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Crickets
Tutorial on using cricket location system
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Cricket Goals
• Research prototype

• build and then evaluate

• Useful mainly indoor environments

• walls, ceilings not too far

• Recognize spaces, not just physical position

• good boundary detection is important

• doors, floors, etc.

• Preserve user’s privacy

• Big-brother can be a bother

• user has choice to reveal location



Features

• Distributed architecture

• No wired infrastructure

• Easy deployment (no satellites)

• Low maintenance 

• Users are not tracked

• Listeners are passive

• Large number of listeners w/o interference

• Integrates with a wide range of resource 
discovery systems 



Cricket: Private location-support

Beacon

Listener

space = “a1”

space = “a2”

Pick nearest to 
infer space

No central beacon control or location database
Passive Listeners + Active Beacons
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Finding the distance

•   Basic formula:  distance = speed * time

• want to find the distance

• we know the speed

• How do we figure out time?

• there are several choices

• 1:   Measure round-trip time (like radar)

• this violates some of our goals -- which ones?
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Finding the distance
• 2:  Synchronized clocks

• receiver knows exactly when transmitter 
sent signal

• need very accurate clocks

• send a signal to first sync clocks ; then send 
second signal

• does this work?
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Finding the distance

• 3: Use two different speed signals
• both start at same time
       d = s1 *  t1 
       d =  s2 *  t2 

• We measure delay:    m =  t1 - t2
       t2 =   m * s1/(s2 - s1) 
       d  =    m *  s2 s1 /(s2 - s1) 

• Cricket does this

• RF is really fast compared to US
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Location Estimation
• Distance estimation via coupled RF and ultrasonic 
signals
– Beacons send information on the RF channel with concurrent 
ultrasonic pulse

RF info
Beacon

Listener

Ultrasound
(pulse)
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• Multiple beacon transmissions are 
uncoordinated

• Different beacon transmissions can 
interfere

• causes inaccurate distance 
measurements at the listener

Beacon A Beacon B

tRF B RF A US B US A

Incorrect distance

Uncoordinated Beacons
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Multiple Beacons

• Beacon transmissions are uncoordinated
• Ultrasonic signals reflect heavily
• Ultrasonic signals are pulses (no data)

 These make the correlation problem hard and can lead to 
incorrect distance estimates

Beacon A Beacon B

tRF B RF A US B US A

Incorrect distance

Listener
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Solution
• Carrier-sense + randomized transmission

• reduce chance of concurrent beacons

• Bounding stray signal interference

• envelop all ultrasonic signals with RF

• Listener inference algorithm

• Processing distance samples to estimate 
location
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Bounding Stray Signal 
Interference

• Engineer RF range to be larger than ultrasonic 
range
– Ensures that if listener can hear ultrasound, corresponding RF 
will also be heard

tRF A US A
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Bounding Stray Signal 
Interference

t

S/b

r/v (max)

S  = size of space advertisement
b  =  RF bit rate
r   = ultrasound range
v   = velocity of ultrasound
 

(RF transmission time)      (Max. RF-US separation at the listener)

S            r

b           v

• No “unaccompanied” ultrasonic signal can be valid!
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Bounding stray signal interference

• Envelop ultrasound by RF
• Interfering ultrasound causes RF signals to collide
• Listener does a block parity error check
– The reading is discarded...

tRF A US A

RF B US B
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Problem: Closest Beacon May Not Reflect 
Correct Space

I am at
B

Room A Room B
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Correct Beacon Placement

Room A Room B

x x

I am at
A

•  Position beacons to detect the boundary
•  Multiple Beacons per space are possible
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Implementation
• Cricket beacon and listener

Micro-
controller

RF

US

Micro-
controller

RF

US
RS232
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Cricket v1 Prototype
Ultrasonic

sensor
RF antennaRF module (rcv)

Atmel
processor

Listener Beacon

RF module (xmit)

RS232
i/f



Cricket Beacon LEDs

• Debug Switch = UP
• Green LED = Transmit

• Red LED = Carried Sensed

• Debug Switch = Down

•Green LED = Every 5
th

 
transmission

• At Startup
• LEDs flash version number

• 	 Red on, Green flash count = 
Major #

• 	 Green on, Red flash count = 
Minor #

• Power Switch
•Up = On

Power
Switch
On
Off

Debug SwitchBeacon ID
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Cricket Beacon Antennas

• Receive Antenna

•For sensing 
transmission of other 
beacons

• Transmit Antenna

•Limit transmission 
distance

•Should not touch 
ultrasound

•Should not cover 
receive antenna

Transmit antennaReceive antenna
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Listener LEDs

• Green Flash
• Received valid RF and ultrasound

• Red Flash Once
• Received Radio, but not ultrasound

• Red+Green Flash
• RF Error (e.g., parity error)

• Red and Green always on
• Listener not working correctly

• Power On
• Both LEDs flash together once

Off   On
Power Switch
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• Each device can be configured as:

• listener

• beacon

• listener & beacon

• Same H/W as Berkeley Mote

• Runs tiny-os

• Connector for sensors

• Lots of configurations possible

• need special connector to configure

Cricket Version 2
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Software Components

Cricket
Listener cricketd

Application 1

Application 2

Application 3

Cricket
Beacon

1

Cricket
Beacon

2

Binary Data
Over RF

ASCII data
over serial port
9600 baud

ASCII data
on TCP sockets (port 2947)
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cricketd

• Background program (demon) that reads serial port 
and writes data to a socket

• Command line arguments (defaults work correctly 
on ipaq)

• -T k     	Version 3 Listeners (with LEDs) (default)

• -T c     	Version 2 Listeners (without LEDs)

• -S <port>	Socket port number (default is 2947)

• -p <dev>
 Serial port device name (default “/dev/ttySA0”)

• -s <baud>	Baud rate of serial port (default is 9600)

• -h 		Help

• -D <num>	Debug level



Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Cricket Listener Output
• Strings reported from Listeners

• When good RF and good ultrasound pulse heard:

• “$Cricket2,ver=3.0,space=MIT7,id=20,dist=4F,duration=1A”

• When only good RF heard, no ultrasound heard:

• “$Cricket2,ver=3.0,space=MIT7,id=20”

• When RF detected, but parity error detected:

• “$Cricket2,ver=3.0,err=rf”

t

dist

duration
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Speed of Sound

• Listener reports distance and duration in 15.625 
KHz counter cycles ( 64 microseconds each).

• Assume speed of sound  is 344.49 m/s then 22.047 
mm/cycle

• For 343.75 m/s = 22 mm/cycle

• Need to subtract 36 units for delay from end of RF 
to start of US transmission.
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So where are you?

• Telnet to cricketd (on correct port)

• Get names of beacons within range

• Get distances from beacons

• Lookup beacon location in database

• Or use beacon name (longer transmission)

• Triangulate (compensate for temp)
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So where are you?
• Beacon name may tell you room

• That may be enough

• May want to know relative movements

• As you walk around the room

• No climbing on tables

• Can you do it using two beacons?

• Can you do it without calibration?
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Two beacons

• Put them along the wall

• Come very close to one of them

• Now know distance between them

• Given distances from both

• Before and now (d1,d2) & (e1,e2)

• Can find relative movement

• Two solutions!  No problem, why?

• Ex. Doom virtual world
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Orientation

Orientation relative to B
on horizontal plane

Mobile device
(parallel to horizontal plane)

Beacons on
ceiling

Cricket listener with
compass hardware
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Hardware Design

• Main site for cricket stuff: 

http://nms.csail.mit.edu/cricket

• http://nms.csail.mit.edu/cricket/fab

• Need user & password

• http://nms.csail.mit.edu/cricket/distrib

• Need user & password
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• Readings are not accurate -- reflections, 
noise, etc.  cause inaccurate values

• How to compute current position?

• How to compute when in motion?

More accurate readings
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• Values still fluctuate

• Want to average over many values

• takes long time

• Want to ignore “outliers” -- the values 
that do not make sense

When standing still
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• Given a bunch of readings, find an estimated 
location that minimizes:

• d is distance from beacon, p is beacon 
location, and phi is estimated location

• (phi - p) is estimated distance from beacon

• ( (phi-p) - d)**2 is square of difference 

• minimize the sum over all measurements

Least Squares Method
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• Each measurement has a probability density function 
associated with it.

• It is specified by standard deviation (sigma) and by 
variance (sigma squared)

• Given two measurements, each with its own 
probability or conditional density

• compute probability density function around new 
location as a weighted average of both

Kalman Filters
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• In addition to location measurement (and its probability function) 
also have 

• velocity plus noise

• compute guess as to new position in future

•  based on time and velocity.  

• The velocity noise factor 

• spreads out the probability density function of the location in the 
future.

• New real measurements combine with predicted location as before

• measurements usually have more accuracy than predicted value: 
so get more weight

Kalman Filters for dynamic 
system (when moving)
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• Least squares does not work because hear 
beacons at different times

• Use Kalman Filters

• combined with Least Squares and outlier 
rejection

When tracking moving 
cricket
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Hybrid Approach
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• Reject new values that look bad

• but if too many get rejected then maybe those are the 
right ones

• To get back on track, use Least Squares

• but need simultaneity

• how to do that?

• Listener sends special signal with a nonce

• heard by all listeners

• all beacons then know distance for listener

• beacons send back the distance with nonce

• listener gets data as if all beacons chipped at same time

When Kalman Filter goes bad ...
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• Detect with cricket is at rest

• Not so easy to do

• we use tilt meters & camera

• tilt meters are noisy

• optical flow of camera 

• not fool-proof

Alternative Method


