
The Directed Steiner Network problem is tractable for a constant
number of terminals

Jon Feldman∗ Matthias Ruhl†

MIT Laboratory for Computer Science
Cambridge, MA 02139, USA

Abstract

We consider theDIRECTED STEINER NETWORK prob-
lem, also called thePOINT-TO-POINT CONNECTION

problem, where given a directed graph G and p pairs
{(s1, t1), . . . ,(sp, tp)} of nodes in the graph, one has to find
the smallest subgraph H of G that contains paths from si to
ti for all i. The problem is NP-hard for general p, since the
DIRECTED STEINER TREEproblem is a special case. Until
now, the complexity was unknown for constant p≥ 3.

We prove that the problem is polynomially solvable if p
is any constant number, even if nodes and edges in G are
weighted and the goal is to minimize the total weight of the
subgraph H.

In addition, we give an efficient algorithm for the
STRONGLY CONNECTED STEINER SUBGRAPH problem
for any constant p, where given a directed graph and p
nodes in the graph, one has to compute the smallest strongly
connected subgraph containing the p nodes.

1. Introduction

In this paper we address one of the most general Steiner
problems, the DIRECTED STEINER NETWORK problem,
also called the POINT-TO-POINT CONNECTION problem.

DIRECTED STEINER NETWORK (p-DSN): Given a di-
rected graphG = (V,E), andp pairs of nodes in the graph
{(s1, t1), . . . ,(sp, tp)}, find the smallest subgraphH of G
that contains paths fromsi to ti for 1≤ i ≤ p.

According to how ‘smallest’ is defined, there are sev-
eral variations of this problem. In this paper, ‘smallest’
will mean ‘minimum number of nodes’. Other possibili-
ties are ‘minimum number of edges’ or ‘smallest cost’ ifG

∗E-Mail: jonfeld@theory.lcs.mit.edu
†E-Mail: ruhl@theory.lcs.mit.edu

is a graph with node and edge costs. We extend our results
to these variations at the end of the paper.

The DSN problem occurs naturally when designing net-
works delivering goods from sources to destinations, where
an underlying network is present, but its services have to be
paid for. For example, the graphG could be a set of inter-
net routers, where edges are connections between routers.
Suppose that a bank needs to send secure data over the net-
work from sourcessi to destinationsti . But to transmit their
data securely, the routers used in the transmissions have to
be upgraded, which is expensive. The bank naturally wants
to minimize the number of routers to upgrade.

Just like the original STEINER TREE problem [6], DSN
is NP-complete if the number of pairsp is part of the in-
put. For constantp, on the other hand, its complexity was
mostly unknown so far. The casep = 1 is just a shortest
path query, and forp = 2 the problem was solved in 1992
by Li, McCormick and Simchi-Levi [8]. They state the case
p≥ 3 as an open problem.

Our Contribution In this paper, we give a polynomial
time algorithm for any constantp, and therefore resolve
this open problem. More precisely, the running time is
O(mn4p−2 +n4p−1 logn), wheren = |V| andm= |E|.

Our algorithm for p-DSN can best be understood in
terms of a game, where a player moves tokens around the
graph. Initially, p tokens are placed on the starting nodes
s1, . . . ,sp, one token per node. The player is then allowed to
make certain types of moves with the tokens, and his goal is
to perform a series of these moves to get the tokens to their
respective destinationst1, . . . , tp (the token froms1 to t1, the
token froms2 to t2, etc).

Every possible move has a cost associated with it: the
number of nodes that are visited by the moving tokens. We
define the moves carefully so that the lowest cost move se-
quence to get the tokens froms1, . . . ,sp to t1, . . . , tp will visit
exactly the nodes of the optimal subgraphH. The difficulty
of the construction is to ensure that such a sequence exists
for every optimalH. For p = 2 this is easy to do, since

the two involved paths can only share vertices in a very re-
stricted manner. However forp≥ 3 the relationships be-
tween the paths become significantly more complex. Crit-
ical to our argument is a structural lemma analyzing how
these paths may overlap.

We find that most of the difficulty ofp-DSN is con-
tained in the special case whenti = si+1 for 1≤ i < p, and
tp = s1. It is not hard to see that every optimal solutionH
to this special case must be a strongly connected subgraph.
This problem is therefore equivalent to the STRONGLY

CONNECTED STEINER SUBGRAPH problem, defined as
follows.

STRONGLY CONNECTED STEINER SUBGRAPH (p-
SCSS): Given a directed graphG = (V,E), andp vertices
{s1, . . . ,sp} in V, find the smallest strongly connected
subgraphH of G that containss1, . . . ,sp.

We give an algorithm forp-SCSS that runs in time
O(mn2p−3 + n2p−2 logn), for any constantp, which makes
use of a token game similar to the one mentioned above.

Related Work There are many related Steiner problems
that are well-studied, most of them for undirected graphs.
For a monograph on the subject, see [7].

The only previously known polynomial-time algorithm
for p-DSN with constantp, except for the trivial casep= 1,
was the one given by Li, McCormick and Simchi-Levi [8]
for p = 2. The running time of their algorithm isO(n5).
Natu and Fang in [9] and [10] improved this running time
first toO(n4), and then toO(mn+n2 logn). In [10] they also
present an algorithm forp = 3, and conjecture that a variant
for their algorithm works for all constantp. In Appendix A
we provide what we believe to be a counterexample to the
correctness of their algorithm forp = 3, and thus to their
conjecture.

There is strong evidence thatp-DSN is not fixed-
parameter tractable, i.e. there is no algorithm with a run-
ning time ofO(nk) for some constantk independent of the
parameterp. This follows from results proved for the ‘W-
hierarchy’ defined by Downey and Fellows [3], where it was
shown that DIRECTED STEINER TREE is W[2]-hard.

Thep-DSN problem becomes much harder if theppaths
between thesi and ti are required to be edge-disjoint (or
node-disjoint). Under that restriction, the problem is NP-
complete already forp = 2 [4]. More precisely, it is NP-
hard even to determine whetheranyfeasible solutionH ex-
ists.

Other recent work has centered on the approximability
of p-DSN for generalp. The best positive result obtained
so far is by Charikar et al [1], who achieve an approxi-
mation ratio ofO(p2/3 log1/3 p) for any p. They also give
an approximation algorithm forp-SCSS for generalp that

1x

5s

s4
s3

s2

2

3 4 5

6

7

8

9

x x

x

xx x

x

x

s1

Figure 1. A sample graph

achieves an approximation ratio of 2i(i−1)p1/i and runs in
time O(ni p2i). On the negative side, Dodis and Khanna [2]
prove thatp-DSN isΩ(2log1−ε p)-hard.

Overview In section 2, we give a simple algorithm that
solves p-SCSS forp = 2, while also defining the token
game in more detail. We generalize this approach to any
constantp and state the algorithm solvingp-SCSS in sec-
tion 3. The correctness proof is given in sections 4 and 5.

Using the algorithm forp-SCSS, we then in section 6
give the algorithm for thep-DSN problem and prove its
correctness. We conclude the paper by summarizing our
results and discussing possible future research directions in
section 7.

2. A Solution for 2-SCSS

We begin by solving 2-SCSS, the problem of finding a
minimum strongly connected subgraphH of a graphG =
(V,E) that includes two specified nodess1 ands2. This is
equivalent to finding the smallestH that contains paths from
s1 to s2 and froms2 to s1. Considering this simple problem
allows us to introduce the notation and methodology used
in the following sections. The algorithm described here is
similar to the one given by Natu and Fang [10].

Figure 1 illustrates some of the difficulties of this prob-
lem. Let s1, s2 be our terminals. The optimal subgraph
consists of the six nodess1,x6,x7,x8,x9,s2. The paths from
s1 to s2 ands2 to s1 share vertexx6, and share the vertex
sequencex7→ x8→ x9. Note that the optimal subgraph in-
cludes neither the shortest path froms1 to s2, nor the short-
est path froms2 to s1.

2.1. The token game

To compute the optimal subgraphH, we will place two
tokens, calledf and b, on vertexs1. We then move the
tokens along edges,f moving forward along edges, andb
moving backwards along edges, until they both reachs2.

Then the set of nodes visited during the sequence of moves
will contain pathss1 s2 ands2 s1.

To find the smallest subgraphH containing those paths,
we will charge for the moves. The cost of a move will be
the number of new vertices entered by the tokens during
that move. The lowest cost move sequence to get the tokens
from s1 to s2 then corresponds to the optimal solution.

The three kinds of moves we allow are given below.
The notation〈x,y〉 refers to the situation where tokenf is
on vertexx, and tokenb is on vertexy. The expression
“〈x1,y1〉

c→ 〈x2,y2〉” means that it is legal to move tokenf
from x1 to x2, and tokenb from y1 to y2 (at the same time),
and that this move has costc. We want to find a move se-
quence from〈s1,s1〉 to 〈s2,s2〉 with minimal cost.

(i) Token f moving forward:For every edge(u,v) ∈ E
and allx∈V, we allow

(a) the move〈u,x〉 1→ 〈v,x〉, and

(b) the move〈u,v〉 0→ 〈v,v〉.

(ii) Token b moving backward:For every edge(u,v) ∈ E
and allx∈V, we allow

(a) the move〈x,v〉 1→ 〈x,u〉, and

(b) the move〈u,v〉 0→ 〈u,u〉.

(iii) Tokens switching places:For every pair of vertices
a,b∈V for which there is a path froma to b in G, we
allow the move〈a,b〉 c→ 〈b,a〉, wherec is the length
of the shortest path froma to b in G. By length we
mean the number of vertices besidesa andb on that
path.

Type (i) and (ii) moves allow the tokensf andb to move
forward along a single edge, and backward along an edge,
respectively. Usually the cost is 1, accounting for the new
vertex that the token visits. Only in the case where a token
reaches a vertex with a token already on it, the cost is 0,
since no ‘new’ vertices are visited.

Type (iii) moves allow the two tokens to switch places.
We call this type of move a “flip”, and say that the vertices
on the shortest path froma to b are implicitly traversed by
the tokens. The costc of the move accounts for all of these
vertices.

Let us return to the example in figure 1 to see how these
moves are used. The lowest cost way to move both tokens
from s1 to s2 is the following (we use subscripts to denote
the type of the move).

〈s1,s1〉
1→
(i)
〈x6,s1〉

0→
(ii)
〈x6,x6〉

1→
(i)
〈x7,x6〉

1→
(ii)
〈x7,x9〉

1→
(iii)
〈x9,x7〉

1→
(ii)
〈x9,s2〉

0→
(i)
〈s2,s2〉

The weight of this sequence is 5, which is|H|−1. The
difference by one is due to the fact that we never pay for
enterings1.

2.2. The Algorithm

Let us phrase the preceeding discussion in an algorithmic
form. To computeH, we first construct a ‘game-graph’̃G.
The nodes of the graph correspond to token positions〈x,y〉,
the edges to legal moves between positions. In our case, the
nodes are justV×V, and the edges are the ones given above
as legal moves. Clearly, this game-graph can be computed
in polynomial time.

FindingH is done by computing a lowest cost path from
〈s1,s1〉 to 〈s2,s2〉 in G̃. The graphH then consists of all the
vertices fromV that are mentioned along that path, includ-
ing the vertices that are implied by type (iii) moves.

2.3. Correctness

The proof that our algorithm actually solves 2-SCSS can
be split into two claims. We just provide the essential ideas
behind the proof, and refer the reader to section 4 for the
general case, or to [9, 10] for an alternative proof for the
p = 2 case.

Claim 2.1
If there is a legal move sequence from 〈s1,s1〉 to 〈s2,s2〉
with cost c, then there is a subgraph H of G of size ≤ c+ 1
that contains paths s1 s2, and s2 s1.

This is easy to see. If we follow a move sequence from
〈s1,s1〉 to 〈s2,s2〉, then f andb trace out pathss1 s2 and
s2 s1. Moreover the tokens traverse at mostc+1 vertices,
since we pay for each vertex (excepts1) that we visit.

Claim 2.2
Let H∗ be an optimal subgraph containing paths s1 s2 and
s2 s1. Then there exists a move sequence from 〈s1,s1〉 to
〈s2,s2〉 with total cost |H∗|−1.

This is the more difficult part of the correctness proof.
We can prove it by actually constructing a move sequence
〈s1,s1〉 〈s2,s2〉, that visits every vertex inH∗ only once.
The key idea here is that if we fix two pathss1 s2 and
s2 s1 in H∗, then wlog, they share vertices only in a
very restricted manner. They may share several disjoint se-
quences of vertices, but these sequences occur in reverse
order on the two paths (see figure 2). This is because if two
segments occur in the same order, they can be merged by
making the paths the same between the two segments.

So to construct the move sequence, we move both tokens
using type (i) and (ii) moves until they reach a shared seg-
ment on the paths. In figure 2, tokenf will reach vertexx,

x ys1 s2

Figure 2. Pathss1 s2 ands2 s1 sharing sequences of
vertices. The straight horizontal line froms1 to s2 gives the
paths1 s2, the round segments are part ofs2→ s1. The
bold lines are sequences shared by both paths. They occur
in opposite order on the two paths.

and tokenb – moving backwards – will reach vertexy. Now
we can apply a type (iii) move to exchange the two tokens,
and count the vertices in the shared segment only once. We
can then continue to use type (i) and (ii) moves until we hit
the next shared segment, and so on, until both tokens reach
s2.

The token movements forp≥ 3 will be much more in-
volved, since the paths can share vertices in more complex
ways.

3. Strongly Connected Steiner Subgraphs

In this section we give an algorithm forp-SCSS, which
is a generalization of the algorithm for 2-SCSS given in the
previous section.

Again we will use token movements to trace out the so-
lution H. The way the tokens move is motivated by the
following observation. Consider any strongly connectedH
containing{s1, . . . ,sp}. ThisH will contain paths from each
s1, . . . ,sp−1 to sp, and these paths can be chosen to form a
tree rooted atsp; we will call this tree theforward tree. The
graphH will also contain paths fromsp to eachs1, . . . ,sp−1,
forming what we call thebackward tree. Moreover, every
H that is the union of two such trees is a feasible solution
to our p-SCSS instance. Note that for 2-SCSS these two
trees were just single paths.

For ease of notation, we setq := p−1 for the remainder
of this section and the next section, and letr := sp, assp

plays the special role of ‘root’ in the two trees.

3.1. Token moves forp-SCSS

To trace out the two trees, we will haveq “F-tokens”
moving forward along edges in the forward tree from
{s1, . . . ,sq} to r, andq “B-tokens” moving backward along
edges from{s1, . . . ,sq} to r. Given a set of legal moves,
we will again look for the lowest cost move sequence that
moves all tokens tor. This will then correspond to the

���
������
���
������ ������

���
������
���

����������
�����
������
���������

���
������
��� 	�		�	
	�	

�

�

�

���
������
������
���

�

�

�

���
������

������
���
���
������

f br

F’
F’ B’ F’

B’

Figure 3. Flipping f andb, with tokens F’ and B’ that
need to be “picked up.” The black nodes are the setM.

smallest subgraph containing pathssi r and r si for
all i ≤ q, which is the graph we are looking for.

Since both sets of tokens trace out a tree, once two tokens
of the same kind reach a vertex, they will travel the same
way to the root. In that case, we will simply merge them into
one token. It is therefore enough to describe the positions
of the tokens by a pair of sets〈F,B〉, whereF andB are the
sets of nodes currently occupied by the F- and B-tokens.

Again, we have three types of legal token moves. Type
(i) moves correspond to F-tokens moving forward along an
edge, and type (ii) moves correspond to B-tokens moving
backward along an edge. We do not charge for entering a
vertex if another token is already on it.

For any setS, let Pk(S) be the set of subsets ofSof size
at mostk.

(i) Single moves for F-tokens:For every edge(u,v) ∈ E,
and all token setsF ∈ Pq−1(V \ {u}), B∈ Pq(V), the
following is a legal move:

〈F ∪{u},B〉 c→ 〈F ∪{v},B〉

where the costc of the move is 1 ifv 6∈ F ∪B, and 0
otherwise.

(ii) Single moves for B-tokens:For every edge(u,v) ∈ E,
and all token setsF ∈ Pq(V), B∈ Pq−1(V \ {v}), the
following is a legal move:

〈F,B∪{v}〉 c→ 〈F,B∪{u}〉

where the costc of the move is 1 ifu 6∈ F ∪B, and 0
otherwise.

Type (iii) moves allow tokens to pass each other, similar
to the type (iii) moves in the previous section, except that
this time the “flip” is more complex (see figure 3). We have
two ‘outer’ tokens,f andb, trying to pass each other. Be-
tween f andb there are other F-tokens moving forward and
trying to passb, and B-tokens moving backward and trying
to passf . These tokens, sitting on node setsF ′ andB′, are
‘picked up’ during the flip.

(iii) Flipping: For every pair of verticesf ,b, vertex setsF ,
B, F ′ ⊂ F , B′ ⊂ B, such that:

• there is a path inG from f b going through all
vertices inF ′∪B′

• F ∈ Pq−1(V \{ f ,b})
• B∈ Pq−1(V \{ f ,b})

the following is a legal token move:

〈F ∪{ f},B∪{b}〉 |M|→ 〈(F \F ′)∪{b},(B\B′)∪{ f}〉

whereM is the set of vertices on a shortest path fromf
to b in G going through all vertices inF ′∪B′, besides
f ,b and the vertices inF ′∪B′.

3.2. The algorithm for p-SCSS

We can now state the algorithm forp-SCSS:

1. Construct a game-graph̃G = (Ṽ, Ẽ) from G = (V,E).
SetṼ := Pq(V)×Pq(V), the possible positions of the
token sets, and̃E := all legal token moves defined
above.

2. Find a shortest path P in G̃ from
〈{s1, . . . ,sq},{s1, . . . ,sq}〉 to 〈{r},{r}〉.

3. LetH be the union of{s1, . . . ,sq, r} and all nodes given
by P (including those in setsM for type (iii) moves).

The difficult part of constructing the game-graph̃G is
computing the costs for the type (iii) moves that flipf and
b. We do not require that the shortest path fromf to b going
through all vertices inF ′ ∪B′ be simple. Since the num-
ber of tokens inF ′ ∪B′ is bounded by 2(q−1), which is a
constant, we can compute this path in polynomial time by
simply trying all possible sequences of the nodes inF ′∪B′,
and computing shortest paths along the sequence. For more
details on the running time, see appendix B.

3.3. Example

As an example we look at how the algorithm works
on the graph in figure 1, where now our terminals are
s1,s2,s3,s4,s5. The optimal solution is the node set
{s1,s2,s3,s4,s5,x1,x2,x3,x4,x5}. The following is a se-
quence of lowest cost moves for this graph:

〈{s1,s2,s3,s4},{s1,s2,s3,s4}〉
1→
(i)
〈{s1,s2,s3,x3},{s1,s2,s3,s4}〉

0→
(ii)
〈{s1,s2,s3,x3},{s1,s2,s3}〉

2→
(iii)
〈{s2},{x3}〉

1→
(i)
〈{x5},{x3}〉

1→
(ii)
〈{x5},{x4}〉

0→
(iii)
〈{x4},{x5}〉

1→
(i)
〈{s5},{x5}〉

0→
(ii)
〈{s5},{s5}〉.

The total cost of the moves is 6, and therefore equal to
|H| − q = 10− 4 = 6, as expected. The solution is made
up of the terminals{s1,s2,s3,s4,s5}, the nodes{x3,x4,x5}
mentioned in the sequence of moves, and the nodes{x1,x2}
in the setM for the first type (iii) move.

4. Correctness of thep-SCSSalgorithm

The correctness proof for ourp-SCSS algorithm can be
split into the same two parts we used for 2-SCSS.

Lemma 4.1
Suppose there is a move sequence from
〈{s1, . . . ,sq},{s1, . . . ,sq}〉 to 〈{r},{r}〉 with total cost
c. Then there exists a solution H to this p-SCSSinstance
of size ≤ c+ q. Moreover, given the move sequence, it is
easy to construct such an H.

Proof: This follows directly from the definition of the
moves. The cost of any move sequence is an upper bound
on the number of vertices traversed by that sequence.
Given the constructive nature of the moves, it is also easy
to actually findH. �

Together with the following, much more involved
lemma, the correctness of the algorithm is proved.

Lemma 4.2
Suppose H∗ = (V∗,E∗) is any minimum cardinality fea-
sible solution. Then there is a move sequence from
〈{s1, . . . ,sq},{s1, . . . ,sq}〉 to 〈{r},{r}〉with weight equal to
|H∗|−q.

Proof: To prove this lemma, we will effectively construct
such a move sequence, where all intermediate positions of
the tokens will be inH∗.

When moving the F- and B-tokens from{s1, . . . ,sq} to
r, we ‘pay’ each time we reach a new vertex. In order to
achieve total cost|H∗|−q we must make sure that we pay
only once for each vertex. To ensure this, we enforce one
rule: after a token moves off a vertex, no other token will
ever move to that vertex again. We say that a vertex be-
comes ‘dead’ once a token moves from it, so that tokens are
only allowed to move to vertices that are ‘alive’. This also
makes sure that our move sequence will be finite, since no
token can return to a vertex it has already visited. Note that
the notion of dead and alive vertices is only used for the
analysis, the algorithm itself never explicitly keeps track of
them.

We will construct our move sequence in a greedy fash-
ion. That is, we will move tokens towardsr using type
(i) and (ii) moves, until each token sits on a vertex that is
needed by some other token to get tor. In this case we can-
not apply any more type (i) or (ii) moves – doing so would

leave another token stranded as it is not allowed to move
onto the then dead vertex.

In this case we need to use a type (iii) move to resolve the
deadlock. Showing that this is always possible is the core
of the correctness proof, the ‘flip lemma’ shown in section
5. To state this lemma and see how it implies the correct-
ness of the algorithm, we have to introduce some additional
notation.

We say that a tokent requiresa vertexv ∈ V∗ if all le-
gal paths fort to get tor pass throughv. By ‘legal paths’
we mean paths that are withinH∗, go in the appropriate
direction for the tokent, and do not include any dead ver-
tices. We will sometimes speak of tokens requiring tokens;
in this case we mean that the first token requires the vertex
on which the second token is sitting. Note that the require-
ment relation among tokens moving in the same direction
is transitive, i.e. iff1 requiresf2, and f2 requiresx, then f1
also requiresx.

Let the ‘F0-tokens’ be the F-tokens that are not required
by any other F-token. Similarly, let the ‘B0-tokens’ be the
B-tokens that are not required by any other B-token.

Lemma 4.3 (The Flip Lemma)
Suppose every token is required by some other token. Then
there is an F0-token f and a B0-token b such that

• f requires b, and no other F0-token requires b,

• b requires f , and no other B0-token requires f . �

We will prove this lemma in the next section. Let us now
see how it concludes the proof of Lemma 4.2.

Let f andb be chosen according to the Flip Lemma. Fix
any pathP from f to b that uses only live vertices. For all
verticesx on the pathP, every pathx r must includeb,
otherwisef could move tox, and then tor, without visiting
b.

Suppose some F-tokenf ′ 6= f requires a vertex onP, and
therefore by transitivity also requiresb. The tokenf ′ can-
not be anF0-token, since the Flip Lemma tells us thatf is
the onlyF0-token that requiresb. Note that due to transi-
tivity, every F-token is either anF0-token, or required by
someF0-token, so f ′ must be required by someF0 token
f ′′. By transitivity, f ′′ requiresb, and sof ′′ = f , by the Flip
Lemma. The tokenf ′ must therefore be onP. In summary,
all F-tokens are either onP, or do not require any vertex on
P. By symmetry, the same applies to B-tokens.

Let F ′ be the set of F-tokens that are on the pathP, and
B′ be the set of B-tokens onP. We can apply a type (iii)
move that switchesf andb, and picks upF ′ andB′ along
the way. All vertices onP become dead, but no token is
stranded.

This proves that we can always continue the construction
of our move sequence until all tokens reachr. �

5. The Flip Lemma

Proof of Lemma 4.3 (The Flip Lemma): Let Greq =
(Vreq,Ereq) be a new directed graph, whose nodes are the
F0 andB0-tokens. The edges inEreq correspond to require-
ments:Greq has an edgex→ y iff the tokenx requires the
tokeny.

By assumption (every token is required by some other
token) and by definition (anF0-token is not required by
any F-token), we know that everyF0-token is required by
at least one B-token. We know that either that B-token is a
B0-token, or there is anotherB0-token that requires that B-
token. Therefore, by transitivity, everyF0-token is required
by at least oneB0-token. By symmetry, everyB0-token is
required by at least oneF0-token. Thus, every node inGreq

has at least one incoming edge.Greq is also bipartite, since
no twoF0-tokens (and no twoB0-tokens) require each other.

We can viewGreq as a dag (directed acyclic graph) of
strongly connected components, and sort the strongly con-
nected components topologically. LetC be the first compo-
nent in that ordering. This means that no token outside of
C requires any token inC. Furthermore,C cannot consist
of only one node, since then that token would be required
by no other token, in contradiction to our assumption that
every token is required by at least one token. IfC contains
exactly two nodes, these tokens require each other, but are
required by no other tokens, and the lemma is proven.

In the following we prove thatC cannot consist of more
than two nodes.

Claim 5.1
No strongly connected component C of Greq has more than
2 nodes.

Proof: The proof rests on the observation thatGreq satis-
fies a kind of transitivity property. Suppose for three nodes
f1, f2,b1 (f1 6= f2) in Greq we have edgesf1 → b1 and
b1→ f2 in Greq. Then the following holds: all nodesb that
have an edgeb→ f1 also have an edgeb→ f2.

This is not hard to see. By definition ofF0, there is a legal
path inH∗ from f1 to r avoiding f2, and sincef1 requires
b1, there is a pathP1 from f1 to b1 avoiding f2 (see figure

b1

f2

f1

b

1

2

P

P

r

Figure 4. Proving transitivity inGreq. The solid lines are
paths inH∗ corresponding to edgesf1→ b1 andb1→ f2 in
Greq, the dashed line to the edgeb→ f1.

f2
b1

f1
2

1
P

P

r

Figure 5. Components with more than 2 elements are im-
possible

4). Now assume thatb→ f1 is in Greq. If b→ f2 is not in
the requirement graph, then there is also a legal pathP2 in
H∗ from r to f1 avoiding f2, sinceb requiresf1. Combining
P2 andP1, we obtain a path fromr to b1 that does not visit
f2 in contradiction tob1→ f2 being inGreq.

A symmetric argument holds by exchangingf ’s andb’s,
i.e. for any triple f1,b1,b2, if there are edgesb1→ f1 and
f1→ b2 in Greq, then for everyF0-token f , if there is an
edgef → b1, then there must also be an edgef → b2.

We now prove the claim by contradiction. Assume that
a strongly connected componentC in Greq has at least three
elementsf1, . . . , fk,b1, . . . ,b` (k, `≥ 1). For every pairfi ,b j

there is a path fromfi to b j in Greq. Applying our transi-
tivity observation along the path we conclude that the edge
fi → b j must actually be inGreq. By symmetry,Greq also
contains the edgesb j → fi for all i, j.

Sincek+`≥ 3, one ofk and`must be at least 2. Assume
k≥ 2 (the casè ≥ 2 is handled in the same manner). Then
the tokenb1 requires allfi ’s. Therefore there is a legal path
in H∗ from r to b1 that visits all fi ’s (solid lines in figure 5).
Without loss of generality assume thatf1 is the first node on
that path, so that there is a pathP1 from r to f1 that avoids
f2.

Since the token on nodef1 requiresb1, but f1 does not
require f2, there must also be a pathP2 from f1 to b1 that
avoids f2 (dashed lines in figure 5). CombiningP1 andP2,
we obtain a legal path inH∗ from r to b1 that avoidsf2, in
contradiction to the assumption thatb1 requires allfi ’s.

This contradiction shows thatC cannot have more than 2
elements.�

6. The Directed Steiner Network problem

6.1. The Algorithm

In this section we show how to apply the algorithm de-
veloped in the previous sections to solve the DIRECTED

STEINER NETWORK problem (p-DSN), for any constant
p.

We use the same general model of a token game, but now

��

�� ��

��

� �	 	

� � � �

� ��

4-SCSS

4-SCSS

s1 t1

s3

s2 t2

t3

Figure 6. A solution top-DSN is a dag of strongly con-
nected components

we have tokens moving from each sourcesi to its destina-
tion ti . This time, we have no backwards moving tokens,
and also tokens donot merge when they reach the same
node. We describe the positions of the tokens by ap-tuple
〈 f1, f2, ..., fp〉. We have two kinds of moves for the tokens.
The first kind of move allows a single token to move one
step along an edge.

(i) For each edge (u,v) we include the moves
〈 u 〉 c→ 〈 v 〉, meaning that one to-
ken moves fromu to v, and all others remain where
they are. The costc of the move is 0 ifv already has a
token on it, and 1 otherwise.

We also allow a group of tokens to move through a
strongly connected component all at once. To see why
this is useful, consider the optimal solution top-DSN and
contract every strongly connected component into a single
node; the resulting graph is a dag (see figure 6). Each con-
tracted component has at mostp tokens entering, and at
most p tokens exiting. We can compute the best way for
some group ofk tokens (k≤ p) to move from anyk specific
entrance points to anyk specific exit points in a strongly
connected component by solving an instance of 2k-SCSS.

(ii) For all k ≤ p, and for every set ofk node-
pairs {(f1,x1),(f2,x2), . . . ,(fk,xk)}, for which there
is a strongly connected subgraph ofG containing
{ f1, f2, . . . , fk,x1,x2, . . . ,xk}, we allow the move

(f1 f2 . . . fk)
c→ (x1 x2 . . . xk).

The costc of this move is the size of the smallest
strongly connected component containing the vertices
{ f1, f2, . . . , fk,x1,x2, . . . ,xk} minus the size of the set
{ f1, . . . , fk}. We can use the the algorithm developed
in section 3 to compute this cost.

Similar in structure to our algorithm forp-SCSS in sec-
tion 3, the algorithm forp-DSN consists of the following
steps.

1. Compute the game-graphG , where the vertices inG
arep-tuples of vertices in the input graphG, and edges
are included for each legal token move.

2. Find the minimum-weight pathP in G from
〈s1, . . . ,sp〉 to 〈t1, . . . , tp〉.

3. Output the subgraphH of G induced byP, i.e. the
subgraph containing

• all vertices ofG explicitly ‘mentioned’ by ver-
tices inP, and

• for all type (ii) moves used inP, all the vertices
making up the smallest strongly connected com-
ponent containing thefi ’s andxi ’s used to define
that move.

6.2. Correctness

As for the previous algorithms, it is easy to see that
for any move sequence from〈s1, . . . ,sp〉 to 〈t1, . . . , tp〉 of
cost c, there is a feasible solutionH of size at mostc+
|{s1, . . . ,sp}|. It is also easy to find thisH, given the move
sequence. The following lemma then implies the correct-
ness of the algorithm.

Lemma 6.1
Let H∗ be a minimum size subgraph of G that contains
paths si ti for all i ∈ {1, . . . , p}. Then there is a legal se-
quence of token moves from 〈s1, . . . ,sp〉 to 〈t1, . . . , tp〉 with
cost |H∗|− |{s1, . . . ,sp}|.

Proof: We again do a constructive proof. We start with to-
kens f1, . . . , fp at s1, . . . ,sp, and move them to their respec-
tive destinationst1, . . . , tp.

Regard each strongly connected component inH∗ as a
single node, and topologically sort this dag of strongly con-
nected components. LetC1, . . . ,Cm be the resulting order
of strongly connected components. We now consider each
component in order, and move each token in the component
either to its destination (if its destination is in the compo-
nent), or to some component after it in the ordering. After
doing so, all nodes in the component are dead. This ensures
that we pay only once for every node.

For each componentCi containing somek tokens (k≤ p),
we perform the following moves. We execute (a) and (b) if
Ci consists of more than one node, and only (b) ifCi consists
of a single node.

(a) We apply a type (ii) move. For each tokenf` in Ci we
define a nodex` in Ci to which it moves. For tokensf`
whose destinationt` is in Ci , we setx` to that destina-
tion. For all other tokensf` we choose any legal path to
its destinationt` and letx` be the last node of that path
that is inCi . Using a type (ii) move we simultaneously
move all the tokensf` to their respectivex`.

(b) We apply a type (i) move for each tokenf` in Ci that is
not yet at its destinationt`. We move along one edge of
a path tot` into a new componentCj . �

6.3. Weights and edges

The algorithms provided forp-DSN andp-SCSS can
easily be modified to handle weighted nodes; just make the
cost of a move the total weight of the unoccupied nodes
entered during the move instead of just their number.

It is also easy to minimize the total edge weight inH.
To do this, we make every vertex inG have weight 0, and
replace every edgee by a new vertex having the weight of
e. We connect this new vertex to the two vertices incident
to e. Naturally, it is also possible to combine vertex weights
and edge weights.

7. Conclusion

We have developed a polynomial time algorithm that
computes the smallest subgraph containing paths betweenp
pairs of nodes in a directed graph. It is an interesting ques-
tion whether the tools developed to obtain this result can be
used to construct improved approximation algorithms for
arbitrary p, or for the closely related DIRECTED STEINER

TREE problem. Another open question is whether these
techniques can be used to obtain new results for other net-
work design problems.

Acknowledgments

We would like to thank David Karger for helpful sug-
gestions, and Andras Frank for asking about the 2-SCSS
problem, which started our research on this topic. We also
thank Marshall Bern, Yevgeniy Dodis, John Dunagan and
Matt Levine for their comments.

References

[1] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel,
S. Guha, and M. Li. Approximation algorithms for directed
Steiner problems.Proceedings of the Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages
192–200, 1998.

[2] Y. Dodis and S. Khanna. Designing networks with bounded
pairwise distance. Proceedings of the 31st Annual ACM
Symposium on Theory of Computing (STOC), pages 750–
759, 1999.

[3] R. G. Downey and M. R. Fellows. Fixed-parameter tractabil-
ity and completeness I: Basic results.SIAM Journal on Com-
puting, 24(4):873–921, 1995.

[4] S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph
homeomorphism problem.Theoretical Computer Science,
10(2):111–121, 1980.

[5] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms.Journal
of the ACM, 34(3):596–615, 1987.

[6] M. R. Garey and D. S. Johnson.Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. Freeman,
1979.

[7] F. K. Hwang, D. S. Richards, and P. Winter.The Steiner Tree
Problem. Number 53 in Annals of Discrete Mathematics.
Elsevier Science Publishers B. V., Amsterdam, 1992.

[8] C.-L. Li, S. T. McCormick, and D. Simchi-Levi. The point-
to-point delivery and connection problems: complexity and
algorithms.Discrete Applied Mathematics, 36(3):267–292,
1992.

[9] M. Natu and S.-C. Fang. On the point-to-point connection
problem. Information Processing Letters, 53(6):333–336,
1995.

[10] M. Natu and S.-C. Fang. The point-to-point connection
problem – analysis and algorithms.Discrete Applied Math-
ematics, 78:207–226, 1997.

A. Natu and Fang’s algorithm for 3-DSN

In [10] Natu and Fang propose an algorithm for the 3-
DSN problem, provide a correctness proof, and conjecture
that an extension of their algorithm solvesp-DSN for p>
3. In this section we will briefly discuss their approach, and
give a counterexample on which their algorithm apparently
does not work correctly.

Their algorithm operates on edge-weighted graphs and
minimizes thetotal weight of edgesin H. To compute the
optimalH, they use a ‘divide-and-conquer’ approach based
on dynamic programming. Central to the design of the al-
gorithm is their ‘Optimal Decomposition Theorem’ (p. 220
in [10]). It states that optimal solutions can be broken down
into independent parts in the following manner.

Theorem A.1 (Optimal Decomposition Theorem)
Suppose H is the optimal subgraph for a 3-DSN instance
{(s1, t1),(s2, t2),(s3, t3)}. Then there is a partition of H into
edge-disjoint subgraphs H = H ′ ∪H ′′, and three vertices
a1,a2,a3 in H such that:

• H ′, H ′′ contain at least one edge

• For all i = 1,2,3 either

◦ H ′ contains a path si ai and H ′′ contains a path
ai ti , or

◦ H ′ contains a path ai ti and H ′′ contains a path
si ai . �

The theorem as stated does not hold for the graph given
in figure 7. Note that the optimalH must contain all edges
of the graph. Suppose that we split this graph into two non-
empty edge disjoint subgraphsH ′ andH ′′. Then there must

s

s

s

t

t

t1

2

3

3

2

1

Figure 7. Counterexample to the Optimal Decomposition
Theorem

be a pair of consecutive edges that are not in the same sub-
graph.

Assume that, e.g,s1 → t2 and t2 → s2 are in different
subgraphs. Since one of the subgraphs has to contain a path
s3 a3, and the other a patha3 t3, we must havea3 =
t2, and{s3→ t1, t1→ s1,s1→ t2} are all in the same sub-
graph. But then the other subgraph contains none of the
edges incident tos1 or t1, and therefore can contain neither
a paths1 a1 nor a patha1 t1, and thus the theorem
fails. For all other pairs of consecutive edges in the graph,
essentially the same argument applies.

B. Runtime analysis

In this section, we provide the running time analysis for
our algorithms solvingp-SCSS (from section 3) andp-
DSN (from section 6).

The aim of this section is mainly to give an idea as to how
the running time is distributed over the different parts of
the algorithms (game-graph construction and shortest path
computation).

It was not our goal to produce optimal algorithms, but
rather to keep them simple to explain.

B.1. The p-SCSSalgorithm

The algorithm consists of two main parts: the gen-
eration of the game-graph̃G from the input G =
(V,E), and the computation of a shortest path from
〈{s1, . . . ,sq},{s1, . . . ,sq}〉 to 〈{r},{r}〉 in G̃.

Let us first compute the size of̃G. In the followingn and
mare always the number of vertices and edges, respectively,
of the input graphG.

The number of vertices in the game-graphG̃ is

∣∣Pq(V)×Pq(V)
∣∣=

(
q

∑
i=0

(
n
i

))2

= O(n2q).

The number of type (i) edges can be computed as follows.
If we fix an edge(u,v) ∈ E, then there are|Pq−1(V \ {u})|
choices forF , and|Pq(V)| choices forB, so the total number
of type (i) edges is

m· |Pq−1(V \{u})| · |Pq(V)|= O(m·nq−1 ·nq) = O(mn2q−1)

By symmetry, the number of type (ii) edges is the same.
For the type (iii) edges, we can also obtain an up-

per bound on their number by multiplying the number of
choices forf andb (O(n) each),F andB (O(nq−1) each),
andF ′ andB′ (O(2q−1) each after choosingF andB). This
yields a bound ofO(n2q).

The number of edges iñG therefore is not much larger
than the number of nodes. Thus, edges should be stored as
lists for each vertex, and not in an adjacency matrix.

Computing the edge weights takes constant time for type
(i) and (ii) edges, but is slightly more expensive for type
(iii) edges. It can be done with reasonable efficiency by first
running an all-pairs shortest paths algorithm on the input
graphG; this takes time at mostO(n2 logn+ mn). Com-
puting a shortest path from a nodef to a nodeb visiting
nodes inF ′ ∪B′ can now be done in timeO((2q−2)!) by
going through all possible sequences in which the vertices
in F ′ ∪B′ could appear on the path. So as long asp (and
thereforeq) is constant, this time is constant.

To summarize, we spend a constant amount of time
to compute each of the edges in the graph, which leads
to a total time ofO(n2q + mn2q−1) for the game-graph
construction – subsuming the time for the all-pairs shortest
path computation.

The second part of the algorithm is to compute a shortest
path query in the game-gamẽG = (Ṽ, Ẽ). Using Fibonacci
heaps [5] this can be done in timeO(|Ẽ|+ |Ṽ| log|Ṽ|),
which is

O(n2q +mn2q−1 +n2q logn) = O(mn2p−3 +n2p−2 logn).

Since computing the shortest path takes more time that con-
structing the graph, this also is the total running time of the
algorithm.

B.2. The p-DSN algorithm

For this algorithm, the game-graphG consists ofO(np)
nodes, and can have up toO(n2p) edges. This means that
the final shortest path computation will take time at most
O(n2p). It turns out that for this algorithm, the time to con-
struct the game-graph actually overshadows this shortest-
path computation.

The most time-consuming part of the game-graph con-
struction is to determine the weights of the type (ii) edges.
Obviously, it would be very inefficient to call ourk-SCSS
algorithm for every type (ii) edge in the game-graph. For-
tunately, a simple observation makes it possible to avoid
that. First, note that the game-graph̃G constructed for an
instance ofk-SCSS does not depend on the source and ter-
minal verticessi , ti , but only on the underlying graphG and
the numberk. Let us call this game-graph̃Gk. It is also true
that G̃k is a sub-graph of̃G2p if k ≤ 2p. Moreover, there
are no edges from this sub-graphG̃k to any other vertices in
G̃2p.

Solving ak-SCSS instance requires computing a short-
est path inG̃k, or, equivalently, inG̃2p, to a node of the form
〈{r},{r}〉. This suggests the following strategy: We can
solve all these problems at the same time by runningn sin-
gle destination shortest path algorithms, one for each des-
tination 〈{r},{r}〉 (r ∈ V). The weights of type (ii) edges
can then be computed in constant time by looking up the
appropriate shortest path length.

The running time for alln single destination shortest
path queries isO(mn4p−2 + n4p−1 logn), which therefore is
the total running time of the algorithm.

As an aside, there is a simpler way to solve 2-DSN than
using our algorithm: Given a graphG and two node-pairs
(s1, t1), (s2, t2), add two nodess, t and edgess→ s1, t1→ t,
t → s2, t2→ s to the graph and solve 2-SCSS for the two
terminalss, t. It is not hard to see that the solution for this
problem is also an optimal solution for the original 2-DSN
problem (if we omits and t). This leads to an improved
running time ofO(mn+ n2 logn), which is the same as the
running time obtained by Natu and Fang [9].

