
Physical Unclonable
Functions

and
Applications

Srini Devadas

Contributors: Dwaine Clarke, Blaise
Gassend, Daihyun Lim, Jaewook

Lee, Marten van Dijk

Problem:

Storing digital information in a device in a way
that is resistant to physical attack is difficult and
expensive.

IBM 4758

Tamper-proof package
containing a secure processor
which has a secret key and
memory

Tens of sensors, resistance,
temperature, voltage, etc.

Continually battery-powered

~ $3000 for a 99 MHz processor
and 128MB of memory

Our Solution:

Extract key information from a complex physical
system.

Definition

A Physical Random Function or Physical Unclonable Function
(PUF) is a function that is:

– Based on a physical system

– Easy to evaluate (using the physical system)

– Its output looks like a random function

– Unpredictable even for an attacker with physical
access

Silicon PUF – Proof of Concept

• Because of process variations, no two Integrated Circuits
are identical

• Experiments in which identical circuits with identical layouts
were placed on different FPGAs show that path delays vary
enough across ICs to use them for identification.

Combinatorial
Circuit

Challenge
Response

A Candidate Silicon PUF

Each challenge creates two paths through the circuit that are
excited simultaneously. The digital response is based on a
(timing) comparison of the path delays.

…

Challenge

Rising
Edge

A
R

B
IT

E
R 1 if top

path is
faster,
else 0

Path delays in an IC are statistically distributed due to
random manufacturing variations.

100 bits of response

Distance between Chip X and Y
responses = 24 bits

Experiments

• Fabricated candidate PUF on multiple IC!s, 0.18µ TSMC

• Apply 100 random challenges and observe response

At 70C measurement
 noise for chip X = 2

Can identify
individual ICs

Measurement noise for Chip X = 0.5

Measurement Attacks and Software Attacks

Can an adversary create a software clone of a given PUF chip?

Distance between Chip X and Y
responses = 24

Measurement noise for Chip X = 0.5
At 70C measurement
 noise for chip X = 2

Distance between Chip X and Y
responses = 24

“Best” model for Chip X has
error = 10

Measurement Attacks and Software Attacks

Can an adversary create a software clone of a given PUF chip?

Measurement noise for Chip X = 0.5
At 70C measurement
 noise for chip X = 2

Model-building
appears hard

even for simple
circuits

Physical Attacks

• Make PUF delays depend on overlaid metal layers and
package

• Invasive attack (e.g., package removal) changes PUF delays
and destroys PUF

• Non-invasive attacks are still possible

– To find wire delays need to find precise relative timing of transient
signals as opposed to looking for 0!s and 1!s

– Wire delay is not a number but a function of challenge bits and
adjacent wire voltages

Using a PUF as an Unclonable Key

PUF

A Silicon PUF can be used as an unclonable key.

• The lock has a database of challenge-response pairs.

• To open the lock, the key has to show that it knows the
response to one or more challenges.

?

If a remote chip stores a private key, Alice can share a secret
with the chip since she knows the public key corresponding
to the stored private key

Encrypt Secret using chip!s public key

Only the chip can decrypt Secret using the stored private key

Private/Public Keys

Private Key

Decrypt

EPublic Key(Secret)

Secret

Chip

Applications

• Anonymous Computation

Alice wants to run computations on Bob!s
computer, and wants to make sure that she is
getting correct results. A certificate is returned
with her results to show that they were correctly
executed.

• Software Licensing

Alice wants to sell Bob a program which will only
run on Bob!s chip (identified by a PUF). The
program is copy-protected so it will not run on
any other chip.

How can we enable the above applications by
trusting only a single-chip processor that contains a
silicon PUF?

Sharing a Secret with a Silicon PUF

Suppose Alice wishes to share a secret with the silicon PUF

She has a challenge response pair that no one else knows,
which can authenticate the PUF

She asks the PUF for the response to a challenge

PUF Alice

1. Challenge, Task

2. Response

Anyone can see challenge
and ask PUF for the response

Anyone can see response
if it is not encrypted

Restricting Access to the PUF

• To prevent the attack, the man in the middle must be
prevented from finding out the response.

• Alice!s program must be able to establish a shared secret
with the PUF, the attacker!s program must not be able to get
the secret.

Hash(Program)
SecretHashChallenge PUF Response

Add this to PUF

! Combine response with hash of program.

• The PUF can only be accessed via the GetSecret function:

Getting a Challenge-Response Pair

• Now Alice can use a Challenge-Response pair to generate a
shared secret with the PUF equipped device.

• But Alice can!t get a Challenge-Response pair in the first
place since the PUF never releases responses directly.

! An extra function that can return responses is
needed.

Getting a Challenge-Response Pair - 2

• Let Alice use a Pre-Challenge.

• Use program hash to prevent eavesdroppers from using the
pre-challenge.

• The PUF has a GetResponse function

Hash(Program)

Pre-Challenge
Hash Challenge PUF Response

Add this to PUF

Controlled PUF Implementation

Hash(Program)
Secret Hash

Challenge PUF Response

Hash(Program)

Pre-Challenge
Hash

GetResponse

GetSecret

Challenge-Response Pair Management:
Bootstrapping

When a CPUF has just been produced, the
manufacturer wants to generate a
challenge-response pair.

1. Manufacturer provides Pre-challenge
and Program.

2. CPUF produces Response.

3. Manufacturer gets Challenge by
computing
 Hash(Hash(Program), PreChallenge).

4. Manufacturer has (Challenge, Response)
pair where Challenge, Program, and
Hash(Program) are public, but Response
is not known to anyone since Pre-
challenge is thrown away

Manufacturer

CPUF

Software Licensing

Program (Ecode, Challenge)

 Secret = GetSecret(Challenge)

 Code = Decrypt(Ecode, Secret)

 Run Code

Ecode has been encrypted with Secret by Manufacturer

Hash(Program)

Software Licensing

Program (Ecode, Challenge)

 Secret = GetSecret(Challenge)

 Code = Decrypt(Ecode, Secret)

 Run Code

Ecode has been encrypted with Secret by Manufacturer

Secret is known to the manufacturer because he knows
Response to Challenge and can compute

 Secret = Hash(Hash(Program), Response)

Hash(Program)

Software Licensing

Program (Ecode, Challenge)

 Secret = GetSecret(Challenge)

 Code = Decrypt(Ecode, Secret)

 Run Code

Ecode has been encrypted with Secret by Manufacturer

Secret is known to the manufacturer because he knows
Response to Challenge and can compute

 Secret = Hash(Hash(Program), Response)

Adversary cannot determine Secret because he does not
know Response or Pre-Challenge

If adversary tries a different program, a different secret will be
generated because Hash(Program) is different

Hash(Program)

Summary

• PUFs provide secret “key” and CPUFs enable sharing a
secret with a hardware device

• CPUFs are not susceptible to model-building attack if we
assume physical attacks cannot discover the PUF response

– Control protects PUF by obfuscating response, and PUF protects
the control from attacks by “covering up” the control logic

– Shared secrets are volatile

• Lots of open questions…

