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ABSTRACT In [3] partitionings are Delaunay triangulations which are
In fractal image compression a partitioning of the image SUb]e_Cted to an ad_aptlve MErging process. In [4]. a region-
merging approach is also used, but the initial partitioning is

into ranges is required. In our previous work [1] we have d ion. This h q q
proposed to find good partitionings by means of a split-and- & 442 tree segmentation. This has some advantages regard-

merge process guided by evolutionary computing. In this "9 the encoding of the partition information.

approach ranges are connected sets of small square image

blocks. Far better rate-distortion curves can be obtained as 2. BASICS OF FRACTAL IMAGE COMPRESSION
compared to traditional quadtree partitionings, however, at

the expense of an increase of computing time. In this pa_This paragraph reviews the standard type of fractal image
per we show how conventional acceleration techniques andencoding and introduces some basic notions used in this
a deterministic version of the evolution reduce the time- WOrk. For a range block? we consider a pool of domain
complexity of the method without degrading the encoding blocks twice the linear size. The domain blocks are shrunken
quality. Furthermore, we report on techniques to improve by pixel averaging to match the range block size. This pool

the rate-distortion performance and evaluate the results vi-Of codebook blocks is enlarged by including all 8 isomet-
sually. ric versions (rotations and flips) of a block. This gives a

pool of codebook block®, ..., Dy, . For arangek and

1 INTRODUCTION codebook blockD we let

] . ] ] (5,0) = arg min |R — (sD + o1)|?
In fractal image compression the image to be coded is par- 5,0€R

tiioned into blocks called ranges. Each range IS aPPrOXI\\ here1 is the flat block with intensity 1 at every pixel. The
mated by another part of the image called domain. Finding parameters ando are called scaling factor and offset, re-

a p;artmonlgg that ”.““'mgfs tthe.apprk(]) X|:jnatloglerror th'le spectively. The coefficient is clamped td—smaz s Smaz)
tn? . exceeding a gl\(en _Il'rg.? IS ﬁl ?.r prc;f erln mh rac- \ith 0 < smaz < 110 ensure convergence in the decoding
al Image compression. 1raditionally, hierarchical SCNemes, g e poths ando are uniformly quantized yielding

like quadtree, rectangular, triangular, and other polygonal anda. The collage error for rangg and codebook block
partitionings have been used. ;

Her.e, we consider adaptive partitionings in yvhich ranges 'S E(D,R) =||R— (D +a1)|>.
are unions of edge-connected small square image blocks,
called atomic blocks (cf. figure 2). This class of partition- Sorting the codebook blockS;. with respect to increasing
ings was introduced to fractal coding by [2]. In[1], we have collage errorE(Dy, R) yields indicesks, ..., kn,. The
applied techniques motivated by evolutionary programming fractal code for rangez consists of the optimal indek;
to find good partitionings of this kind. Significant gains and the corresponding quantized scaling and offset parame-
in terms of rate-distortion performance over quadtree basede€rss ando.
encodings and over the results in [2] were reported.
This paper extends and continues the discussion of [1]. 3. OUTLINE OF THE PROPOSED ALGORITHM
In particular we replace the evolutionary algorithm by a sig-
nificantly faster deterministic version, as was already pro- Our proposed method starts with the partitioning where all
posed in the conclusion of [1]. This leads to a significant ranges are single atomic blocks, e.gx#pixel blocks.
speedup. Additionally, we vary the size of the atomic blocks, Then, we iteratively merge neighboring ranges to yield a se-
leading to an improved rate-distortion curve. guence of partitionings with a decreasing number of ranges.
Recently published papers that are related to the sub-  During this process we not only have to maintain a par-
ject of adaptive partitionings in fractal coding are [3, 4]. titioning, but also an associated fractal code. After each
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merger we derive a new fractal code by a local modifica- In the initialization phase a fractal encoding of the im-
tion of the previous one. This modification avoids an ex- age is sought for which all ranges are atomic blocks. This
haustive search for an optimal domain for the newly merged phase is computationally expensive. Each range block is
range. The information needed for this update is containedcompared with the same set of domain blocks. Therefore,
in the following datastructure, callezbnfiguration which we can use acceleration techniques that involve heavy pre-
consists of processing such as the nearest neighbor search for feature

« a partitioning, i.e., a set of mutually disjoint range blocks Vectors described in, e.g., [5]. The basic idea is to remove
which cover the entire image; each range block consiststh® mean and to normalize the variance of ranges and do-
of an edge-connected set of atomic blocks mains. Minimizing the collage error then is equivalent to

minimizing Euclidean distance of the resulting feature vec-

. . tors (and their negative versions). Fast nearest neighbor
—alist Of_d codeboo.k |nd|ce31., T ka, . search technigues based on binary space partitiohsées)

— the optimal quantized coefficientso corresponding  gre ysed to accelerate the search and large gains in speed are

o for each range block of the partitioning:

to codebook index;. obtained.
The algorithm is started with the initial configuration During the merging process we maintain a priority queue
given by (e.g., an heap) containing entries for all neighboring range

« the uniform partitioning obtained by subdividing the im- pairs. The pairs are sorted by the increase in collage error
age into atomic blocks resulting from the merger of the two ranges. Thus, we can

o for each range (atomic block): optimal codebook indices easily extract the range pair whose merger gives the least

k1, ... kg, and coefficients, o. increase in overall collage error. The maintainance of the

priority queue is an important factor in the speed of the algo-
After the initialization phase, we begin to merge neigh- rithm. The crucial operation is the update of the heap after
boring range pairs. In order to obtain a matching domain merging two ranges. We can avoid recomputing the collage
block for the union of two ranges we consider only those error of the involved range pairs (i.e., the range pairs where
domains that are given by the lists of domains inherited one of the ranges is the newly merged range), since the error
from the parent ranges. Of course these domains have to bean only becoméarger due to a merger. We delay recom-
extended appropriately to match the larger size of the newputing the error until such an outdated pair is extracted from
range. We thus obtai?d codebook blocks from which we  the top of the heap, in which case we compute the correct

keep only the better half yielding a new setdoflomain in-  collage error and reinsert it into the heap. By this we can
dices for the new range along with the corresponding quan-avoid unnecessary computations while being sure that we
tized coefficients, o. always extract the best range pair at each step.

The strategy to select the two ranges that are merged at

each step is a greedy one. We simply take the two ranges

whose merger results in the least increase of collage error. 5. EXTENSIONS
Overall, the process starts with a fractal encoding hav-

ing a large bit rate and a small collage error. Each new par-gyr method can easily be extended to encode color images.
titioning has one less range. Thus, the bit-rate decreasesyye have obtained good results by first transforming the im-
while the collage error increases. The process halts, when 8,46 into YUV-color space and then coding the Y-component
given tolerance threshold for the collage error is exceeded, 55 4 grey scale image. For the so obtained partitioning we

or when the desired bit-rate is achieved. additionally encode the mean of the U- and V-components
Besides collage error threshold and final bit rate a pa- for every range.

rameter of the algorithm is the numbeérof codebook in-

. For quadtree based fractal coders a significant improve-
dices stored for each range.

ment of the image quality can usually be achieved by post-
processing the image to reduce blocking artifacts at the bor-
4. EFFICIENT IMPLEMENTATION ders of the ranges (cf. figure 3). For our approach things
turn out not to be that simple. The irregularity of the ranges
The outlined algorithm can be implemented very efficiently. leads to a less structured distribution of the error. Thus, av-
In fact, it can be sped up by some traditional techniques €raging across range borders tends to deteriorate rather than
from fractal coding, yielding a state-of-the-art program that improve image quality in our setting.
is considerably faster than fractal coders which achieve a  Furthermore, entropy coding of the offset parameters is
similar rate-distortion performance. Still, not all approaches reported to ameliorate the rate-distortion performance for
that improve the performance of quadtree based fractalfractal coders. While this generally only gives a marginal
coders work equally well with our algorithm. gain, for our scheme the improvements were negligible.
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Figure 1: 512x512 Lenna compressed using our method,Figure 3: 512x512 Lenna compressed using Fisher's
compression ratio = 1:69.5, PSNR 28.3 db quadtree coder, compression ratio = 1:28.1, PSNR 28.8 db
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Figure 2: Partitioning pertaining to figure 1, 600 ranges Figure 4: Quadtree partitioning for figure 3, 2812 ranges
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6. RESULTS using atomic block sizesx33, 4x4, 5x5 and 8<8. Varying
the atomic block sizes depending on desired compression
In our experiments, the numbéiof codebook indices asso- ratio improves the performance of our method.
ciated with a range was set to 10. The partitioning is stored In figure 6 we give a comparison between our method,
as described in [1]. Fisher's HV coder [6] and quadtree coder [7]. In this plot,
Figure 5 shows the rate-distortion curves for our method we have adapted the atomic block size for our method de-
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Figure 5: Results for encoding 5%312 Lenna using our  Figure 6: Comparison between our method and Fisher's HV

scheme and various atomic block sizes and Quadtree-based schemes.

pending on the compression rate. The HV-data is taken from Init Merge Total
[6], the quadtree results were obtained by running Fisher’s New 0:02:00 0:01:23 0:03:23
program with parameter§-D 2 -d 4 For compression ra- Evo 5:09:27 1:25:17 6:34:44

tios larger than 1:30 we obtain a 2 dB improvement over the

adtree coder. The results in terms of PSNR are compara: . . .
E:Jeto Fisher's HV coderu ! P Table 1: Computing times (hrs:min:sec) for the proposed

Figure 1 shows a decompressed image of Lenna With,fr':'e\t’.v) an(f:i trlﬁ eyqtl_lj tl'.o n?ry (Er:/ 0) [1t]hmethod_s. Gr:ven are d
corresponding patrtition in figure 2. Note that we allow that elimes forine initialization phase, the merging phase, an

the ranges can wrap around image borders. In figures 3 ancﬁhe total running times.
4 an encoding of Lenna using Fisher’s quadtree scheme at a

slightly betterPSNR is shown. Our method uses less than [2] Thomas, L., Deravi, F.Region-based fractal image
half the bit-rate of Fisher’s code and also is visually more compression using heuristic searclEEE Transac-

pleasing. This is mainly due to the less regular blocking tions on Image Processing 4,6, 1995, pp. 832—838.
structure.

Table 1 compares the computing times with the evolu- [3] Davoine, F., Robert, G., J.-M. ChasseHpw to im-
tionary scheme proposed in [1], showing a speedup factor prove pixel-based fractal image coding with adap-
of over 100. The times were measured on an SGI 02 with tive partitions, Proceedings Fractals in Engineering,
a R10000 processor running at 150 MHz. In each case, Veéhel, J.-L., Lutton, E., Tricot, C. (eds.), Springer Ver-
512x512 Lenna was compressed to 1000 ranges using an lag, London, 1997, pp. 292-306.

tomic block si f44. Th luti thod gi :
aromic block Siz€ o © evoilonary method gives [4] Chang, Y.-C., Shyu, B.-K., Wang, J.-Region-based

an insignificantly better PSNR-(0.3 dB). fractal image compression with quadtree segmenta
These experiments show that our algorithm belongs to tion, Proceedings ICASSP, Munich, 1997, pp. 3425—

the best fractal coders regarding image fidelity, but cuts down

the encoding time to a fraction of the running time of fractal 3428.

coders that achieve comparable image quality. [5] Saupe, D.Accelerating fractal image compression by
A program implementing this algorithm is available at multi-dimensional nearest neighbor searéhroceed-

http://www.informatik.uni-freiburg.de/frap. ings IEEE Data Compression Conference, Storer, J.,

Cohn, M. (eds.), Snowbird, Utah, 1995, pp. 222—-231.
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