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if the history of sensor measurements:ig?”, for all pos-

sible locationse. In general, the complexity of computing
such posterior densities grows exponentially over time since
1. INTRODUCTION the number of sensor measurements increases over time. To
Location awareness is important to many pervasive comput-make the computation tractable, Bayes filters assume the dy-
ing applications. A fundamental problem in this context is namic system is Markov,e. all relevant information is con-
location estimationwhich is the estimation of a person’slo- tained in the current state variablg. The update of the
cation from a stream of sensor data. Since no location sensoBayes filter is performed in two steps:

takes perfect measurements, it is crucial to represent uncer- S . .
tainty in sensed location information and combine informa- Prediction: At each time update, the statepigedictedac-
tion from different types of sensors. Bayesian filter tech- cording to the following update rule.

niques provide a powerful tool to help manage measurement
uncertainty and perform multi-sensor fusion. Their statis-
tical nature makes Bayes filters applicable to arbitrary sen-
sor types and representations of environments. For exam-
ple, Bayes filters provide a sound approach to location es-
timation using GPS data along with street maps or signal
strength information along with topological representations
of indoor environments. Furthermore, they have been ap-
plied with great success to a variety of state estimation prob-
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Here, the termp(x; | x;—1) describes theystem dynam-
ics, i.e. how the state of the system changes over time.
In location estimation, this conditional probability is the
motion model — where the person might be at time
given that she previously was at location ;. The mo-
tion model strongly depends on the information available

lems including speech recognition, target tracking, vision,
and robotics. In this article, we briefly survey the basics of
Bayes filters and their different implementations. Further-

to the estimation process. It can range from predicting the
next position using estimates of a person’s motion veloc-
ity to the prediction of when a person will exit the elevator

more, we discuss directions for future research in Bayesian
techniques for location estimation.

using an estimate of the person’s goal.

Correction: Whenever new sensor informatienis received,
the measurement is used to correct the predicted belief
using the observation.
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2. BAYESIAN FILTERING

Bayes filters probabilistically estimate the state of a dynamic
system from a sequence of noisy sensor observations. In the
most basic form of location estimation, the state of interest is
the location of a person or object, and observations are pro-
vided by sensors either placed in the environment or carried
by the person.

p(z: | x¢), theperceptual modeldescribes the likelihood

of making observation; given that the person is at loca-
tion x;. For location estimation, the perceptual model is
usually considered a property of a given sensor technol-
ogy. It depends on the types and positions of the sensors
and captures a sensor’s error characteristics. Thedgrm

in (3) is simply a normalizing constant which ensures that
the posterior over the entire state space sums up to one.

2.1 Belief Update
Bayes filters represent the state at tintiy random variables
x;. At each point in time, the uncertainty is represented by
a probability distribution oves, calledbelief Bel(x;). The
key idea of Bayes filters is to sequentially estimate such be-
liefs over the state space conditioned on the information con- Bel(xy) is initialized with prior knowledge about the lo-
tained in the sensor data. Let us assume that the sensor datgation of the person, typically uniformly distributed if no
consists of a sequence of time indexed sensor observationgrior knowledge exists. Bayes filters are an abstract concept
z1.4. The beliefBel(z;) is then defined by the posterior den- in that they only provide a probabilistic framework for re-
sity over the random variable; conditioned on all sensor  cursive state estimation. To implement Bayes filters, one
data available at time& has to specify the perceptual mogek;|z;), the dynam-
_ icsp(x¢|ri—1), and the representation of the belief!(x;).

Bel(w) = ple | 214) (1) Thé)(pro|pertiés of the diﬁgrent implementations of éay)es fil-
Roughly speaking, the belief provides an answer to the ques-ters strongly differ in the way they represent probability den-
tion “What is the probability that the person is at location  sities over the state;.
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Figure 1: Properties of the most common implementations of Bayes filters for location estimation.

2.2 Belief Representations avoided by non-metric representations of an environment.
This section gives a brief overview of different representa- For instancegraph structuresare well suited to represent
tions for the beliefs of Bayes filters (see also Figure 1). the motion of people in buildings [5] or even in cities [8].
Each node in the graph corresponds to a location and the
edges describe the connectivity of the environment. The ad-
X . A . vantage of topological approaches is their efficiency since
by unimodal Gaussian distributions, represented by their me ey represent distributions over small, discrete state spaces.

and variance. While the mean gives the expected locationryg; isadvantage is the coarseness of the representation
of the person, the variance represents the uncertainty in thevvhich enables only rough information about a person's lo-

sstlmaLe. ItE;/he n th(t)ugh Pf(?rl]man filters mgke strong ,assu;np'cation. Topological approaches are typically adequate if the
lons about € nature of thé Sensors and a persons MolN e qqrs in the environment provide only very imprecise lo-
they have been applied with great success to various esti-ation information

mation problems. The main advantage of Kalman filters is
their computational efficiency, which comes at the cost of re- Particle filtersrepresent beliefs by sets of weighted samples
stricted representational power since Kalman filters can only distributed according to the belief [3]. Particle filters real-
represent unimodal distributions. Hence, Kalman filters are ize Bayes filter updates according to a sampling procedure,
best if the uncertainty in a person’s location is not too high. often referred to as sequential importance sampling with re-
Typical sensors used for Kalman filter based estimation are sampling. The key advantage of particle filters is their abil-
cameras, laser range-finders, and GPS systems. ity to represent arbitrary probability densities, which makes
them applicable to problems for which Kalman filters are
not well-suited. Compared to grid-based approaches, par-
ticle filters are very efficient since they automatically focus
their resources (particles) on regions in state space with high
probability. However, since the worst-case complexity of
these methods grows exponentially in the dimensions of the
state space, one has to be careful when applying particle
filters to high-dimensional estimation problems. Recently,
Rao-Blackwellised particle filters [2], the combination of
Grid-based approachesvercome the restrictions imposed particle filters with Kalman filters, have been applied suc-
on Kalman filters by relying on discrete, piecewise constant cessfully to tracking the locations and identities of multiple
representations of the belief. For indoor location estima- people [10].
tion, grid-based filters tessellate the environment into small )
patches, typically of size between 10cm and 1m. Each grid 2-3 Parameter Learning _
cell contains the belief the person is currently in the cell. The parameters of the perceptual and motion models can be
A key advantage of these approaches is that they can repJéarned from data using expectation maximization (EM), a
resent arbitrary distributions over the discrete state space.PoPuUlar approach to parameter estimation from incomplete
The disadvantage of grid-based approaches is the compudata [9]. The perceptual modg(z; | ;) is typically inde-
tational complexity, which makes them applicable to low- Pendent of the person and can be learned beforehand. The
dimensional estimation problems only, such as estimating Motion model, on the other hand, might be different for each
the position and orientation of a person. person. Learning the paramet(_ar_s of the motion moqel aIIov_vs
) _ ) the system to adapt to a specific person, thereby increasing
The computational complexity of grid-based methods can be the accuracy and efficiency of the estimation process. For

Kalman filtersare the most widely used variant of Bayes fil-
ters [1]. Roughly speaking, these filters approximate beliefs

Multi-hypothesis trackingMHT) extends Kalman filters to
multi-modal beliefs [1]. MHT represent the belief Inyix-
tures of Gaussians where each hypothesis is tracked using
a Kalman filter. The weights of the hypotheses are deter-
mined by how well they predict the sensor measurements.
Due to their ability to represent multi-modal beliefs, MHT
approaches are more widely applicable than the Kalman fil-
ter.



example, [6] show how to use EM to learn typical motion bus at the usual stop, then the general model predicts it with
patterns of a person in indoor environments using a graph-higher probability, thereby triggering the detection of a po-
based Bayes filter. [8] use the same technique to learn thetential user error. Obviously, such an approach can provide
navigation patterns of a person through an urban environ-valuable information to user intervention modules.

ment.
4. CONCLUSIONS

3. RESEARCH DIRECTIONS We presented Bayes filters as a general framework for loca-
In this section we briefly discuss directions for future re- tion estimation, allowing the integration of sensor informa-
search in Bayesian location estimation. tion over time. The application of Bayes filters goes well
beyond location estimation. The generation of hierarchical
Adaptive Estimation models allows the seamless integration of location estima-

Most applications of Bayes filters use the same, fixed rep- tion into user activity estimation. We consider Bayesian
resentation of the state space during the entire estimationtechniques to be an extremely promising tool for location
process. However, especially in the context of location es- aware computing.

timation, this is not appropriate. For example, the location
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