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Abstract

Device rest-detection is important for gesture recog-
nition, power conservation, position triangulation
and heading drift cancellation. Currently rest is prin-
cipally detected using static tilt-meters. However tilt-
meters are fundamentally insensitive to horizontal
translation. A better rest-detection algorithm may
be developed by augmenting tilt-meter readings with
video data. This paper combines video optical-flow
readings with traditional tilt-meter readings to ob-
tain a better estimator of device rest conditions. The
algorithm is implemented as a library and API in Fa-
miliar Linux for easy integration into applications.
Stand-alone rest-detection results are presented. A
simple application of rest-detection to Cricket bea-
con distance estimates is also presented.

1 Introduction

The position and orientation of a device in a 3 di-
mensional world can be modeled by a 5-tuple <
z,Y,2,0,¢6 > where < x,y,z > gives the location of
an object in 3-D space and < 0, ¢ > gives the orienta-
tion of the device. When the device is in ’'motion’ in
this three-dimensional world, one or more of z,vy, z,0
and ¢ changes appreciably with time, otherwise the
device is at 'rest’.!

1The word ’appreciably’ has been chosen judiciously. We
well see in Section 6.1 that the notion of ’rest’ must be

The goal of this paper is to convert rest-
information into an application utility. We explore
different techniques of robust rest-detection and con-
struct a system that exposes rest-information simply
and cheaply to applications. We have found that rest-
detection can be made robust by combining tradi-
tional tilt-meters with video-based optical flow tech-
niques. Our system is useful for applications in the
domains of power conversation, context detection,
position triangulation and drift cancellation.

1.1 Power Conservation

Consider a power-constrained device running a deic-
tic (i.e. pointing) application of some sort. In this
case, detecting that the device is at rest may imply
that the user intends to query or use the object at
which the device is pointing. If the process of iden-
tifying and querying the object-pointed-at is expen-
sive, then there is a very good argument for delaying
such operations until we are reasonably sure that the
device is at rest.

To continue this point, power conservation is a
particularly important challenge for small mobile de-
vices; it is often the single hardest constraint in appli-
cation design. Also, most query/lookup mechanisms
involve an implicit exchange of data with a networked
information source- and the first hop of this exchange
is made over a wireless network. Wireless exchange

application-defined.



of data is an extremely power-hungry operation, es-
pecially for small resource-constrained mobile com-
puters. Thus, using motion cues to reduce our use of
power-hungry operations is a worthy exercise.

1.2 Context Detection

Rest-detection is helpful in identifying several ges-
tures (user contexts). For example, when we point a
device at an object and hold it steady, we indicate
and interest in that object. Placing a device on the
table, or picking it up may also have meaning. Fun-
damentally, context-detection applications are trans-
lating physical motion of a device into high-level user
intentions. Therefore, knowing when a device is at
rest is important for these applications.

1.3 Position Triangulation

Not surprisingly, being able to detect rest has appli-
cations in the field of location and heading detection.
Consider location-detection mechanisms first. While
an enormous amount of research has been directed
at providing better location support mechanisms, a
characteristic of all of these location provision mech-
anism is error in the location estimates. The cause of
the error varies from system to system; and the error
may be minimized by improving the location support
hardware (often at significant cost), or by designing
software algorithms to mathematically remove error.
Statistical techniques may be applied either to loca-
tion estimates collected from a large number of inde-
pendent sources, or to readings taken from a small
set of sources but over a larger interval of time. We
call these approaches corroboration and averaging re-
spectively.

Combating error through corroboration is not an
easy thing to do. This approach is often circum-
scribed by power, cost and interference constraints.
It may be too expensive to install additional bea-
cons. The power of each beacon may not be suf-
ficient to get sufficient overlap between them. Or
it may be technically infeasible to pack beacons too
close to each other. Sorting through these intercon-
nected constraints is a tricky design issue- and hence

combating error through averaging is an attractive
idea.

However, there is a nagging epistemological prob-
lem with all averaging approaches. It can be illus-
trated by the following conundrum:

The ’Assumption of Rest’ Conundrum

1. You want to know your position

2. So you assume you are at rest i.e. you assume
that your position does not change

3. But how can you assume this?
Don’t you have to know your position in the first
place?

In other words, we need some a priori method of
knowing we are at rest before we can apply our posi-
tion averaging algorithms. Statistical estimators such
as mean, median and standard error are only informa-
tive when the underlying distributions they sample
have static parameters. They do not react well when
the underlying parameter being estimated (location)
changes. There is therefore a powerful argument for
having an out-of-band mechanism for knowing when
we are at rest.

1.4 Drift Cancellation

A different argument applies in the domain of heading
detection. Many heading detection systems funda-
mentally obtain heading information by integrating
some measure of change in heading. A consequence
of this integration is that error is introduced at ev-
ery instance of integration and the overall estimate of
heading drifts with time. Knowing when the device
is stationary may enable us to attempt out-of-band
methods of drift cancellation.

2 Previous Work

Three different research communities have previously
addressed the problem of rest-detection. These are
the mobile robotics, object tracking and human-
computer interface research communities.



Determining a robot’s location and heading in
real-time has been called the global positioning prob-
lem. A number of researchers have focussed on us-
ing video sensor data to enable a robot to detect
its location and orientation. The major techniques
in this area are landmark-recognition techniques[14,
7], camera-configuration techniques[15], model-based
approaches[4], and feature-based visual-map building
systems[8]. The last approach is remarkable not only
because it does not require any a priori map of the
world. Chapter 9 of Borenstein et.al.[2] provides an
excellent overview of visual positioning systems in
mobile robotics.

In the area of object-tracking, a large number of
algorithms and systems have been developed to accu-
rately track a moving object via video data. For our
purposes, we may divide these systems into on-line
or off-line systems. Off-line systems are not useful to
our goal of making rest-detection an application util-
ity. An interesting real-time, video-based position
location systems is Project HiBall[17]. Project Hi-
Ball instrumented the ceiling space of the user with
a dense array of LEDs, and the position of the user
was detected via a complex ’ball’ that contains six
infrared sensors.

Human-computer interface researchers have long
appreciated the importance of determining when a
device is at rest. The problem of detecting the mo-
tion and rotation of the device in 3-D space came
to be called one of context detection. Rekimoto[11]
attached tilt-meters to a Palm device. Harrison
et.al.[5], Small & Ishii[13] and Bartlett[1] explored
using tilt-meters to navigate. Hinckley et.al.[6] used
tilt-meters coupled with a touch sensor and infrared
proximity detector to identify when a hand-held de-
vice is being used as a voice recorder. The appli-
cations require significant reliability from the tilt-
meter readings- in one case requiring a very specific
relationship between detected x and y angles, and
in another identifying tilt angles to within £+ 3 de-
grees. The TEA project[12] extends the idea of multi-
modal context detection both theoretically and prac-
tically. They develop and use a customized hardware
board fusing data from 8 sensors (photo-diode, two
accelerometers, IR proximity detector, temperature,
pressure, COy gas, and sound). They offer an in-

sightful distinction between physical and logical sen-
sors and use Kohonen maps to automatically detect
contexts as regions of points in 8-dimensional physi-
cal sensor data space. Their device was able to use
this approach to distinguish between rest, walking
and placement in a briefcase.

3 Challenges

The previous work done in this area can be improved
on the following grounds: (1) Complexity (2) Cost (3)
Rectifying flaws in Tilt-meter Usage and (4) Adding
Multi-modality.

3.1 Complexity and Cost

An approach based on extensive analysis means that
the technique cannot be performed in real-time, or lo-
cally on a hand-held device. This automatically elim-
inates a number of mobile robotics mapping-based al-
gorithms. Additionally, while the problem of object-
tracking via video remains an area of extensive re-
search, these systems are clearly overly complicated
for our purposes. Our motivation in rest-detection
is not to track objects but merely yo decide if we
are at rest or not. Also, systems such as HiBall that
require expensive hardware or extensive instrumenta-
tion/tagging of the user’s work environment are not
attractive simply because of the amount of environ-
mental modification they require.

3.2 Tilt-Meters

While tilt-meters have been powerful in certain ar-
eas of context detection, there exist two fundamen-
tal problems with their use for the problem of rest-
detection. Tilt-meter approaches are (i) not sensitive
to certain kinds of motion and (ii) not designed to be
be an accurate indicator of rest.

Static tilt-meters work by measuring their attitude
relative to the Earth’s gravity field at a given point
(gravity vector for short). If the location and orien-
tation of a device in 3-D space can be described by
the 5-tuple < z,y,2,0,¢ >, then static tilt-meters



are most sensitive to change in ¢ and z. This is be-
cause change in these parameters directly affects the
relationship of a tilt-meter to the gravity vector at
a given point. Therefore, there are changes in z,y
and 6 that can be made that do not strongly affect
readings from a static tilt-meter. The issue will be
explored in greater detail in Section 4.2.

Static tilt-meters today are designed to provide
pervasive applications with tilt information. They
are constructed so that they can quickly tell an ap-
plication it’s general orientation with respect to the
gravity vector. The fundamental question they at-
tempt to answer is “Is the device closer to horizontal
or vertical?” rather than “Has the device orienta-
tion changed in the last few seconds?”. Increasing
the range of orientations over which quick and accu-
rate comparisons may be made means that tilt-meters
cannot be excessively sensitive to small changes from
a recent state. Such a sensitivity would distort the
ability of the tilt-meter to make macro tilt compar-
isons.

3.3 Neglect of Multi-modality

This is not to say that tilt-meters are not useful for
the problem for rest-detection. They are cheap and
elegant solutions for detecting certain kinds of mo-
tion, but (as we often see in pervasive computing)
they are not the complete answer to the question. We
feel earlier efforts at tackling this problem have erred
because they did not adequately exploit multi-modal
solutions to rest-detection. As sensor-rich devices
become cheaper and more widely available, there is
a definite case for rectifying the flaws with current
sensor approaches by combing them with data from
other sensors. This is an idea we will implement in
this paper.

4 A Video-Enhanced Approach

Combining video data with tilt-meter data is an ap-
proach that promises to meet the challenges raised in
Section 3. In this section, we will outline the pros and
cons of incorporating video data for rest-detection
and then justify the construction of a combined video

and tilt approach.

Mobile-robotics research has already shown that
video techniques can be used to make position and
heading estimations. However, much of this work has
not been widely used because it has not been cheap or
simple to develop a mobile, sensor-rich, video-capable
platform for pervasive computing. Fortunately, this
is no longer the case- commercial cell-phones pro-
duced by Samsung and Nokia now come with built-in
video cameras, and video-capable PDAs are becom-
ing widely available. For example, the research pre-
sented in this paper was conducted using a Mercury
backpack[3] at the M.I.T. Lab for Computer Science.
This device gives a regular off-the-shelf iPaq access to
tilt-meters, video and PCMCIA extension slots. It il-
lustrates how video data can now be considered an
integral part of the sensor universe of a small, mobile
computer.

Video data is high-quality, digital and gravity in-
dependent. It is sensitive to horizontal translation
motions in a way static accelerometers are not. And
it offers the choice of using detection and sensing algo-
rithms that are not handicapped by prior hardware-
based design decisions. All of these are attractive
arguments for a video-based approach.

On the flip side, the use of video images means that
a video-based rest detection algorithm will always be
susceptible to background motion. It is not reas-
suring for our rest-decisions to be solely dependent
on who walks across our camera at any given time.
Additionally, video based techniques are notoriously
computationally intensive - which make them hard
to implement on small, mobile, resource-constrained
devices.

The arguments for and against a pure video-based
rest detections system are summarized in Table 1.
Given this discussion, we can see that a more robust
approach is to combine information from both video
and tilt sensors to produce a better rest-detection
system.

4.1 Statistical Measures

The video component is based on an Optical Flow
algorithm which is simple, computationally inexpen-
sive, provides a good measure of overall image drift,



Table 1: Pros and Cons of Video-Based Approaches to Two-Dimensional Rest Detection.

| Pros |

Cons |

1. Sensitive to image change
2. Improvable via software
3. Independent of Earth’s gravity field

1. Susceptible to back-ground motion
2. Potentially computationally expensive

and resiliant to variations in image color, brightness
and minor movement.

Consider a given frame P. Let shift(P, h,v) be the
same frame except with each pixel displaced horizon-
tally by h columns and vertically by v rows. Let D
be a binary difference measure that operates across
frames then. For any two consecutive frames P,, and
P,,_1, we define:

optical-flow = < h,v > where
D(P,—_1,shift(Pp,h,v)) is minimum.

For the purposes of rest-detection, the vertical-flow
component v is more of a liability than a benefit. The
information it provides is easily corrupted by scan
lines seen in standard video feeds. Additionally the
information it provides is redundant with pitch and
tilt information obtainable from a tilt-meter. There-
fore we choose to ignore the vertical flow component
and instead define MEAN-FLOW where:

MEAN-FLOW = AVERAGE(hy, hs...hy) where
(h1, ha...ht) is a window of horizontal flow readings
from an optical-flow algorithm.

For the tilt-meter component, we use a window of
tilt-readings from a tilt-meter. Unlike the optical-
flow measure, the mean of the window is not infor-
mative in this case because all it tells us is the current
tilt of the device. We are not interested in the cur-
rent tilt, but in the change in tilt. Therefore we define
TILT DEVIATION, where:

TILT DEVIATION = STD DEV (ry,rs...r) where
(r1,rs...r1;) is a window of consecutive tilt readings
from a tilt-meter.

We hope to build a system where we recieve
new video and tilt-readings at approximately 10Hz.

Therefore we arbitrarily choose a window size of
1 second so that our MEAN-FLOW and TILT-
DEVIATION measures are obtained from at least 10
readings. Readings from the two measures are never
compared to each other numerically, hence we have
no need to normalise the two types of readings.

To guide the design of a video-based rest detector,
we performed thrtee experiments with the hand held
device (1) at rest in the palm of a user, (2) translating
horizontally across a room and (3) staying in place
but pointing to different objects in the room.

4.2 Experiments
1. Hand-held Rest

Tthe device is at rest in the hands of the user.
The user holds the device steady, as if attempting
to use it as a pointing device. Over the course of
this experiment, the user made tapping motions
on the iPaq, as if attempting to select portions of
the screen or input data. This models the device
being used as a pointing device.

2. Horizontal Translation

In this experiment the user carries the device in
the palm of his hand and walks back and forth
across a room. Over the course of a 50-second
trial, the user walked a distance of 30 metres. This
experiment models the common case when a user
is using the device, but is not stationary.

3. Pitching and Rolling

In this experiment, the device was kept in one
place but randomly pointed at different objects in
the room. This models the case when the device
exhibits a lot of motion.



Table 2: Performance of MEAN-FLOW and TILT-DEVIATION in different rest conditions. The sliding
window size is 1 second, and the sampling frequency is 15Hz.
MEAN-FLOW

|| | Average Reading | Standard Deviation ||

hand-held rest 0.19 0.18
horizontal translation 9.87 8.30
pitching and rolling 30.06 6.86
TILT-DEVIATION
[ Average Reading | Standard Deviation ||
hand-held rest 7.57 1.38
horizontal translation 7.74 1.70
pitching and rolling 52.68 9.01

60
- Pitching and Rolling
—— Horizontal Translation
Hand held Rest

50
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Optical Flow Readings
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Figure 1: A 50-second trace of MEAN-FLOW with a
sliding window size of 1 second and a sampling rate of
15Hz. A clear difference can be seen between readings
at rest and in motion.

4.3 Observations

Figure 1 and Figure 2 compare the performance of
vision and tilt techniques in each of these situations.
From the graphs, we can make the following observa-
tions:

I. The MEAN-FLOW technique makes a
sharp distinction between cases at rest

and in motion.

The readings for MEAN-FLOW when the de-
vice is in motion are almost always higher
than the maximum values attained for MEAN-
FLOW when the device is at hand-held rest. For
horizontal translation, MEAN-FLOW exhibits
momentary low readings that are caused by nat-
ural moments of rest in the gait of the user. This
suggests that the usage of an initial wait-period
of a short duration will be required to filter out
conditions of momentary rest. Table 2 provides
additional statistics on these experiments.

II. TILT-DEVIATION cannot detect hori-
zontal translation

From Figure 2 and Table 2, we see that is
difficult to differentiate between horizontal mo-
tion and rest based on tilt-meter readings alone.
This means that tilt-meters are not useful in
identifying rest when the user is using the de-
vice and walking around. However, TILT-
DEVIATION is effective in robustly detecting
gross changes in device orientation.

5 Integration of Video and Tilt

Given our preliminary experiments, it is possible for
us to define a two-sided range LOW for readings
from both MEAN-FLOW and TILT-DEVIATION
that corresponds to readings when the device is at
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Figure 2: A 50-second trace of the output from TILT

DEVIATION with a sliding window size of 1 second

window and a sampling rate of 15Hz. It is not easy to
differentiate between rest and horizontal translation.

hand-held rest. Given our definition of LOW, we can
define a one-sided range called HIGH (more accu-
rately, NOT-LOW) that contains all values greater
than the LOW range. Therefore, at all times our al-
gorithm is given video and tilt readings that are from
{low, high} X {low, high} and asked to decide if it is
at instantaneous rest or instantaneous motion. The
algorithm believes itself to be at overall rest after a
prolonged period of instantaneous rest.

The cases where both video and tilt data corrob-
orate each other is easy to label. If both MEAN-
FLOW and TILT-DEVIATION readings are in the
low range, then it is likely that we are in a period of
instantaneous rest; if both readings are in the high
range, then we are are in a period of instantaneous
motion. But what happens, when video and tilt read-
ings do not agree with each other? Can we choose one
over another?

5.1 Case: MEAN-FLOW low, TILT-

DEVIATION high

Let us consider the case where MEAN-FLOW is low,
but TILT-DEVIATION is high. Initially, we imag-
ined that such a situation could be produced by
’hoodwinking’ the video by presenting it with a dark
or featureless surface, However, we found that the de-
sign of the optical flow algorithm is such that the out-
put of MEAN-FLOW in this case is not zero but ran-
dom. Intuitively this means that the algorithm can-
not reliably pick one value of flow over another, and
hence becomes sensitive to very minute differences in
image quality. Therefore, switching off the lights or
blocking the camera lens does not produce low val-
ues for MEAN-FLOW. Similarly, we found that even
apparently featureless surfaces such as blank white-
boards contained enough variation in pixel values for
the algorithm to detect motion.

In fact, the only way we were able to fool MEAN-
FLOW into making a false positive error for rest de-
tection was to affix a small highly-detailed image (in
our case, a circuit board) a short distance in front
of the camera lens. The effort required to fool the
camera in this way suggests that this situation is un-
likely to occur often. However, if we did face the case
MEAN-FLOW low, TILT-DEVIATION high, are we
to trust the video data and assume rest, or are we to
trust the tilt data and assume motion?

We observe that, unlike a camera, it is hard to arti-
ficially force the tilt-meter to generate high readings
without actually moving the device. While the a low
reading from TILT-DEVIATION may be ambigu-
ous, a high reading from TILT-DEVIATION gener-
ally means that the device is undergoing acceleration
(and hence motion). Hence the correct decision in
this situation is to trust the tilt-meters and assume
that we are in instantaneous motion.

5.2 Case: MEAN-FLOW high, TILT-
DEVIATION low

What happens when MEAN-FLOW readings are
high, but TILT-DEVIATION readings are low? Are
we at rest, or are we in motion?

Horizontal translation is an example of an instan-



taneous motion situation where TILT-DEVIATION
readings are low but MEAN-FLOW readings are
high. Since horizontal motion models the case where
the user is walking and using the device, we cannot
assume that this is an unlikely situation. Thefore this
set of readings may mean that we are in motion.

However, MEAN-FLOW readings may also go high
due to momentary occlusions by parts of the user’s
body; or by large moving portions of the background.
One may attempt to filter out background motion by
using more complicated techniques than optical-flow,
but at the most fundamental level this is a decision
that is undecidable visually. Video is also sensitive
to background noise. Therefore this set of readings
may also mean that we are at rest.

So unlike the MEAN-FLOW low, TILT-
DEVIATION high case, we cannot argue for
trusting one device over another. How do we resolve
this situation? Essentially, our system can either
decide that the device is at rest (and run the risk
of making a false positive error) or decide that the
device is in motion (and thereby risk a false negative
error).

Looking at the examples given in Section 1, it can
be seen that the cost associated with a false positive
error is greater. Erroneously deciding that the device
is at rest could lead to unnecessary usage of expensive
resources, wildly inaccurate position estimations, and
failed calibrations. In contrast, assuming that we are
in motion means that higher level applications are
forced to make looser assumptions about their con-
text. Hence it is preferrable to err on the side of
detecting too much motion rather than detecting too
much rest. Hence, the system in this situation should
decide that it is in instantaneous motion.?

The complete integration of video MEAN-FLOW
and tilt-meter TILT-DEVIATION readings is there-
fore as given in Table 3. The text in bold tells us
whether our algorithm interpreted the event as in-
stantaneous rest or instantaneous motion.

20ur system could also potentially ignore this conflict be-
tween video and tilt and do nothing at all. However the argu-
ment for conservative rest detection means that we are safer
believing ourselves to be in motion.

5.3 Algorithm

Let < m,t > be instantaneous readings of the MEAN
FLOW and TILT DEVIATION metrics. Given
these, we can at every instant of time determine
if our instantaneous-state is instantaneous-rest or
instantaneous-motion. Our rest-detection algorithm
is a simple state machine that exists on one of three
states - MOTION, WAIT and REST. We assume
that the algorithm is initially in the MOTION state,
but transitions to the REST state after being in in-
staneous rest for an application-specified period of
time. The algorithm exits the REST state when
it encounters an instance of instantaneous motion.
We maintain a state variable called rest-counter that
counts the number of at-rest intervals the device has
experienced since rebooting. Applications that poll
this system can use the current state of the rest-
algorithm and the value of the rest-counter to decide
if they have been at rest since the last poll.

The algorithm is outlined in Figure 3.

Figure 3: Algorithm
rest-counter = 0
SWITCH instantaneous-state
CASE instantaneous-motion:
state = MOTION
CASE instantaneous-rest:
SWITCH state
CASE MOTION:

state = WAIT
CASE WAIT:
IF waited< init. wait period
state = WAIT
ELSE
state = REST
rest-counter++
ENDIF
CASE REST:
state = REST

END
END



Table 3: Integration of Video and Tilt Readings. Given

tilt (TILT-DEVIATION) and video (MEAN-FLOW)

readings, this table tells us whether our algorithm treats the situation as instantaneous rest or instantaneous
motion. The algorithm transitions into overall rest if and only if it is in instananeous rest for an application-

specified period of time.

MEAN-FLOW
low | high
low REST MOTION
(Conservative rest detection)
TILT-DEV. hieh MOTION MOTION
& (Video is being ’hoodwinked’)

6 Implementation

We intend for the implementation of our rest-
detection system to meet the following high-level
goals:

6.1 Goals

e Application Programmability

The notion of ’'rest’ varies from application to
application. An energy conservation application
would consider itself at rest when unused for a
few seconds. A screensaver application may con-
sider itself at rest only if unused for a few min-
utes. Hence it is important that applications be
important to define what “rest’ means to them.

e Ease of Development

Our aim is that the notions of rest and rest-
detection be simply and clearly defined, and that
applications be written easily against an rest-
detection mechanism. Hence it is important the
rest-detection mechanism be simply and easily
integrated into applications.

e Local Code

On the hand-held computers of today power,
CPU and memory are scarce resources. Many
visual algorithms are resource hungry. Exten-
sive computation may also not be shipped to a
remote server because wireless network access is

a power-hungry operation. Hence it is important
that our visual rest-detection system be small,
local and computationally inexpensive.

e Push/Pull Mechanism

In certain applications, it may suffice to query
a system variable to determine if the device is
at rest. Other applications may require intima-
tion when a device is at rest. Therefore our
rest-detection mechanism should support both
polling and call-back mechanisms.

The rest-detection system is written in C, with the
video devices being accessed via a Video4Linux API.
The test hardware platform is an iPaq 3650 running
Familiar Linux over an ARM processor. The sys-
tem defines a single object file with a simple header
file rest.h that defines the API. The API consists of
a struct called a RestDetector and simple functions
that allow an application to control sampling rates,
define rest-detection parameters and utilise the call-
backs and thread-safe polling mechanisms provided
by the system. The principal component of the sys-
tem is a daemon that reads video and tilt data from
the underlying Linux file-system and executes the al-
gorithms discussed earlier in this section. We have
been able to run this daemon at speeds of upto 15Hz
on our hardware platform.
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Figure 4: A 50 second trace of the performance of
the multi-modal algorithm when the device is held in
the palm of a user. The inital wait period is set at
1 second. The sliding window size and the sampling
frequency for MEAN-FLOW and TILT-DEVIATION
are set at 1 second and 15Hz respectively.

7 Results

Figure 4 and Figure 5 model the performance of our
rest-detection algorithm on the sensor traces intro-
duced in Section 4.2. The lower graph plots the state
of the rest-detection algorithm, which may be 0 - MO-
TION, 1 - WAIT or 2 - REST.

The performance of the rest-detection algorithm
when the device is at rest in the palm of the user is
stellar (Figure 4). Both MEAN-FLOW and TILT-
DEVIATION readings are always in the low range.
Hence the algorithm waits for the inital period of 1
second, and then transitions into REST state. The
algorithm is resiliant to jitter caused by the user’s
hands and the tapping motion of the stylus.

When looking at the performance of the algorithm
in the case of horizontal translation (Figure 5), it be-
comes clear that the size of the initial wait-period
is important. There are several instances over the
course of the user’s walk when he is momentarily at
rest- these show up in our algorithm state trace as
periods when the algorithm is in the WAIT state.
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Figure 5: A 50 second trace of the performance of
the multi-modal algorithm when the device is held
in the palm of a user walking about a room. The
user walked a distance of 30m over the course of this
trace. The inital wait period is set at 1 second. The
sliding window size and the sampling frequency for
MEAN-FLOW and TILT-DEVIATION are set at 1
second and 15Hz respectively.

The application controls which of these periods of in-
stantaneous rest count as periods of overall algorithm
REST. In this experiment we see that a one-second
wait period means that the algorithm never settles
into REST state.

The performance of the multi-modal algorithm
when the device is being pointed at different objects
in the room (Figure 6) is also stellar. Both MEAN-
FLOW and TILT-DEVIATION readings are high.
Consequently the algorithm does not experience even
a single moment of instantaneous rest, and the over-
all state of the algorithm remains firmly pegged in
the MOTION state.

8 Application: Rest-Aware Po-
sition Triangulation

As outlined in Section 1, a standard approach to po-
sition triangulation is to assume that the device is at
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Figure 6: A 50 second trace of the performance of
the multi-modal algorithm when the device is being
pointed around the room (extreme motion). The ini-
tal wait period is set at 1 second. The sliding window
size and the sampling frequency for MEAN-FLOW
and TILT-DEVIATION are set at 1 second and 15Hz
respectively. The algorithm never deviates from the
MOTION state.

rest, collect distance-estimates from multiple beacons
and then triangulate the position of the device in 3-D
space. Popular systems that implement such triangu-
lation algorithms are Active Bat[16] and Cricket[10].
However, there are a couple of problems with this
approach.

Firstly, there currently exists no reliable way of
knowing when we are actually at rest. In current im-
plementations, the user manually signals to the posi-
tion triangulation mechanism that she intends to be
stationary for the next few seconds. She does this
in order to give the triangulation algorithm time to
collect the distance readings it needs. The algorithm
has no way of ensuring that this contract is met, and
therefore cannot decide if the readings it collects are
corrupted by user motion.

Secondly, the distance estimates collected by the
device exhibit error. To mitigate the overall position-
ing error, positioning algorithms can either resort to
collecting multiple samples from each beacon, or to

collecting individual samples from multiple beacons.
The latter approach involves designing our system
with a greater beacon density; since this is technically
and economically challenging, we would like to avoid
this approach if possible. However, the cost of using
approaches that collect multiple readings from each
beacon is application latency- we have to wait longer
to collect the readings that we need. Since latency
determines the end usability of a positioning algo-
rithm, location support systems today are designed
to bound latency and only then minimize cost.

Continuing, the standard approach to bounding la-
tency is to a priori choose a triangulation window
of a fixed, static size so that worst-case latency is
bounded. However this approach is suboptimal be-
cause it ignores the observation that users of a perva-
sive devices are at rest often, and for varying periods
of time. Using a fixed window size means that we
impose high-level behavioral restrictions on the user.
We also lose access to optimizations that we might
have been able to perform had we chosen a larger
triangulation window. Both of these are expensive
failings.

Therefore, the rest-detection system that we have
developed will allow a location-support system to (1)
validate that all distance measurements are taken at
rest and (2) dynamically change the triangulation
window to exploit optimizations enabled by unusu-
ally long periods of rest. We will demonstrate both of
these advantages using the Cricket Location Support
System as a case-study. Our hardware platform is a
sensor-rich Mercury backpack connected to a Cricket
listener.

8.1 Case Study: Crickets and Cricket-

Nav

In “Design and Implementation of an Indoor Mobile
Navigation System”[9], Miu conducted a comprehen-
sive investigation into the Cricket beacon distance
estimates and the accuracy of 2-D position triangula-
tion using Crickets. He defined the sample frequency
(k) of a position estimate to be the number of dis-
tance estimates collected from each beacon. He also
defined the beacon multiplicity (m) of a position esti-
mate to be the number of distinct beacons from which



distance estimates are collected. Over the course of
their investigation, he found that:

1. A MODE distance estimate produces more accu-
rate readings than a MEAN estimate

2. MODE does not being to take effect until & > 5

3. A least-squares method of position triangulation
effectively reduces error, especially when k is large

4. For k < 5 and m > 5 it is better to assume that
the speed of sound is unknown. Otherwise it is
better to assume that the speed of sound is known

5. For k = 1, Cricket is accurate to within 30cm, 95%
of the time.

After conducting this investigation into the posi-
tioning accuracy of Cricket, the author then used
the Cricket positioning information to construct an
indoor mobile navigation system called CricketNav.
While designing this system, author ran up against
a tough application constraint - latency. He found
that in order for their navigation application to re-
spond promptly to the user, the triangulation win-
dow had to be bounded to be less than 5 seconds.
Since increasing k increases the latency of the appli-
cation, this meant that the CricketNav application
could only use position estimates with & = 1 and
m = 3,4,5 etc. An entire body of optimizations
[bullets 1 - 4 of the 5 bullets presented above| was
rendered inaccessible to the CricketNav application.
How could this have been avoided?

8.2 A Simple Rest-Aware Cricket Dis-
tance Estimator

Using the RestDetector designed and built in Sec-
tion 6.1, we constructed a simple application that
tracks the distance to a beacon. The application is
rest-aware in the sense that the sample frequency k&
increases when the application discovers itself to be
at rest. As in CricketNav, the initial value of & is 1.

Upon receipt of a new reading from the beacon, we
check our rest-detector to ensure that we have been
at rest since the receipt of the last reading. If so, we
add the reading to our buffer and increment k£ by 1.

If not, we flush the buffer, add the new reading and
set k = 1.
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Figure 7: A 60-second trace of the distance readings
from one Cricket beacon as the user moved from one
desktop to another. The spike in the distance read-
ings as the user moves is likely due to a reflected
ultrasound pulse.

Figure 7 plots the distance estimates that we re-
ceive for the simple case of the user walking from
one desktop to another. The graph labeled ’Cricket
RAW, Rest-blind’ are the current distance estimates
that CricketNav would use from the beacon. The
graph labeled 'Rest State’ gives us the state of the
Rest-Detector - high implies we are at rest, low im-
plies we are in motion.

The graph labeled "Cricket MEAN, Rest-aware’ is
the the smoothed distance estimates obtained by dy-
namically incrementing k at rest. Only the rest-
portions of this graph are shown; when the device is
in motion the readings from this technique are iden-
tical to ’Cricket RAW, Rest-blind’. From looking at
Figure 7, we can make the following observations:

I. We do not have to impose end-user mobility re-
strictions

We do not require that applications enter into a
‘no-motion-for-n-seconds’ contract with the end



user. Alternatively, if such a contract is neces-
sary, we can now check to see if the contract was
met. This allows our applications to adapt to
user behaviour, and not vice versa.

IT. Our distance readings may be guaranteed to be-
long to the same physical location

Having an out-of-band rest detection mecha-
nism means that we have some fundamental
guarantees about the quality of our distance
readings. We know when it makes sense to use
statistical estimation mechanisms (when we are
at rest), and when it does not make sense to do
so (when we are in motion).

ITI. The latency of the application is not degraded

When the distance estimation algorithm detects
itself to have moved, it quickly drops the size
of the readings buffer to the default setting.
Therefore, the worst case latency of the rest-
aware averaging mechanism is no worse than
that obtained at ¥ = 1. Additionally, the theo-
retical latency of the algorithm when we are at
rest is zero. This is because knowing that we
are at rest means that we do not need to wait
for additional readings - we can just re-use the
last computed estimate.

IV. Extra long sequences of readings enable the de-

ployment of more sophisticated optimizations

As outlined in Section 8.1, there are a number of
optimizations that we can perform given a large
number of readings from a single beacon. The
MODE distance metric may now be costlessly
deployed. An exponentially-weighted moving
average may be developed to reduce the jitter
of the distance readings during motion. Addi-
tional techniques may also be developed and im-
plemented.

9 Conclusion and Future Work

There is a need for a system that makes rest-
information simply and cheaply available to higher
level pervasive applications. In this paper we have

constructed a rest-detection system that combines
video data with traditional tilt-meter data for greater
robustness. We have found that this algorithm is
an improvement over traditional tilt-meter based ap-
proaches, and we have outlined a potential use for
this technology in the domain of position triangula-
tion.

Future work for this project would involve the de-
velopment of more complicated algorithms that we
can call upon in cases where video and tilt-data donot
agree with each other. However such algorithms must
stay computationally inexpensive to fulfill the goal of
being an application utility. Secondly, the window
size for our MEAN-FLOW and TILT-DEVIATION
measures is arbitrarily set at 1 second. This may
be too short a window at low sampling rates. The
’high’ and ’low’ mark for each measure may also be
configured dynamically, rather than hardcoded as it
is now. We can imagine a short user configuration
routine that sets the values of these parameters dy-
namically.

Additionally, there is a need for better access to the
Linux device file-descriptors. While the Video4Linux
API is well-defined, the API for accessing the tilt-
meter is obscure and platform-specific. The rest li-
brary also does not gracefully share the file descrip-
tors; current applications that use the video or the
tilt-meter must be rewritten to access that data. An
implementation that just snoops on the device files
without locking them would be a better implementa-
tion.
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