The Directed Steiner Network problem is tractable for a constant
number of terminals

Jon Feldmah Matthias Ruhl

MIT Laboratory for Computer Science
Cambridge, MA 02139, USA

Abstract is a graph with node and edge costs. We extend our results
to these variations at the end of the paper.
We consider th®IRECTED STEINER NETWORK prob- The DSN problem occurs naturally when designing net-

lem, also called thePoOINT-TO-POINT CONNECTION works delivering goods from sources to destinations, where
problem, where given a directed graph G and p pairs an underlying network is present, but its services have to be
{(s1,t1),...,(sp,tp)} of nodes in the graph, one has to find paid for. For example, the gragh could be a set of inter-
the smallest subgraph H of G that contains paths frptos net routers, where edges are connections between routers.
t; for all i. The problem is NP-hard for general p, since the Suppose that a bank needs to send secure data over the net-
DIRECTED STEINER TREE problem is a special case. Until work from sources; to destinations. But to transmit their
now, the complexity was unknown for constant B. data securely, the routers used in the transmissions have to
We prove that the problem is polynomially solvable if p be upgraded, which is expensive. The bank naturally wants
is any constant number, even if nodes and edges in G areto minimize the number of routers to upgrade.
weighted and the goal is to minimize the total weight of the Just like the original 8EINER TREE problem [6], DSN
subgraph H. is NP-complete if the number of pairg is part of the in-
In addition, we give an efficient algorithm for the put. For constanp, on the other hand, its complexity was
STRONGLY CONNECTED STEINER SUBGRAPH problem mostly unknown so far. The cage= 1 is just a shortest
for any constant p, where given a directed graph and p path query, and fop = 2 the problem was solved in 1992
nodes in the graph, one has to compute the smallest stronglhpy Li, McCormick and Simchi-Levi [8]. They state the case
connected subgraph containing the p nodes. p > 3 as an open problem.

Our Contribution In this paper, we give a polynomial
1. Introduction time algorithm for any constarp, and therefore resolve
this open problem. More precisely, the running time is
—2 | ~4p-1
In this paper we address one of the most general Steinero(mrflp n > “logn), wheren = [V| andm = |E|. :
problems, the IRECTED STEINER NETWORK problem, Our algorithm forp-DSN can best be understood in
also called the BINT-TO-POINT CONNECTION problem. terms of a game, where a player moves tokens.around the
graph. Initially, p tokens are placed on the starting nodes
81,...,Sp, ONe token per node. The player is then allowed to
make certain types of moves with the tokens, and his goal is
to perform a series of these moves to get the tokens to their
respective destinations, .. . ,tp (the token frons; toty, the
token froms; to t,, etc).

Every possible move has a cost associated with it: the
number of nodes that are visited by the moving tokens. We
define the moves carefully so that the lowest cost move se-
guence to getthe tokens fran ..., sp toty, ...ty will visit
exactly the nodes of the optimal subgrapphThe difficulty
“E-Mail: jonfeld@theory.lcs.mit.edu of the construction is to ensure that such a sequence exists
TE-Mail: ruhl@theory.lcs.mit.edu for every optimalH. For p = 2 this is easy to do, since

DIRECTED STEINER NETWORK (p-DSN): Given a di-
rected graplG = (V,E), andp pairs of nodes in the graph
{(s1,t1),...,(Sp,tp)}, find the smallest subgrapH of G
that contains paths from tot; for 1 <i < p.

According to how ‘smallest’ is defined, there are sev-
eral variations of this problem. In this paper, ‘smallest’
will mean ‘minimum number of nodes’. Other possibili-
ties are ‘minimum number of edges’ or ‘smallest cosGif

the two involved paths can only share vertices in a very re-
stricted manner. However fgr > 3 the relationships be-
tween the paths become significantly more complex. Crit-
ical to our argument is a structural lemma analyzing how
these paths may overlap.

We find that most of the difficulty ofp-DSN is con-
tained in the special case whgr=s1 for 1 <i < p, and
tp = s1. Itis not hard to see that every optimal solutidn

to this special case must be a strongly connected subgraph.

This problem is therefore equivalent to theR®NGLY
CONNECTED STEINER SUBGRAPH problem, defined as
follows.

STRONGLY CONNECTED STEINER SUBGRAPH (p-
SCSS): Given a directed grah= (V,E), and p vertices
{s1,...,Sp} in V, find the smallest strongly connected
subgrapiH of G that containsy, ..., sp.

We give an algorithm forp-SCSS that runs in time
O(mr?P=3 + n?P—2|ogn), for any constanp, which makes
use of a token game similar to the one mentioned above.

Related Work There are many related Steiner problems
that are well-studied, most of them for undirected graphs.
For a monograph on the subject, see [7].

The only previously known polynomial-time algorithm
for p-DSN with constanp, except for the trivial casp=1,
was the one given by Li, McCormick and Simchi-Levi [8]
for p=2. The running time of their algorithm i®(n°).
Natu and Fang in [9] and [10] improved this running time
firstto O(n*), and then ta>(mn+n?logn). In [10] they also
present an algorithm fgu = 3, and conjecture that a variant
for their algorithm works for all constamt In Appendix A
we provide what we believe to be a counterexample to the
correctness of their algorithm fgr = 3, and thus to their
conjecture.

There is strong evidence thg-DSN is not fixed-
parameter tractable, i.e. there is no algorithm with a run
ning time of O(nk) for some constark independent of the
parametemp. This follows from results proved for th&V-
hierarchy’ defined by Downey and Fellows [3], where it was
shown that DRECTED STEINER TREEis W[2]-hard.

Thep-DSN problem becomes much harder if inpaths
between thes andt; are required to be edge-disjoint (or
node-disjoint). Under that restriction, the problem is NP-
complete already fop = 2 [4]. More precisely, it is NP-
hard even to determine whethamyfeasible solutiorH ex-
ists.

Other recent work has centered on the approximability
of p-DSN for generap. The best positive result obtained
so far is by Charikar et al [1], who achieve an approxi-
mation ratio ofO(p?3log®® p) for any p. They also give
an approximation algorithm fgp-SCSS for genergb that

Figure 1. A sample graph

achieves an approximation ratio df2- 1) p'/i and runs in
time O(n'p?). On the negative side, Dodis and Khanna [2]

prove thatp-DSN isQ(2°9" *P)-hard.

Overview In section 2, we give a simple algorithm that
solves p-SCSS forp = 2, while also defining the token
game in more detail. We generalize this approach to any
constantp and state the algorithm solvingSCSS in sec-
tion 3. The correctness proof is given in sections 4 and 5.

Using the algorithm fop-SCSS, we then in section 6
give the algorithm for thgp-DSN problem and prove its
correctness. We conclude the paper by summarizing our
results and discussing possible future research directions in
section 7.

2. A Solution for 2-SCSS

We begin by solving 2-SCSS, the problem of finding a
minimum strongly connected subgraphof a graphG =
(V,E) that includes two specified nodssands,. This is
equivalent to finding the smallelstthat contains paths from
s1 to s and froms; to s;. Considering this simple problem
allows us to introduce the notation and methodology used
in the following sections. The algorithm described here is
similar to the one given by Natu and Fang [10].

Figure 1 illustrates some of the difficulties of this prob-
lem. Lets;, s, be our terminals. The optimal subgraph
consists of the six nodes, xg, X7, Xg, X9, S2. The paths from
s; to s, andsp to s; share vertexg, and share the vertex
sequenceay; — Xg — Xg. Note that the optimal subgraph in-
cludes neither the shortest path frepto s,, nor the short-
est path frons, to s;.

2.1. The token game

To compute the optimal subgraph we will place two
tokens, calledf andb, on vertexs;. We then move the
tokens along edged, moving forward along edges, ard
moving backwards along edges, until they both regch

Then the set of nodes visited during the sequence of moves The weight of this sequence is 5, which|i$| — 1. The

will contain pathss; ~ s, andsy ~ 5. difference by one is due to the fact that we never pay for
To find the smallest subgraph containing those paths, enterings;.

we will charge for the moves. The cost of a move will be

the number of new vertices entered by the tokens during2.2. The Algorithm

that move. The lowest cost move sequence to get the tokens

from s; to s, then corresponds to the optimal solution. Let us phrase the preceeding discussion in an algorithmic
The three kinds of moves we allow are given below. form. To computeH, we first construct a ‘game-grapENS'.

The notation(x,y) refers to the situation where tokehnis The nodes of the graph correspond to token positi@ng,

on vertexx, and tokenb is on vertexy. The expression the edges to legal moves between positions. In our case, the

“(x1,y1) — (X2,¥2)” means that it is legal to move token nodes are just x V, and the edges are the ones given above

from x; to x, and tokerb fromy; to y, (at the same time), as legal moves. Clearly, this game-graph can be computed

and that this move has cost We want to find a move se- in polynomial time.

quence from(sy, 1) to (s, sz) with minimal cost. FindingH is done by computing a lowest cost path from

(s1,51) 0 (S,) In G. The graptH then consists of all the

vertices fromV that are mentioned along that path, includ-

ing the vertices that are implied by type (iii) moves.

(i) Token f moving forward¥or every edgéu,v) € E
and allx € V, we allow

1

2
(@) the movelu,) o (), and 2.3. Correctness
(b) the move(u,v) — (v, V).

The proof that our algorithm actually solves 2-SCSS can
be split into two claims. We just provide the essential ideas
behind the proof, and refer the reader to section 4 for the
(a) the movex,V) L (x,u), and general case, or to [9, 10] for an alternative proof for the
p =2 case.

(i) Token b moving backwardzor every edgéu,v) € E
and allx € V, we allow

(b) the move(u,v) LA (u,u).
Claim 2.1

If there is a legal move sequence from (S1,51) to (S, %)
with cost C, then there is a subgraph H of G of size < c+ 1
that contains paths S1 ~~ S, and Sp ~~ S1.

(iii) Tokens switching placeskor every pair of vertices
a,b eV for which there is a path fromto b in G, we
allow the move(a,b) = (b,a), wherec is the length
of the shortest path frora to b in G. By length we
mean the number of vertices besigeandb on that This is easy to see. If we follow a move sequence from
path. (s1,51) t0 (S, %), thenf andb trace out paths; ~ s, and

. . s ~~ S1. Moreover the tokens traverse at most1 vertices,
Type (i) and (ii) moves allow the tokerfsandbto move gjnce e pay for each vertex (except that we visit.
forward along a single edge, and backward along an edge,

respectively. Usually the cost is 1, accounting for the new ¢|aim 2.2
vertex that the token visits. Only in the case where a token ot 4 pe an optimal subgraph containing paths S, ~ S and
reaches a vertex with a token already on it, the cost is O, . 5;. Then there exists a move sequence from (S;, ;) to
since no ‘new’ vertices are visited. (Sp,Sp) with total cost |H*| — 1.

Type (iii) moves allow the two tokens to switch places.
We call this type of move a “flip”, and say that the vertices This is the more difficult part of the correctness proof.
on the shortest path fromto b areimplicitly traversed by =~ We can prove it by actually constructing a move sequence
the tokens. The costof the move accounts for all of these (s1,51) ~~ (S,%), that visits every vertex il * only once.
vertices. The key idea here is that if we fix two patks~~ s, and

Let us return to the example in figure 1 to see how theses, ~+ s in H*, then wlog, they share vertices only in a
moves are used. The lowest cost way to move both tokensvery restricted manner. They may share several disjoint se-
from s; to s, is the following (we use subscripts to denote quences of vertices, but these sequences occur in reverse

the type of the move). order on the two paths (see figure 2). This is because if two
segments occur in the same order, they can be merged by
(s1,51) i (Xe,S1) % (X6, X5) i (X7,%s) making the paths the same between the two segments.
0 (i) 0 So to construct the move sequence, we move both tokens
L (x7,%0) = (Xo,X7) = (X0, S) > (Sp,) using type (i) and (i) moves until they reach a shared seg-

(ii) (iit) (ii) U] ment on the paths. In figure 2, tokdrwill reach vertexx,

®)

Figure 3. Flipping f andb, with tokens F’ and B’ that
Figure 2. Pathss; ~ sp andsy ~ 1 sharing sequences of need to be “picked up.” The black nodes are the\set
vertices. The straight horizontal line frosnto s, gives the
paths; ~ s, the round segments are part®f— 5. The

bold lines are sequences shared by both paths. They occur .
in opposite order on the two paths. smallest subgraph containing paths~ r andr ~ 5 for

all i < g, which is the graph we are looking for.
Since both sets of tokens trace out a tree, once two tokens
of the same kind reach a vertex, they will travel the same
and tokerb — moving backwards — will reach vertgxNow way to the root. In that case, we will simply merge them into
we can apply a type (iii) move to exchange the two tokens, one token. It is therefore enough to describe the positions
and count the vertices in the shared segment only once. Wef the tokens by a pair of setf, B), whereF andB are the
can then continue to use type (i) and (ii) moves until we hit sets of nodes currently occupied by the F- and B-tokens.
the next shared segment, and so on, until both tokens reach Again, we have three types of legal token moves. Type
. (i) moves correspond to F-tokens moving forward along an
The token movements fqv > 3 will be much more in- edge, and type (ii) moves correspond to B-tokens moving
volved, since the paths can share vertices in more complexyackward along an edge. We do not charge for entering a
ways. vertex if another token is already on it.
For any sef, let Z(S) be the set of subsets 8fof size
3. Strongly Connected Steiner Subgraphs atmostk.

(i) Single moves for F-token&or every edgéu,v) € E,

In this section we give an algorithm f@eSCSS, which and all token sets € 75 1(V \ {u}), B € P4(V), the
is a generalization of the algorithm for 2-SCSS given in the following is a legal move:
previous section. .

Again we will use token movements to trace out the so- (Fu{u},B) = (FU{v},B)

lution H. The way the tokens move is motivated by the
following observation. Consider any strongly connedted
containing{sy, .. .,Sp}. ThisH will contain paths from each

8,...,Sp-1 to Sp, and these paths can be chosen to form a (i) Single moves for B-tokenBor every edgéu,v) € E,

where the cost of the move is 1 ifvg FUB, and O
otherwise.

tree rooted asp; we will call this tree thdorward tree The and all token setf € 2y(V), B € P4 1(V \ {v}), the

graphH will also contain paths frors, to eachsy, ..., Sp_1, following is a legal move:

forming what we call thévackward tree Moreover, every

H that is the union of two such trees is a feasible solution (F,BU{V}) 5 (F,BU{u})

to our p-SCSS instance. Note that for 2-SCSS these two

trees were just single paths. where the cost of the move is 1 iug FUB, and O
For ease of notation, we sgt= p— 1 for the remainder otherwise.

of this section and the next section, andret s,, ass o

plays the special role of ‘root’ in the two trees. Type (iii) moves allow tokens to pass each other, similar

to the type (iii) moves in the previous section, except that

this time the “flip” is more complex (see figure 3). We have

two ‘outer’ tokens,f andb, trying to pass each other. Be-

tweenf andb there are other F-tokens moving forward and
To trace out the two trees, we will hawp“F-tokens” trying to pass, and B-tokens moving backward and trying

moving forward along edges in the forward tree from to passf. These tokens, sitting on node sEtsandB', are

{s1,...,5} tor, andq “B-tokens” moving backward along ‘picked up’ during the flip.

edges from{sy,..., 5} tor. Given a set of legal moves,

we will again look for the lowest cost move sequence that (iii) Flipping: For every pair of vertice$, b, vertex set$-,

moves all tokens ta. This will then correspond to the B,F' C F, B’ C B, such that:

3.1. Token moves forp-SCSS

e there is a path i from f ~~ b going through all
vertices inF’ U B’

o Feyy(V\{fb})
e BeZ (V\{f.b))

the following is a legal token move:

(FU{f},BU{b}) ™ ((F\F')U{b},(B\B)U{f})

whereM is the set of vertices on a shortest path from
to bin G going through all vertices if’ UB', besides
f,b and the vertices iF’ UB'.

3.2. The algorithm for p-SCSS

We can now state the algorithm fprSCSS:
1. Construct a game-gragh= (V,E) from G = (V,E).
SetV = P4(V) x %(V), the possible positions of the

token sets, and := all legal token moves defined
above.

2. Find a shortest path P in
<{317---a5q}7{31’~~-a5q}>t0<{r}7{r}>-

3. LetH bethe unionofsy,...,s,r} and all nodes given
by P (including those in setl! for type (iii) moves).

G from

The difficult part of constructing the game—graﬁhis
computing the costs for the type (iii) moves that ffimnd
b. We do not require that the shortest path frémo b going
through all vertices i’ UB’ be simple. Since the num-
ber of tokens irfF’ UB' is bounded by @& — 1), which is a

The total cost of the moves is 6, and therefore equal to
[Hl—g=10—4=6, as expected. The solution is made
up of the terminalgs;, %, %3, 4,5}, the nodeg{x3, x4, x5}
mentioned in the sequence of moves, and the néxes, }
in the setM for the first type (iii) move.

4. Correctness of thep-SCSSalgorithm

The correctness proof for oyrSCSS algorithm can be
split into the same two parts we used for 2-SCSS.

Lemma4.1

Suppose there is a move sequence from
({st;.--,5q}:{s1,---,q}) to ({r},{r}) with total cost
C. Then there exists a solution H to this p-SCSSinstance
of size < ¢+ Q. Moreover, given the move sequence, it is
easy to construct such an H.

Proof: This follows directly from the definition of the
moves. The cost of any move sequence is an upper bound
on the number of vertices traversed by that sequence.
Given the constructive nature of the moves, it is also easy
to actually findH. B

Together with the following, much more involved
lemma, the correctness of the algorithm is proved.

Lemma 4.2

Suppose H* = (V*,E*) is any minimum cardinality fea-
sible solution. Then there is a move sequence from
({s1,..-,5q}.{s1,...,5q}) to ({r},{r}) with weight equal to

constant, we can compute this path in polynomial time by [H*[—a.

simply trying all possible sequences of the nodes’io B/,

and computing shortest paths along the sequence. For morg

details on the running time, see appendix B.
3.3. Example

As an example we look at how the algorithm works
on the graph in figure 1, where now our terminals are
S1,%,53,%4,%. The optimal solution is the node set
{s1,%,%3,,S5,X1,X2,X3,Xa,%5}. The following is a se-
guence of lowest cost moves for this graph:

({s1,%2,53, %4}, {S1,%2, 83,54 })

1
=

; ({s1,%2,83, X3}, {S1,%2, 3, 4 })

lo

2
i ii

({s1,%2,83,%3}, {S1,%,83}) i) ({s2},{xs})
({xs},{xs}) = ({Xs}, {xa}) (”—?3 ({xa},{xs})
({ss},{xs})

({ss}: {s5})-

—
=

1
=

i

=

—
=

=
le =

—

i)

—

i)

Proof: To prove this lemma, we will effectively construct
uch a move sequence, where all intermediate positions of
the tokens will be irH*.

When moving the F- and B-tokens frofs;,...,sq} to
r, we ‘pay’ each time we reach a new vertex. In order to
achieve total costH*| — q we must make sure that we pay
only once for each vertex. To ensure this, we enforce one
rule: after a token moves off a vertex, no other token will
ever move to that vertex again. We say that a vertex be-
comes ‘dead’ once a token moves from it, so that tokens are
only allowed to move to vertices that are ‘alive’. This also
makes sure that our move sequence will be finite, since no
token can return to a vertex it has already visited. Note that
the notion of dead and alive vertices is only used for the
analysis, the algorithm itself never explicitly keeps track of
them.

We will construct our move sequence in a greedy fash-
ion. That is, we will move tokens towardsusing type
(i) and (ii) moves, until each token sits on a vertex that is
needed by some other token to get tdn this case we can-
not apply any more type (i) or (ii) moves — doing so would

leave another token stranded as it is not allowed to move5. The Flip Lemma

onto the then dead vertex.

In this case we need to use a type (iii) move to resolve the Proof of Lemma 4.3 (The Flip Lemma): Let Greq =
deadlock. Showing that this is always possible is the core (Vieq, Ereq) be a new directed graph, whose nodes are the

of the correctness proof, the ‘flip lemma’ shown in section
5. To state this lemma and see how it implies the correct-

Fo andBg-tokens. The edges ifeq correspond to require-
ments: Greq has an edge — vy iff the tokenx requires the

ness of the algorithm, we have to introduce some additionaltokeny.

notation.

We say that a tokethrequiresa vertexv € V* if all le-
gal paths fort to get tor pass througlv. By ‘legal paths’
we mean paths that are withid*, go in the appropriate
direction for the tokert, and do not include any dead ver-
tices. We will sometimes speak of tokens requiring tokens;

By assumption (every token is required by some other
token) and by definition (afp-token is not required by
any F-token), we know that evefyp-token is required by
at least one B-token. We know that either that B-token is a
Bo-token, or there is anoth@&p-token that requires that B-
token. Therefore, by transitivity, eveRg-token is required

in this case we mean that the first token requires the vertexoy at least ondBg-token. By symmetry, everBo-token is

on which the second token is sitting. Note that the require-
ment relation among tokens moving in the same direction
is transitive, i.e. iff; requiresf,, and f; requiresx, then fy
also requires.

Let the Fy-tokens’ be the F-tokens that are not required
by any other F-token. Similarly, let th@®j-tokens’ be the
B-tokens that are not required by any other B-token.

Lemma 4.3 (The Flip Lemma)
Suppose every token is required by some other token. Then
there is an Fy-token f and a By-token b such that

e f requires b, and no other Fy-token requires b,
e b requires f, and no other Byp-token requires f. [

We will prove this lemma in the next section. Let us now
see how it concludes the proof of Lemma 4.2.

Let f andb be chosen according to the Flip Lemma. Fix
any pathP from f to b that uses only live vertices. For all
verticesx on the pathP, every pathx ~~ r must includeb,
otherwisef could move t, and then ta,, without visiting
b.

Suppose some F-tokdh = f requires a vertex oR, and
therefore by transitivity also requirds The tokenf’ can-
not be anFy-token, since the Flip Lemma tells us thats
the only Fp-token that required. Note that due to transi-
tivity, every F-token is either afyp-token, or required by
somekp-token, sof’ must be required by sontg token
f”. By transitivity, f” requiresb, and sof” = f, by the Flip
Lemma. The tokerf’ must therefore be oB. In summary,
all F-tokens are either oR, or do not require any vertex on
P. By symmetry, the same applies to B-tokens.

Let F’ be the set of F-tokens that are on the pRttand
B’ be the set of B-tokens oR. We can apply a type (iii)
move that switche$ andb, and picks ugF’ andB’ along
the way. All vertices orP become dead, but no token is
stranded.

This proves that we can always continue the construction
of our move sequence until all tokens reacll

required by at least orfg-token. Thus, every node Greq
has at least one incoming eddére is also bipartite, since
no twoFy-tokens (and no twBg-tokens) require each other.
We can viewGreq as a dag (directed acyclic graph) of
strongly connected components, and sort the strongly con-
nected components topologically. L@be the first compo-
nent in that ordering. This means that no token outside of
C requires any token i€. FurthermoreC cannot consist
of only one node, since then that token would be required
by no other token, in contradiction to our assumption that
every token is required by at least one tokenC ontains
exactly two nodes, these tokens require each other, but are
required by no other tokens, and the lemma is proven.
In the following we prove that cannot consist of more
than two nodes.

Claim 5.1
No strongly connected component C of Greq has more than
2 nodes.

Proof: The proof rests on the observation tl@bq satis-
fies a kind of transitivity property. Suppose for three nodes
f1, f2,by (f1 # f2) in Greq We have edged; — by and
by — f2in Greq. Then the following holds: all noddsthat
have an edgb — f; also have an edge— f».

This is not hard to see. By definition Bf, there is a legal
path inH* from f; to r avoiding f,, and sincef; requires
b, there is a patlir; from f; to by avoiding f, (see figure

Figure 4. Proving transitivity inGreq. The solid lines are
paths inH* corresponding to edgds — by andb; — fain
Greg, the dashed line to the edge- f;.

®) W
9@ O]

© @

Figure 5. Components with more than 2 elements are im- Figure 6. A solution top-DSN is a dag of strongly con-
possible nected components

4). Now assume thdi — f; is in Greq. If b — f; is notin we have tokens moving from each soug¢o its destina-
the requirement graph, then there is also a legal paih tion ti. This time, we have no backwards moving tokens,
H* fromr to f; avoiding f,, sinceb requiresf;. Combining and also tokens daot merge when they reach the same
P, andPy, we obtain a path from to by that does not visit ~node. We describe the positions of the tokens Ipytaple
f, in contradiction tdo; — f; being iNGreq. (f1, fa,..., fp). We have two kinds of moves for the tokens.

A symmetric argument holds by exchangifig andb’s, The first kind of move allows a single token to move one
i.e. for any triplefy, by, by, if there are edgel; — f; and ~ Step along an edge.
f1 — b2 in Greq, then for everyFp-token f, if there is an
edgef — by, then there must also be an edge- bs.

We now prove the claim by contradiction. Assume that
a strongly connected componédin Geq has at least three
elementsfy, ..., fx,by, ..., by (k,£ > 1). For every paiff;, b
there is a path fronf; to bj in Greq. Applying our transi-
tivity observation along the path we conclude that the edge
fi — b; must actually be irGreq. By symmetry,Gieq also
contains the edgds — f; for all i, j.

Sincek+ ¢ > 3, one ok and¢ must be at least 2. Assume
k > 2 (the casé > 2 is handled in the same manner). Then

the tokenb; requires allfi’s. Therefore there is a legal path ¢5cted component has at mgstiokens entering, and at

in_H* fromr to by that vi.sits allfi’s (soliq lines _in figure 5). most p tokens exiting. We can compute the best way for
Without loss of generallt.y assume tHatis the first nodg on some group ok tokens k < p) to move from anyk specific
that path, so that there is a pahfromr to f; that avoids gnrance points to anly specific exit points in a strongly

(i) For each edge(u,v) we include the moves
(—u—) = (—v—), meaning that one to-
ken moves fromu to v, and all others remain where
they are. The cost of the move is 0 ifv already has a
token on it, and 1 otherwise.

We also allow a group of tokens to move through a
strongly connected component all at once. To see why
this is useful, consider the optimal solutiongeDSN and
contract every strongly connected component into a single
node; the resulting graph is a dag (see figure 6). Each con-

fa. connected component by solving an instanceleSZ SS.
Since the token on nodf requiresb;, but f; does not
require fo, there must also be a pakh from f; to by that (i) For all k < p, and for every set ofk node-
avoids f, (dashed lines in figure 5). Combinirigy andP;, pairs {(f1,x1),(f2,%2),...,(fk,X)}, for which there
we obtain a legal path il* from r to by that avoidsfs, in is a strongly connected subgraph Gf containing
contradiction to the assumption tHatrequires allf;’s. {f1, fo,..., i, Xa, X2, ..., X}, we allow the move
This contradiction shows th@&tcannot have more than 2
elementsHl (—f—f— . —fk—)

—C> (—Xl—Xz— R —Xk—).
6. The Directed Steiner Network problem
The costc of this move is the size of the smallest
6.1. The Algorithm strongly connected component containing the vertices
o {f1, f2,..., fi, X1, X2, ..., X} minus the size of the set
{f1,..., fk}. We can use the the algorithm developed

In this section we show how to apply the algorithm de- in section 3 to compute this cost.

veloped in the previous sections to solve theRECTED

STEINER NETWORK problem (-DSN), for any constant Similar in structure to our algorithm fqr-SCSS in sec-
p. tion 3, the algorithm fop-DSN consists of the following
We use the same general model of a token game, but nowsteps.

1. Compute the game-gragh, where the vertices ifG;
arep-tuples of vertices in the input gragih and edges
are included for each legal token move.

2. Find the minimum-weight pathP in G from
<S[]_,...,Sp>t0<t]_,...,tp>.

3. Output the subgrapH of G induced byP, i.e. the
subgraph containing

o all vertices of G explicitly ‘mentioned’ by ver-
tices inP, and

o for all type (ii) moves used i, all the vertices
making up the smallest strongly connected com-
ponent containing th§’s andx;'s used to define
that move.

6.2. Correctness

As for the previous algorithms, it is easy to see that
for any move sequence froffsy,...,Sp) t0 (ty,...,tp) of
costc, there is a feasible solutioH of size at mostc +
I{s1,...,Sp}|. Itis also easy to find thibl, given the move
sequence. The following lemma then implies the correct-
ness of the algorithm.

Lemma6.1

Let H* be a minimum size subgraph of G that contains
paths § ~ tj for alli € {1,...,p}. Then there is a legal se-
quence of token moves from (Sy,...,Sp) to (ty,...,tp) with
cost [H*| —[{st,...,Sp}|.

Proof: We again do a constructive proof. We start with to-
kensfy,..., fpatsy,...,Sp, and move them to their respec-
tive destinations, . .. ,tp.

Regard each strongly connected componerititnas a
single node, and topologically sort this dag of strongly con-
nected components. L€&Y,...,Cy be the resulting order

(b) We apply a type (i) move for each tokénin C; that is
not yet at its destinatiota. We move along one edge of
a path ta, into a new componer@;. B

6.3. Weights and edges

The algorithms provided fop-DSN andp-SCSS can
easily be modified to handle weighted nodes; just make the
cost of a move the total weight of the unoccupied nodes
entered during the move instead of just their number.

It is also easy to minimize the total edge weightHn
To do this, we make every vertex (B have weight 0, and
replace every edgeby a new vertex having the weight of
e. We connect this new vertex to the two vertices incident
to e. Naturally, it is also possible to combine vertex weights
and edge weights.

7. Conclusion

We have developed a polynomial time algorithm that
computes the smallest subgraph containing paths betpreen
pairs of nodes in a directed graph. It is an interesting ques-
tion whether the tools developed to obtain this result can be
used to construct improved approximation algorithms for
arbitrary p, or for the closely related [RECTED STEINER
TREE problem. Another open question is whether these
techniques can be used to obtain new results for other net-

work design problems.
Acknowledgments

We would like to thank David Karger for helpful sug-
gestions, and Andras Frank for asking about the 2-SCSS
problem, which started our research on this topic. We also
thank Marshall Bern, Yevgeniy Dodis, John Dunagan and
Matt Levine for their comments.

of strongly connected components. We now consider each
component in order, and move each token in the component

either to its destination (if its destination is in the compo-
nent), or to some component after it in the ordering. After

References

doing so, all nodes in the component are dead. This ensures [1] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel,

that we pay only once for every node.
For each compone@ containing som&tokens k < p),
we perform the following moves. We execute (a) and (b) if
G consists of more than one node, and only (I8} i€onsists
of a single node.

(&) We apply a type (ii) move. For each tokénin C; we
define a node, in C; to which it moves. For token§
whose destinatioty is in C;, we setx, to that destina-
tion. For all other tokeng, we choose any legal path to
its destinatiort, and letx, be the last node of that path
that is inC;. Using a type (ii) move we simultaneously
move all the tokend, to their respective,.

S. Guha, and M. Li. Approximation algorithms for directed
Steiner problems Proceedings of the Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODgages
192-200, 1998.

[2] Y. Dodis and S. Khanna. Designing networks with bounded
pairwise distance. Proceedings of the 31st Annual ACM
Symposium on Theory of Computing (STOg3ges 750—
759, 1999.

[3] R.G.Downey and M. R. Fellows. Fixed-parameter tractabil-
ity and completeness I: Basic resul8AM Journal on Com-
puting 24(4):873-921, 1995.

[4] S.Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph
homeomorphism problemTheoretical Computer Science
10(2):111-121, 1980.

[5] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithndsurnal

of the ACM 34(3):596-615, 1987.

M. R. Garey and D. S. Johnso@omputers and Intractabil-
ity: A Guide to the Theory of NP-Completenegseeman,
1979.

F. K. Hwang, D. S. Richards, and P. Wint&he Steiner Tree
Problem Number 53 in Annals of Discrete Mathematics.
Elsevier Science Publishers B. V., Amsterdam, 1992.

C.-L. Li, S. T. McCormick, and D. Simchi-Levi. The point-
to-point delivery and connection problems: complexity and
algorithms. Discrete Applied Mathematic86(3):267—292,
1992.

M. Natu and S.-C. Fang. On the point-to-point connection
problem. Information Processing Letter$3(6):333-336,
1995.

M. Natu and S.-C. Fang. The point-to-point connection
problem — analysis and algorithmBiscrete Applied Math-
ematics 78:207-226, 1997.

(6]
(7]

(8]

(10]

A. Natu and Fang’s algorithm for 3-DSN

In [10] Natu and Fang propose an algorithm for the 3-
DSN problem, provide a correctness proof, and conjecture
that an extension of their algorithm solvpsDSN for p >
3. In this section we will briefly discuss their approach, and
give a counterexample on which their algorithm apparently
does not work correctly.

(P

Figure 7. Counterexample to the Optimal Decomposition
Theorem

be a pair of consecutive edges that are not in the same sub-
graph.

Assume that, e.gs1 — t; andty; — s, are in different
subgraphs. Since one of the subgraphs has to contain a path
sz ~» ag, and the other a patd ~ t3, we must haves =
ty, and{sz — t1,t1 — 1,51 — t2} are all in the same sub-
graph. But then the other subgraph contains none of the
edges incident tg; ort;, and therefore can contain neither
a paths; ~» a; nor a patha; ~~ t1, and thus the theorem
fails. For all other pairs of consecutive edges in the graph,
essentially the same argument applies.

Their algorithm operates on edge-weighted graphs andB. Runtime analysis

minimizes thetotal weight of edges; H. To compute the
optimalH, they use a ‘divide-and-conquer’ approach based
on dynamic programming. Central to the design of the al-
gorithm is their ‘Optimal Decomposition Theorem’ (p. 220
in [10]). It states that optimal solutions can be broken down
into independent parts in the following manner.

Theorem A.1 (Optimal Decomposition Theorem)
Suppose H is the optimal subgraph for a 3-DSN instance
{(s1,t1), (S2,t2), (S3,t3) }. Then there is a partition of H into
edge-disjoint subgraphs H = H' UH", and three vertices
ai,ap,as in H such that:

e H’, H” contain at least one edge
e Foralli=1,2,3 either

o H’ contains a path § ~ & and H” contains a path
g ~tj, or

o H’ contains a path & ~ tj and H” contains a path
S~ a. U

The theorem as stated does not hold for the graph given

in figure 7. Note that the optim& must contain all edges
of the graph. Suppose that we split this graph into two non-
empty edge disjoint subgraph andH”. Then there must

In this section, we provide the running time analysis for
our algorithms solvingp-SCSS (from section 3) anpg-
DSN (from section 6).

The aim of this section is mainly to give an idea as to how
the running time is distributed over the different parts of
the algorithms (game-graph construction and shortest path
computation).

It was not our goal to produce optimal algorithms, but
rather to keep them simple to explain.

B.1. The p-SCSSalgorithm

The algorithm consists of two main parts: the gen-
eration of the game-graplG from the input G =
(V,E), and the computation of a shortest path from

(st St {81, -, S}) to ({r}, {r}) in G.

Let us first compute the size & In the followingn and
mare always the number of vertices and edges, respectively,
of the input graplG. N

The number of vertices in the game-graplis

())Zomm>.

n

q
“— \ |

2

|Ba(V) x By(V)| = <

The number of type (i) edges can be computed as follows.B.2. The p-DSN algorithm

If we fix an edge(u,v) € E, then there aréPy_1(V \ {u})|

choices foiF, and|?4(V)| choices foiB, so the total number For this algorithm, the game-gragh consists ofO(nP)

of type (i) edges is nodes, and can have up @&n°P) edges. This means that
the final shortest path computation will take time at most

m- | Pq_1(V\ {U})|-|P4(V)| = O(m-n%1.n%) = O(mrf9-1) O(n?P). It turns out that for this algorithm, the time to con-
struct the game-graph actually overshadows this shortest-

By symmetry, the number of type (ii) edges is the same. path computation.

For the type (iii) edges, we can also obtain an up- The most time-consuming part of the game-graph con-
per bound on their number by multiplying the number of struction is to determine the weights of the type (ii) edges.
choices forf andb (O(n) each),F andB (O(n%1) each), Obviously, it would be very inefficient to call ol=SCSS
andF’ andB' (0(29-1) each after choosing andB). This algorithm for every type (ii) edge in the game-graph. For-
yields a bound oD(n?9). tunately, a simple observation makes it possible to avoid

The number of edges i6 therefore is not much larger ~ that. First, note that the game-grahconstructed for an
than the number of nodes. Thus, edges should be stored a§Stance ok-SCSS does not depend on the source and ter-
lists for each vertex, and not in an adjacency matrix. minal verticess, tj, but only on the underlying graph and

Computing the edge weights takes constant time for typethe nymbek. Let us call this game—grar.@k. Itis also true
(i) and (ii) edges, but is slightly more expensive for type that Gy is a sub—graph 0Gzp if Eg 2p. Moreover,.ther.e
(iii) edges. It can be done with reasonable efficiency by first &€ no edges from this sub-gra@h to any other vertices in
running an all-pairs shortest paths algorithm on the input Gap.))))
graphG; this takes time at mosd(n2logn + mr). Com- Solvm_g@k—SCSS instance requires computing a short-
puting a shortest path from a nodeto a nodeb visiting €St path inGy, or, equivalently, ir5zp, to a node of the form
nodes inF’ UB' can now be done in time((2q—2)!) by {r},{r}). This suggests the following strategy: We can
going through all possible sequences in which the verticesSOIve all these problems at the same time by runnisg-
in F/ UB' could appear on the path. So as longpa@nd gle Qestlnatlon shortest path algo_rlthms, one fo__r each des-
thereforeq) is constant, this time is constant. tination ({r},{r}) (r € V). The weights of type (ii) edges

To summarize, we spend a constant amount of time can then be computed in constant time by looking up the

to compute each of the edges in the graph, which leads®PPropriate shortest path length. L
to a total time of O(n® + mngq,1) for the game-graph The running time for alln single destination shortest

. . . . i i p—-2 4p—1 P :
construction — subsuming the time for the all-pairs shortest Path queries i(mrftP2 -+ n®P~tlogn), which therefore is
path computation. the total running time of the algorithm.

As an aside, there is a simpler way to solve 2-DSN than

using our algorithm: Given a graph and two node-pairs
(s1,t1), (32,t2), add two nodes, t and edges — s1,t1 — t,
t — , t, — sto the graph and solve 2-SCSS for the two
terminalss, t. It is not hard to see that the solution for this
problem is also an optimal solution for the original 2-DSN
problem (if we omits andt). This leads to an improved

. . . running time ofO(mn+ n?logn), which is the sam h
Since computing the shortest path takes more time that con-. g time ofO(mn+ n“logn), which is the same as the

structing the graph, this also is the total running time of the running time obtained by Natu and Fang [9].
algorithm.

The second part of the algorithm is to compute a shortest
path query in the game-gan@= (V,E). Using Fibonacci
heaps [5] this can be done in tim@(|E| + [V|log|V]),
which is

O(n® 4 mrf%1 4 n?dlogn) = O(mrf*—3 4 n**~2logn).

