

★ Decrypt message, M = Decrypt(E,Kd)

where M = Decrypt(Encrypt(M,Ke), Kd)

and M = Encrypt(Decrypt(M,Kd), Ke)

★ Given Ke, M, Encrypt(M,Ke)

 \star cannot easily compute Kd.

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Institute of

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

SPKI/SDSI: Name Certificates

Traditional: {MIT Larry, K_L}_{Kmit}

- Local name spaces
- Groups

SPKI/SDSI: ${K_c \text{ friends, } K_{dc}}_K$ ${K_c \text{ friends, } K_{ec}}_K$ ${K_c \text{ friends, } K_f^c}_K$

If ' K_c friends' is on an ACL, K_d , K_e and K_f are allowed to access the object.

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

	SPKI/SDSI:
Authoriz	zation Certificate
(cert (issuer	
(public-key (rsa-pkcs1-md5 (e #23#)	
MBkkZqrM0St4Kkm	MhC8kuxaSeCo+yt8TadcgnG8bEo+erdrSBveY3C MuHMXhsp5FX71XBiVW1+JGCBLfI7hxWDZCxGTMg Q93uYVkg9ca6awCxtS0EI7sLuEB+HKuOLjzTsH+)
(subject (public-key	
(rsa-pkcs1-md5 (e #23#)	
(n	
hpD5muqJ+uyDCNxc K7OU2dodu0kdDg32	q9jzxzwxE8o6bIZ6/cE8gEL+1xJa23viE3bz68ru gAZ0JVXJazmX1QjiGudj9kEmuni8gJRLZRu0T5E3 2kym7+ooZNe/F0zWGekfESeezyQ25kvNO3XQvMHX
afWcYjRw)))) (tag	
(http (* set GET POST) (* prefix http://ost (propagate))	<pre>trich.lcs.mit.edu/demo/)))</pre>

Certificate Chaining Example

- Bob's ACL says only MIT faculty are allowed to access his server.
- Alice's first request is simply signed with Alice's key, and Bob rejects this request.
- Alice's second request contains a chain consisting of the following certificates:
 - A certificate saying she is an **CSAIL Professor**
 - A second certificate saying CSAIL Professors are MIT faculty

Verify certificate chains

• Input: device's ACL, requestor's public key, requestor's certificate chain, tag

• Output: 1 if certificate chain proves that the public key is authorized to perform the tag's operations on the device; 0 otherwise.

