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Abstract. In ubiquitous computing environments, multiple users work with a
wide range of different devices. In many cases, users interact and collaborate
using multiple heterogeneous devices at the same time. The configuration of the
devices should be able to change frequently due to a highly dynamic, flexible
and mobile nature of new work practices. This produces new requirements for
the architecture of an appropriate software infrastructure. In this paper, an
architecture designed to meet these requirements is proposed. To test its
applicability, this architecture was used as the basis for the implementation of
BEACH, the software infrastructure of i-LAND (the ubiquitous computing
environment at GMD-IPSI). It provides the functionality for synchronous
cooperation and interaction with roomware components, i.e. room elements
with integrated information technology. In conclusion, our experiences with the
current implementation are presented.

1 Introduction

Ubiquitous computing environments offer a wide range of devices coming in many
different sizes and shapes [45]. In situations where tight collaboration is necessary,
users must be able to work synchronously with information shared among all these
devices. Due to the heterogeneous nature of ubiquitous computing devices, their soft-
ware infrastructure must provide a user interface taking advantage of their different
properties. At the same time, it must enable tight collaboration of users working with
diffe rent devices or sharing the same device.

We developed a software architecture that offers both flexibility and extensibility
for different devices that are part of such ubiquitous computing environments. We
used this architecture to create a software system called “BEACH”, the Basic Envi-
ronment for Active Collaboration with Hypermedia. BEACH provides the software
infrastructure for environments supporting synchronous collaboration with many
different devices. It offers a user interface that fits also to the needs of devices that

                                                                
1 Peter Tandler, until his marriage in the summer of 2000, was known as Peter Seitz.

Cite as:
Peter Tandler: Software Infrastructure for Ubiquitous Computing Environments: Supporting
Synchronous Collaboration with Heterogeneous Devices. In: Proceedings of UbiComp
2001: Ubiquitous Computing. Heidelberg: Springer LNCS 2201, 2001, pp. 96-115.



- 97 -

have no mouse or keyboard, and which require new forms of human-computer and
team-computer interaction. To allow synchronous collaboration BEACH builds on
shared documents accessible via multiple interaction devices concurrently.

In the following section, requirements for the software infrastructure of a ubiqui-
tous computing environment to support synchronous collaboration are discussed, also
pointing to related work. Based on these requirements, the proposed architecture has
been designed, which is presented next. Some example settings taken from our im-
plementation of the architecture are used to show how it can be used. The paper
closes with an overview of our experiences and ideas for future work.

2 Requirements for the Software Infrastructure

The software infrastructure of a ubiquitous computing environment with multiple
heterogeneous devices has additional requirements compared to collaborative soft-
ware running on distributed standard PCs. This section explains these requirements
organized in five categories:

A. interaction with devices using different forms of interaction (section 2.1)
B. collaboration of users supported by a wide range of devices (section 2.2)
C. integration of devices in the environment (section 2.3)
D. support for different tasks (section 2.4)
E. hardware configuration (section 2.5)

To give a concrete description of requirements, among others, the example of
roomware components (i.e. room elements with integrated information technology
[38]) is used. The roomware components mentioned here have been developed in the
context of the i-LAND project [36]. Similar environments are described in [1, 9]. The
meeting context is used when application scenarios are given.

2.1 Interaction with Devices

In a ubiquitous computing environment, a variety of different interaction devices is
available. Compared to a “traditional” desktop PC equipped with screen, mouse, and
keyboard, these devices come in many different forms and support different styles of
interaction, with the aim of providing “natural interfaces” [2].

Requirement  A-1: Different Forms of Interaction. It is important for the software
infrastructure to be open for different styles of interaction and extensible for future
developments [24, p. 15 f]. As current operating systems and platforms only offer
direct support for “traditional” interaction techniques and devices, a software
infrastructure for a ubiquitous computing environment must allow the integration of
other device drivers [3, p. 82].

Different interaction styles like pen, speech, or gestures, require the introduction of
new interaction models. E.g. pen input cannot be dispatched to one single point at a
display but might affect a wide area on the screen, while speech or gestures require



- 98 -

different processing levels. Here, higher levels influence the recognition steps made
on lower levels, always being aware of possible ambiguity [17].

For each of these types of input, abstractions must be defined that can be easily
mapped to the invocation of functionality [3, p. 81]. For mouse, keyboard, and pen
input, events are a useful abstraction, but for other types of input, other concepts
might be adequate [24, p. 24]. Other interaction techniques like hardware buttons
(often found in PDAs) offer a very similar functionality compared to software button
widgets. Therefore the same interaction model should be usable, but it must be possi-
ble that some kind of “button-pressed” events can be triggered directly by the device
driver and flexibly mapped to software functions.

Requirement  A-2: Adapted Visualization. Due to the different form-factors of
interaction devices in a ubiquitous computing environment, displays appear in a broad
range of different sizes and with different orientations. For differently sized devices
different scaling factors, a different representation, or a different selection of objects
must be used. This could take into account, whether the user needs an overview of the
whole document, or just a part of the document is being edited. The more the devices
differ, the harder it becomes to use a similar interface for all devices [3, p. 81; 24, p.
16], as other interface metaphors and concepts then become appropriate.

Another problem arises at an interactive table [36]: the orientation of the output
does not necessarily have a common top-bottom/left-right for all users working at an
InteracTable, as different users can look at the surface from different positions. At a
traditional paper-based table, the users would simply rotate a sheet of paper to show it
to someone else. At an interactive table, the same should be possible. In addition, the
user should be able to keep a view of this object oriented towards her so that they can
both look at the object with the preferred orientation.

Requirement  A-3: Non-Visual Output. In analogy to the different input techniques
(req. A-1), other output devices besides visual displays can be found in a ubiquitous
computing environment. This can range from audio-based output [20] to ambient
displays [13, 25].

While for different visualizations a common interface can be provided at a rather
low level describing the visual appearance, another approach has to be taken here.
One idea is the separation of the models for the abstract and the physical UI [44].
Depending on the used output device it might be possible to generate the physical
user interface automatically from generic elements [24, p. 13]. In general, it is impor-
tant, that all different interaction models use a common interface to the underlying
functionality.

2.2 Collaboration of Users Supported by Devices

One characteristic property of a ubiquitous computing environment is the presence of
many collaborating and communicating users and devices.
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Requirement  B-1: Multiple-Device Interaction. In a ubiquitous computing
environment, a user usually has access to more than one computer. Within a meeting,
a user might leave an interactive chair and walk up to a large public presentation
surface to give a presentation. Here, the software must be able to detect and quickly
change the assignment of the current user at these devices to give the user access to
private information, for instance to the prepared material for the presentation.

The continuation of this scenario brings up a different case of multiple-device in-
teraction: the user giving the presentation might have access to another device in
parallel to the public display. To view her private annotations in addition to her slides,
she uses e.g. an electronic lectern. Here, she uses several devices simultaneously with
the same information displayed on both devices — but within a different context
which influences the resulting view (different size, different level of detail, private
annotations). This relates to the adapted visualization (req. A-2) where the context is
defined by the used devices in contrast to the usage of the device .

Many examples where a PDA-like device (personal digital assistant) is used con-
currently with a digital whiteboard, a table, or PC are given in literature [9, 22, 27,
28]. The PDA is used to have access to additional information or functionality with-
out wasting space on the main display. On public displays, the PDA can be used for
private information  [11] or for functionality only relevant for its user. In these cases,
both devices show different information and offer a different functionality.

Requirement  B-2: Collaboration with Different Devices. The situation becomes
even more complicated in the case of multiple users working together. Here, standard
methods of shared editing cannot be used. E.g. WYSIWIS (“What-You-See-Is-What-
I-See” [34]) would require that all collaborating users have coupled workspaces of
exactly the same size in pixels, which is not possible if the devices cover a display
size from very small to very large.

Fig. 1. The CommChair allows interacting remotely with documents displayed on the Dy-
naWall. In addition, a private workspace can be accessed

Instead, the software must allow even tightly coupled components to use different
view properties, but ensure that the users get a representation that fits to the current
working mode. A user in a “CommChair” working on a shared workspace together
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with a user at a “DynaWall” (fig. 1) will need both an overview representation of the
whole workspace content and a second, zoomed view to work with. If the
CommChair is located directly in front of the DynaWall so that the user can see the
overview there, the overview representation displayed at the CommChair can be
shrunk much more, as it is only needed for navigation.

Requirement  B-3: Multiple-User Devices. Some devices like interactive tables or
walls offer another challenge for the software: several people can use one device
together and interact simultaneously with a single device. This is often called Single
Display Groupware (SDG) [7, 22, 35].

In addition to SDG, multiple users at one display can collaborate with multiple us-
ers at other displays. This leads to a n:m relation between collaborating users and
devices.

Software running on this device must therefore be able to receive events from sev-
eral input-streams, to recognize input from different users, and to track several con-
current event sequences. Examples for event sequences are the drawing of a stroke or
the dragging of a window [12].

Beside these technical issues, the user interface should be designed to allow the
interaction of multiple users without interference.

2.3 Integration of Devices in the Environment

Another important area of requirements arises from the integration of devices and
software within the working environment or working context.

Requirement  C-1: Context Awareness. Software being aware of its context can act
depending on the state of the surrounding environment. Common examples of context
are the current location of devices and specific users [2, p. 35ff], but also the kind of
device a software application is actually running. Besides the physical environment,
other contextual information like the current task or project could influence the
behavior of the software, as far as it is available to the software.

The software infrastructure must therefore maintain a representation of the current
context. To be able to update this representation, an interface to sensors collecting
context information (distributed all over the environment) is needed. If context
changes are detected, mechanisms must exist to inform the application. Similar to
what was described for different input devices, the data collected by the sensors will
normally need preprocessing in order to generate information on a layer of abstraction
useful for the application [29].

Requirement  C-2: Physical Interaction. Since the configuration of physical objects
in a meeting room strongly depends on the current work mode of a team, changes
made to “real” objects can be used to trigger actions of the software. It is especially
useful to reflect adaptations made by users to the setting of devices, due to changes of
the current collaboration mode.
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There are cases where a state change of the software is essential to maintain the
consistency of the “real” and the “virtual” parts of the world (“augmented reality”).
For example, “ConnecTables” are small interactive tables that can be assembled
quickly to yield a larger homogeneous interactive area if desired [40, 43]. This is
useful to support flexible splitting into and re-joining of subgroups. Here, the software
must be capable of dynamic changes to the size and format of the currently available
visual interaction area, and it is necessary to reflect these possibilities in the concep-
tual design of the user interface.

2.4 Support for Different Tasks

An interview study that we carried out found that creative teams have several recur-
ring tasks [39]. Consequently, the software should offer dedicated help for a selected
set of such tasks, which should be extensible to meet future needs [18].

Requirement  D-1: Generic Functionality. Many functions are common to a wide
range of application scenarios. This functionality should be reusable.

Requirement  D-2: Tailorable Functionality. Important examples for typical group
tasks that should be supported are creative sessions, presentations, meeting
moderation, and project or task management. To be able to provide tailored support, a
module concept should be available that is capable of extending the generic
functionality. Of course, this should be possible without the need to change existing
code and without interference to other modules.

Requirement  D-3: Capture and Access Information. Another recurring task is that
of gaining access to previously generated information. Within a context-aware
ubiquitous computing environment, a lot of information can be captured automatically
in addition to what is generated manually [1, 2]. For both capturing and accessing this
information, dedicated support is needed.

2.5 Hardware Configuration

The restrictions of currently available hardware also place some requirements on the
software.

Requirement  E-1: Multiple-Computer Devices. What a user perceives as one
device might actually consist of many individual hardware components. Some
roomware components (e.g. the DynaWall, see fig. 1) are composed from several
segments, each run by a separate PC. Due to the limitations of the available hardware
(currently, each SMART Board [33] can only recognize a single pen position at any
one time) this configuration allows each segment to receive pen input by one user
each, thereby supporting many users simultaneously. To give the user the impression
of a homogeneous interaction area, the segments must therefore be coupled via
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software. This enables multiple users to collaborate on the same visual interaction
area in spite of the limitations of hardware or physical space.

Requirement  E-2: Dynamic Configuration. During a meeting it often happens that
several independent problems are identified that have to be solved in parallel. In such
situations, a team usually divides into a set of subgroups, each trying to solve one of
these problems. After a defined amount of time, the team forms a plenary again and
all solutions are presented. This scenario shows that different kinds of collaboration
modes must be supported within a ubiquitous computing environment, each
demanding a different configuration of available devices. The dynamics of a meeting
must therefore be reflected in the design of the software, which should be flexible
enough to give a team the necessary freedom to work efficiently.

3 Architecture of the Software Infrastructure

With respect to the requirements described in the previous section, an architecture has
been developed that offers the flexibility necessary for supporting heterogeneous
devices and ensures the extensibility for future devices. This section first gives an
overview of the different layers and models before discussing the layers and their
duties in more detail.

3.1 Architecture Overview

In order to provide reusable components on the one hand and hooks for adaptations
for different devices on the other, the architecture is organized in four horizontal lay-
ers defining different levels of abstractions. Orthogonal to these layers, the architec-
ture is structured by five models separating basic concerns within each layer (fig. 2).

core layer

model layer

generic layer

module layer

shared-object space

ph
ys

ica
l m

od
el

us
er

-in
te

rfa
ce

 m
od

el

to
ol

 m
od

el

do
cu

m
en

t m
od

el

in
te

ra
ct

io
n 

m
od

el

Fig. 2. The software architecture is horizontally organized in four layers defining different
levels of abstractions and vertically by five models separating basic concerns. Crucial for syn-
chronous collaboration is a shared-object space provided by the core layer enabling distributed
access to objects
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Levels of Abstraction. As mentioned, the proposed architecture is organized in four
layers defining different levels of abstractions. The module layer (section 3.4) is most
specific containing modules that provide tailored functionality for distinct tasks (req.
D-2). It can be used to extend the functionality defined by the generic layer (section
3.3), which contains generic components that provide the basic functionality
necessary in most teamwork and meeting situations (req. D-1).

While the two top layers consist of components perceivable by the user, the two
lower layers are introduced to structure the application and ensure extensibility. The
model layer (section 3.2) specifies the basic structure for the two top layers by defin-
ing interfaces for documents, tools, user interface, the physical environment, and
interaction styles as the common abstractions for all devices (req. A-1, A-3, B-2, C-
2). Thus, it can be seen as the implementation of the five basic concerns that are sepa-
rated by the architecture (see below).

The core layer (section 3.5) offers a specialized infrastructure making the imple-
mentation of the higher layers easier (req. A-2, B-3, D-2). Most important, it provides
shared objects that are crucial to allow distributed access from multiple computers
(req. E-1, B-1).

Basic Models. To ensure a clear separation of concerns, models for document, tools,
user interface, interaction, and physical environment are distinguished (fig. 2). While
the interfaces and abstract classes used to implement these basic models are defined
by the model layer, parts of the core layer can also be structured according to these
concepts.

The document model defines the base classes and functionality of all objects that
can be part of a document (req. D-1).

The tool model describes the elements that are directly attached to the user inter-
face, providing additional functionality to the documents. In addition, the tool con-
trols the possible work modes like the degree of coupling.

The user interface model is needed to define an alternative user interface concept
suitable for different devices (req. A-1). Furthermore, multiple-computer devices (req.
E-1) require that the user interface elements are part of the shared-object space. This
enables user interface elements to be distributed among several computers.

The physical model  is the representation of relevant parts of the “real” world. The
two top layers can define physical models for interaction devices (req. A-1) or other
objects to be monitored (req. C-1). These can be adapted dynamically if sensors rec-
ognize changes (req. E-2).

To be able to support different styles of interaction (req. A-1, A-3, C-2), the inter-
action model specifies how different interaction styles can be defined. The term used
here describes a part of the software architecture, and should not be confused with the
“interaction model” describing the “look and feel” of a user interface at a conceptual
level as defined in [4].

While document, tool, user interface, and physical model are implemented as
shared objects to give several users or devices the possibility to access these objects
simultaneously, interaction model objects are always local to each machine. This
allows each client to adapt the interaction style according to its local context, espe-
cially its physical environment and interaction capabilities (see examples in section
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4). To connect the interaction model objects to the other models, the architecture uses
the constraint mechanism described below.

A more extensive discussion of these models is given in [42].

3.2 Model Layer: Basic Separation of Concerns

The aim of the model layer is to provide an implementation of the basic models to be
used as the basis for the implementation of the higher layers. This is important to
ensure extensibility and interoperability of both generic components and modules.

For example, the interaction model defined by this layer could specify to use the
model-view-controller (MVC) concept [14] to separate the handling of input and
output. In this case, the model layer would contain not only the base classes for views
and controller, but also the code necessary to create, update etc. the views and to
dispatch events to specific controllers. For visual-based interaction, BEACH uses an
adapted version of the model-view-controller concept (see section 3.5).

Similarly, the document model separates the domain model (sometimes also called
“business domain objects” or just “model objects”) and the application model [15,
41]. Domain models represent entities of the domain world. Application models are
used to describe all application aspects such as presentation and manipulation of do-
main objects. For, e.g., a “text” object, the domain model includes the string describ-
ing the text and text attributes like font or size. The application model adds the editing
state for text, like cursor position or selection. The shared editing state gives the abil-
ity to provide awareness, e.g. to display cursors of other users [31]. In addition, it
specifies the degree of coupling between different users, i.e., which parts of the edit-
ing state are shared by all users and which allow private values. The workspace appli-
cation model allows for instance different rotation of the workspace for two users
working at an interactive table (see req. A-2), while all other properties are tightly
coupled.

3.3 Generic Layer: Generic Collaboration Support

One important goal of every software system is to provide generic components that
are useful in many different situations and for different tasks (req. D-1). To illustrate
the generic components layer, some examples taken from BEACH are presented,
which are further elaborated in section 4.

The basis for documents created with BEACH is a hypermedia data model. The
generic document elements include hand-written input (scribbles), texts, images, and
links as basic objects constituting information and workspaces to structure informa-
tion (the equivalent of a page).

The tools currently realized by the generic layer of BEACH are toolbars and
document browsers. Document browsers have a special role in defining the connec-
tion between the user interface and the document, i.e. specifying which part of the
document is shown where, also offering possibilities of navigating in the document to
a different workspace.
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The main elements of the user interface of BEACH are segments and overlays
[26]: the complete visual interaction area of a roomware component can be part i-
tioned into “segments”, which define the space available for a tool, e.g. a document
browser. In addition, “overlays” reside in front of the segments in the background and
can be positioned freely and are used in a similar way to the windows of most popular
operating systems. They also contain a tool, but they would normally be used for
toolbars and other smaller tools that have to be at hand for the user all the time.

One important part of the representation of the physical environment is the con-
figuration of roomware components. A “station” refers to computers running a
BEACH client. To be able to combine several stations to a composite roomware com-
ponent (req. E-1, C-1) the current setting is available as shared objects, as shown in
figure 3. A roomware component consists of one or more stations. Each station can
have a display. The displays of all stations belonging to a roomware component are
combined to a display area, which represents the complete interaction area of the
roomware component, e.g. the complete area of a DynaWall (see fig. 1).

If displays are added to or removed from the display area, the views showing it will
immediately adjust the size of the available area (req. E-2) due to the dependencies
between the physical model and the views.

RoomwareComponent Station

DisplayDisplayArea

1..*

1..*

Fig. 3. The display area combines all displays of its roomware component’s stations to one
homogeneous interaction area

To provide an adequate interaction  with roomware components, the traditional
mouse-based interaction has been extended with support for gestures written with a
pen (req. A-1), support for audio output is currently being implemented [20]. To gen-
erate the gesture events needed to handle pen input, each stroke that is drawn is sent
to a gesture recognizer to check whether it is similar to one of the set of supported
gesture shapes. In this case, a gesture event is generated and dispatched. In contrast to
mouse events, which refer to a specific point, a gesture event is associated with a
stroke — which could cross the bounds of multiple view objects. Therefore, a dis-
patcher for gesture events has been implemented that is capable of selecting the right
view’s controller.

3.4 Module Layer: Tailored Support for Tasks

The generic elements that are provided by BEACH are useful in many different situa-
tions. For some tasks it is of help if specific support is given (req. D-2). Therefore, the
proposed architecture has a module layer, which allows modules to add further model
elements and to extend the functionality of existing components. By providing hooks
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already in the core layer to add new toolbars and services, modules can be plugged
into BEACH without having to change existing code.

At present, only one BEACH module is available. It provides support for creative
teams to collect ideas during brainstorming sessions. Ideas generated between ses-
sions can be collected using a PDA and transferred to a public roomware component
(e.g. a DynaWall) in the next meeting [16] (similar to [11]).

3.5 Core Layer: Specialized Infrastructure

The aim of the core layer is to provide functionality that will make the development
of the higher levels more convenient. This includes

• synchronous access to distributed objects,
• automatic update and dependency detection,
• multi-user event handling,
• view transformations,
• device and sensor management, and
• module and services interface.

Here, we will focus on the first four items, as these are of main interest within the
scope of this paper.

Shared-Object Space. In order to provide computer support for synchronous
collaboration a platform for the distributed access to shared objects is needed
(requirements B-1, B-2, C-1, and E-1). This section does not discuss the properties of
different groupware frameworks and toolkits; it rather highlights the important
features of the software infrastructure of a ubiquitous computing environment.

BEACH uses a replicated model, as some roomware components are connected via
a wireless network with a rather low bandwidth of currently 10 Mbps shared by all
connected clients (fig. 4). After an initial replication, only incremental changes to the
shared objects have to be transmitted, thus reducing necessary communication. A
server synchronizes all replicates of shared objects and ensures persistency. To mini-
mize the coordination overhead, objects are grouped in “clusters” being the atomic
elements for replication.

Transactions are used to guarantee consistency in spite of concurrent changes to
objects. As a ubiquitous computing environment is highly interactive, it is important
to ensure a fast response of the user interface. Avoiding delays waiting for the
server’s commit, optimistic transactions offer a significant speedup whenever con-
flicting actions are unlikely or harmless.

Automatic Update and Dependency Detection. As changes to shared objects can be
initiated by an arbitrary computer for a variety of reasons, it is very important that
mechanisms are provided to trigger updates automatically when the state of shared
objects changes (req. C-2, E-2).

Therefore, a declarative description of views (or other kinds of output objects) is
used. The dependencies between views and attributes of shared objects are automati-
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cally detected and re-computation is triggered whenever these attributes are changed
[30]. When, e.g., the attribute ‘color’ of a workspace is set to ‘blue’ while a view for
this workspace is open somewhere, this view will be repainted, regardless who
changed this value on which device. This is very similar to the constraints used in
systems like Amulet [23], but works also for a distributed setting.

Network (TCP/IP)

CommChair ConnectTable

InteracTableDynaWall

BEACH Cooperation
Support

BEACH
server

BEACH
client

BEACH
client

BEACH
client

BEACH
client

BEACH
client

BEACH
client

persistent
store

wireless
network

Fig. 4. BEACH clients running on different roomware component are synchronised by a server

Multi-user Event Handling. For multiple-user devices (req. B-3), it is necessary to
provide an interface to hardware that is capable of handling multiple users at the same
time using the same device. Multiple device drivers can send events, tagged with an
identification of the originator, to BEACH. As an alternative to the standard mouse
button-up or -down events, these can also be events like pen-up, pen-moved, or pen-
down (req. A-1).

To support an adapted user interface for roomware components equipped with a
pen, the events generated by the device drivers can first be assembled to higher level
events. As it is very intuitive to draw strokes with a pen instead of just clicking on a
document, pen events can be combined to strokes. For these strokes, gesture events
can be generated depending on the shape drawn with the pen (like tap, line, circle
[10]).

As different kinds of events need different strategies for dispatching, the event can
choose an appropriate dispatching strategy. For example, key-pressed events are re-
ceived by the controller having the keyboard focus, button-down or pen-down events
are dispatched to all views at the mouse or pen position. Mouse-moved events are
directly discarded — as they only have an effect after a button- (or pen-) down event.
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To track several concurrent event sequences, the concept of “trackers” has been
extended. A tracker is an object receiving events directly, without using the view
hierarchy for dispatching. This is the same mechanism as is used by Myers’ multi-
user interactors [21]. BEACH is capable of handling several trackers at the same time
by keeping a mapping of input device IDs to the different trackers, which will get all
events from this device.

View Transformations. As views should be displayable in different orientations and
sizes (req. A-2, B-2), depending on the current context, the core model replaces the
standard “graphics context” (which handles the drawing) by an adapted version that
supports transformations. A transformation is an object that responds to messages for
transforming points and graphic primitives like images. These transformations are
applied by wrapper objects which are inserted into the view hierarchy and which
“wrap” the view to be transformed without needing to change it. A similar idea is
followed by introducing the portals in Pad++ [5] or the internal cameras in Jazz [6].

4 Example Device Configurations

To illustrate how this architecture can be used for different devices and configurations
this section gives three examples. The examples are taken from the experience with
the implementation of BEACH, which was developed based on the proposed archi-
tecture. As BEACH is used as the software infrastructure for the roomware comp o-
nents we have built at GMD-IPSI, their characteristics determined the focus of
BEACH. Currently, the roomware components support pen or finger as the main
medium for input. Thus, BEACH emphasizes direct visual interaction. All roomware
components have a permanent (in parts wireless, see fig. 4) network connection aim-
ing to support synchronous collaboration, and no “slow” CPUs. This implies that
BEACH is not appropriate for very small devices like PDAs and for devices not hav-
ing a permanent connection to the network.

The examples show elements of the generic layer only, as this layer defines the
concrete classes used to implement generic support for roomware components. First,
the DynaWall is an example for a multiple-computer device (req. E-1). Second, the
collaboration between a large public and a smaller private device (req. B-2) is shown
in the case of a DynaWall in conjunction with a CommChair. And third, the Interac-
Table is used to demonstrate a device that can be used by multiple users at the same
time, but with different viewing preferences (req. A-2, B-3). These examples focus on
the four shared models, leaving the interaction model aside. Another configuration
showing the relationship of the shared models to the interaction model using the ex-
ample of ConnecTables is presented in [43].

4.1 Combining Multiple Computers to One Interaction Device

As mentioned before, the DynaWall (fig. 1) consists of three computers (multiple-
computer device, req. E-1), each with an attached SMART Board [33]. Therefore, the
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physical model defines the roomware component “DynaWall” (DWRWC  in fig. 5) to
consist of three stations (DWStation1 to DWStation3) with their displays combined to
one large display area. While the three SMART Boards in our lab are mounted to one
wall (fig. 1), the software allows changing this setting dynamically (req. C-2, E-2),
e.g., when the boards are mobile and equipped with sensors (similar to the ConnecT-
able [43]).

If the display area is not divided into several segments (DWSegment1), it can be
used to display one large workspace (DWWorkspace1) within one document browser
(DWDocBrowser1). As mentioned above, the application model (DWWorkspaceApp1) is
used to define the editing state and functionality for the workspace.

DWStation1

DWDisplay1

DWRWC

DynaWall

DWStation2

DWDisplay2

DWStation3

DWDisplay3

DWDocBrowser1

WorkspaceApp1

Workspace1

DWSegment1

physical model

tool model

document model

UI model each display shows its part of the display area

DWDisplayArea

Fig. 5. The representation for a DynaWall consisting of three computers, which are combined
to form a homogeneous display area. This allows the complete area to be used to show one
large workspace

4.2 Tight Collaboration Using Two Different Devices

When a CommChair connects to the DynaWall specified in the previous example, it is
interesting to see, on the one hand, how the tight collaboration between CommChair
and DynaWall is implemented (req. B-2). On the other hand, it shows how the
CommChair’s display area is separated into two segments for public and private
workspaces.

The display area, which consists of only one display in the case of a CommChair
(CCRWC  in fig. 6), is split into two segments (CCSegment1 and CCSegment2). While
one segment is used to show a document browser (CCDocBrowser2) for the private
workspace (Workspace2), the other connects to the document browser shown at the
DynaWall (DWDocBrowser1). This enables very tight collaboration, as using a shared
browser results in coupled navigation. As always the same application model is used,
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all editing state is also shared between the DynaWall and the CommChair, which
allows providing awareness information [31].

As the size of the segments at the DynaWall and the CommChair differs, the inter-
action model (not shown in figure 6) has to provide an appropriate mechanism to
display the public workspace at the CommChair. Well know techniques are scrolling
and/or zooming.

DWRWC

DWDisplayArea

DynaWall

DWDocBrowser1

WorkspaceApp1

Workspace1

DWSegment1

physical model

tool model

document model

UI model

CCRWC

CCDisplayArea

CommChair

CCDocBrowser2

WorkspaceApp2

Workspace2

CCSegment2CCSegment1

connection to
public workspace

private workspace

Fig. 6. The CommChair splits its display area into two segments. One connects to the document
browser shown at the DynaWall, the other is used to show a private workspace

4.3 Multiple User Collaborating at One Device

While the CommChair in combination with a DynaWall enables collaboration of
users with different devices, the InteracTable aims at supporting several users at the
same device (req. B-3). As mentioned, it is necessary that horizontal displays require
different orientation for users with different orientation towards the display (req. A-2).

To realize this, we used an approach where each user can open an overlay that can
be freely moved around the display area, similar to a window (e.g. ITOverlay1 and IT-
Overlay2 in fig. 7). Each overlay gets an own document browser and workspace appli-
cation model, but connected to the same workspace. In this case, the interaction
model will open two views showing the same workspace. This allows each user to
rotate her/his workspace to the preferred direction, as the rotation is specified by the
workspace application model.
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ITRWC

ITDisplayArea

InteracTable

ITDocBrowser1

WorkspaceApp1
rotation = 90

Workspace1

ITOverlay1

physical model

tool model

document model

UI model

ITDocBrowser2

WorkspaceApp2
rotation = 180

ITOverlay2

Fig. 7. Two user working at an InteracTable with the same workspace. By using separate
browsers with separate application models, each user can look at the workspace with the pre-
ferred orientation

5 Current State and Experiences

The implementation of BEACH based on the proposed architecture shows that it
helps to provide the functionality needed as the software infrastructure of the cur-
rently existing roomware components. BEACH is implemented using VisualWorks
Smalltalk [8]. As shared-object space the COAST framework [30, 32] (developed at
GMD-IPSI) has been chosen.2 The former version of this framework was used in the
DOLPHIN system [37].

Our experiences with the current version of BEACH are quite promising. We used
the prototype at the international computer fair CeBIT at Hannover, Germany, in
March 1999 to give interactive presentations using a DynaWall and a CommChair
and for exploration by visitors. Since May 2000 there has been an installation of a
roomware environment with a specialized version of BEACH at the German Occupa-
tional Safety and Health Exhibition in Dortmund (DASA). It is open to the public and
visitors can experience “future work situations” for themselves. For our own work in
the AMBIENTE team, we use BEACH both for internal and external presentations
and for discussions and design meetings.

                                                                
2 COAST is now available as open source from http://www.opencoast.org.
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5.1 Conclusions

Concerning the requirements identified in this paper, it is interesting to see how they
influenced the design of the software architecture.

To be able to support different forms of interaction (req. A-1), high-level events
that can be dispatched with an adequate strategy offer much flexibility. However, it
does not free the developer from the task of defining what actions should be triggered
by which controllers on which events. The extendable event dispatching mechanism
is a good basis for supporting multiple persons using the same devices concurrently
(req. B-3).

The implementation of cooperative applications on top of the COAST framework
was very successful. Many error-prone tasks, like the conflict detection and handling
caused by concurrent actions or the updating of multiple distributed views are carried
out automatically by the framework. In case of brief network failures, queued trans-
actions are transmitted when the connection is restored. However, if multiple other
users continue working, the chance of rollbacks due to inconsistencies increases over
time.

The adaptation of visualization (req. A-2) is only possible within a certain range of
devices with similar characteristics. This factor is called “plasticity” of the user inter-
face in [44]. It is important to note that some of the adaptations might have to change
dynamically (req. E-2). This is enabled by using COAST’s dependency mechanism
for generating the visualization.

The shared object space provided by COAST together with a consequent separa-
tion and of application and domain models is the key to allow multi-device interaction
(req. B-1) and composite roomware components (req. E-1). Since all models are im-
plemented as shared objects stored on a server, clients can easily be restarted after
crashes and resume exactly where they stopped.

Combining the shared object space and the dependency mechanism allows the
modeling of dynamic changes of collaboration using different devices (req. B-2). For
the integration of contextual information provided by sensors (req. C-1), this is also a
flexible platform, as sensors need not be attached to the local machine, but can be
connected to an arbitrary computer. Since the sensors are part of the shared-object
space, their state can be monitored by any client, thus allowing state changes to trig-
ger actions.

The possibility to include modules with added functionality in BEACH offers the
specialization needed for certain tasks (req. D-2).

5.2 Future Work

Currently, we are developing new BEACH modules, e.g. for navigation and access to
created information, and for integration of audio output. Other issues are the integra-
tion of mobile devices that are not always connected to the server and devices with
restrictions on CPU and memory like PDAs. One approach to realize the connection
to PDAs is to provide an interface to shared-event-based system as described in [9].
While asynchronous work is possible as long as different groups work on non-
overlapping parts of the shared-object space, this is not feasible in practice. For asyn-
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chronous, unconnected collaboration, it is essential to deal with inconsistencies. One
solution could be the automatic creation of different versions for all objects changed
while not connected.

The latest information about BEACH can be found at
http://www.darmstadt.gmd.de/ambiente/activities/beach.html .
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