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ABSTRACT

In fractal image compression a partitioning of the image is re-
quired. In this paper we discuss the construction of rate-distortion
optimal partitions. We begin with a fine scale partition which gives
a fractal encoding with a high bit rate and a low distortion. The
partition is hierarchical, thus, corresponds to a tree. We employ a
pruning strategy based on the generalized BFOS algorithm. It ex-
tracts subtrees corresponding to partitions and fractal encodings
which are optimal in the rate-distortion sense. First results are
included for the case of fractal encodings based on rectangular
(HV) partitions. We also provide a comparison with greedy parti-
tions based on the traditional collage error criterion or just using
block variance.

1. INTRODUCTION

One of the weaknesses of fractal image compression [1, 2] is its
lack of good bit allocation procedures. This issue is complex since
not only may each image block be encoded using a variable num-
ber of bits, but the blocks may also be of different sizes. On top of
this there is side information specifying the underlying image par-
tition, which also must be taken into account. This paper provides
a step towards a general solution for fractal image compression
with hierarchical image partitions. Our work is a novel application
of the generalized BFOS algorithm for optimal tree pruning.

This paragraph reviews the standard type of fractal image en-
coding and introduces the notation used in this work. An im-
age is partitioned into several blocks, called range blocks. For a
range blockR we consider a pool of domain blocks twice the lin-
ear size. The domain blocks are shrunken by pixel averaging to
match the range block size. This gives a pool of codebook blocksD1; : : : ; DND . For rangeR and codebook blockD we let(s; o) = arg mins;o2R kR� (sD + o1)k2
where1 is the flat block with unit intensity at every pixel. The co-
efficients is clamped to[�smax; smax] with smax < 1 to ensure
convergence in the decoding and then boths ando are uniformly
quantized yieldings and o. The collage error for rangeR and
codebook blockD is Ec(D;R) = kR � (sD + o1)k2. Find-
ing a codebook blockDk with minimal collage errorEc(Dk; R)
yields an indexk. The fractal code for rangeR consists of this
optimal indexk (the domain block address) and the corresponding
quantized scaling and offset parameterss ando.

Finding the optimal partition at a given bit rate is a difficult
problem in fractal image compression since the space of all parti-
tions with a given number of ranges is too large to allow to inves-
tigate all of them. Instead, heuristic methods must be developed in

order to arrive at a suboptimal solution. A number of subdivision
types have been used: uniform, quadtree, rectangular, triangular,
other polygonal, and irregular partitions.

Top-down versus bottom-up. Most of the methods can be
distinguished by the way the partition is generated. The most com-
mon approach is proceeding in atop-downdirection, i.e., larger
ranges are split into several smaller ones, which are subject to fur-
ther subdivision. On the other hand, one may start with a fine
partition (e.g., a uniform one consisting of small range blocks, all
of the same size), and then iteratively merge some of the ranges to
arrive at a collection of partitions of varying complexity.

Searching versus no searching. In addition we may clas-
sify methods with respect to whether fractal codes are generated
already during the partitioning process or only afterwards. One
common approach is to subdivide a range block only if an esti-
mate of the local approximation error for the range (i.e., the col-
lage error) is above some threshold. In contrast, one may design
a partition solely based on some segmentation methods from im-
age processing, thereby not searching for any range-domainpairs
until the partition is complete. The advantage of this approach is
increased speed.

Of course, combinations of these categories are possible. For
example, one may design a quadtree partition in the top-downfash-
ion with or without searching, and then start to merge pairs of
neighboring range blocks.

Results of previous research [3] indicate that it is generally not
advantageous in terms of rate-distortion performance to create the
partition without searching. However, in our work [4] we come to
a somewhat different conclusion. In [4] we showed for the special
case of quadtree partitions that one can indeed base the decision
whether or not to split a square entirely on image statistics(size,
mean, and variance) without sacrificing rate-distortion quality.

The method presented in this paper proceeds as follows.

Step 1. Top-down heuristic hierarchical partitioning without search-
ing.

Step 2. Bottom-up merging of the ranges in optimal rate-distortion
sense.

The tool to achieve rate-distortion optimal partitions is the
generalized BFOS algorithm, which we review in the following
section. In Section 3 we apply the method to fractal image coding
using rectangular (HV) partitions. An initial fine grained partition
is heuristically derived in Subsection 3.1, the fractal coding is ex-
plained in Subsection 3.2, while the following subsection makes
the connection with the BFOS algorithm with which we achieve
optimal pruned HV partitions. The last subsection presentstwo
greedy suboptimal partitioning strategies. Section 4 contains sim-
ulation results, and in the remainder of the paper we discussexten-
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sions of the method and conclusions.

2. OPTIMAL TREE PRUNING USING THE
GENERALIZED BFOS ALGORITHM

The terminology and notation used in this section closely follow
those in [5] where more details on the algorithm can be found.

Let T be a tree with root noden0. A branchTn of a treeT
is a subtree ofT rooted at a noden such that the leaf nodes of the
subtree are also leaf nodes ofT . We say thatS is apruned subtree
of T , and writeS � T if S is a subtree ofT with the same root
noden0. A tree functionalu is a real function defined on the set
of all subtrees ofT .

The problem of optimal tree pruning consists of finding the list
of pruned subtreesS� � T which minimize the Lagrangian cost
functional u2(S) + �u1(S)
whereu1 andu2 denote two tree functionals (such as rate and
distortion) and� increases from 0 to1. Thus, any solutionS�
minimizes the tree functionalu2 over all pruned subtrees ofT
having the same or lower tree functional valueu1(S�). WhenT
has a large number of nodes, solution by full search is impracti-
cal. Fortunately, if we assume that the tree functionalsu1 andu2
are monotonic and linear, withu1 monotonically increasing andu2 monotonically decreasing, then the problem can be efficiently
treated by the algorithm proposed by Chouet al. [6, 5], which
is a generalization of the BFOS algorithm of Breiman, Friedman,
Olshen, and Stone [7]. Here a tree functionalu is said to be mono-
tonically increasing (resp. monotonically decreasing) ifS 0 � S ) u(S 0) � u(S) (resp.u(S 0) � u(S));
and it is said to be linear if its value is given by the sum of its
values at the leaf nodes, that is, ifu(S) =Xn2 ~S u(n);
where ~S is the set of leaf nodes of the subtreeS.

Observe first that ifu(S) = (u1(S); u2(S)) denotes the point
with coordinatesu1(S) andu2(S), then the problem of optimal
tree pruning is equivalent to finding the pointsu(S�) on the lower
boundary of the convex hull of the set of all points corresponding
to the pruned subtreesS � T . The generalized BFOS algorithm
finds the optimal subtrees associated to the extreme points (ver-
tices)u(Si); i = 1; : : : ;m of the lower boundary of the convex
hull using the following two results (proofs are in [6]):

1. These optimal pruned subtrees are nested, that is,Sm �� � � � S2 � S1.
2. Any pruned subtreeSi+1 can be obtained fromSi by suc-

cessively pruningone singlebranch and the interim pruned
subtrees correspond to points on the segment connectingu(Si) andu(Si+1). Thus the interim pruned subtrees are
also optimal.

Due to the monotonicity assumption we haveSm = n0 andS1 =T . Thus, one starts from the whole treeT and proceeds by suc-
cessively pruning one branch untiln0 is reached. A pseudocode of
the generalized BFOS algorithm using an efficient data structure is
given in [5].

The generalized BFOS algorithm has been successfully used
in many applications including tree-structured vector quantization
[6] and optimal bit allocation. In this paper, we give the first appli-
cation to fractal image compression.

3. IMPLEMENTATION OF OPTIMAL TREE PRUNING
FOR FRACTAL IMAGE COMPRESSION

Given a range block corresponding to an inner node in the parti-
tion tree there are many different ways to split the block into two
or more subblocks corresponding to the child nodes of the given
inner node. The quadtree scheme is one of the simplest possible
ways. Here we propose as an example of the optimal pruning al-
gorithm to use hierarchical partitions consisting of rectangles (HV
partitions, [8]). This choice is motivated by three reasons:

1. Rectangular partitions have been shown to lead to better results
than quadtrees, both in terms of rate-distortion performance and
visual quality [8].

2. Generating the initial fine grained partition is computationally
simple.

3. It allows a comparison with one of the best pure (i.e., non-
hybrid) fractal coding schemes, the HV coder [8] of Fisher.

3.1. The initial HV partition

In an HV partition a rectangular range block can be split either
horizontally or vertically into two smaller rectangles. A decision
about the split location has to be made. While [8] adopts a cri-
terion based on edge location we follow [9, 10] and propose to
split a rectangle such that an approximation by its DC component1

in each part gives a minimal total square error. We expect fractal
coding to produce relatively small collage errors with thischoice
because� approximation by the DC component alone (which is part of the

fractal encoding) will already give small sums of squared errors
by design of the splitting scheme, and� for the approximation of the dynamic part of the range blocks
we have a larger part of the domain available, if the range block
variances are low. This comes from the limitations of the scaling
factor,jsj � smax.

The details are as follows. We consider a digital image given
by a real-valued functionf : R0 ! R, whereR0 is a set of
integer pixel coordinates(x; y) from a rectangular grid. For any
range blockR the set of pixel coordinatesR can be written asR = fxmin; :::; xmaxg � fymin; :::; ymaxg:
We define the sizejRj, the mean�(R), and the square errorE(R)
w.r.t. DC approximation:jRj = (xmax � xmin + 1) � (ymax � ymin + 1)�(R) = 1jRj X(x;y)2Rf(x; y)E(R) = X(x;y)2R(f(x; y)� �(R))2

1The DC component of a block is defined here as the block whose pixel
values are equal to the average intensity of the block.
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We define the vertical split of a rectangleR intoRleft(xsplit) = fxmin; :::; xsplitg � fymin; :::; ymaxg;Rright(xsplit) = fxsplit + 1; :::; xmaxg � fymin; :::; ymaxg
such that the split positionxsplit minimizes the square errorEV (x)
w.r.t. DC approximation, i.e.,xsplit = arg minx=xmin;:::;xmax�1EV (x);EV (x) = E(Rleft(x)) +E(Rright(x)):
In the same way we define a horizontal split aty = ysplit with
minimal square errorEH(ysplit). The rectangleR will be split
vertically atx = xsplit, if EV (xsplit) � EH(ysplit). OtherwiseR
will be split horizontally aty = ysplit.

We also prescribe a minimal horizontal and vertical rectangle
size of 2 pixels and proceed to recursively divide blocks as long as
possible. At the end we arrive at a hierarchical partition inwhich
all leaf nodes of the partition tree correspond to range blocks of
size 2� 2, 2� 3, 3� 2, and 3� 3 pixels.

In addition one can multiply the square errorsEV (x) andEH(x) with a bias functionB(x) in order to penalize a split that
results in very thin or very flat rectangles. We use a function�(t2 + 1), wheret goes from�1 to 1 asx runs fromxmin toxmax � 1, and� = 0:4.

3.2. Encoding a range block

Given a range blockR we wish to approximate it byR � sD+o1
whereD is a codebook block of the same size. Our codebooks are
provided in a very simple way:� by pixel averaging we downsample the original image by a factor

of 2, and� for a given range blockR we define the corresponding codebook
as the set of all vectors obtained from all possible blocks ofthe
same size in the downsampled image.

For all range blocksR in the hierarchical partition (leaf nodes
and inner nodes) and all corresponding codebook blocksD we
need to calculate the inner productshR;1i; hR;Ri; hR;Di; hD; 1i;hD;Di in order to compute the optimal (quantized) coefficientss,o, and the collage errorEc(D;R), see [11]. These computations
can be made efficient by making use of the hierarchical ordering
of the range blocks. We save some of the inner products in arrays
and reuse them for rapid inner product calculation for the range
block corresponding to the parent node in the hierarchy. To achieve
this with the minimum overhead of memory usage the computation
should be organized recursively so that temporary storage for ar-
rays of inner products is necessary only for a sequence of nodes on
a single path from the root node to a leaf node of the partitioning
tree.

In our first implementation presented here we use a very sim-
ple bit allocation scheme for a given range block, explainedhere
using the example of a 512� 512 grey scale image. In this case
the downsampled image is of size 256� 256 and storing a do-
main block address(xmin; ymin) costs 8 bits for thex- and y-
components each. The quantization of the offseto proceeds along
the improved method devised in [12]. Overall, we have the bit
allocation� 5 bits for the scaling coefficients,� 6 bits for the offseto,

� 16 bits for the domain block address.

If s = 0, then the range is approximated as a DC block and no
domain address is necessary. Thus, either 11 or 27 bits are used
per range block. For simplicity we do not use isometries in our
fractal coder.

3.3. Optimal tree pruning

For the optimal tree pruning with the generalized BFOS algorithm
we define two tree functionals for our application, the rater(�) =u1(�) and the distortiond(�) = u2(�) as follows.

The rate must include the bits for the block codes and the side
information for the partition. We can store the HV partitionusing
a tree traversal. At each node we specify with one bit whetherit
is an inner node or a leaf node. For an inner noden we also must
specify the way the corresponding rectangle is split, usingrsplit(n)
bits,rsplit(n) = � 1 + dlog2(width(n)� 3)e vertical split,1 + dlog2(height(n)� 3)e horizontal split.

The first bit indicates a horizontal or vertical split while the re-
maining bits are used to specify the split location relativeto the
upper left corner of the rectangle. Note that blocks have width and
height of at least 2 pixels.

We are now ready to apply the setting of the generalized BFOS
algorithm as explained in Section 2. LetT denote the initial parti-
tioning tree as obtained in Section 3.1. The rate associatedwith a
noden 2 T is r(n) = rcode(n) + rside(n)
wherercode(n) = 27 bits (11 bits, if the scaling factors = 0) and
the side informationrside(n) of the tree, charged to the noden, is
defined recursively byrside(n) = � 1; if n is the root node,1 + 12 (rside(n:p) + rsplit(n:p)); otherwise,

wheren:p 2 T denotes the parent node ofn 2 T . Then, for any
subtreeS � T we have that the total rater(S) =Xn2 ~S r(n)
precisely indicates the number of bits needed to store the corre-
sponding partition and the fractal code.

The distortion at noden 2 T is the collage errord(n) = Ec(R(n); D(n))
where(R(n); D(n)) denotes the range-domain pair correspond-
ing to the noden. For any subtreeS � T the total distortiond(S) =Xn2 ~S d(n)
is the overall collage error.

In order to apply the generalized BFOS algorithm we must en-
sure that our tree functionals are linear and monotonic. Both rate
and distortion are linear already by construction. Moreover, it can
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be shown that they are also monotonic.2 Therefore, the theory is
applicable, and optimal subtrees can be extracted with the general-
ized BFOS algorithm. As a result the corresponding partitions are
rate-distortion optimal for fractal encoding.

3.4. Greedy tree growing

As an alternative to the optimal hierarchical partitions weconsider
faster, but suboptimal, greedy tree growing strategies. They pro-
duce hierarchical HV partitions with a user given number of range
blocks. Two parameters are used:� a small tolerance for some block error estimate,� ,� a minimal linear block size,lmin.

For the error estimate we use either the traditional collageerror
for block R corresponding to the image rectangleR in the root-
mean-square versionqmink Ec(R;Dk)=jRj
or, much simpler and faster to compute, just the block varianceE(R)=jRj
of the corresponding rectangleR.

The procedure operates with a maximum heap of image rect-
anglesR. The heap is sorted w.r.t. rms collage error or block vari-
ance. Then we iteratively extract rectanglesR from the maximum
heap and process them as follows. Depending on the choice of
the type of greedy method (rms-error based or variance based), if
either qmink Ec(R;Dk)=jRj � � or E(R)=jRj � �
and max(width(R), height(R)) � 2lmin;
then we subdivide the rectangle as in Section 3.1 and insert the two
subrectangles into the heap. Otherwise, we output rectangleR. If
the sum of the number of rectangles already output and the number
of rectangles that are still in the heap is equal to the numberof
desired ranges, we output all rectangles in the heap and terminate
the partitioning procedure.

4. RESULTS

In this summary we only show the encoding results for one im-
age, 512� 512 Lenna, thus providing a proof of concept. For
the rate-distortion optimal encodings Table 1 below lists the com-
pression ratios, the way the bits are distributed between partition
code and transformation code, and the peak-signal-to-noise ratios.
In figure 1 we plot the corresponding rate-distortion curve along
with the ones obtained using the greedy methods above. When us-
ing the quadtree partitions we found earlier in [4] that the simpler
method based on block variance produces partitions that yield the
same quality encodings as the standard collage rms-error based
approach. For the hierarchical HV partitions, however, we see
from the results in this study that the greedy collage error based

2This may necessitate a technical modification at those few nodes of
the tree where both child ranges, encoded with only 11 bits asDC blocks,
require a combined rate that is less than that of the parent node where 27
bits are used for the transformation code.
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Figure 1: Rate distortion curve for 512� 512 image Lenna.

number comp. side infor- transf. code PSNR
ranges ratio mation (bits) size (bits) (dB)
10000 6.47 54865 269071 39.10
5000 12.65 31750 134004 36.07
4000 15.70 26571 107027 35.12
3000 20.76 20976 80022 33.89
2000 31.00 14889 52751 32.13
1000 61.43 8195 25942 29.43
500 123.78 4412 12531 27.05

Table 1: Encoding results with the optimal tree pruning technique
for the 512� 512 Lenna image.

partitioning method is better than the simpler one using theblock
variance threshold. However, the method developed in the paper,
based on the BFOS tree pruning algorithm outperforms both of
them. Of course, this outcome is to be expected due to the proven
optimality of the algorithm.

The HV coder of Fisher and Menlove in [8] uses the greedy
collage error based partitioning approach (not with the same split
strategy though). Their best result, obtained with all options turned
on, is of the same quality as the top curve in our graph. In our coder
we have not yet employed any entropy coding and the domain pool
searched is much smaller than the one used in the best result of [8].

The encoding time in the experiment reported here is large
(several hours for the entire rate-distortion curve) sincewe have
not made use of any complexity reduction techniques, which should
be adapted to the special requirements set in this application.

5. EXTENSIONS

While this work introduces the application of an optimalitycrite-
rion to the bit allocation for the partitioning, three further improve-
ments are currently being investigated.
Entropy coding of the side information. All components of the
side information can be made more efficient by considering con-
textual entropy coding. The bit which distinguishes inner nodes
from leaf nodes, for example, is highly dependent on the corre-
sponding range block size. The bit specifying a horizontal or ver-
tical split depends to some extent on the aspect ratio of the range
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block (a vertical split is more likely for a wide range, a horizon-
tal split more likely for a tall range). Also the split location for
a given range size has a strongly non-uniform probability distri-
bution which can be exploited by entropy coding. Most of these
modifications can be integrated, so that the reduced bit rates are
observed by the optimization technique. First tests indicate that
with such context-based adaptive arithmetic coding the side infor-
mation can be reduced to about 80% of the sizes reported in the
table above.
Variable length coding. Instead of fixed length encoding for range-
domain transformation, i.e., for the coefficientss; o and the do-
main block address, variable length codes can be considered. The
design of these codes can be organized so that an implementation
within the concept of optimal tree pruning is possible. The trees
then may contain sequences of unary nodes corresponding to range
block encodings with an increasing number of bits. (In fact,in the
implementation used here we already allow a crude variant ofsuch
variable length coding of a range block by considering coding it
the regular way, i.e., assD + o1, as well as a constant intensity
block, i.e., withs = 0 which saves some bits for the domain block
address.)
Other adaptive initial partitions. The splitting criterion for the
rectangular partitions, considered in this paper is only one possible
heuristic. Other splitting strategies as well as more adaptive parti-
tions can be tested. For example, the polygonal partition [9, 10] in
which the rectangular one is extended to allow also a split inthe
diagonal or anti-diagonal direction is straightforward toimplement
in the context of our optimal partitioning method describedhere.

6. CONCLUSION AND OUTLOOK

We have presented a framework for creating rate-distortionopti-
mal hierarchical partitions for fractal image compression. Even
though our implementation based on rectangular HV partitions is
crude, we reach the results of HV coding in [8]. We regard our
work as a contribution to a general solution of the optimal bit al-
location problem in fractal image compression. The goal of these
efforts is to allow widely varying bit rates for the pixels ofan im-
age not only considering many possible range block sizes butalso
by applying variable length codes for all components of the trans-
formation parameters (s; o, domain address) of each range block.
Even though the number of such possible fractal image codings
is huge, an overall rate-distortion optimal bit allocationby means
of the generalized BFOS algorithm is possible and should provide
additional coding gains.
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