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Abstract

MediaBroker is a distributed framework designed to
support pervasive computing applications. Specifically,
the architecture consists of a transport engine and pe-
ripheral clients and addresses issues in scalability, data
sharing, data transformation and platform heterogene-
ity. Key features of MediaBroker are a type-aware data
transport that is capable of dynamically transforming
data en route from source to sinks; an extensible system
for describing types of streaming data; and the interac-
tion between the transformation engine and the type sys-
tem. Details of the MediaBroker architecture and imple-
mentation are presented in this paper. Through exper-
imental study, we show reasonable performance for se-
lected streaming media-intensive applications. For exam-
ple, relative to baseline TCP performance, MediaBroker
incurs under 11% latency overhead and achieves roughly
80% of the TCP throughput when streaming items larger
than 100 KB across our infrastructure.

1. Introduction

Recent proliferation of special-purpose computing
devices such as sensors, embedded controllers, hand-
helds, wearables, smart phones and power-constrained
laptops marks a departure from the established tra-
dition of general-purpose desktop computing. Dispar-
ity in computation and communication capabilities be-
tween the smallest network-aware device and high-
performance cluster machine or grid on the other end of
the hardware continuum is rapidly increasing. The vi-
sion of pervasive computing suggests inclusion of de-
vices spanning the entire hardware continuum. One
major challenge with developing efficient pervasive ap-
plications is finding the right framework to ease their

construction. In search of a solution, we investigate
concrete applications currently being researched in the
smart space [22] domain.

Consider a Family Intercom application where sen-
sors including microphones and speakers attached to
desktop computers or wireless mobile devices are dis-
tributed throughout a smart space. User location track-
ing is performed by a series of cameras which relay loca-
tion information to a user interface, which is also a form
of sensor. Users actuate commands to connect speak-
ers to microphone audio streams to initiate intercom-
style conversations. With these disparate applications
accessing similar resources, there should be a facility to
share resources among them. A camera used to track
people by the Family Intercom could be used to record
the scene by another application.

Complex pervasive applications like Family Inter-
com require acquisition, processing, synthesis, and cor-
relation of streaming high bandwidth data such as au-
dio and video, as well as low bandwidth data from a
user interface sensor [20]. Although each application
may have distinct and non-overlapping requirements,
the common goal of bridging heterogeneous platforms
to provide uniform and predictable means of data dis-
tribution warrants infrastructure-level support. Conse-
quently, this infrastructure must accommodate without
loss of generality all device types regardless of breadth
of purpose and provide means, in terms of functional-
ity and the corresponding APIs, to develop a variety of
distributed applications.

In this paper, we present our contributions: (1) the
MediaBroker architecture design addressing data typ-
ing, transformation and data sharing requirements, (2)
an implementation of the proposed architecture and (3)
performance analysis of our implementation.

The rest of the paper is organized as follows. We first
discuss the requirements of target applications in Sec-
tion 2. We present architecture in Section 3 and imple-
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mentation of the MediaBroker in Section 4. We present
a survey of related work in Section 5. We analyze the
performance of MediaBroker implementation in Sec-
tion 6, and we conclude our findings in Section 7.

2. Requirements

Requirements for the MediaBroker architecture fol-
low directly from the environment in which it operates
and the sample application listed in the introduction.
Applications in highly connected smart spaces encom-
pass multitudes of sensors and demand scalability from
the underlying infrastructure. High bandwidth audio
and video streams that are part of these applications
require system support for high throughput, low la-
tency transport and a convenient stream abstraction.
The dynamism involved in allowing sensors and actua-
tors to join and leave the system at runtime demands a
high degree of adaptability from the underlying infras-
tructure. Therefore the core requirements are (1) scal-
ability, (2) low latency and high throughput, and (3)
adaptability.

Given the diversity of devices in our application
space, we observe that a facility for transforming data
en route is important. Therefore, major requirements
to support such transformation are (1) a common type
language for describing transported data, (2) meaning-
ful organization of transform functions applied to the
data, (3) a flexible stream abstraction for data transfer
that allows data sharing and (4) a uniform API span-
ning the entire hardware continuum.

2.1. Core Requirements

The scalability requirement is perhaps the most im-
portant requirement for any distributed application
and is especially true for our application space, where
a large number of devices may simultaneously make
use of the underlying architecture on behalf of one or
more concurrent applications. The overall expectation
for a viable distributed runtime is not to give up per-
formance to accommodate an increase in the number
of active devices. In terms of throughput, if data is pro-
duced faster than it can be transferred, then through-
put becomes a bottleneck.

Adaptability entails several distinct requirements.
First, it assumes the ability of devices to establish new
and destroy existing communication channels at run-
time while maintaining system consistency and stabil-
ity. For instance, a user may choose to leave an in-
tercom session at any point in time. The system has
to continue uninterrupted through these disturbances.
Adaptability also refers to the architecture’s ability to

“shift gears” per a consuming party’s request. A con-
suming client may request to share a data stream with
another consuming party but would like to receive data
of a lower fidelity. The architecture must be adaptable
enough to accommodate runtime change of media sink
requests.

2.2. A Common Type Language and Orga-
nization of Data Transforms

Consider an applications where available sensors are
embedded controllers with attached camera devices.
The desired outcome is that our system is able to uti-
lize all camera sensors regardless of feature set, but
each camera model may produce video in different for-
mats, resolutions, frame rates, or color spaces. The in-
herent diversity of devices and the data streams that
may be produced or consumed calls for a standard,
yet highly flexible facility for composing data type de-
scriptions. Thus, an important requirement for any pro-
posed infrastructure is a language enabling definition
and exchange of type properties.

Selection of a standard way to describe data types
eases implementation of data transformation logic as
well. Type descriptions not only provide necessary con-
text for when a transform from one type to another is
meaningful, but they can also serve as unique tags by
which an implementation can archive and retrieve type
transform functions.

2.3. Underlying Transport Abstraction

The prevalent pattern of data production within our
application space is a stream. Be it a camera device, a
microphone, or a primitive sensor; each can be viewed
as producing data in streams. In the case of video and
audio streams, the data stream is meaningful to the
consumer as long as data is received in exactly the same
order it is produced and in a timely manner. Thus, any
proposed architecture must support a notion of stream
and offer a stream-like API to any application that re-
lies on data streaming for its functionality.

2.4. Providing Uniform, Flexible API

A successful solution will undoubtedly include an
API portable to many different platforms and trans-
ports. Portability will ensure that the distributed sys-
tem can be utilized from a maximum number of de-
vices and architectures. In turn, a flexible API will en-
able a large number of applications to be built with
minimum effort, while retaining the same data access
semantics on a variety of platforms.
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Figure 1. Overview of MediaBroker Architecture

3. The MediaBroker Architecture
3.1. Overview

The principal components of the MediaBroker (MB)
architecture are the clients, the transport and trans-
formation engine, its type system facility and a name
server. The type system and name server form the foun-
dation on which higher level components like the client
and the engine depend. We employ the term client to
describe an entity that acts as a media source (data
producing), media sink (data consuming) or both.

Figure 1 demonstrates basic data flow between both
clients and transport engine. By making the client API
available within the engine, we enable colocated clients
to share computational resources of the engine. In the
diagram, P; produces into the engine while C; and
the colocated client consume its stream. The colocated
client takes data from Pj;, modifies it and redistributes
it to C'5. Negotiation of data types takes place when the
MB engine requests from P; a type compatible with
what both C7 and colocated client’s request.

The core of the MB engine is a collection of data bro-
kers. A data broker is an execution context within the
MB engine that transports data from one media source
to one or more media sinks. Essentially, a data broker
satisfies the data sharing requirement outlined above.
In addition, a data broker is responsible for type ne-
gotiation between the media source and media sinks
attached to it. For instance, it must address the is-
sue of multiple media sinks requesting data from the
same media source in multiple formats. It is impor-
tant to note that several data brokers and clients can
be “stacked” on top of one another. Figure 2 demon-
strates stacking of colocated and distributed clients and
data brokers.

3.1.1. MediaBroker Clients Since multiple sinks
are allowed within a single client instance, the client
can perform simple data aggregation. In fact, the MB
client API permits a client to instantiate or terminate

Figure 2. Stacking Data Brokers and Clients

any number of media sinks or media sources. As seen
in Figure 1, a single colocated client is both a media
sink and a media source as it consumes data from P;
and produces data for Cj.

When a new source is instantiated by a client, MB
allocates a new data broker and binds it to the newly
instantiated media source. As each media source re-
lies on a dedicated data broker, the system will scale
as long as computing and communication facilities ex-
ist for each new data broker/media source pair. When
a new sink is instantiated by a client, it is bound to an
existing data broker.

3.1.2. MediaBroker Engine An important piece of
the engine’s functionality is allowing new clients to join
and leave at runtime. A new client begins by connect-
ing to the MB engine. The engine, upon client’s con-
nection, establishes a command channel to the client
and associates a listener entity with that channel.

Whenever a client decides to introduce a new me-
dia source, it signals the listener accordingly. At this
point, non-volatile attributes describing the source of
media such as its name are provided by the client to
the engine. The listener then creates a data broker for
the connecting media source, notifies the client of suc-
cess, and supplies the source with a handle to its data
broker. At the same time, the listener creates a map-
ping between resources that it allocates on behalf of
a new producer, and stores the resources in the name
server.

Likewise, when a client creates a new sink, it trans-
fers the sink’s attributes to the listener. The funda-
mental distinction is that media sinks also provide the
name of the media source that they want to consume
from. Using the source’s name, the listener queries the
name server to find the corresponding data broker. On
success, it proceeds to notify the data broker of the ad-
dition of another media sink, communicating the data
broker handle back to the newly attached sink.

3.1.3. Data Broker A high-level view of a data bro-
ker is presented in Figure 3. The data broker monitors
the status of the attached media source as well as com-
mands from all of its attached media sinks. We defer de-
scription of the type system until the next section, but
both source status and sink commands are formatted
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Figure 3. Data Broker with Source and Sink

as a data type. Status signifies the provided data type,
while commands signify the data type requested. Thus,
the data broker’s goal is to rectify the source’s status
with the sinks’ commands. The data broker achieves
this goal by finding the least upper bound (LUB) be-
tween the types of data requested by media sinks. Once
the LUB type is found, the data broker communicates
it to the producer through the command channel, ex-
pecting it to produce the same. The data broker then
performs the necessary data transformations from the
LUB type to each of the types demanded by data sinks.
Essentially, the data brokers satisfy both the data shar-
ing and data transformation requirements outlined in
Section 2.

Channels used for type negotiation are depicted in
Figure 3. We observe two distinct scenarios in which
runtime adaptability of the system occurs. One sce-
nario is prompted by a media sink stating, through a
command, that it would like to consume data of some
new type. The data broker then attempts adaptation
by providing the new requested type to the media sink
as soon as possible. Following a new media sink com-
mand, output to the media sink is paused while the
new LUB type is calculated and appropriate transfor-
mations that need to be applied based on the new LUB
type are determined. Another scenario involves a me-
dia source changing its status type which has the effect
of pausing all sinks while the LUB type is recalculated
along with the transformations that need to be applied
to satisfy every sink’s request. Both scenarios imply
that one or more media sinks must be paused while
the data broker effects the required adaptation. Quan-
titative measure of adaptation latency is presented in
Section 6.4

3.1.4. Type System We define a convenient lan-
guage for describing data types, their relations to each
other and type transformations. A type is defined as a
tuple of type domain and a set of type attributes. Type
domain refers to a higher level description of type. For
instance, all types of PCM audio data belong to the
same domain. Type attribute consists of attribute name,
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Figure 4. Sample Type Map

and an attribute value. Attribute name is an arbitrary
ASCII string, and attribute value is the value of that at-
tribute. Figure 4 shows several sample data types.

A type map, bearing strong resemblance to type lat-
tices [2], is our data structure for describing relation-
ships between various data types. Types are connected
to each other via directed edges. A type map consists of
an non-empty set of types, two designated root types,
and a collection of directed edges. We define three types
of edges: (1) parent, (2) child, and (3) sibling. Root
types are defined as those that either have no par-
ent or child edges. Thus, one root type has no par-
ent edges (highest type) and the other root type has
no child edges (lowest type). A path is defined as a se-
quence of edges. A well-formed type map has a path
between any two types. Figure 4 shows a simple type
map consisting of five data types.

Normally, type map information is interpreted as
follows. The “highest type” is the best quality type of
data that a producer is capable of supplying. Likewise,
the “lowest type” is the worst quality type of data.
Quality is left intentionally vague. For instance, appli-
cations may choose to equate lowest quality to be least
resource consuming while the highest quality to be ex-
actly opposite. Figure 4 supports this notion of qual-
ity as well. Edges connecting types signify that a data
can be converted from one type to another.

The MB engine uses type maps extensively. Each
media source provides a type map representation of
data types it is capable of producing. Likewise, the en-
gine contains a set of default type maps that specify
all the possible transformations that can be performed
by the engine itself. A media source can throttle the
amount of transformations it performs by reducing the
size of its type map and letting the engine perform the
rest using the default type map. By supplying compre-
hensive type maps encompassing multitudes of possi-
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ble types within the engine, an underpowered media
source that would normally be required to manipulate
its data to arrive at the LUB type is relieved.

3.1.5. Name service A name server is a crucial
component of our framework, because it simplifies
maintaining a mapping between producer and con-
sumer names and computation resources and data
structures associated with them at runtime. Since the
functionality of many components depends on name
server containing reliable information, write access to
name server is restricted to the MB engine, while ex-
ternal clients have read access.

4. MediaBroker Implementation
4.1. Overview

MB architecture is implemented in two main pieces:
an engine written in C, running on a cluster of ma-
chines or a single machine and the MB client library,
also written in C, that clients can use anywhere in the
distributed system.

Implemented on top of the D-Stampede distributed
computing system [1], MB gains use of the D-Stampede
abstractions that allow ordering of data in channels
and provide streaming support with a uniform API
on a number of computing platforms in the aforemen-
tioned hardware continuum. While D-Stampede itself
is implemented on top of a reliable transport layer,
our MB implementation contains very few bindings to
D-Stampede, allowing portability across any transport
framework as long as it offers stream-like semantics for
transferring data and uniform API for multiple hetero-
geneous devices. Since D-Stampede inherits function-
ality from the Stampede system [16,21], it includes a
powerful clustering component that enables the MB
engine to effectively use high-performance cluster ma-
chines for CPU-intensive transformations applied to
high-bandwidth/low-latency streams appealing to colo-
cated clients.

4.1.1. MediaBroker Engine At the core of the en-
gine is a master thread delegating connecting clients to
listener threads. The listener thread then has the au-
thority to instantiate data broker threads, notify data
broker threads with information about new clients, and
instantiate internal threads from dynamically loaded
application code.

The internals of a data broker are shown in Fig-
ure 5. A Data Broker is a set of threads consist-
ing of a transport thread, a command thread, a LUB
thread, a source_watch thread, and sink_watch thread.
These threads are necessary because D-Stampede
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Figure 5. Data Broker Internal Implementation

has no facility for polling multiple interfaces for
the newest data [1]. The databroker thread trans-
fers data from source to sink(s) while transform-
ing as necessary. The command thread blocks on
the command channel and listens to the server’s lis-
tener threads for messages about adding and re-
moving sources and sinks. The LUB thread waits
until a sink updates its status, calculates the opti-
mal data type to request from the source and re-
quests it. The source_watch and sink_watch threads
block until the sinks or sources update their com-
mands or statuses. The respective watch thread
updates the appropriate structures of data transfor-
mations the databroker thread uses to transform data
as it moves from the source to the sink.

4.1.2. Client Library The MB client library is writ-
ten in C on top of D-Stampede. The library lever-
ages the D-Stampede client API. In fact, most of the
calls map directly onto corresponding D-Stampede API
calls. The library includes standard calls for initiating
clients, media sources and sinks as well as calls for ma-
nipulating type maps and type descriptions. Detailed
discussion of the MB client library API is beyond the
scope of this paper. !

4.1.3. Types and Type Maps The MB type li-
brary is written in C and is part of the client library as
well as the MB engine. Types are implemented as sim-
ple C structures, sets are implemented as linked lists,
and types are associated with each other via memory
pointers. Since the data structure relies on pointers for
traversal, the library also supplies functions for seri-
alization/deserialization of type maps to a pointer-free
architecture-neutral representation for marshaling over
the network.

The type system API that is part of the client library
allows construction of types and type maps, compar-
ison of individual types and type map traversal. The

1 MB API header file may be found at:
hitp: / Jwww.cc.gatech.edu/ mmodahl/media_broker /api.h
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type system API also includes an algorithm for find-
ing the LUB type.

Shared “type information” objects are dynami-
cally loadable shared libraries. At runtime, the default
type maps along with the corresponding transforma-
tion functions are loaded on demand whenever me-
dia sources and media sinks might require their
use.

4.1.4. Name server/Directory Server We used
the OpenLDAP implementation of Lightweight Direc-
tory Access Protocol [26] as our name server. Features
like readily available open source implementation, scal-
ability, replication, enhanced security features, and the
ability to extend existing schemas all lead to LDAP as
a natural selection. Scalability of LDAP was particu-
larly important given our application domain.

In the process of integrating the LDAP server into
our runtime, it was our intention to remain name
server-agnostic. A small C-to-LDAP interface library
is provided for convenient translation from C struc-
tures to LDAP entries. Arguably very little effort would
have to be expended to port MB to an alternative name
server implementation.

4.1.5. Supporting Heterogeneity When de-
signing a system to provide a common interface to a
continuum of devices, heterogeneity is paramount. For-
tunately, D-Stampede, which serves as the core of
this implementation instance, has been ported to sev-
eral architectures, including ARM, which is popu-
lar in the embedded device space. As a result, we are
able to support clients running on low-powered Com-
paq iPAQ handhelds with wireless connections along-
side high-performance clusters for data manipula-
tion.

5. Related Work

Stampede [16, 21] was first developed as a clus-
ter parallel programming runtime for interactive mul-
timedia applications. Stampede’s focus is to provide
efficient management of “temporally evolving” data,
buffer management, inter-task synchronization, and
the meeting of real-time constraints. Other features of
Stampede include cluster-wide threads and consistent
distributed shared objects. D-Stampede [1], extends
Stampede programming semantics to a distributed en-
vironment spanning end devices (such as sensors) and
back end clusters. However, Stampede is simply a tem-
porally ordered transport mechanism, which neither
recognizes the types of data flowing through the Stam-
pede channels, nor has any built-in mechanism for type
transformations.

Transcoding is usually performed either to suit spe-
cific requirements of a receiving device or to conserve
network resources. The BARWAN project [4] shares
some similarities with the MB project, targeting the ex-
act set of requirements with the exception of a strong
data-typing facility. At the same time, [3] emphasizes
transcoding as a useful technique but does not have
facility similar to MB’s extensible type system. Fi-
nally, [24,25] focus on active networks, a concept simi-
lar to transcoding, albeit implemented at the IP level.
In active networks the originator of a data packet can
specify transcodings that need to be applied to the data
en-route. MB applies this concept at a higher level of
abstraction allowing execution of more complex trans-
formations.

The Aura and Odyssey projects [6,11,17,22] aim
at designing a comprehensive infrastructure for perva-
sive computing; they include provisions for runtime ap-
plication adaptation to deal with unanticipated short-
age of resources, type transformation, and a variety
of other facilities for “masking uneven conditioning”.
Adaptation of application behavior to dynamic condi-
tions has been addressed in [8,23]. The focus of MB
is different; it addresses the problem of overcoming the
complexity of multi-format data transformations (sim-
ilar to the TOM project [10]), while still allowing ef-
fective data sharing between multiple sinks. The latter
implies that if multiple applications operate in a sin-
gle smart space, MB facilitates the sharing of a device
across applications commensurate with the advertised
capabilities of the device.

Type description languages have been recognized
as a technique to structure and provide context to
transcoding functions [9, 15]. Nonetheless, we are not
aware of any architecture that employs a type map
approach to deal with transcoding complexity. Some
work has been done in terms of constructing transcod-
ing pipelines, specifically in the context of graphics sub-
systems [14,19]. However, these mechanisms are cur-
rently confined to a single host.

Diverse application-level data sharing approaches
have been proposed [3,5,7,13,18]. Proliferation of these
can be explained, at least in part, by the difficulty asso-
ciated with configuring and deploying de facto IP mul-
ticast on a typical IP network. Generally, we find this
to be an open challenge, especially in the domain of
pervasive computing.

6. Performance Analysis

We present results of experiments testing our MB
implementation in this section. First, to understand the
basic costs of our API calls, we present the results of p-
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benchmarks. Beyond API costs, we present end-to-end
data movement costs relative to baseline TCP costs.
To understand how our implementation supports scal-
ability with respect to number of sources and sinks,
we present similar end-to-end data movement costs for
several scenarios. Finally, we analyze how fast our data
broker implementation can respond to type adapta-
tions in either a sink or a source. For each set of ex-
periments, we show that our implementation provides
reasonable support for our application space.

For our tests, the LDAP name server runs on a
machine with a 2.0 GHz Pentium IV processor with
512KB cache and 512MB memory. The name server
runs RedHat Linux with a 2.4.18 Linux kernel. Ex-
cept where noted, the tests run on machines equipped
with quad 2.2 GHz Intel Xeon processors, each with
512 KB cache and access to the 1 GB of shared mem-
ory. The test machines run a RedHat Linux 2.4.18 SMP
kernel installation. The test machines were connected
with switched 100 Mb ethernet. The name server is not
located on the same switch, but it is on the same LAN.

API Call Time (p-seconds)  Std. Dev.
mb_init_producer 2575.16 459.32
mb_destroy_producer 2811.12 142.61
mb_inil_consumer 2375.56 457.03
mb_destroy_consumer 2709.80 324.18

Table 1. Normalized MediaBroker Benchmarks

6.1. Micro-Measurements

In Table 1 we show costs for mb_connect and
mb_disconnect, which connect and disconnect
clients to the MB. We then examine mb_init_source,
mb_destroy_source, mb_init_sink and mb_destroy_sink,
that create and destroy media sources and sinks respec-
tively. Although the name server API costs are low, we
present “normalized” MB Client API costs indepen-
dent of name server implementation. We do this “nor-
malization” by subtracting the call time of name server
calls made during each MB API call. The costs de-
picted here are as expected from our implementa-
tion. For example, mb_init_source involves the creation
of three threads and the allocation of four D-Stampede
data abstractions. These Client API p-benchmarks
demonstrate that the system supports applica-
tions that dynamically allocate and deallocate sources
and sinks on a frequency of tens per second. This sup-
ports our application space, where the Family In-
tercom will allocate and deallocate source to sink

streams at human speeds. The p-benchmarks for colo-
cated clients are the same as for regular clients because
both use the same out-of-band communication mecha-
nisms.

6.2. End-to-End Data Movement Costs

To establish MB as a viable implementation to sup-
port streaming data from media sources to media sinks
for our target applications, MB must exhibit the abil-
ity to move data with low latency and high throughput.
In the experiments to follow, latency is half the time re-
quired for sending an item from the source to the sink
and back, while throughput is measured in a system de-
voted entirely to streaming items from source to sink as
quickly as possible. We vary the sizes of test items ex-
ponentially from 1 byte to 1 MB.

6.2.1. Isolating Engine Overhead The majority
of engine overhead is data broker’s routing and trans-
forming of data from sources to sinks. To examine en-
gine overhead, we first factor out the network and test
the latency and throughput of communication on a sin-
gle host. Three versions of data transfer within a sin-
gle host are presented: (1) source to sink through MB
where source and sink are both colocated clients run-
ning “internal” to the MB engine address space, (2)
source to sink through MB where source and sink are
running “externally,” and (3) directly from source to
sink transferring data solely over TCP/IP for baseline
comparison.

Figures 6 and 7 show the latencies and through-
put associated with various item sizes in the three
test scenarios. As item sizes increase, MB latency in-
creases faster than the baseline TCP latency because
the MB API involves a round-trip time innate to the
request-response semantic of the underlying Stampede
API. The transmission of an item from an internal
MB source to an internal MB sink involves two round
trip times and data broker transport thread schedul-
ing. These overheads are low relative to the tolerance
of our application space to latency. For example, % sec-
ond of 22 KHz single channel 16-bit audio data is ap-
proximately 16 KB for which our measurements indi-
cate a latency of 250 p-seconds.

6.2.2. Engine Overhead with Network By intro-
ducing the network into the previous experiment we
hope to show that the overhead MB imposes on data
transfer is minor relative to the overhead imposed by
the limitations of network communications. We have
run experiments based on two scenarios: (1) source to
sink through MB across three machines, and (2) source
to sink through a relay implemented solely on TCP /IP
between three machines.
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Figures 8 and 9 show the latencies and throughput
associated with various item sizes in the three test sce-
narios. When the network is introduced, our through-
put and latency measurements parallel the TCP base-
lines quite well. The aforementioned audio load is easily
handled by our throughput capabilities. Furthermore,
low resolution 30 fps uncompressed video formats fit
within this bandwidth.

6.3. Testing Scalability

To test the scalability of our MB implementation,
we present two experiments testing MB’s ability to per-
form as numerous sources and sinks local to the engine
host are connected into the system. The performance
of transfer should degrade gracefully as limited proces-
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Figure 9. Throughput of Data Transfer of Vary-
ing Sized Items Relayed Across Three Hosts

sor and memory bus resources are shared between mul-
tiple sources and sinks.

6.3.1. Sink Stream Scaling In situations where
multiple sinks are drawing from a single source, we need
to ensure that the system performance degrades grace-
fully as more sinks are added.

We run this experiment with a single source send-
ing 16 KB packets to a varying number of sinks. The
latency and throughput information is shown in Fig-
ure 10. In our application space, a sources data needs
to be shared by multiple sinks. For example, the sev-
eral applications may want to share the media stream
from a centrally located microphone. MB performance
degrades gracefully as the data broker distributes to
more sinks.
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6.3.2. Data Broker Scaling Our MB implementa-
tion must also scale as multiple data brokers are instan-
tiated to serve media source data to media sinks. By in-
stantiating n sources sending to n sinks on a single en-
gine host, we hope to show linear performance degra-
dation. We test a varying number of sources sending
16KB packets to distinct sinks. To present the results
most clearly, the latency and throughput information
shown in Figure 11 are the result of running this exper-
iment on a machine with a single Pentium IV proces-
sor. The machine is equipped with 256 KB cache and
1 GB of memory. Again we find graceful linear degra-
dation as source/sink pairs are added.

6.4. Type Adaptation Latency

We discussed in Section 3.1.3, the necessity to oc-
casionally pause the data broker. We examine the la-
tency imposed on data streams by this pause in the
context of two different scenarios: (1) a media source
changes its data type, and (2) a media sink requests a
new data type. In order to perform these tests, we use
NULL data transforming logic within the Data Bro-
ker to measure the latency of transfers from end to
end.

To measure the adaptation latency of a media sink
we instantiate a source and a sink. The sink requests
a data type in the simple text type map shown in
Figure 4, while the source produces data of the high-
est type. Every hundred iterations of the source/sink

transfer, the sink randomly changes the data type it
is requesting from the source in order to measure the
time the data broker takes to recalculate transforma-
tion logic for the sink. The average latency resulting
from this recalculation is 325.50 p-seconds.

Similar to sink type adaptation, sources may change
the data type that they produce. In order to isolate
the time required to stabilize the system after a me-
dia source status change destabilizes it, we modify the
sink type adaptation experiment so that the source ran-
domly changes its produced data type and updates its
status every hundred iterations. The average latency
resulting from source type recalculation is 452.00 pu-
seconds.

7. Conclusions

MediaBroker (MB) is an architecture for the appli-
cation domain of pervasive computing. We have moti-
vated our architecture by examining the requirements
of applications common to smart spaces. In particu-
lar, we have discussed the key features of this archi-
tecture: a type-aware data transport that is capable of
transforming data, an extensible system for describing
types of streaming data, and the interaction between
the two. Finally, we have demonstrated that the per-
formance of our implementation is sufficient for many
streaming media applications.
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