, andFormatMessage to convert the error code to a readable string. Full
details on the error codes and these two functions can be found in the Windows SDK documentation, but
you may find it helpful to define a function like the following when debugging your application:

void PrintLastError()
{
LPVOID lpMsgBuf;
FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |

FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, GetLastError(), 0, (LPTSTR) &lpMsgBuf, 0, NULL);

fprintf(stderr, "%s\n", lpMsgBuf); // or MessageBox() for graphical apps
free(lpMsgBuf);
}

5.1.4. Data structures

Like other C-based APIs, the Microsoft Bluetooth API has its share of data structures to learn. The data
structures that we’ll use are shown inFigure 5-1. As each data structure is introduced, we’ll refer back to
this figure to reference its internal fields.

Figure 5-1. Data Structures used in Microsoft Bluetooth API

typedef ULONGLONG BTH_ADDR;

typedef struct _SOCKADDR_BTH {
USHORT addressFamily;
BTH_ADDR btAddr;
GUID serviceClassId;
ULONG port;
} SOCKADDR_BTH;

typedef struct _SOCKET_ADDRESS {
LPSOCKADDR lpSockaddr;
INT iSockaddrLength;
} SOCKET_ADDRESS;

typedef struct _CSADDR_INFO {
SOCKET_ADDRESS LocalAddr;
SOCKET_ADDRESS RemoteAddr;
INT iSocketType;
INT iProtocol;
} CSADDR_INFO;

typedef struct _GUID {
DWORD Data1;
WORD Data2;

73

Chapter 5. Microsoft Windows

WORD Data3;
BYTE Data4[8];
} GUID;

typedef struct _WSAQuerySet {
DWORD dwSize;
LPTSTR lpszServiceInstanceName;
LPGUID lpServiceClassId;
LPWSAVERSION lpVersion;
LPTSTR lpszComment;
DWORD dwNameSpace;
LPGUID lpNSProviderId;
LPTSTR lpszContext;
DWORD dwNumberOfProtocols;
LPAFPROTOCOLS lpafpProtocols;
LPTSTR lpszQueryString;
DWORD dwNumberOfCsAddrs;
LPCSADDR_INFO lpcsaBuffer;
DWORD dwOutputFlags;
LPBLOB lpBlob;
} WSAQUERYSET;

5.2. Choosing a remote device

Example 5-1shows an example of how to detect nearby Bluetooth devices. An explanation follows.

Example 5-1. Windows Device Discovery

#include "stdafx.h"
#include <winsock2.h>
#include <ws2bth.h>

int _tmain(int argc, _TCHAR* argv[])
{
// setup windows sockets
WORD wVersionRequested;
WSADATA wsaData;
wVersionRequested = MAKEWORD(2, 0);
if(WSAStartup(wVersionRequested, &wsaData) != 0) {

fprintf(stderr, "uh oh... windows sockets barfed\n");
ExitProcess(2);

}

// prepare the inquiry data structure
DWORD qs_len = sizeof(WSAQUERYSET);
WSAQUERYSET *qs = (WSAQUERYSET*) malloc(qs_len);
ZeroMemory(qs, qs_len);
qs->dwSize = sizeof(WSAQUERYSET);

74

Chapter 5. Microsoft Windows

qs->dwNameSpace = NS_BTH;

DWORD flags = LUP_CONTAINERS;
flags |= LUP_FLUSHCACHE | LUP_RETURN_NAME | LUP_RETURN_ADDR;
HANDLE h;

// start the device inquiry
if(SOCKET_ERROR == WSALookupServiceBegin(qs, flags, &h)) {

ExitProcess(2);
}

// iterate through the inquiry results
bool done = false;
while(! done) {

if(NO_ERROR == WSALookupServiceNext(h, flags, &qs_len, qs)) {
char buf[40] = {0};
BTH_ADDR result =

((SOCKADDR_BTH*)qs->lpcsaBuffer->RemoteAddr.lpSockaddr)->btAddr;
DWORD bufsize = sizeof(buf);
WSAAddressToString(qs->lpcsaBuffer->RemoteAddr.lpSockaddr,

sizeof(SOCKADDR_BTH), NULL, buf, &bufsize);
printf("found: %s - %s\n", buf, qs->lpszServiceInstanceName);

} else {
int error = WSAGetLastError();

if(error == WSAEFAULT) {
free(qs);
qs = (WSAQUERYSET*) malloc(qs_len);

} else if(error == WSA_E_NO_MORE) {
printf("inquiry complete\n");
done = true;

} else {
printf("uh oh. error code %d\n", error);
done = true;

}
}

}
free(qs);

WSACleanup();

return 0;
}

The Microsoft Bluetooth API represents Bluetooth addresses as ULONGLONG data types, which are
just 64-bit unsigned integers. This is bigger than the addresses need, but can be convenient because they
are basic data types and not composite structures.

To start the device discovery process for detecting nearby Bluetooth devices, use the
WSALookupServiceBegin function.

75

Chapter 5. Microsoft Windows

int WSALookupServiceBegin(WSAQUERYSET* queryset,
DWORD dwControlFlags, HANDLE* lphLookup);

queryset should point to a validWSAQUERYSETdata structure, and is initially used to specify that a
Bluetooth device discovery is desired. TheWSAQUERYSETstructure has quite a few fields, but only two
of them matter for a device inquiry.queryset->dwSize should always be set tosizeof(

WSAQUERYSET), andqueryset->dwNameSpace should always be set toNS_BTH. All other fields
should be initialized to zero.

dwControlFlags specifies the exact details of the device discovery and is a combination (logical OR)
of the following flags:

Note: TODO: get rid of the tick marks on this list

• LUP_CONTAINERS- this is always specified for device discoveries.
• LUP_FLUSHCACHE- flushes the cache of previously detected devices. If not specified, then devices

detected in previous device discoveries may also be returned in the current one.
• LUP_RETURN_TYPE- causes the Blueooth device class to be retrieved. Device classes are described in

the Bluetooth Assigned Numbers document1. This field can be useful for doing things like displaying
a different type of icon for each type of detected device (e.g. cell phones, printers, computers, etc.)
bthdef.h has a number of macros useful for parsing this field.

• LUP_RETURN_NAME- attempts to also determine the user-friendly name of each detected device.
• LUP_RETURN_ADDR- retrieves the Bluetooth address of each detected device. You almost certainly

want to specify this.
• LUP_RES_SERVICE- TODO
• LUP_FLUSHPREVIOUS- TODO

lphLookup is an output parameter and should point to an unusedHANDLE. After the function returns
successfully,lphLookup is used with other functions to refer to the ongoing device discovery process.

WSALookupServiceBegin only initiates the device discovery, and doesn’t return any information about
nearby devices. To find out which devices were actually detected, useWSALookupServiceNext . Since
each call to this function retrieves details for at most one device (possibly none), it’s typically called
repeatedly until it indicates there are no more devices left to detect.

int WSALookupServiceNext(HANDLE hLookup, DWORD dwControlFlags,
DWORD* lpdwBufferLength, WSAQUERYSET* queryset);

hLookup should be the value of the handle created byWSALookupServiceBegin .

dwControlFlags should be the same flags passed in toWSALookupServiceBegin .

76

Chapter 5. Microsoft Windows

lpdwBufferLength should be point to aDWORDcontaining the size, in bytes, of the next parameter.
This is also used as an output parameter in special cases, described shortly.

queryset should point to a validWSAQUERYSETstructure, which could (but doesn’t have to) be the
same one passed toWSALookupServiceBegin . When the function completes successfully, the
following fields will take meaning:

Note: TODO: get rid of the tick marks on this list

• lpcsaBuffer - if LUP_RETURN_ADDRwas specified, this points to aCSADDR_INFOstructure, within
which theRemoteAddr field contains aSOCKET_ADDRESSstructure, whoselpSockaddr field points
to aSOCKADDR_BTHstructure, whosebtAddr field is aBTH_ADDRdata type containing the address of
the detected device. Confusing? It might be easier to just look at the examples!

• lpszServiceInstanceName - if LUP_RETURN_NAMEwas specified, this points to a character string
containing the user-friendly name of the device.

• lpServiceClassId - if LUP_RETURN_TYPEwas specified, this points to aGUID structure whose
Data1 field contains the device class of the detected device.

Occasionally,WSALookupServiceNext will fail with an error code ofWSAEFAULT. This just means that
queryset isn’t large enough to hold the information about the detected device. In this case,
lpdwBufferLength will be filled in with the size needed to hold everything. Simply re-allocate a new
pointer with at least that amount of space and issue a new call toWSALookupServiceNext .

When there are no more devices left,WSALookupServiceNext will fail with an error code of
WSA_E_NO_MORE. The program should then end the inquiry with a call toWSALookupServiceEnd and
continue.

int WSALookupServiceEnd(HANDLE hLookup);

This function simply frees the resources used during the device discovery process, and should be passed
the same handle used in the other two functions.

5.2.1. Representing Bluetooth addresses as strings

In the example, the address of each detected Bluetooth device is converted to a string and then displayed
on the screen. This can be done withWSAAddressToString . Similarly, WSAStringToAddress can
also be used to populate aSOCKADDR_BTHfrom a character string.

INT WSAAddressToString(LPSOCKADDR lpsaAddress, DWORD dwAddressLength,
LPWSAPROTOCOL_INFO lpProtocolInfo, LPTSTR lpszAddressString,
LPDWORD lpdwAddressStringLength);

INT WSAStringToAddress(LPTSTR AddressString, INT AddressFamily,
LPWSAPROTOCOL_INFO lpProtocolInfo, LPSOCKADDR lpAddress,
LPINT lpAddressLength);

77

Chapter 5. Microsoft Windows

WSAAddressToString takes five parameters, which should be a pointer to aSOCKADDR_BTH, sizeof(

SOCKADDR_BTH), NULL, and the address and size of a string buffer, respectively. It then fills in the
string buffer with a human-readable version of the specified address.

WSAStringToAddress also takes five parameters, which should be a string buffer,AF_BTH, NULL, a
pointer to aSOCKADDR_BTHcasted as a pointer to aSOCKADDR, and a pointer to an integer whose value
is sizeof(SOCKADDR_BTH) . If the string is in the proper format of "XX:XX:XX:XX:XX" (without
the quote marks), then the address structure is populated with the specified Bluetooth address.

5.3. RFCOMM sockets

Microsoft follows the same socket programming conventions used in other APIs and programming
languages, including the same functions for creating, connecting, and transferring data with sockets. The
major differences are in the socket addressing data structure and the integer constants used.Example 5-2
andExample 5-3demonstrate how to establish RFCOMM connections and transfer data. They also serve
as examples for using the Service Discovery Protocol, which is covered in the next section.

Following standard procedure, we first usesocket to allocate a Bluetooth socket.

SOCKET socket(int af, int type, int protocol);

Since the Microsoft Bluetooth API only supports RFCOMM sockets, the three parameters to this
function will always beAF_BTH, SOCK_STREAM, andBTHPROTO_RFCOMM.

Next, aSOCKADDR_BTHis filled in to specify either the details of which device to connect to (for client
applications), or which RFCOMM port to listen on (for server applications). This data structure is shown
in Section 5.1.4, but we’ll show it again for convenience.

typedef struct _SOCKADDR_BTH {
USHORT addressFamily;
BTH_ADDR btAddr;
GUID serviceClassId;
ULONG port;
} SOCKADDR_BTH;

TheaddressFamily field should always beAF_BTH. For listening sockets,btAddr should generally be
0 to indicate that the use of any local Bluetooth adapter is fine. If the application needs to listen on a
specific Bluetooth adapter, thenbtAddr should be the address of that adapter. For client sockets,
btAddr should be the address of the device to connect to. Do not useserviceClassId . Finally, port

should be the RFCOMM port number to listen on or connect to.

Once a socket addressing structure has been filled in, the application can either establish an outgoing
connection using theconnect function, or accept incoming connections with the trio of functionsbind ,
listen , andaccept .

78

Chapter 5. Microsoft Windows

int connect(SOCKET s, const struct sockaddr* name, int namelen);
int bind(SOCKET s, const struct sockaddr* name, int namelen);
int listen(SOCKET s, int backlog);
int accept(SOCKET s, struct sockaddr* addr, int* addrlen);

All four of these functions behave the same as their BlueZ counterparts, described inSection 3.2.
connect attempts to establish an outgoing connection with the specified device.bind reserves
resources on a local Bluetooth adapter for a listening socket.listen switches the socket into listening
mode.accept actually waits for an incoming connection, and returns the details of the connected device
in the output parameteraddr .

Server applications can bind to a dynamically assigned port number by setting the desired port to
BT_PORT_ANY. To determine which port number was actually bound, usegetsockname after a
successful call tobind .

int getsockname(SOCKET s, struct sockaddr* name, int* namelen);

For this function,s should be the bound socket,name should point to an unusedSOCKADDR_BTH, and
namelen should point to an integer with valuesizeof(SOCKADDR_BTH) . Whengetsockname

returns,name will be populated with the resources used by the bound socket.

Once a connection is established, the application can transfer data using thesend andrecv functions,
and terminate the connection withclosesocket .

int send(SOCKET s, const char* buf, int len, int flags);
int recv(SOCKET s, char* buf, int len, int flags);
int closesocket(SOCKET s);

Note there’s a subtle name difference betweenclosesocket , used in the Microsoft Bluetooth API, and
close , used in BlueZ.

Example 5-2. Windows RFCOMM server using SDP

#include "stdafx.h"
#include <initguid.h>
#include <winsock2.h>
#include <ws2bth.h>

DEFINE_GUID(SAMPLE_UUID, 0x31b44148, 0x041f, 0x42f5, 0x8e, \
0x73, 0x18, 0x6d, 0x5a, 0x47, 0x9f, 0xc9);

int _tmain(int argc, _TCHAR* argv[])
{
SOCKET server;
SOCKADDR_BTH sa;
int sa_len = sizeof(sa);

// initialize windows sockets
WORD wVersionRequested;
WSADATA wsaData;
wVersionRequested = MAKEWORD(2, 0);

79

Chapter 5. Microsoft Windows

if(WSAStartup(wVersionRequested, &wsaData) != 0) {
ExitProcess(2);

}

// create the server socket
server = socket(AF_BTH, SOCK_STREAM, BTHPROTO_RFCOMM);
if(SOCKET_ERROR == server) {

ExitProcess(2);
}

// bind the server socket to an arbitrary RFCOMM port
sa.addressFamily = AF_BTH;
sa.btAddr = 0;
sa.port = BT_PORT_ANY;
if(SOCKET_ERROR ==

bind(server, (const sockaddr*) &sa, sizeof(SOCKADDR_BTH))) {
ExitProcess(2);

}

listen(server, 1);

// check which port we’re listening on
if(SOCKET_ERROR == getsockname(server, (SOCKADDR*) &sa, &sa_len)) {

ExitProcess(2);
}
printf("listening on RFCOMM port: %d\n", sa.port);

// advertise the service
CSADDR_INFO sockInfo;
sockInfo.iProtocol = BTHPROTO_RFCOMM;
sockInfo.iSocketType = SOCK_STREAM;
sockInfo.LocalAddr.lpSockaddr = (LPSOCKADDR) &sa;
sockInfo.LocalAddr.iSockaddrLength = sizeof(sa);
sockInfo.RemoteAddr.lpSockaddr = (LPSOCKADDR) &sa;
sockInfo.RemoteAddr.iSockaddrLength = sizeof(sa);

WSAQUERYSET serviceInfo = { 0 };
serviceInfo.dwSize = sizeof(serviceInfo);
serviceInfo.dwNameSpace = NS_BTH;
serviceInfo.lpszServiceInstanceName = "Win32 Sample Bluetooth Service";
serviceInfo.lpszComment = "Description of service...";
serviceInfo.lpServiceClassId = (LPGUID) &SAMPLE_UUID;
serviceInfo.dwNumberOfCsAddrs = 1;
serviceInfo.lpcsaBuffer = &sockInfo;

if(SOCKET_ERROR ==
WSASetService(&serviceInfo, RNRSERVICE_REGISTER, 0)) {

ExitProcess(2);
}

SOCKADDR_BTH ca;
int ca_len = sizeof(ca);
SOCKET client;

80

Chapter 5. Microsoft Windows

char buf[1024] = { 0 };
DWORD buf_len = sizeof(buf);

client = accept(server, (LPSOCKADDR) &ca, &ca_len);

if(SOCKET_ERROR == client) {
ExitProcess(2);

}

WSAAddressToString((LPSOCKADDR)&ca, (DWORD) ca_len, NULL, buf, &buf_len);
printf("Accepted connection from %s\n", buf);

int received = 0;
received = recv(client, buf, sizeof(buf), 0);
if(received > 0) {

printf("received: %s\n", buf);
}

closesocket(client);
closesocket(server);
return 0;
}

Example 5-3. Windows RFCOMM client using SDP

#include "stdafx.h"
#include <initguid.h>
#include <winsock2.h>
#include <ws2bth.h>

DEFINE_GUID(SAMPLE_UUID, 0x31b44148, 0x041f, 0x42f5, 0x8e, \
0x73, 0x18, 0x6d, 0x5a, 0x47, 0x9f, 0xc9);

int SDPGetPort(const char *addr, LPGUID guid)
{
int port = 0;
HANDLE h;
WSAQUERYSET *qs;
DWORD flags = 0;
DWORD qs_len;
bool done;

qs_len = sizeof(WSAQUERYSET);
qs = (WSAQUERYSET*) malloc(qs_len);
ZeroMemory(qs, qs_len);
qs->dwSize = sizeof(WSAQUERYSET);
qs->lpServiceClassId = guid;
qs->dwNameSpace = NS_BTH;
qs->dwNumberOfCsAddrs = 0;
qs->lpszContext = (LPSTR) addr;
flags = LUP_FLUSHCACHE | LUP_RETURN_ADDR;

81

Chapter 5. Microsoft Windows

if(SOCKET_ERROR == WSALookupServiceBegin(qs, flags, &h)) {
ExitProcess(2);

}

done = false;
while (! done) {

if(SOCKET_ERROR == WSALookupServiceNext(h, flags, &qs_len, qs)) {
int error = WSAGetLastError();
if(error == WSAEFAULT) {

free(qs);
qs = (WSAQUERYSET*) malloc(qs_len);

} else if (error == WSA_E_NO_MORE) {
done = true;

} else {
ExitProcess(2);

}
} else {

port =
((SOCKADDR_BTH*)qs->lpcsaBuffer->RemoteAddr.lpSockaddr)->port;

}
}
free(qs);

WSALookupServiceEnd(h);
return port;
}

int _tmain(int argc, _TCHAR* argv[])
{
SOCKET sock;
SOCKADDR_BTH sa = { 0 };
int sa_len = sizeof(sa);

// initialize windows sockets
WORD wVersionRequested;
WSADATA wsaData;
wVersionRequested = MAKEWORD(2, 0);
if(WSAStartup(wVersionRequested, &wsaData) != 0) {

ExitProcess(2);
}

// parse the specified Bluetooth address
if(argc < 2) {

fprintf(stderr, "usage: rfcomm-client <addr>\n"
"\n addr must be in the form (XX:XX:XX:XX:XX:XX)");

ExitProcess(2);
}
if(SOCKET_ERROR == WSAStringToAddress(argv[1], AF_BTH,

NULL, (LPSOCKADDR) &sa, &sa_len)) {
ExitProcess(2);

}

// query it for the right port

82

Chapter 5. Microsoft Windows

// create the socket
sock = socket(AF_BTH, SOCK_STREAM, BTHPROTO_RFCOMM);
if(SOCKET_ERROR == sock) {

ExitProcess(2);
}

// fill in the rest of the SOCKADDR_BTH struct
sa.port = SDPGetPort(argv[1], (LPGUID) &SAMPLE_UUID);
if(sa.port == 0) {

ExitProcess(2);
}

if(SOCKET_ERROR == connect(sock, (LPSOCKADDR) &sa, sa_len)) {
ExitProcess(2);

}

send(sock, "hello!", 6, 0);

closesocket(sock);

return 0;
}

5.4. Service Discovery Protocol

Advertising and searching for services uses the same functions and data structures that the device
discovery process used. Although it may have seemed a bit clumsy for detected devices, using it for SDP
is quite straightforward.Example 5-2andExample 5-3demonstrate how to do this.

Note: Before setting off to write your own SDP-enabled application complete with numerous GUIDs
defined all over the place, take a look at bthdef.h . Distributed with the Windows Platform SDK, it
contains many macros and definitions commonly used in SDP.

5.4.1. Advertising a service

To describe a Bluetooth service, we need to allocate two data structures. The first is aCSADDR_INFO

structure, which contains the all the information that a remote device would need to connect to the
service. TheiProtocol andiSocketType fields should always beBTHPROTO_RFCOMMand
SOCK_STREAM, respectively. Both theLocalAddr andRemoteAddr fields should set theirlpSockaddr

sub-fields to point to the sameSOCKADDR_BTHpassed tobind (or another socket addressing structure
with the same information), and have theiriSockaddrLength sub-fields set to
sizeof(SOCKADDR_BTH) .

83

Chapter 5. Microsoft Windows

The second data structure to allocate is is aWSAQUERYSET, the same type we used earlier to describe
detected Bluetooth devices. This time, we’ll be using more of the fields, which should be set as follows:

• dwSize - should always besizeof(WSAQUERYSET) .

• dwNameSpace- should always beNS_BTH.

• dwNumberOfCsAddrs - should always be 1.

• lpServiceInstanceName - should be a text string giving the name of the service.

• lpszComment - should be a text string describing the service.

• lpServiceClassId - should point to a single GUID (Microsoft’s name for UUIDs) specifying the
Service Class of the service.

• lpcsaBuffer - should point to theCSADDR_INFOcreated above.

Once these two structures have been created, advertising the service can be accomplished with a simple
call to WSASetService

INT WSASetService(LPWSAQUERYSET lpqsRegInfo,
WSAESETSERVICEOP essOperation, DWORD dwControlFlags);

The first parameter to this function,lpqsRegInfo , should be a pointer to theWSAQUERYSETcreated
above. The second parameter,essOperation , should always beRNRSERVICE_REGISTER. The third
parameter,dwControlFlags should always be 0.

Advertised services are automatically un-advertised when an application exits.WSASetService can
also be used to un-advertise services by passing itRNRSERVICE_DELETEinstead of
RNRSERVICE_REGISTER.

5.4.2. Searching for services

Here, we’ll describe how to search a specific Bluetooth device for a service. If the application doesn’t
know which device has the service it’s looking for, it should conduct a device discovery to detect all
nearby devices and then search each individual device.

With the Microsoft Bluetooth API, a service search is similar to a device discovery, with the major
differences being how theWSAQUERYSETdata structure is used and the flags passed to
WSALookupServiceBegin andWSALookupServiceNext . To start off, allocate aWSAQUERYSETand
set the following fields:

• dwSize - should always besizeof(WSAQUERYSET) .

• dwNameSpace- should always beNS_BTH.

• dwNumberOfCsAddrs - should always be 0.

• lpszContext - should be a string containing the Bluetooth address of the device to search, as created
by WSAAddressToString . It is also possible to search the local service records by specifying the
address of a local Bluetooth adapter. Note that it shouldnot be aBTH_ADDR.

84

Chapter 5. Microsoft Windows

• lpServiceClassId - should point to aGUID to search for. Note that it does not have to be a Service
Class ID, and that any service with any UUID matching this value will be returned. For example, If the
application wants a list of all services available, then this should point to
PublicBrowseGroupServiceClass_UUID .

Next, initiate the service search by callingWSALookupServiceBegin . The first parameter should point
to theWSAQUERYSETjust created. The second parameter should be a logical OR ofLUP_FLUSHCACHE

andLUP_RETURN_ALL. The last parameter should point to an unushedHANDLE, which will be filled in
by a successful call to the function.

To iterate through the search results, make repeated calls toWSALookupServiceNext the same way we
did for device discovery. In some cases, it will fail with an error code ofWSAEFAULTto indicate that the
WSAQUERYSETpassed in is not large enough. As before, re-allocate the data structure and try again. On
each successful call, theWSAQUERYSETpassed in will be populated as follows:

• lpszServiceInstanceName - the name of the service advertised.

• lpszComment - a description of the service.

• lpcsaBuffer - a pointer to aCSADDR_INFOstructure, whoseRemoteAddr field contains details on
the protocol and port number to use for connecting to the service.

• lpServiceClassId - points to one of the Service Class IDs in the matching service record.

TODO - little more detail..

Notes
1. https://www.bluetooth.org/foundry/assignnumb/document/baseband

85

Chapter 6. Other platforms and programming
languages

Although the Bluetooth specification is large and wide ranging, specifying everything from frequency
hopping algorithms used during communications to the higher level communications protocols on
Bluetooth printers, it does not specify a common software API. What this means, unfortunately, is that
Bluetooth programming is different from platform to platform, and you will almost certainly need to
learn a new API for each additional platform you’re targeting. In this chapter, we’ll give an overview of
what’s currently involved in developing Bluetooth applications for some of the more popular platforms
that support Bluetooth.

Regardless of which platform you end up creating Bluetooth applications for, the concepts introduced in
this book will always apply. The process of choosing a communications partner and searching for
services is always the same, no matter how a particular software API dresses it up.

Note: The squirrelly disclaimer: Although we’ve tried to be as accurate and as up-to date as possible
in this chapter, the speed at which software and technology evolves is such that much of the material
discussed in this chapter may be obsolete by the time you read it. If you’re considering Bluetooth
development for a specific platform, you should certainly consult the primary sources for that
platform before making a decision.

6.1. Symbian OS / Nokia Series 60

Note: TODO: get Bluetooth-enabled Series 60 sales figures to cite here.

Give a short history and synopsis of the Series 60 platform...

Programmers wishing to create Bluetooth applications for Series 60 devices have three options - C++,
Python, or Java. The first option affords the most control and flexibility over the device, but is also the
most time consuming and difficult method to learn. The second option, using Python, became available
in late 2004 and has since evolved into a powerful yet accessible way to create Bluetooth enabled
programs for the Series 60 platform. Lastly, many Series 60 device implement the Java Bluetooth API,
which is described in the next section.

The Series 60 Python API provides access to:

• Device discovery (limited)
• Service Discovery (very limited)
• RFCOMM conections
• OBEX push (limited)

86

Chapter 6. Other platforms and programming languages

It specifically does not provide access to:

• L2CAP connections
• SCO audio connections
• Low level (HCI) control of the Bluetooth adapter
• other worth mentioning?

This section describes how to apply the Bluetooth programming concepts we’ve learned in earlier
chapters to the Python API provided in Series 60 phones. You’ll find that although the Series 60 Python
API is different from the API introduced inChapter 2, the concepts are still the same and it should be a
simple matter to quickly get up and running. This paragraph sucks.

6.1.1. Capabilities and Limitations

6.1.2. Choosing a device

The process choosing a device, protocol, and port number to connect to in Series 60 Python is quite
different from what we’ve seen before. In other environments, the steps of detecting nearby devices,
looking up their user-friendly names, and determining which services are available are all separate. In
Series 60 Python, all three of these happen at once.Example 6-1demonstrates how this is done.

Example 6-1. Series 60 Device Inquiry

import e32
from appuifw import app
import socket

quit_signal = e32.Ao_lock()
old_ui_handlers = app.menu, app.exit_key_handler, app.body, app.title

def on_exit(self):
global quit_signal, old_ui_handlers
app.menu, app.exit_key_handler, app.body, app.title = old_ui_handlers
quit_signal.signal()

app.exit_key_handler = on_exit
app.body = None
app.menu = []
app.title = u"Bluetooth Inquiry"

address, services = socket.bt_discover()

print u"Services found on %s\n" % address
for name, port in services.items():

87

Chapter 6. Other platforms and programming languages

print u"%s : %d\n" % (name, port)

quit_signal.wait()

Note that even though this example is only a handful of lines, it is a complete, working program! Most of
the code involves setting up the user interface (menus, title bar, event handlers, etc.), and only the last
portion deals with Bluetooth. Thesocket module in Series 60 Python has been extended to encompass
Bluetooth functionality, and all functions and constants used in this section and the next are found in
socket . The function that we’ll focus on for now isbt_discover .

bt_discover([address]) -> (address, services)

Although it may look straightforward,bt_discover is actually a bit of a mess. The Series 60 Python
developers had a very clear idea in their minds of how they wanted Python programmers to use the
phone’s Bluetooth capabilities, so this function is highly specialized.

If the optional parameteraddress is not specified, thenbt_discover conducts a device inquiry to
detect nearby devices, and also tries to determine their user-friendly names. As devices are detected, they
are displayed on the screen in a pop-up list and the user is prompted to choose one device. Ifaddress

was specified, then the popup menu is skipped and theaddress is used instead. The function then looks
up available services advertised by the chosen device and returns a single tuple with two entries.

The first item in the returned tuple is simply the Bluetooth address of the device selected by the user.
Similar to PyBluez, Series 60 Python represents Bluetooth addresses as strings of the form
"XX:XX:XX:XX:XX", where each ’X’ is a hexadecimal digit. The second is a dictionary of some (but
not all) services advertised by the chosen device. Keys in the dictionary correspond to service names, and
the values correspond to the RFCOMM port number the service is listening on. Only services advertising
both the Serial Port Service Class ID (16-bit reserved UUID of0x1101), and the Serial Port Profile show
up in this dictionary, which is important to consider when creating applications on other platforms.

Keep in mind that, using only the Series 60 Python libraries, it is not possible for a program to
non-interactively detect nearby devices, or to detect services that don’t advertise the Serial Port Profile.
Programs requiring either of these will need to make use of native extension modules, which are C++
libraries built to appear as Python modules. The software development kit to do this is distributed on the
Forum Nokia website1.

6.1.3. Bluetooth sockets

Using sockets for Bluetooth communication in Series 60 Python is a straightforward extension of the
concepts we’ve encountered in previous chapters.Example 6-2andExample 6-3show how to use
RFCOMM server sockets and client sockets, respectively.

Example 6-2. Series 60 Python RFCOMM Server

UI code omitted

88

Chapter 6. Other platforms and programming languages

sock = socket(AF_BT, SOCK_STREAM)
port = bt_rfcomm_get_available_server_channel(sock)
sock.bind(("", port))
set_security(sock, AUTHOR)
sock.listen(1)
bt_advertise_service(sock, u"Sample Server", True, RFCOMM)

print "listening on port %s" % port
client, addr = self.ss.accept()
print "accepted connection from %s" % addr
appuifw.note(u"accepted connection", "info")

data = sock.recv(40)
print "received: [%s]" % data
client.close()
sock.close()

Example 6-3. Series 60 Python RFCOMM client

UI code omitted

sock = socket.socket(socket.AF_BT, socket.SOCK_STREAM)

address, services = bt_discover()
port = services["Sample Server"]
sock.connect((address, port))

print "connected to %s" % address

sock.send("Hello!!!")
sock.close()

The UI code, which is the same as inExample 6-1, has been omitted from these examples to save space.
Looking at these examples, you’ll find nothing surprising at all. In both cases, thesocket function is
used to allocate a socket.

socket(family, type, [protocol]) -> socket object

To create a Bluetooth RFCOMM socket,family should always beAF_BT, type should always be
SOCK_STREAM, andprotocol can either be left out or set toBTPROTO_RFCOMM.

The Bluetooth socket object returned bysocket behaves like a standard Python socket, and its methods
share the same functionality as its PyBluez counterpart, described inChapter 2. Since they have already
been introduced several times over, we won’t bother describing the following methods:bind , listen ,
accept , connect , recv , send , andclose . Instead, we’ll focus on the subtle differences between
Series 60 Python Bluetooth sockets and PyBluez sockets.

89

Chapter 6. Other platforms and programming languages

Dynamicaly assigned ports

Server sockets should usebt_rfcomm_get_available_server_channel to dynamically
choose an RFCOMM port number.

bt_rfcomm_get_available_server_channel(sock) -> port

This function does exactly what the name says, and should be passed a newly created RFCOMM
socket. The returned port can then be passed tobind .

Socket security

Unlike other Bluetooth programming environments we’ve seen, Series 60 Python Bluetooth server
sockets are required to set a security mode. Basically, a server socket is not permitted to randomly
accept connections from other devices. Incoming connections must come from previously
recognized and paired devices, or the user must manually accept connections. To configure the
security mode for a socket, use theset_security function.

set_security(sock, mode) -> None
Here,sock should be a bound socket andmode should be a combination (logical OR) ofAUTH,
ENCRYPT, or AUTHOR. If AUTHis specified, then any connecting device that hasn’t already paired
with the server will be paired when the connection is established. IfENCRYPTis specified, then the
connection is encrypted. IfAUTHORis specified, then the user is prompted to manually accept all
incoming connections.

Note: this paragraph is confusing... reword..

As with the device inquiry procedure, It is possible to get around this restriction by using native
extension modules. This is a fairly complicated process, however, and requires a reasonable amount
of expertise in C++.

Advertising services with SDP

Once a socket has is bound and listening,bt_advertise_service is used to advertise the service
with the phone’s SDP server.

bt_advertise_service(sock, service_name, advertise, class) -> None

sock should be the server socket.service_name should be a unicode string giving the name of
the service.advertise should beTrue to advertise the service, andFalse to stop advertising.
Finally, class can be eitherRFCOMMor OBEX. RFCOMMadds the Serial Port Profile to the service
record, andOBEXadds the Object Push Profile to the service record.TODO: verify.

Note: Most text strings in Series 60 devices are internally handled as Unicode strings. To convert a
standard string to unicode, either use the unicode function, or add a "u" in front of a string constant
(see the example).

90

Chapter 6. Other platforms and programming languages

6.2. OS X

TODO

6.3. Java - JSR 82

Although a standard API is not part of the Bluetooth specification, the Java community took the
additional step of standardizing on a single API. Java Bluetooth implementations adhering to this
specification, called JSR-82, can be found on GNU/Linux, Windows, OS X, and numerous handheld
devices (including Series 60). The standardized and relatively straightforward API provides an attractive
option for developers looking for cross-platform compatibility.

JSR-82 provides access to:

• Device Discovery
• Service Discovery Protocol
• RFCOMM connections
• L2CAP connections
• OBEX Push

JSR-82 doesnot encompass:

• SCO audio connections
• Low level (HCI) control of the Bluetooth adapter
• other?

Warning

Although Java was designed to be "write-once, run-anywhere", experienced Java
programmers will know that platform-specific consideration needs to be given in
many, if not most, cases. Programming with JSR-82 is no exception, and since
there are no rigorous standards-testing procedures an implementation needs to
pass before it can be called JSR-82 compliant, many implementations have subtle
bugs and idiosyncracies that can complicate the development process.

Current implementations of JSR-82 for the GNU/Linux operating system include Rocosoft Impronto2,
Avetana3, and JavaBluetooth4.

A disadvantage of using Java is that JSR-82 is very limited, providing virtually no control over the device
discovery process or established data connections. For example, JSR-82 provides no method for
adjusting delivery semantics, flushing a cache of previously detected devices during a device discovery,
or obtaining signal strength information.

91

Chapter 6. Other platforms and programming languages

TODO

6.3.1. Choosing a device

TODO

6.3.2. RFCOMM

TODO

6.3.3. OBEX

TODO

Notes
1. http://forum.nokia.com

2. http://www.rocosoft.com (http://www.rococosoft.com)

3. http://www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.eng.xm
(http://www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.eng.xm)

4. http://www.javabluetooth.org

92

