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Abstract
This paper presents work on two methods for interactive visualization of implicit surfaces: physically-based sam-
pling using particle systems and polygonization followed by physically-based mesh improvement which explicitly
makes use of the surface-defining equation. While most previous work applied to bounded manifolds without sin-
gularities and without boundary (topological spheres) we broaden the scope of the methods to include surfaces
with such features, in particular cusp points and surface self-intersections. These aspects are not (yet) essen-
tial for computer graphics modelling with implicit surfaces but they naturally occur in simulations of interest in
mathematical visualization. In this paper we use the Kummer family of algebraic surfaces as an example.

1. Introduction

Our work is motivated by efforts in the mathematical com-
munity for the visualization of implicit algebraic surfaces.
Algebraic surfaces and their deformations have been stud-
ied for more than one hundred years. Visualization of these
surfaces has always been regarded important and tradition-
ally plaster models were used for this purpose. Recently, of
course, computer graphical studies have been carried out.
Physically-based sampling methods (1), polygonization (2),
and raytracing (3) are three principally different approaches
to visualize implicit surfaces. They are ordered here with re-
spect to increasing computational complexity as well as in-
creasing image quality. Hanrahan1 investigates the raytrac-
ing approach to the rendering of algebraic surfaces. The
central computational task is twofold. First, one has to ef-
ficiently convert the equations of the surface and a given ray
into a single equation, i.e., a polynomial in one variable. Sec-
ond, a numerical procedure must be employed to compute
the smallest positive root of the polynomial. Hanrahan chose
a method developed by Collins and Loos, which is based on
Descartes rule of signs. The approach was also tested with
other root finding methods2.

An important example of a deformation of algebraic sur-
faces was proposed by Kummer in the last century. It is given
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by a parameterized family of fourth-order polynomials in
affine coordinates forx, y andz (see section 3.4 for the defin-
ing equation). In this deformation a double sphere is trans-
formed into Steiner’s roman surface and then into a tetra-
hedron. Although individual surfaces from this family had
been visualized before, only just recently a sequence of (ray-
cast) images illustrating the entire deformation was given by
Barth and Endraß3. In our work4 we presented correspond-
ing computer animations. We demonstrated a feasible ap-
proach to rendering animations of algebraic surfaces suit-
able not only for computer graphics specialists but also for
students and researchers in mathematics without such back-
ground. This animation was based on the original method
of Hanrahan and supported by the public domain raytracer
rayshadeof Kolb5 which requires supplying a program mod-
ule for the ray-surface intersection calculations correspond-
ing to algebraic surfaces. See Figure 1 for three frames of
the animation.

This approach — although suitable for high quality ren-
derings — lacks interactive control which is necessary to
arrive at properly chosen camera paths, parameter dynam-
ics et cetera for an animation of a priori unknown surfaces.
There are two alternative approaches to rendering algebraic
surfaces that may provide the necessary speed for interac-
tive control and animation. The first one is particle based
and uses the sampling method of Witkin and Heckbert pre-
sented in their SIGGRAPH ’94 paper6 for algebraic sur-
faces. A simple constraint equation locks a set of parti-
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(a) ν2 = 1.02 (b) ν2 = 2.44 (c) ν2 = 1.28·106

Figure 1: Raytraced Kummer surfaces

(a) polygonizer output (b) improver output (c) rayshade output

Figure 2: Visualization of the Kummer surface withν2 = 1.2

cles on a surface while the particles and the surface are al-
lowed to move. Local repulsion is used to make the points,
calledfloaters, spread evenly across the surface. By adap-
tively varying the radius of repulsion while fissioning and
killing particles based on the local density, good sampling
distributions can be achieved very rapidly. Witkin and Heck-
bert’s work focussed more onmodellingof implicit surfaces
while we are more interested in a priori defined parameter-
dependent surfaces. Moreover, our surfaces have singulari-
ties and they are unbounded (or clipped to a finite volume
resulting in a boundary curve) in contrast to theirs which
are single connected components without singularities or
boundary. To cope with these difficulties we modify the
physical model underlying the mechanism of floaters by in-
troducing boundary effects, and we adapt the radii of repul-
sion to local surface properties (curvature and closeness to
singularities). With these modifications we can achieve near
real-time sampling and rendering of deforming implicit al-
gebraic surfaces.

The second approach considered here polygonizes the im-
plicit surfaces. A collection of approximating triangles is
generated which are well suited for rendering by means of
common graphics hardware. There exists a large body of lit-

erature on this topic7. In our implementation8 a marching-
9, 10 or chain-of-cubes11 algorithm is used to quickly derive a
first polygonization (see figure 2(a)).

To iron out local insufficiencies, especially concerning
curvature, singularities and artifacts, the vertices can auto-
matically be moved around by an improver module. The
underlying algorithm interprets the polygonization as a
surface-constrained spring-mass system. This yields much
better polygonal models in a few time steps (see figure 2(b)).
A further application of the tool8 allows to select a suitable
view, lighting, material, clipping etc. of an implicit surface
under interactive control and subsequently produces a corre-
sponding parameter input file for therayshadeprogram (see
figure 2(c)), which operates using the implicit surface repre-
sentation instead of the polygonization.

Our methods are exemplified using simple algebraic sur-
faces and the Kummer family of surfaces. However, the re-
sults carry over to implicit surfaces in general provided the
underlying surface-defining functions are sufficiently differ-
entiable.
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2. Previous Related Work

There are several approaches for a mathematically faith-
ful visualization of implicit surfaces that may include sin-
gularities. Sederberg and Zundel12 presented a robust scan
line algorithm that correctly displays singularities of arbi-
trary complexity. This is achieved by applying algebraic
tools such as resultants to local surface representations in
the Bernstein basis. Hall and Warren13 use very much re-
lated techniques for an adaptive polygonization of implicit
algebraic surfaces. The surface is enclosed in a collection
of tetrahedra, which are recursively subdivided. The Bern-
stein/Bezier basis is used to eliminate tetrahedra and to ter-
minate subdivision. This way convergence is guaranteed. In
a post processing vertices very close to the surface are moved
onto the surface in order to eliminate small or thin triangles
of the resulting polygonal surface representation. Bloomen-
thal and Ferguson14 consider the general problem of polygo-
nizing implicit surfaces with singularities, thereby general-
izing traditional polygonization methods. The model of im-
plicit surfaces in their work differs from the usual one in that
a ’multiple regionalization’ is employed. All of the methods
discussed have to pay the price of increased processing time
to guarantee the correctness of the result. Thus, their use for
interactive applications is limited.

Stander and Hart15 use Morse theory to guarantee topo-
logical correctness of polygonized implicit surfaces from
one-parameter families of surfaces. This is achieved by mon-
itoring all critical points of the underlying function as the pa-
rameter changes. The method will work in cases where these
critical points do not infer singularities of the surfaces. Thus,
it does not apply to the case studied in this paper.

Mesh generation for implicit surfaces in connection with
particle-based dynamics has been studied by some au-
thors. One can distinguish two fundamentally different
approaches16:

1. The particles are generated, simulated according to a
more or less physical model, and then a polygonization
is invoked using the final particle positions as polygon
vertices.

2. An implicit surface polygonizer is applied first, followed
by a relaxation of the vertices.

An approach of the first kind was first described by
Figueiredo et al16. The implicit surface is sampled using
particles which are released at arbitrary positions in space
and then follow the associated gradient flow until equilib-
rium is reached on the surface. After that particles are sub-
jected to a relaxation process similar to that formulated by
Turk17, or Szeliski and Tonneson18. Finally, a constrained
Delauney triangulation is constructed. Examples are given
only for implicit curves and surfaces without any singular-
ities. It remains unclear how to construct the triangulation
in the presence of singularities such as self-intersecting sur-
faces.

The method of Shimada and Gossard19 (“bubble mesh-
ing”) may also be placed in the first category. In this ap-
proach the surface is approximated by a number of balls
(packed spheres) which then interact according to a dynami-
cal model allowing a mechanism for birth and death of bub-
bles. In a second step the centers of the balls are connected
using a constrained Delauney triangulation, from which a
polygonal model of the surface can be extracted. This ap-
proach is elegant, however, it is not worked out for implicit
surfaces but for parameterized objects (lines, surfaces, vol-
umes). In particular it remains an open question how the
presence of singularities in a surface might affect the re-
sults. Again it is an open problem to define and compute
a constrained Delauney triangulation for an underlying sur-
face with singularities.

There exists a large body of literature on the topic of mesh
generation and optimization, an important step in finite ele-
ment computations and for simplifying and smoothing com-
plex real-world polygonal models obtained from physical
sampling processes. However, we are aware of only one con-
tribution that specifically addresses the issue of implicit sur-
faces in the spirit of the second category above, namely the
paper of Figueiredo et al16. In that work a triangulation of a
spatial region enclosing the surface is used (as in Hall and
Warren’s work13) rather than a polygonal model of the sur-
face itself. A spring-mass system is attached to the vertices
and edges. Care must be taken to prevent the vertices from
collapsing onto the surface while ensuring that they do not
escape from it either. The method is not adaptive with re-
spect to curvature and singularities.

Ning and Bloomenthal10 review and compare implicit sur-
face polygonizers that use cubical base cells. Resulting trian-
gle meshes may contain many triangles, a lot of which typ-
ically are very small or thin. Thus, the triangulation can be
simplified. The method of Schroeder, Zarge, and Lorensen20

removes vertices for this purpose. No adaptation by moving
vertices around is attempted. A similar approach is presented
by Kalvin et al21. Hoppe et al22 also reduce the number of
vertices in addition to modifying vertex positions accord-
ing to minimization of a suitable energy functional. Lapla-
cian smoothing is another method to smooth a triangula-
tion where vertices are replaced by the center of mass of
the neighboring vertices23. None of the works mentioned in
this paragraph make reference to an underlying mathemat-
ical description of the surface because they assume that an
initial polygonal model is all that is given. We believe that
in the presence of such a precise mathematical surface defi-
nition it would be a mistake not to make use of it, especially
when considering the neighborhood of singularities, where
a ’plain’ mesh simplification may tend to worsen the result
like widening the gap near a cusp point.

A step in this direction has been made by Schmidt24 who
suggests to increase the resolution of the cubical grid in the
vicinity of possible singularities of the surface. From this
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adaptive grid a static polygonal mesh is generated which
approximates the implicit surface. Several heuristic criteria
are used to determine closeness to a singularity, each one of
them testing the implicit function at an intermediate point.

In our work a different approach is taken, namely that of
a physically-based sampling or mesh improvement.

3. Sampling By Floaters

In section 3.1 we briefly summarize the physically-based ap-
proach to sampling an implicitly defined surface by floaters
following the presentation of Witkin and Heckbert6. In sec-
tions 3.2 to 3.4 we discuss the appropriate extensions of
these methods for the application to surfaces with boundary
curves and singularities.

Particle-based approaches for static surfaces have previ-
ously been studied by Turk17, 25 and by de Figueiredo et al16

for example. Oriented particle systems were also used for
dynamic modelling rather that visualization18, 26.

3.1. Simulation

We consider parameter-dependent implicit surfaces in three-
dimensional Euclidean space, where an animation of the
surface occurs by variation of surface parameters, chang-
ing the shape of the surface with time. The surface is given
by the zeroset of a differentiable function:F(x,q(t)) = 0
wherex∈ R3, andq(t) ∈ Rm denotes a set ofm parameters
smoothly changing with timet. We assume a set ofn parti-
cles for the purpose of sampling the surface. Particlei has
trajectorypi(t) (superscripts denote particle indices). Parti-
cles moving about on the surface must satisfy the equations

F i(t) = F(pi(t),q(t))≡ 0

and, therefore

Ḟ i = F i
x · ṗi +F i

q · q̇ = 0.

The dots denote time derivatives and subscripts specify gra-
dients ofF with respect tox or q. In order to move particles
to the surface and to keep them on the surface in spite of nu-
merical integration errors a feedback termḞ i =−φF i with a
constantφ > 0 is used leading to the basic constraint equa-
tion

Ci(pi , ṗi ,qi , q̇i) = F i
x · ṗi +F i

q · q̇+ φF i = 0. (1)

Here ṗi is the unknown. Thus, for each particle this yields
one scalar equation leaving two degrees of freedom. The ac-
tual velocities are determined via an optimization. For each
particlei a desired velocityPi will be defined below and the
optimization requires to minimize the objective function

G(ṗ1, . . . , ṗn) =
1
2

n

∑
i=1
||ṗi −Pi ||2

For example, setting allPi = 0 will result in minimizing par-
ticle speeds. Using the classic method of Lagrange multipli-
ers the equation

Gṗi +
n

∑
j=1

λiC j
ṗi = 0 (2)

leads to the solution of the constrained optimization problem
yielding the velocity equations

ṗi = Pi −
F i

x ·Pi +F i
q · q̇+ φF i

F i
x ·F i

x
F i

x.

At this point the definition of the desired particle velocities
remains to be given. It serves the purpose of quickly produc-
ing an acceptable sampling density over the surface and is
based on repulsion of particles and the finiteness of the sur-
face. The repulsion forces are based on the concept of the
’energy’ of particles and are taken proportional to energy
gradients. Witkin and Heckbert define an adaptive scheme
by setting the energy of particlei due to particlej as

Ei j = αexp

(
−||r

i j ||2

2(σi)2

)
(3)

wherer i j = pi − p j . The parametersσi > 0 can be regarded
as some kind of repulsion radius of the particlei. The total
energy at particlei is the sum

Ei =
n

∑
j=1

(Ei j +E ji ). (4)

Then the desired velocities come out to be

Pi =−(σi)2Ei
pi = (σi)2

n

∑
j=1

(
r i j

(σi)2 Ei j +
r i j

(σ j )2 E ji
)
. (5)

In order to quickly move particles into sparse regions the
repulsion radii can be controlled adaptively. This is achieved
by driving all of the energies to a global desired energy level.
In effect, this yields another set of simple differential equa-
tions for the radiiσi . To achieve a uniform sampling density
particles with large repulsion radii are required to fission and
likewise, particles with small repulsion radii can be elimi-
nated. Witkin and Heckbert suggest to fission a particle, if it
is near equilibrium (small speed relative to its radius), and
either its radius is large (σi > σmax) or it carries high en-
ergy and its radius is above a given nominal radiusσ̂. The
radius of the two new particles are set toσi/

√
2 and their

desired velocities are taken as random directions scaled ap-
propriately. A particle is a candidate for elimination, if it is
near equilibrium, its repulsion radius is small, and if a ran-
domized test succeeds (in order to prevent ’mass suicide’ in
overcrowded regions).

We remark that our exposition of the method necessarily
is very brief; implementation details and motivations can be
found in the original article6. Moreover, the method also al-
lows the determination of the parameters of the surface via
control points (useful for modelling with implicit surfaces),
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the theory of which is based on the same differential equa-
tions approach as that of the floaters described above.

3.2. Handling of Unbounded Surfaces

In order to allow for unbounded surfaces, where the original
sampling method would not work, we have introduced half
spaces and spheres as clipping volumes. Instead of extending
the physical model to incorporate forces that would keep the
particles constrained within the clipping volumes we found
that a simpler approach yields an even better result for our
application. We suggest to monitor the particle trajectories
and whenever a particle is moved outside the clipping vol-
ume we simply project it back onto the boundary of the clip-
ping volume. In the case of a half space this is an orthogonal
projection onto the hyperplane defining the volume, and in
the case of the sphere the projection occurs in the direction
towards the sphere center.

3.3. Considering Singularities

As originally demonstrated6 the method works fine for com-
pact smooth surfaces without singularities. Selfintersections
and cusp points of the surface, however, will produce the
artifact of nonuniform sampling since particles distributed
near such singularities locally repel each other stronger than
particles in a regular surface patch with the same sam-
pling density. To overcome this problem we propose several
heuristics:

• To avoid the interference of floaters positioned on differ-
ent parts of the surface near a selfintersection, we modify
the repulsion energy (equation 3) to be

Ei j = αexp

(
−||r

i j ||2

2(σi)2

)
|cos

(
F i

x,F
j

x

)
|.

(Here cos(x,y) = x·y
||x||·||y|| .) In the extreme case of an or-

thogonal intersection this allows the floaters from the
two surface sheets to pass through each other unhindered
(compare figures 4(c) and 4(d)).

• We have tried to adapt the desired particle radius by using
a separate radiusσi

max = µiσmax for each particle instead
of aglobalfissioning radiusσmax. The factorµi is chosen
depending on local surface curvature and proximity to a
singularity. We have investigated two possibilities for this
factor:

– µi = αi := min
{
|cos

(
F i

x,Fx(vi
k)
)
|
}

, where thevi
k are

several points chosen randomly on the perimeter of the
floater.αi gives an indication of the maximal curva-
ture at the floater position. The idea behind this is that
at points of high curvature a surface can be sampled
better using smaller floaters.

– To sample the surface more densely near singularities
(arguably the most interesting points of a surface), we
choose a factor that estimates the distance to the near-
est singularity using Newton’s method. Singularities

are given by points where the gradientFx vanishes. To
compute such a point with Newton’s method, starting
out from the particle positionpi , the second deriva-
tive Fxx(pi) (a 3 by 3 matrix) is required. The New-
ton correctorr is the solution ofFxx(pi) · r = Fx(pi)
and its norm||r|| serves at an estimate of the dis-
tance betweenpi and the nearest singularity. Now we

setµi = βi := min( ||x||γ ,1). The minimization is used,

since the scaling factorµi should not become greater
than 1.γ is a scaling factor, which was set to 1 for our
experiments, but needs to be changed if the scale of
the displayed object is varied greatly.

Both valuesαi andβi can be used asµi in σi
max= µiσmax.

In our experiments we found that both improved the sam-
pling of most surfaces but not for all. To alleviate the indi-
vidual short-comings ofαi andβi , we used a linear com-
bination of the two in our implementation, namely we set
µi = 1

3αi + 2
3βi .

Using these heuristics, ’ad hoc’ as they may be, leads to
acceptable results for all surfaces that were tested, as shown
below.

3.4. Results

We have tested our methods using two very simple implicit
surfaces with singularities and more complex algebraic sur-
faces of degree four, the Kummer family:

1. A cone with a single cusp point clipped at two planes,
one of which contains the cusp. No parameter animation
was employed (q(t)≡ constant) (see figure 3).

2. The union of two intersecting planes, clipped at a sphere.
The planes intersect orthogonally and the intersection
line moves back and forth by changing the parameters
q(t) appropriately (see figure 4).

3. The parameterized family of Kummer surfaces as used in
the raytraced animation. The equation is

(3−ν2)(x2 +y2 +z2−ν2)2− (3ν2−1)pqrs= 0

whereν ∈ R is the parameter and

p = 1−z−x
√

2,

q = 1−z+x
√

2,

r = 1+z+y
√

2,

s = 1+z−y
√

2.

The surface is unbounded forν2 ≥ 1 and clipped at a
sphere whose radius is chosen so that the displayed sur-
face contains all of the singular points (see figure 5).

On an SGI Indy, with a R4600SC processor at 133 MHz,
the frame rate is between 5 Hz for the Kummer surface (us-
ing 500 floaters) and 20 Hz for the cone (using about 80
floaters).

Figures 3 to 5, generated by running a raytracing program
on data produced by our particle simulator, display some
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(a) The cone in its initial rendering phase. Several new parti-
cles are inserted into the scene.

(b) The maximal number of particles are on the cone surface.
An equilibrium point has been reached such that the particle
density is higher near the singularity as desired.

Figure 3: Floaters approximating a cone

(a) Two intersecting planes, a few particles. (b) The planes with more particles.

(c) Particles on planes at equilibrium. Note that the floaters
intersect each other at the singularity.

(d) The same planes approximated using the original
method6. Here the particles repel each other at the singularity,
leading to a sub-optimal sampling.

Figure 4: Floaters approximating two intersecting planes

c© The Eurographics Association 1997
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(a) Kummer surface atν2 = 1.5 with a few particles not yet
at equilibrium.

(b) Kummer surface atν2 = 1.5 with more particles and at
equilibrium.

(c) Kummer surface atν2 = 2.0. (d) Kummer surface atν2 = 3.0, consisting of four intersect-
ing planes.

Figure 5: Floaters approximating Kummer surfaces
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of the results. The renderings show the floaters as shaded
disks with normal vectors obtained from the gradients of
the surface’s defining functionF . The radii of the disks are
taken proportional to the particles’ repulsion radii. Particles
viewed from the ’back side’ are shown in a darker shade
of gray. The program starts by randomly inserting particles
into the scene (up to some maximum number) which quickly
settle on the surface, then spread over the surface and start
fissioning yielding an overall acceptable density.

4. Improving Polygonal Models

This section describes another physically-based method for
visualizing implicit surfaces. Whereas the floater technique
samples the surface this approach improves a polygonal ap-
proximation, which has been generated by a polygonizer,
for example a marching cubes algorithm. We combine ideas
from two related methods:

• Figueiredo et al16 use a spring-mass system to adapt a tri-
angulation of a region of space enclosing the surface. This
improves the result of the subsequent polygonization. We
suggest to use the output of an implicit surface polygo-
nizer as the basis of a spring-mass system. The edges of
the triangulated surface model are interpreted as springs
with rest length zero and its vertices correspond to parti-
cles without mass.

• The modification of the triangulation is simulated using
the approach of Witkin and Heckbert6 (see section 3.1)
by a surface constrained optimization and Euler’s method.
Here, spring forces instead of local repulsion forces are
used to derive the desired velocities of the vertices.

Compared to the original approaches this combination has
some advantages:

• Initializing the spring-mass system with the polygonizer
output yields a reasonable representation of the surface
right from the beginning.

• Instead of external forces16 we use implicit optimizing
constraints to make the vertices stick to the surface. This
is numerically more stable.

• In a spring-mass system the neighborhood of vertices is
fixed and small, which accelerates the computation of the
dynamics.

• The polygonal representation allows fast displaying of the
surface model by traditional rendering systems.

4.1. Simulation

The improver module works on triangulated models of im-
plicitly defined surfaces. A first triangulation is generated in
two steps. First, a polygonizer creates the geometry, i.e. the
vertex positions and polygons representing the surface. Then
the topology, i.e. the edges and triangles between the ver-
tices, needs to be computed. (In the implementation8 these
two steps are actually done in one pass.)

In order to improve the triangulation the modification of
the spring-mass model is computed and rendered stepwise.
The calculations of the simulation steps are derived from
the Witkin and Heckbert’s technique6 for sampling constant
surfaces with floaters (see section 3). In this work repulsion
forces are substituted by spring forces as the cause for ver-
tex motion. The energy between two neighboring vertices
(see equation 3) is set toEi j = κi j ||r i j ||2 and consequently
the total energy at a single vertex (see equation 4) is given
by

Ei = ∑
j∈neighbors(i)

Ei j

This yields the desired velocities (see equation 5) as

Pi =−2· ∑
j∈neighbors(i)

κi j · r i j

where the spring constantsκi j are defined adaptively (see
below). During the simulation no vertices are deleted or in-
serted. In the implementation8 the improver process termi-
nates when all vertices are moving with a speed less than a
given threshold.

4.2. Handling Of Boundaries

Some polygonizers can be applied to unbounded implicit
surfaces which are clipped to a finite volume. This produces
boundary edges and vertices. If these resulting boundary ver-
tices receive no special treatment during the subsequent dy-
namics, the whole object will be contracted because these
vertices are only affected by springs pulling from one side.
For this reason all vertices lying on the object boundary must
be marked and can be treated in the following ways:

• Fixation: exclude all marked vertices from the simulation
process in order to keep them fixed.

• Additional position constraints: restrict the marked ver-
tices to thecurveswhich result from clipping the surface
F with a bounding volume. Let us assume that the bound-
ing volume is given implicitly as{x|F̃(x) ≥ 0} whereF̃
is a differentiable function. Then the boundary curves are
given by the intersection of the zero sets ofF andF̃ . To
constrain the marked boundary verticespi to these curves
we may impose an additional constraint equation for these
particles:

C̃i(pi , ṗi) = F̃ i
x · ṗi + φF̃ i ≡ 0.

In the corresponding Lagrange equation (see equation 2)
which solves the extended optimization problem we thus
obtain

Gṗi +
n

∑
j=1

(λiC j
ṗi + λ̃iC̃ j

ṗi ) = 0.
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Figure 6: The normal deviation as measure for the curvature

4.3. Considering Curvature

The second extension makes it possible to improve the im-
plicit surface especially with regard to curvature and singu-
larities. This is realized by an adaptive setting of the spring
parametersκi j which are otherwise constant by default. In-
creasing the spring constants in strongly bent or non-smooth
areas results in a locally finer triangulation. In our imple-
mentation spring constants are updated at every simulation
step.

The main problem is to determine the surface areas that
must be refined. The implementation includes a solution,
called curvature estimator, which uses the implicit definition
of the visualized surface. The estimator is based on an idea
described by Bloomenthal7 to approximate the curvature of
a polygonal model by inspecting the surface normals. Here
the fact is exploited that the deviation of the normal direc-
tions of neighboring surface points indicates how strongly
the surface is bent in between (see figure 6). A measure for
the deviation near a given spring is the scalar product (or
cosine) of the unit normal vectors located at the ends of the
spring. The improver uses this product to update the spring
constant between neighboring verticesi and j by scaling the
default valueκd,

κi j = κd · (1−cos(F i
x,F

j
x )). (6)

The implementation8 also includes a second estimator which
exploits the norms of the vertex gradients as a measure of
distance to singularities to switch between two default spring
constants. This heuristic should be replaced by a more re-
fined approach such as the singularity estimator for sampling
with floaters described in section 3.3.

4.4. Results

Our method to improve the initial polygonization obtained
by the marching cubes algorithm shows the following fea-
tures:

• Regular Triangulation: By trying to achieve minimal
spring energies the vertices are distributed evenly over the
implicit surface (compare figures 7(a) and 7(b)), so that
resulting angles in triangles are close to 60 degrees.

• Curvature-based Adaption: The density of the vertex
particles is adapted to the surface curvature (see figure
7(b)).

• Avoidance of Deformations: The curvature estimator
prevents that models with thin parts or a small number

of vertices deform (see figure 7(c)). Without the estimator
large deviations of neighboring normals are not penalized
so that the loss of energy caused by overly stretched edges
is compensated by the shortness of other springs. Thus,
the object could be penetrated in its midst by triangula-
tion edges even though the vertices lie on the surface.

• Removed Artifacts: The curvature estimator can repair
artifacts of the polygonization process. For example, it
can iron out notches (see figures 9(a) to 9(d)) or close
small gaps (see figures 9(e) and 9(f)). On flat parts of
the surface, springs will be completely relaxed (κi j = 0),
while springs between vertices that represent a crease are
strengthened because their corresponding normals differ
by a significant amount (see figure 8(a)). Thus, at these de-
tails strong spring forces cause the corresponding vertices
to slide down the wedge until the artifact is removed. A
simulation without the estimator can even deteriorate the
model in the neighborhood of singularities because in that
case the particle system strives for uniform spring length
(see figure 8(b)).

5. Conclusion

The extensions to the particle system mechanisms intro-
duced in this paper provide interactive animation capabilities
for implicit surfaces that are clipped and that have singulari-
ties. We have shown how to adapt particle dynamics to prop-
erties of implicit surfaces in order to improve corresponding
polygonizations. These techniques may aid the researcher in
finding desired parameters, clipping volumes, viewing pa-
rameters and other attributes for a given implicit surface to
render it offline at higher quality, or to produce animations.

The work presented here is only at its beginning. In the
floater method alternative rules for fissioning and particle
death as well as optimization of computational efficiency re-
main an issue. In some cases we observed that the particle
population did not arrive at an satisfying equilibrium: obvi-
ously the particle system is very sensitive to modifications of
the involved parameters. Refined approaches targeting these
special surfaces should therefore be investigated.
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Flächen, Diploma Thesis, Fachbereich Informatik,
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