Lecture 1
Introduction
Pervasive Computing
MIT 6.883 & SMA 5508

Larry Rudolph (MIT)
Tat Jen Cham (NUT)
Course Structure Overview

- Two sets of students -- MIT and SMA
- Two parts to class
 - Individual technologies (PS & Quiz)
 - Group projects
- Materials
 - iPaq & backpaq, Cricket, Nokia Series 60 Phone
 - Slides, handouts, notes (raw)
- Readings
- TA’s -- filter for your questions
 - Ning Song (nsong@mit.edu), ??@ SMA
Administration

• Official Web Site and Wiki
 • http://people.csail.mit.edu/rudolph/Teaching/home883.html
 • http://org.csail.mit.edu/mode
What is pervasive computing?

- Post PC -- PC not the center
- Digital devices all around us
- Ubiquitous Computing
- Mark Weiser -- Calm Computing
The origin of the course: Project Oxygen

To bring an abundance of computation & communication within easy reach of humans through natural perceptual interfaces of speech and vision so computation blends into peoples' lives enabling them to easily do tasks they want to do: collaborate, access knowledge, automate routine tasks
Pervasive, Human-Centric Computing

What do these words mean?

- Computers are already pervasive
 - even in Boston and Singapore
- Computers are already human-centric
 - are they for the birds?
- It’s not really about computing
 - we already know how to do that
So, what do we mean?

- **Pervasive**
 - Should be where we need them
 - not have to go to them or set them up

- **Human-centric**
 - Computers should adapt to humans
 - computation enters our world/environment

- **Computing**
 - Computer-mediated function
 - digital media
Look back to see ahead

• Monolithic Programs & Hardware
• Decompose into interactive pieces
 • Compose to build large thing
• Continue decomposing into autonomous, interacting components
Finding and naming stuff

- Few items
 - Use list
- Many items
 - Use hierarchy
- Very many items
 - Use multi-index
Organization of material

• Top-down
 • would be nice to start writing apps
 • but we are not there yet

• Bottom-up
 • Build on what is known
 • Keyboard, mouse, pen
 • Location, Speech, Multimodal
 • Integrative Technologies
H2I components

- Hardware
 - iPAQ
 - Backpaq
- Wireless Communication

Software
 - Linux
 - Landcam
 - Galaxy Audio Interface
 - Cricket Location Reporting
iPAQ 3870

3870 iPAQ
- 206 MHz Strong Arm
- 64 Mbytes SDRAM
- 32 Mbytes flash storage
 - Bluetooth
 - SD/MMC card slot
- 16 bit color display

5500 iPAQ
- 400 MHz Xscale
- 128 Mbytes SDRAM
- 48 Mbytes flash storage
 - Bluetooth & WiFi
 - SD/MMC card slot
- 16 bit color display
Linux on H21

- Why Linux?
 - Linux allows full access to all software
 - Common development with desktop
 - Can use open source code from many sources
- Porting Linux to a handheld device
- More difficult than standard PC or Laptop
 - Non-standard interfaces (screen, control FPGAs, touch screen, …)
 - Requires rewritable Flash ROMs
 - For iPaq, port done by HP’s Cambridge Research Lab
H2I Backpaq

- Redesigned BackPaq (Version 3)
 - Philips imager (640x480 CMOS color imager UPA1022)
 - Larger FPGA (Xilinx Virtex 300E)
 - 256k x 16 SRAM
 - Lower power
 - 3-axis accelerometer in camera housing
 - 2-axis accelerometer in Backpaq
 - Dual PCMCIA slots
 - Audio input/output codec and headset jack
 - 32 MBytes Flash in Backpaq
 - LVDS Connector from FPGA pins
 - Lion Battery
• Philips UPA1022 Imager

• 640×480 CMOS

• Improved image processing
Three Accelerometers:

- One in camera plane
- One perpendicular
- One on Backpaq PCB
Accelerometer Linux Devices

- 2-Axis accelerometer (on main PCB)
 - `/dev/backpaq/accel`
 - Each read returns X and Y acceleration values

- 2-Axis accelerometer (on camera PCB)
 - `/dev/backpaq/cam_accel`
 - Each read returns X and Y acceleration values

- 3-Axis accelerometer (in camera housing)
 - `/dev/backpaq/cam_accel_xyz`
 - Created from 2 perpendicular 2-axis accelerometers
 - Each read returns X, Y and Z acceleration values
Reading Accelerometers

- Linux character device
- Open the device:
 - `fd = open("/dev/backpaq/accel",O_RDONLY | O_NOCTTY);`
- Read from the device
 - `struct h3600_backpaq_accel_data accel_buffer;`
 - `read(fd,&accel_buffer,sizeof(accel_buffer));`
- The structure returned:
 - `struct h3600_backpaq_accel_data {`
 - `short x_acceleration;`
 - `short y_acceleration;`
- From:
 - `http://cvs.handhelds.org/cgi-bin/viewcvs.cgi/apps/backpaq/oneko/`
PCMCIA Slots

- Dual PCMCIA Slots
- 16-bit cards (Not CardBus) supported
- Pins driven directly from the FPGA
 - Hardware supports CardBus cards
 - Could implement CardBus controller in FPGA
LVDS Connector

- Low Voltage Differential Signaling
 - 10 differential signal pairs
 - or 20 single signals
 - Driven from Xilinx 300E FPGA
 - 5 Power and 5 ground pins
 - 30 pin flex cable ZIF connector
Mobile Phones
What’s the big deal

- < 200 Million PC’s sold last year
- > 200 Million Phones sold last quarter
- 0.5 Billion PC’s in 2003
- 1.5 Billion consumers own mobile phones worldwide -- Economist, Jan 2006
- 3 Billion subscribers by 2008
September 18, 2005 -- 2 Billion connections.
Perspective

- 6.4 Billion people
- 2 Billion mobile phones sold
OK, so lots of phones

- But there are lots of digital watches as well
- they have chips inside, but who cares?

Today, there are
- Basic phones (modem chip)
- Regular phones (modem + microprocessor)
- Smart phones (modem + micro + ...)

Tomorrow, will all be smart, difference in
- extra features
- extra fashion
Smartphones == 1996 PC?

- Smartphones (and PDA's) are like old PC's
- If they are the same, then
 "been there, done that"
- If they are different, then in what ways?
1996 Pentinunm

- 200 MHz CPU; 60 MHz memory bus
- Floating point; expansion bus for graphics, sound, other accelerators
- 3 million transistors; Voltage 3.3
- Primary Cache: 8 KB; Level 2: 512 KB
- Memory: usual ??? MB; Max 4 GB
- Disk capacity: ??? find out 160 MB ???
Phone’s two major cores

- **DSP Core**
 - 220 MHz
 - 64 KB on-chip Ram; 24 KB Instr. Cache
 - 1/2 instructions per cycle

- **ARM Core**
 - 229 MHz
 - 32 KB Data Cache; 16 KB Instr. Cache
Phone == Lots of Integration
Not really the same

- More connectivity
- More parallelism
- More advanced in
 - Hardware features
 - Software features & necessities
- More sophisticated expectations
 - cannot turn back time; people have evolved
Phones are different

- They are mobile
- They will always be bounded by power
- They will follow a different Mores' law
- The economics are different
 - different producer-consumer relationship
 - hw --> operators --> end users
 - ISP, independent software vendors, role?
The Point?

Phones are different from PC’s

Claim: people want PC functionality

They do not want the PC’s overhead

There will be billions of smart phones

Time to start taking up the challenge!
Research Areas I

- User Interface (Huge)
- Configuration
- Syntax-free
- Accessibility: physical & mental disabilities
- Security, Reliability, Fault Tolerance
- Naive users; harsh physical world
- Synchronization & Sharing
- Interoperability (no platform)
Research Areas II

- **Architecture:**
 - Phone chips as building blocks
 - Wireless expansion bus (no other board)
 - Power & heat management
 - E.g., streaming video via DSP or ARM
 - Local vs remote compute & store
 - No H/W upgrades
Research Areas III

- Applications
 - Services not applications; easier on user
 - Finding features (e.g. 287 menu items)
 - Platform independence (?)
 - same app for server; pc; phone
 - too many models (binary rewrite?)
 - (location, user, env)-aware computing
- Phone as Sensor+Actuator Server
- Phone as (out-of-band) debugger
Conclusion

Whatever your expertise, phones offer
- different set of constraints
- different levels of abstractions

If you think technology is frustrating today, just wait...