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ABSTRACT

In fractal image compression a partitioning of the image és r
quired. In this paper we discuss the construction of rasedtion
optimal partitions. We begin with a fine scale partition whigives
a fractal encoding with a high bit rate and a low distortionh&
partition is hierarchical, thus, corresponds to a tree. \Wepboy a
pruning strategy based on the generalized BFOS algorittimex-l
tracts subtrees corresponding to partitions and fractat@ings
which are optimal in the rate-distortion sense. First résuhre
included for the case of fractal encodings based on rectmgu
(HV) partitions. We also provide a comparison with greedstipa
tions based on the traditional collage error criterion orsfuusing
block variance.

1. INTRODUCTION

One of the weaknesses of fractal image compression [1, B is i
lack of good bit allocation procedures. This issue is compiece

not only may each image block be encoded using a variable num-
ber of bits, but the blocks may also be of different sizes. @pnof

this there is side information specifying the underlyingge par-
tition, which also must be taken into account. This papeviges

a step towards a general solution for fractal image comymess
with hierarchical image partitions. Our work is a novel aggtion

of the generalized BFOS algorithm for optimal tree pruning.

This paragraph reviews the standard type of fractal image en
coding and introduces the notation used in this work. An im-
age is partitioned into several blocks, called range blodks a
range blockR we consider a pool of domain blocks twice the lin-
ear size. The domain blocks are shrunken by pixel averaging t
match the range block size. This gives a pool of codebookkbloc
D, ..., Dn,. ForrangeR and codebook block we let

(s,0) = arg min ||R — (sD + o1)|?
s,0ER

wherel is the flat block with unit intensity at every pixel. The co-
efficient s is clamped td—smax, Smax] With smax < 1 to ensure
convergence in the decoding and then botndo are uniformly
guantized yieldings anda. The collage error for rang& and
codebook blockD is E.(D,R) = ||R — (3D + o1)||>. Find-

ing a codebook bloclD,, with minimal collage erroiF. ( Dy, R)
yields an indexk. The fractal code for rang®& consists of this
optimal indexk (the domain block address) and the corresponding
guantized scaling and offset parameteesdo.

Finding the optimal partition at a given bit rate is a difficul
problem in fractal image compression since the space obati-p
tions with a given number of ranges is too large to allow t@sw
tigate all of them. Instead, heuristic methods must be dpesl in

order to arrive at a suboptimal solution. A number of sulsidn
types have been used: uniform, quadtree, rectangulamgtriar,
other polygonal, and irregular partitions.

Top-down versus bottom-up. Most of the methods can be
distinguished by the way the partition is generated. Thet cms-
mon approach is proceeding int@p-downdirection, i.e., larger
ranges are split into several smaller ones, which are siiojéar-
ther subdivision. On the other hand, one may start with a fine
partition (e.g., a uniform one consisting of small rangeckiy all
of the same size), and then iteratively merge some of theesatny
arrive at a collection of partitions of varying complexity.

Sear ching versus no searching. In addition we may clas-
sify methods with respect to whether fractal codes are geeer
already during the partitioning process or only afterwar@ne
common approach is to subdivide a range block only if an esti-
mate of the local approximation error for the range (i.ee, ¢bl-
lage error) is above some threshold. In contrast, one magrdes
a partition solely based on some segmentation methods frem i
age processing, thereby not searching for any range-daopadis
until the partition is complete. The advantage of this apphois
increased speed.

Of course, combinations of these categories are possible. F
example, one may design a quadtree partition in the top-dasin
ion with or without searching, and then start to merge pafrs o
neighboring range blocks.

Results of previous research [3] indicate that it is gemherait
advantageous in terms of rate-distortion performancedaterthe
partition without searching. However, in our work [4] we ceho
a somewhat different conclusion. In [4] we showed for thecide
case of quadtree partitions that one can indeed base th&ateci
whether or not to split a square entirely on image statigsize,
mean, and variance) without sacrificing rate-distortioalifqy

The method presented in this paper proceeds as follows.

Step 1. Top-down heuristic hierarchical partitioning witihsearch-
ing.

Step 2. Bottom-up merging of the ranges in optimal rateodiistn
sense.

The tool to achieve rate-distortion optimal partitions le t
generalized BFOS algorithm, which we review in the follog/in
section. In Section 3 we apply the method to fractal imagengpd
using rectangular (HV) partitions. An initial fine grainedrfition
is heuristically derived in Subsection 3.1, the fractalingds ex-
plained in Subsection 3.2, while the following subsectioakes
the connection with the BFOS algorithm with which we achieve
optimal pruned HV partitions. The last subsection presents
greedy suboptimal partitioning strategies. Section 4aastsim-
ulation results, and in the remainder of the paper we disexiss-
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sions of the method and conclusions.

2. OPTIMAL TREE PRUNING USING THE
GENERALIZED BFOSALGORITHM

The terminology and notation used in this section closelipfo
those in [5] where more details on the algorithm can be found.

Let 7 be a tree with root nodeg. A branch7,, of a treeT
is a subtree of rooted at a node such that the leaf nodes of the
subtree are also leaf nodes™of We say thasS is apruned subtree
of 7, and writeS < T if S is a subtree of with the same root
nodeng. A tree functionak: is a real function defined on the set
of all subtrees off".

The problem of optimal tree pruning consists of finding tie li
of pruned subtree§™ < 7 which minimize the Lagrangian cost
functional

u2(8S) + Aui(S)

whereu; andus denote two tree functionals (such as rate and
distortion) andX increases from 0 teo. Thus, any solutior§™
minimizes the tree functionak, over all pruned subtrees af
having the same or lower tree functional valugS*). WhenT
has a large number of nodes, solution by full search is intprac
cal. Fortunately, if we assume that the tree functionalsindus
are monotonic and linear, with; monotonically increasing and
uz monotonically decreasing, then the problem can be effigient
treated by the algorithm proposed by Chetual. [6, 5], which

is a generalization of the BFOS algorithm of Breiman, Friadm
Olshen, and Stone [7]. Here a tree functiond said to be mono-
tonically increasing (resp. monotonically decreasing) if

§'28=uS) <ulS) (resp.u(S') > u(S)),

and it is said to be linear if its value is given by the sum of its
values at the leaf nodes, that is, if

u(8) = Z u(n),

neS

whereS is the set of leaf nodes of the subt@e

Observe firstthat ifi(S) = (u1(S), u2(S)) denotes the point
with coordinatesu: (S) anduz(S), then the problem of optimal
tree pruning is equivalent to finding the point&S ™) on the lower
boundary of the convex hull of the set of all points corresjiog
to the pruned subtree® < 7. The generalized BFOS algorithm
finds the optimal subtrees associated to the extreme paiets (
tices)u(S;), ¢« = 1,...,m of the lower boundary of the convex
hull using the following two results (proofs are in [6]):

1. These optimal pruned subtrees are nested, th&,is=<
28 XS

2. Any pruned subtre&;, can be obtained fror§; by suc-
cessively pruningne singlebranch and the interim pruned

subtrees correspond to points on the segment connecting

u(S;) andu(S;+1). Thus the interim pruned subtrees are
also optimal.

Due to the monotonicity assumption we hag = ng andS: =
T. Thus, one starts from the whole trgeand proceeds by suc-
cessively pruning one branch unti} is reached. A pseudocode of
the generalized BFOS algorithm using an efficient data strads
given in [5].

The generalized BFOS algorithm has been successfully used
in many applications including tree-structured vectorrgization
[6] and optimal bit allocation. In this paper, we give thetfappli-
cation to fractal image compression.

3. IMPLEMENTATION OF OPTIMAL TREE PRUNING
FOR FRACTAL IMAGE COMPRESSION

Given a range block corresponding to an inner node in the-part
tion tree there are many different ways to split the block imto

or more subblocks corresponding to the child nodes of thengiv
inner node. The quadtree scheme is one of the simplest p®ssib
ways. Here we propose as an example of the optimal pruning al-
gorithm to use hierarchical partitions consisting of ragtas (HV
partitions, [8]). This choice is motivated by three reasons

1. Rectangular partitions have been shown to lead to betseits
than quadtrees, both in terms of rate-distortion perfocaamd
visual quality [8].

2. Generating the initial fine grained partition is compiataally
simple.

3. It allows a comparison with one of the best pure (i.e., non-
hybrid) fractal coding schemes, the HV coder [8] of Fisher.

3.1. Theinitial HV partition

In an HV partition a rectangular range block can be splitegith
horizontally or vertically into two smaller rectangles. Adision
about the split location has to be made. While [8] adopts a cri
terion based on edge location we follow [9, 10] and propose to
split a rectangle such that an approximation by its DC corapbn

in each part gives a minimal total square error. We expectdta
coding to produce relatively small collage errors with ttlimice
because

e approximation by the DC component alone (which is part of the
fractal encoding) will already give small sums of squaradmsr
by design of the splitting scheme, and

e for the approximation of the dynamic part of the range blocks
we have a larger part of the domain available, if the rangekblo
variances are low. This comes from the limitations of théisga
factor, |s| < Smax-

The details are as follows. We consider a digital image given
by a real-valued functiorf : R¢ — R, whereR, is a set of
integer pixel coordinateér, y) from a rectangular grid. For any
range blockR the set of pixel coordinateR can be written as

R = {$min; sy $v11ax} X {ymin; sy ymax}-

We define the sizgR|, the mean:(R), and the square err@f(R)
w.r.t. DC approximation:

‘R‘ - (-Tmax — Zmin + 1) . (ymax — Ymin + 1)
1
1(R) 0 (m%;Rf(z, y)
BR) = > (flz,y)— uR)
(z,y)ER

1The DC component of a block is defined here as the block whost pi
values are equal to the average intensity of the block.
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We define the vertical split of a rectangkeinto

{mmiru tery -”"Split} X {ymin7 tery ymax}v
{zspiit + 1, ooy Tmax} X {Ymin, -, Ymax}

Riett (T split)
Rright(-”"split)

such that the split positiansp; minimizes the square erréty ()
w.r.t. DC approximation, i.e.,

Tsplit = argz:z .minr 3 Ev(z),
Ev(z) = ERiet(z)) + E(Riight(z)).

In the same way we define a horizontal splityat= yspjit with
minimal square erroEx (yspiit). The rectangleR will be split
vertically atz = zgpiit, if Ev (zspit) < Er(yspiir). OtherwiseR
will be split horizontally aty = yspiit.

We also prescribe a minimal horizontal and vertical redeang
size of 2 pixels and proceed to recursively divide blockag las
possible. At the end we arrive at a hierarchical partitiowhich
all leaf nodes of the partition tree correspond to rangeKslaaf
size 2x 2,2 x 3,3 x 2, and 3x 3 pixels.

In addition one can multiply the square errds (z) and
Ex (x) with a bias functionB(z) in order to penalize a split that
results in very thin or very flat rectangles. We use a function
B(t* + 1), wheret goes from—1 to 1 asz runs fromz i, to
Lmax — 1, and/B =0.4.

3.2. Encoding arange block

Given arange blocR we wish to approximate it bjf ~ sD +o01
whereD is a codebook block of the same size. Our codebooks are
provided in a very simple way:

e by pixel averaging we downsample the original image by afact
of 2, and

o for a given range blocR we define the corresponding codebook
as the set of all vectors obtained from all possible blockhef
same size in the downsampled image.

For all range blockgR in the hierarchical partition (leaf nodes
and inner nodes) and all corresponding codebook bloBksve
need to calculate the inner produ¢i, 1), (R, R), (R, D), (D, 1),
(D, D) in order to compute the optimal (quantized) coefficients
o0, and the collage erraf. (D, R), see [11]. These computations
can be made efficient by making use of the hierarchical anderi
of the range blocks. We save some of the inner products igaarra
and reuse them for rapid inner product calculation for theyea
block corresponding to the parent node in the hierarchychiese
this with the minimum overhead of memory usage the comprtati
should be organized recursively so that temporary storagarf
rays of inner products is necessary only for a sequence &l
a single path from the root node to a leaf node of the partiimpn
tree.

In our first implementation presented here we use a very sim-
ple bit allocation scheme for a given range block, explaihece
using the example of a 512 512 grey scale image. In this case
the downsampled image is of size 256256 and storing a do-
main block addres$zmin, ymin) cOsts 8 bits for ther- and y-
components each. The quantization of the oftsptoceeds along
the improved method devised in [12]. Overall, we have the bit
allocation

¢ 5 bits for the scaling coefficiefs,
e 6 bits for the offseb,

e 16 bits for the domain block address.

If 5 = 0, then the range is approximated as a DC block and no
domain address is necessary. Thus, either 11 or 27 bits ack us
per range block. For simplicity we do not use isometries in ou
fractal coder.

3.3. Optimal treepruning

For the optimal tree pruning with the generalized BFOS atlgor
we define two tree functionals for our application, the ngt¢ =
u1(-) and the distortiorl(-) = u»(-) as follows.
The rate must include the bits for the block codes and the side
information for the partition. We can store the HV partitiasing
a tree traversal. At each node we specify with one bit whether
is an inner node or a leaf node. For an inner nadee also must
specify the way the corresponding rectangle is split, usigg(n)
bits,

1 + [log, (width(n) — 3)]
1 + [log, (heigh(n) — 3)]

vertical split,
rspiit(n) = { horizontal split.
The first bit indicates a horizontal or vertical split whileetre-
maining bits are used to specify the split location relativehe
upper left corner of the rectangle. Note that blocks havetwaaid
height of at least 2 pixels.

We are now ready to apply the setting of the generalized BFOS
algorithm as explained in Section 2. LEtdenote the initial parti-
tioning tree as obtained in Section 3.1. The rate assocvaitaca
noden € T is

7(n) = reoddn) + T'sige(n)

wherercogdn) = 27 bits (11 bits, if the scaling factor = 0) and
the side informationgijge(n) of the tree, charged to the nodeis
defined recursively by

reige(n) = 1, if nis the root node,

sid 1+ 3 (rsige(n-p) + rspiit(n-p)), otherwise,
wheren.p € T denotes the parent nodewfe 7. Then, for any
subtreeS < T we have that the total rate

r(8) =Y r(n)

precisely indicates the number of bits needed to store the-co
sponding partition and the fractal code.
The distortion at node € 7 is the collage error

d(n) = E.(R(n), D(n))

where (R (n), D(n)) denotes the range-domain pair correspond-
ing to the node:. For any subtre& < 7 the total distortion

d(S) =" d(n)

nes

is the overall collage error.

In order to apply the generalized BFOS algorithm we must en-
sure that our tree functionals are linear and monotonich Bate
and distortion are linear already by construction. Moreovean
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be shown that they are also monotohi@herefore, the theory is
applicable, and optimal subtrees can be extracted withehergl-
ized BFOS algorithm. As a result the corresponding partitiare
rate-distortion optimal for fractal encoding.

3.4. Greedy treegrowing

As an alternative to the optimal hierarchical partitionscwasider
faster, but suboptimal, greedy tree growing strategiesyTro-
duce hierarchical HV partitions with a user given numberaofge
blocks. Two parameters are used:

e a small tolerance for some block error estimate,
e a minimal linear block siz€,nin.

For the error estimate we use either the traditional cokaga
for block R corresponding to the image rectangtein the root-
mean-square version

Vm,jn E.(R, Dy)/IR]|
or, much simpler and faster to compute, just the block vagan
E(R)/IR|

of the corresponding rectangfe.

The procedure operates with a maximum heap of image rect-
anglesR. The heap is sorted w.r.t. rms collage error or block vari-
ance. Then we iteratively extract rectangie$rom the maximum

heap and process them as follows. Depending on the choice of

the type of greedy method (rms-error based or variance pased
either

\/mkinEC(R, Dy)/|R| > 7 of B(R)/|R| > r

and
max(width(R), heigh{R)) > 2l.nin,

then we subdivide the rectangle as in Section 3.1 and ifsetiwo
subrectangles into the heap. Otherwise, we output reddglf
the sum of the number of rectangles already output and thb@um
of rectangles that are still in the heap is equal to the nurober
desired ranges, we output all rectangles in the heap andhizen
the partitioning procedure.

4. RESULTS

In this summary we only show the encoding results for one im-
age, 512x 512 Lenna, thus providing a proof of concept. For
the rate-distortion optimal encodings Table 1 below lisess¢om-
pression ratios, the way the bits are distributed betweetitipa
code and transformation code, and the peak-signal-tematfos.

In figure 1 we plot the corresponding rate-distortion curl@g
with the ones obtained using the greedy methods above. When u
ing the quadtree partitions we found earlier in [4] that timepder
method based on block variance produces partitions thit tfie
same quality encodings as the standard collage rms-ersadba
approach. For the hierarchical HV partitions, however, we s
from the results in this study that the greedy collage eresred

2This may necessitate a technical modification at those feteniof
the tree where both child ranges, encoded with only 11 biBGsblocks,
require a combined rate that is less than that of the parete nere 27
bits are used for the transformation code.
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Figure 1: Rate distortion curve for 522512 image Lenna.

number | comp. | sideinfor- | transf. code| PSNR
ranges | ratio | mation (bits)| size (bits) | (dB)
10000 | 6.47 54865 269071 39.10
5000 12.65 31750 134004 36.07
4000 15.70 26571 107027 35.12
3000 20.76 20976 80022 33.89
2000 | 31.00 14889 52751 32.13
1000 61.43 8195 25942 29.43
500 123.78 4412 12531 27.05

Table 1: Encoding results with the optimal tree pruning téghe
for the 512x 512 Lenna image.

partitioning method is better than the simpler one usingbtbek
variance threshold. However, the method developed in tperpa
based on the BFOS tree pruning algorithm outperforms both of
them. Of course, this outcome is to be expected due to theprov
optimality of the algorithm.

The HV coder of Fisher and Menlove in [8] uses the greedy
collage error based partitioning approach (not with theesapiit
strategy though). Their best result, obtained with all@mgiturned
on, is of the same quality as the top curve in our graph. In odec
we have not yet employed any entropy coding and the domaih poo
searched is much smaller than the one used in the best reg]lt o

The encoding time in the experiment reported here is large
(several hours for the entire rate-distortion curve) siweehave
not made use of any complexity reduction techniques, whiohlsl
be adapted to the special requirements set in this apjlicati

5. EXTENSIONS

While this work introduces the application of an optimalityte-
rion to the bit allocation for the partitioning, three fuetimprove-
ments are currently being investigated.

Entropy coding of the side information. All components of the
side information can be made more efficient by considering co
textual entropy coding. The bit which distinguishes innedes
from leaf nodes, for example, is highly dependent on theeecorr
sponding range block size. The bit specifying a horizontales-
tical split depends to some extent on the aspect ratio ofahger
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block (a vertical split is more likely for a wide range, a tzonm-
tal split more likely for a tall range). Also the split locati for
a given range size has a strongly non-uniform probabilistrii
bution which can be exploited by entropy coding. Most of éhes
modifications can be integrated, so that the reduced bis e
observed by the optimization technique. First tests indithat
with such context-based adaptive arithmetic coding the isifibr-

mation can be reduced to about 80% of the sizes reported in thel5]

table above.

Variablelength coding. Instead of fixed length encoding for range-
domain transformation, i.e., for the coefficient and the do-
main block address, variable length codes can be consid&hed
design of these codes can be organized so that an implementat
within the concept of optimal tree pruning is possible. Tiee$
then may contain sequences of unary nodes correspondiagge r
block encodings with an increasing number of bits. (In facthe
implementation used here we already allow a crude variasuict
variable length coding of a range block by considering cgdin
the regular way, i.e., a&D + o1, as well as a constant intensity
block, i.e., withs = 0 which saves some bits for the domain block
address.)

Other adaptive initial partitions. The splitting criterion for the
rectangular partitions, considered in this paper is on/possible
heuristic. Other splitting strategies as well as more adajparti-
tions can be tested. For example, the polygonal partitiopa@Pin
which the rectangular one is extended to allow also a splihén
diagonal or anti-diagonal direction is straightforwardplement

in the context of our optimal partitioning method descrilbede.

6. CONCLUSION AND OUTLOOK

We have presented a framework for creating rate-distodiuti
mal hierarchical partitions for fractal image compressidtven
though our implementation based on rectangular HV panttis
crude, we reach the results of HV coding in [8]. We regard our
work as a contribution to a general solution of the optimakibi
location problem in fractal image compression. The goahesé
efforts is to allow widely varying bit rates for the pixels af im-
age not only considering many possible range block sizealbat
by applying variable length codes for all components of thag-
formation parameters;(o, domain address) of each range block.
Even though the number of such possible fractal image csding
is huge, an overall rate-distortion optimal bit allocatlpnmeans

of the generalized BFOS algorithm is possible and shouldigeo
additional coding gains.
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