

Crickets

Tutorial on using cricket location system

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

1

SMG

Cricket Goals

- Research prototype
 - build and then evaluate
- Useful mainly indoor environments
 - walls, ceilings not too far
- Recognize spaces, not just physical position
 - good boundary detection is important
 - doors, floors, etc.
- Preserve user's privacy
 - Big-brother can be a bother
 - user has choice to reveal location

Features

- Distributed architecture
 - No wired infrastructure
 - Easy deployment (no satellites)
 - Low maintenance
- Users are not tracked
 - Listeners are passive
 - Large number of listeners w/o interference
- Integrates with a wide range of resource discovery systems

Cricket: Private location-support

No central beacon control or location database Passive Listeners + Active Beacons

Finding the distance

- Basic formula: distance = speed * time
 - want to find the distance
 - we know the speed
- How do we figure out time?
 - there are several choices
- I: Measure round-trip time (like radar)
 - this violates some of our goals -- which ones?

Finding the distance

- 2: Synchronized clocks
 - receiver knows exactly when transmitter sent signal
 - need very accurate clocks
 - send a signal to first sync clocks ; then send second signal
 - does this work?

Finding the distance

- 3: Use two different speed signals
 both start at same time d = s1 * t1 d = s2 * t2
 We measure delay: m = t1 - t2 t2 = m * s1/(s2 - s1) d = m * s2 s1 /(s2 - s1)
- Cricket does this
 - RF is really fast compared to US

Location Estimation

Distance estimation via coupled RF and ultrasonic signals

 Beacons send information on the RF channel with concurrent ultrasonic pulse

Uncoordinated Beacons

- Different beacon transmissions can interfere
 - causes inaccurate distance measurements at the listener

- Beacon transmissions are uncoordinated
- Ultrasonic signals reflect heavily
- Ultrasonic signals are pulses (no data)

These make the correlation problem hard and can lead to incorrect distance estimates

Massachusetts Institute of Technology

Solution

- Carrier-sense + randomized transmission
 - reduce chance of concurrent beacons
- Bounding stray signal interference
 - envelop all ultrasonic signals with RF
- Listener inference algorithm
 - Processing distance samples to estimate location

Bounding Stray Signal Interference

Engineer RF range to be <u>larger</u> than ultrasonic range

Ensures that if listener can hear ultrasound, corresponding RF will also be heard

Bounding Stray Signal Interference

$$\frac{S}{b} > \frac{r}{v}$$

(RF transmission time) (Max. RF-US separation at the listener)

No "unaccompanied" ultrasonic signal can be valid!

Massachuse Institute of Technology

Bounding stray signal interference

- Envelop ultrasound by RF
- Interfering ultrasound causes RF signals to collide
- Listener does a block parity error check
- The reading is discarded...

Problem: Closest Beacon May Not Reflect Correct Space

Correct Beacon Placement

- Position beacons to detect the boundary
- Multiple Beacons per space are possible

Implementation

Cricket beacon and listener

Cricket Beacon LEDs

• Debug Switch = UP

- Green LED = Transmit
- Red LED = Carried Sensed

• Debug Switch = Down

- <u>Green LED</u> = Every 5th
- At Startup
 - LEDs flash version number
 - Red on, Green flash count = Major #
 - Green on, Red flash count = Minor #
- Power Switch
 - Up = On

Cricket Beacon Antennas

- Receive Antenna
 - For sensing transmission of other beacons
- Transmit Antenna
 - Limit transmission distance
 - Should not touch ultrasound
 - Should not cover receive antenna

Listener LEDs

• Green Flash

• Received valid RF and ultrasound

• Red Flash Once

• Received Radio, but not ultrasound

• Red+Green Flash

- RF Error (e.g., parity error)
- Red and Green always on
 - Listener not working correctly
- Power On
 - Both LEDs flash together once

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Power Switch

Cricket Version 2

- Each device can be configured as:
 - listener
 - beacon
 - listener & beacon
- Same H/W as Berkeley Mote
 - Runs tiny-os
 - Connector for sensors
- Lots of configurations possible
 - need special connector to configure

Software Components

Massachusetts Institute of Technology

cricketd

- Background program (demon) that reads serial port and writes data to a socket
- Command line arguments (defaults work correctly on ipaq)
 - -T k Version 3 Listeners (with LEDs) (default)
 - -T c Version 2 Listeners (without LEDs)
 - -S <port> Socket port number (default is 2947)
 - -p <dev> Serial port device name (default "/dev/ttySA0")
 - -s <baud> Baud rate of serial port (default is 9600)
 - -h Help
 - -D <num> Debug level

Massachusett Institute of Technology

Cricket Listener Output

- Strings reported from Listeners
 - When good RF and good <u>ultrasound pulse</u> heard:
 - "\$Cricket2,ver=3.0,space=MIT7,id=20,dist=4F,duration=1A"
 - When only good RF heard, no ultrasound heard:
 - "\$Cricket2,ver=3.0,space=MIT7,id=20"
 - When RF detected, but parity error detected:
 - "\$Cricket2,ver=3.0,err=rf"

Speed of Sound

- Listener reports distance and duration in 15.625 KHz counter cycles (64 microseconds each).
- Assume speed of sound is 344.49 m/s then 22.047 mm/cycle
- For 343.75 m/s = 22 mm/cycle
- Need to subtract 36 units for delay from end of RF to start of US transmission.

So where are you?

- Telnet to cricketd (on correct port)
- Get names of beacons within range
- Get distances from beacons
- Lookup beacon location in database
 - Or use beacon name (longer transmission)
- Triangulate (compensate for temp)

So where are you?

- Beacon name may tell you room
 - That may be enough
- May want to know relative movements
 - As you walk around the room
 - No climbing on tables
- Can you do it using two beacons?
 - Can you do it without calibration?

Two beacons

- Put them along the wall
- Come very close to one of them
- Now know distance between them
- Given distances from both
 - Before and now (d1,d2) & (e1,e2)
 - Can find relative movement
 - Two solutions! No problem, why?
 - Ex. Doom virtual world

Hardware Design

Main site for cricket stuff:

http://nms.csail.mit.edu/cricket

- http://nms.csail.mit.edu/cricket/fab
 - Need user & password
- http://nms.csail.mit.edu/cricket/distrib
 - Need user & password

More accurate readings

- Readings are not accurate -- reflections, noise, etc. cause inaccurate values
- How to compute current position?
- How to compute when in motion?

When standing still

- Values still fluctuate
- Want to average over many values
 - takes long time
- Want to ignore "outliers" -- the values that do not make sense

Least Squares Method

$$\sum_{i=1}^{n} (\|\hat{\phi}_i - p_i\| - d_i)^2$$

- Given a bunch of readings, find an estimated location that minimizes:
 - d is distance from beacon, p is beacon location, and phi is estimated location
 - (phi p) is estimated distance from beacon
 - ((phi-p) d)**2 is square of difference
 - minimize the sum over all measurements

Kalman Filters

- Each measurement has a probability density function associated with it.
- It is specified by standard deviation (sigma) and by variance (sigma squared)
- Given two measurements, each with its own probability or conditional density
 - compute probability density function around new location as a weighted average of both

Kalman Filters for dynamic system (when moving)

- In addition to location measurement (and its probability function) also have
 - velocity plus noise
- compute guess as to new position in future
 - based on time and velocity.
- The velocity noise factor
 - spreads out the probability density function of the location in the future.
- New real measurements combine with predicted location as before
 - measurements usually have more accuracy than predicted value: so get more weight

When tracking moving cricket

- Least squares does not work because hear beacons at different times
- Use Kalman Filters
 - combined with Least Squares and outlier rejection

Figure 3: Flow chart for the tracking algorithm. The picture shows outlier rejection and LSQ explicitly; all the other steps are part of the extended Kalman filter. The "measurements" are the distance samples obtained as triples. The "output" at each stage is the position estimate $\hat{\phi}$.

When Kalman Filter goes bad ...

- Reject new values that look bad
 - but if too many get rejected then maybe those are the right ones
- To get back on track, use Least Squares
 - but need simultaneity
 - how to do that?
- Listener sends special signal with a nonce
 - heard by all listeners
 - all beacons then know distance for listener
 - beacons send back the distance with nonce
 - listener gets data as if all beacons chipped at same time

Figure 4: Flow chart of a mobile device using a hybrid architecture.

Alternative Method

- Detect with cricket is at rest
- Not so easy to do
 - we use tilt meters & camera
 - tilt meters are noisy
 - optical flow of camera
 - not fool-proof

