
IEEE International Conference on Image Processing (ICIP’97), Santa Barbara, Oct. 1997 1

ADAPTIVE PARTITIONINGS FOR FRACTAL IMAGE COMPRESSION

Matthias Ruhl, Hannes Hartenstein, Dietmar Saupe

Universiẗat Freiburg, Institut f̈ur Informatik, Am Flughafen 17, 79110 Freiburg, Germany
E-mail: ruhl,hartenst,saupe@informatik.uni-freiburg.de

ABSTRACT

In fractal image compression a partitioning of the image
into ranges is required. In our previous work [1] we have
proposed to find good partitionings by means of a split-and-
merge process guided by evolutionary computing. In this
approach ranges are connected sets of small square image
blocks. Far better rate-distortion curves can be obtained as
compared to traditional quadtree partitionings, however, at
the expense of an increase of computing time. In this pa-
per we show how conventional acceleration techniques and
a deterministic version of the evolution reduce the time-
complexity of the method without degrading the encoding
quality. Furthermore, we report on techniques to improve
the rate-distortion performance and evaluate the results vi-
sually.

1. INTRODUCTION

In fractal image compression the image to be coded is par-
titioned into blocks called ranges. Each range is approxi-
mated by another part of the image called domain. Finding
a partitioning that minimizes the approximation error while
not exceeding a given bit-rate is a hard problem in frac-
tal image compression. Traditionally, hierarchical schemes
like quadtree, rectangular, triangular, and other polygonal
partitionings have been used.

Here, we consider adaptive partitionings in which ranges
are unions of edge-connected small square image blocks,
called atomic blocks (cf. figure 2). This class of partition-
ings was introduced to fractal coding by [2]. In [1], we have
applied techniques motivated by evolutionary programming
to find good partitionings of this kind. Significant gains
in terms of rate-distortion performance over quadtree based
encodings and over the results in [2] were reported.

This paper extends and continues the discussion of [1].
In particular we replace the evolutionary algorithm by a sig-
nificantly faster deterministic version, as was already pro-
posed in the conclusion of [1]. This leads to a significant
speedup. Additionally, we vary the size of the atomic blocks,
leading to an improved rate-distortion curve.

Recently published papers that are related to the sub-
ject of adaptive partitionings in fractal coding are [3, 4].

In [3] partitionings are Delaunay triangulations which are
subjected to an adaptive merging process. In [4] a region-
merging approach is also used, but the initial partitioning is
a quadtree segmentation. This has some advantages regard-
ing the encoding of the partition information.

2. BASICS OF FRACTAL IMAGE COMPRESSION

This paragraph reviews the standard type of fractal image
encoding and introduces some basic notions used in this
work. For a range blockR we consider a pool of domain
blocks twice the linear size. The domain blocks are shrunken
by pixel averaging to match the range block size. This pool
of codebook blocks is enlarged by including all 8 isomet-
ric versions (rotations and flips) of a block. This gives a
pool of codebook blocksD1, . . . , DND . For a rangeR and
codebook blockD we let

(s, o) = arg min
s,o∈R

‖R− (sD + o1)‖2

where1 is the flat block with intensity 1 at every pixel. The
parameterss ando are called scaling factor and offset, re-
spectively. The coefficients is clamped to[−smax, smax]
with 0 < smax < 1 to ensure convergence in the decoding
and then boths ando are uniformly quantized yieldings
ando. The collage error for rangeR and codebook blockD
is

E(D,R) = ‖R− (sD + o1)‖2.

Sorting the codebook blocksDk with respect to increasing
collage errorE(Dk, R) yields indicesk1, . . . , kND . The
fractal code for rangeR consists of the optimal indexk1

and the corresponding quantized scaling and offset parame-
terss ando.

3. OUTLINE OF THE PROPOSED ALGORITHM

Our proposed method starts with the partitioning where all
ranges are single atomic blocks, e.g., 4×4 pixel blocks.
Then, we iteratively merge neighboring ranges to yield a se-
quence of partitionings with a decreasing number of ranges.

During this process we not only have to maintain a par-
titioning, but also an associated fractal code. After each



IEEE International Conference on Image Processing (ICIP’97), Santa Barbara, Oct. 1997 2

merger we derive a new fractal code by a local modifica-
tion of the previous one. This modification avoids an ex-
haustive search for an optimal domain for the newly merged
range. The information needed for this update is contained
in the following datastructure, calledconfiguration, which
consists of

• a partitioning, i.e., a set of mutually disjoint range blocks
which cover the entire image; each range block consists
of an edge-connected set of atomic blocks,
• for each range block of the partitioning:

− a list ofd codebook indicesk1, . . . , kd,
− the optimal quantized coefficientss, o corresponding

to codebook indexk1.

The algorithm is started with the initial configuration
given by

• the uniform partitioning obtained by subdividing the im-
age into atomic blocks,
• for each range (atomic block): optimal codebook indices
k1, . . . , kd, and coefficientss, o.

After the initialization phase, we begin to merge neigh-
boring range pairs. In order to obtain a matching domain
block for the union of two ranges we consider only those
domains that are given by the lists of domains inherited
from the parent ranges. Of course these domains have to be
extended appropriately to match the larger size of the new
range. We thus obtain2d codebook blocks from which we
keep only the better half yielding a new set ofd domain in-
dices for the new range along with the corresponding quan-
tized coefficientss, o.

The strategy to select the two ranges that are merged at
each step is a greedy one. We simply take the two ranges
whose merger results in the least increase of collage error.

Overall, the process starts with a fractal encoding hav-
ing a large bit rate and a small collage error. Each new par-
titioning has one less range. Thus, the bit-rate decreases,
while the collage error increases. The process halts, when a
given tolerance threshold for the collage error is exceeded,
or when the desired bit-rate is achieved.

Besides collage error threshold and final bit rate a pa-
rameter of the algorithm is the numberd of codebook in-
dices stored for each range.

4. EFFICIENT IMPLEMENTATION

The outlined algorithm can be implemented very efficiently.
In fact, it can be sped up by some traditional techniques
from fractal coding, yielding a state-of-the-art program that
is considerably faster than fractal coders which achieve a
similar rate-distortion performance. Still, not all approaches
that improve the performance of quadtree based fractal
coders work equally well with our algorithm.

In the initialization phase a fractal encoding of the im-
age is sought for which all ranges are atomic blocks. This
phase is computationally expensive. Each range block is
compared with the same set of domain blocks. Therefore,
we can use acceleration techniques that involve heavy pre-
processing such as the nearest neighbor search for feature
vectors described in, e.g., [5]. The basic idea is to remove
the mean and to normalize the variance of ranges and do-
mains. Minimizing the collage error then is equivalent to
minimizing Euclidean distance of the resulting feature vec-
tors (and their negative versions). Fast nearest neighbor
search techniques based on binary space partitions (kd-trees)
are used to accelerate the search and large gains in speed are
obtained.

During the merging process we maintain a priority queue
(e.g., an heap) containing entries for all neighboring range
pairs. The pairs are sorted by the increase in collage error
resulting from the merger of the two ranges. Thus, we can
easily extract the range pair whose merger gives the least
increase in overall collage error. The maintainance of the
priority queue is an important factor in the speed of the algo-
rithm. The crucial operation is the update of the heap after
merging two ranges. We can avoid recomputing the collage
error of the involved range pairs (i.e., the range pairs where
one of the ranges is the newly merged range), since the error
can only becomelarger due to a merger. We delay recom-
puting the error until such an outdated pair is extracted from
the top of the heap, in which case we compute the correct
collage error and reinsert it into the heap. By this we can
avoid unnecessary computations while being sure that we
always extract the best range pair at each step.

5. EXTENSIONS

Our method can easily be extended to encode color images.
We have obtained good results by first transforming the im-
age into YUV-color space and then coding the Y-component
as a grey scale image. For the so obtained partitioning we
additionally encode the mean of the U- and V-components
for every range.

For quadtree based fractal coders a significant improve-
ment of the image quality can usually be achieved by post-
processing the image to reduce blocking artifacts at the bor-
ders of the ranges (cf. figure 3). For our approach things
turn out not to be that simple. The irregularity of the ranges
leads to a less structured distribution of the error. Thus, av-
eraging across range borders tends to deteriorate rather than
improve image quality in our setting.

Furthermore, entropy coding of the offset parameters is
reported to ameliorate the rate-distortion performance for
fractal coders. While this generally only gives a marginal
gain, for our scheme the improvements were negligible.



IEEE International Conference on Image Processing (ICIP’97), Santa Barbara, Oct. 1997 3

Figure 1: 512x512 Lenna compressed using our method,
compression ratio = 1:69.5, PSNR 28.3 db

Figure 2: Partitioning pertaining to figure 1, 600 ranges

6. RESULTS

In our experiments, the numberd of codebook indices asso-
ciated with a range was set to 10. The partitioning is stored
as described in [1].

Figure 5 shows the rate-distortion curves for our method

Figure 3: 512x512 Lenna compressed using Fisher’s
quadtree coder, compression ratio = 1:28.1, PSNR 28.8 db

Figure 4: Quadtree partitioning for figure 3, 2812 ranges

using atomic block sizes 3×3, 4×4, 5×5 and 8×8. Varying
the atomic block sizes depending on desired compression
ratio improves the performance of our method.

In figure 6 we give a comparison between our method,
Fisher’s HV coder [6] and quadtree coder [7]. In this plot,
we have adapted the atomic block size for our method de-



IEEE International Conference on Image Processing (ICIP’97), Santa Barbara, Oct. 1997 4

26

28

30

32

34

36

38

40

42

0 20 40 60 80 100

P
S

N
R

Compression Ratio

3x3
4x4
5x5
8x8

Figure 5: Results for encoding 512×512 Lenna using our
scheme and various atomic block sizes

pending on the compression rate. The HV-data is taken from
[6], the quadtree results were obtained by running Fisher’s
program with parameters-f -D 2 -d 4. For compression ra-
tios larger than 1:30 we obtain a 2 dB improvement over the
quadtree coder. The results in terms of PSNR are compara-
ble to Fisher’s HV coder.

Figure 1 shows a decompressed image of Lenna with
corresponding partition in figure 2. Note that we allow that
the ranges can wrap around image borders. In figures 3 and
4 an encoding of Lenna using Fisher’s quadtree scheme at a
slightly betterPSNR is shown. Our method uses less than
half the bit-rate of Fisher’s code and also is visually more
pleasing. This is mainly due to the less regular blocking
structure.

Table 1 compares the computing times with the evolu-
tionary scheme proposed in [1], showing a speedup factor
of over 100. The times were measured on an SGI O2 with
a R10000 processor running at 150 MHz. In each case,
512×512 Lenna was compressed to 1000 ranges using an
atomic block size of 4×4. The evolutionary method gives
an insignificantly better PSNR (< 0.3 dB).

These experiments show that our algorithm belongs to
the best fractal coders regarding image fidelity, but cuts down
the encoding time to a fraction of the running time of fractal
coders that achieve comparable image quality.

A program implementing this algorithm is available at
http://www.informatik.uni-freiburg.de/frap.

7. REFERENCES

[1] Saupe, D., Ruhl, M.,Evolutionary fractal image com-
pression,Proceedings IEEE ICIP, Lausanne, 1996, pp.
129–132.

26

28

30

32

34

36

38

40

42

0 20 40 60 80 100

P
S

N
R

Compression Ratio

Our method
HV

Quadtree

Figure 6: Comparison between our method and Fisher’s HV
and Quadtree-based schemes.

Init Merge Total
New 0:02:00 0:01:23 0:03:23
Evo 5:09:27 1:25:17 6:34:44

Table 1: Computing times (hrs:min:sec) for the proposed
(New) and the evolutionary (Evo) [1] methods. Given are
the times for the initialization phase, the merging phase, and
the total running times.

[2] Thomas, L., Deravi, F.,Region-based fractal image
compression using heuristic search,IEEE Transac-
tions on Image Processing 4,6, 1995, pp. 832–838.

[3] Davoine, F., Robert, G., J.-M. Chassery,How to im-
prove pixel-based fractal image coding with adap-
tive partitions,Proceedings Fractals in Engineering,
Véhel, J.-L., Lutton, E., Tricot, C. (eds.), Springer Ver-
lag, London, 1997, pp. 292–306.

[4] Chang, Y.-C., Shyu, B.-K., Wang, J.-S.,Region-based
fractal image compression with quadtree segmenta-
tion, Proceedings ICASSP, Munich, 1997, pp. 3425–
3428.

[5] Saupe, D.,Accelerating fractal image compression by
multi-dimensional nearest neighbor search,Proceed-
ings IEEE Data Compression Conference, Storer, J.,
Cohn, M. (eds.), Snowbird, Utah, 1995, pp. 222–231.

[6] Fisher, Y., Menlove, S.,Fractal encoding with HV par-
titions, in [7], pp. 119–136.

[7] Fisher, Y. (ed.),Fractal Image Compression — Theory
and Application,Springer-Verlag, New York, 1994.


