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Abstract

An important open question in complexity theory is
whether the circuit complexity class TC0 is (strictly) weaker
than LOGSPACE. This paper considers this question from
the viewpoint of descriptive complexity theory.

TC0 can be characterized as the class of queries express-
ible by the logic FOC(<,+,×), which is first-order logic
augmented by counting quantifiers on ordered structures
that have addition and multiplication predicates. We show
that in first-order logic with counting quantifiers and only
an addition predicate it is not possible to express “deter-
ministic transitive closure” on ordered structures. As this is
a LOGSPACE-complete problem, this logic therefore fails
to capture LOGSPACE. It also directly follows from our
proof that in the presence of counting quantifiers, multipli-
cation cannot be expressed in terms of addition and order-
ing alone.

1. Introduction

The interest in finite model theory from a complexity
theory point of view is motivated by the fact that “descrip-
tive complexity theory” allows to rephrase complexity the-
oretic questions in a purely logical framework [15, 16, 17].
This allows one to attack these questions from a new per-
spective and using different tools, such as Ehrenfeucht-
Fräısśe-games.

In this paper, we study the expressive power of first-
order logic augmented with counting quantifiers on ordered
structures. Expressions in first-order logic are built from
relational expressionsRx1x2 . . .xr and equalitiesx1 = x2 us-
ing the connectives∧, ∨, ¬, and the quantifiers∃ and∀.
The limitations of the expressiveness of first-order logic are
well-known (see, e.g., [5]), most notably that it lacks any
ability to ‘count’. It is not even possible to express the fact
that a structure has even size.

Adding ‘counting quantifiers’ to the logic remedies this
fact. Counting quantifiers are expressions of the form

∃≥yxϕ(x) and express that “there are at leasty distinct el-
ementsx that satisfyϕ(x)”. There has been a great interest
in recent years in the expressiveness of first-order logic aug-
mented with counting quantifiers, which we will callFOC
in this paper.

This is mostly due to the fact that this logic, in the
presence of an ordering, and addition and multiplication
predicates (we call this logic “FOC(<,+,×)”), captures
the circuit complexity classTC0 [3], the class of uniform
polynomial-size, constant depth, threshold circuits. It is
an important open question whetherTC0 is weaker than
LOGSPACE; even whether it is strictly weaker thanNP is
unknown [2].

To see whether a logic capturesLOGSPACEit is suf-
ficient to determine whether it can express “deterministic
transitive closure”. Deterministic transitive closure (DTC)
is the problem where given a directed graph whose vertices
all have out-degree at most 1, and two nodess and t, one
has to decide whether there is a path froms to t. DTC is
LOGSPACE-complete under quantifier-free reductions [8].

The main result of the present paper is that first-order
with counting quantifiers on ordered structures with an ad-
dition predicate (we call this logic “FOC(<,+)”) and a bi-
nary relationE, i.e. on structures of the form

A = ({0,1, . . . ,N},<,+,E),

cannotexpress the deterministic transitive closure ofE, and
thus fails to captureLOGSPACE.

We prove this main result by giving an explicit winning
strategy for the second player in an Ehrenfeucht-Fraı̈sśe-
game.

From a descriptive complexity theory point of view, it
shows that the multiplication predicate must be essential
shouldFOC(<,+,×) in fact equalLOGSPACE. Moreover,
from our proof we can also directly conclude the stronger
result thatFOC(<,+) 6= FOC(<,+,×) meaning that mul-
tiplication is essential to capturingTC0, too. We thus obtain

FOC(<,+)( FOC(<,+,×) = TC0
?
6= LOGSPACE.



1.1. Related work

Most of the previous work on the expressibility of count-
ing quantifiers considered two-sorted structures, which con-
sist of a finite “vertex domain” (the ‘actual’ structure) and a
(possibly infinite) number domain.

Infinite number domains with arbitrary operations, as in-
troduced by Gr̈adel and Gurevich in their ‘meta-finite model
theory’ [11], were considered by Benedikt and Keisler [4],
who proved separations for several variations of counting
quantifiers on such structures.

In the work more closely related to this paper, finite
structures of the form

A =
(
{0,1, . . . ,N},{v0,v1, . . . ,vN},<,+,×,RA

1 , . . . ,R
A
r

)
were considered. Here, the relationsRA

i apply only to the
vertex domain{v0, . . . ,vN}, and the ordering and arithmetic
operations apply only to the number domain{0,1, . . . ,N}.
For a counting formula∃≥yx ϕ(x), x ranges over the vertex
domain, whiley ranges over the number domain.

By splitting the structure in this way, it is possible to con-
sider structures that arenot ordered. Etessami [8] showed
that if one has only a successor relationS on the vertex
domain, then first-order logic with counting, addition and
multiplication cannot express the transitive closure ofS, and
therefore fails to captureLOGSPACE. The proof in the jour-
nal version of the paper relies on the fact that first-order
logic with counting quantifiers can only express local prop-
erties, which follows from [22]. Libkin [18, 19, 20] also
considered local properties of a variety of logics involving
counting quantifiers.

Unfortunately, in the presence of a total ordering, these
proof techniques do not apply anymore, since all elements
of the structure are directly “connected” by the ordering.

The result of this paper may therefore be one of the very
few non-trivial statements about the expressibility of first-
order logic with counting quantifiers on ordered structures.
By avoiding two-sorted structures, it also seems more natu-
ral than other results in this area.

To prove our main result, we give an explicit winning
strategy for player II in an Ehrenfeucht-Fraı̈sśe-game for
the logicFOC. Winning strategies for Ehrenfeucht-Fraı̈sśe-
games for first order logicwithoutcounting quantifiers, but
in the presence of an addition predicate, have been stud-
ied before. Most of them are related to techniques used by
Presburger for the quantifier elimination ofTh(Z) [23]; a
very readable exposition of such a strategy can be found in
section 3.3 of [12]. Lynch [21] also gave a similar strategy
when proving inexpressibility results for first-order logic on
structures with an addition relation.

The main technical contribution of this paper is the ex-
tension of the strategy in the presence of counting quan-

tifiers, corresponding to a ‘set move’ in the Ehrenfeucht-
Fräısśe-game.

After completing this paper, we noticed a reference in
[8] to an (as yet) unpublished manuscript of Lindell that
seems to imply the result stated in this paper. Our result
was derived independently, and might also be interesting in
its own right due to its proof technique.

1.2. Outline of paper

This paper is structured as follows. In section 2, we
present the notions and definitions from finite model theory
used in this paper. In section 3 we state and prove our main
theorem. In the last section 4 we summarize our results and
discuss possible future research directions.

2. Logics and games

In this section we give the definitions necessary for the
rest of the paper, in particular of the logicFOC(<,+)
which will be the main concern of this paper. We then de-
scribe the Ehrenfeucht-Fraı̈sśe-game for this logic, a game-
theoretic method to prove inexpressibility results. Our no-
tation follows [5, 6].

2.1. Remarks on Notation

Our notation slightly deviates from the other literature
on counting quantifiers. This is due to the fact that we con-
sider only one-sorted structures. In the presence of a total
ordering on the structure, a separate number domain does
not give any additional expressibility1, so for simplicity we
avoid using it.

Usually the nameFO(C) is given to first-order logic
with quantifiers on two-sorted structures with theBIT pred-
icate on the “number domain”. In order not to confuse the
reader, we will call first-order order logic with counting on
single-sorted domainsFOC.

2.2. Structures

All structures we consider in this paper are finite with
domains{0,1, . . . ,N} where N ∈ N. If we considerσ-
structures (whereσ is the set{R1, . . . ,Rr} of relations on the
structure) andσ includes one or more of the relation sym-
bols<, + and×, then these relations are always interpreted
as the “natural” ordering, addition and multiplication rela-
tions, respectively, on the set{0, . . . ,N}. Note that+ and×
are always relations, not functions, in this paper.

1One can identify each numberi with the unique ‘vertex’ elementvi

that satisfies∃=iy y< x, and in this way use all relations of the number
domain also on the vertex domain, and vice versa.



2.3. FOC

The logicFOC studied in the following is the extension
of first order logic obtained by addingcounting quantifiers.
These quantifiers have the following form:

∃≥yxϕ wherex, y are variables andϕ is aFOC-formula.

The variablex in ∃≥yxϕ is bound by the quantifier, whiley is
still free. The formula is satisfied by a structureA = (A,R)
and a variable assignmentβ iff there are at leastβ(y) distinct
elementsa∈ A, such that(A ,β a

x) |= ϕ.

Definition 1 (FOC, FOC(<,+),FOC(<,+,×), . . . )
FOC is the logic obtained by adding counting quantifiers
to first order logic. For all τ ⊆ {+,×,<}, FOC(τ) is FOC
restricted to structures that have the relations from τ, inter-
preted in the ‘natural’ way. �

Note thatFOC(+), FOC(<) andFOC(<,+) have the
same expressive power, since an ordering can be defined in
terms of an addition, and vice versa2:

a< b ⇐⇒ ∃x(a+x = b∧x+x 6= x),

a+b = c ⇐⇒ ∃=bx(a< x∧x≤ c).

2.4. Capturing complexity

Central to the relationship between finite model theory
and complexity theory is the notion of a logiccapturinga
complexity class. Complexity classes are usually defined
in terms of languages, but strings over a finite alphabet can
easily be encoded as (ordered) relational structures. This
means that strings and structures can be used interchange-
ably, which leads to the following definition.

Definition 2 (Capturing a complexity class)
A logic L is said to capturea complexity class C iff for every
class K of σ-structures in C there is a sentence ϕ ∈ L (and
vice versa), such that for all σ-structures A the following
holds:

A ∈ K ⇐⇒ A |= ϕ

(A is in K iff A satisfies the sentence ϕ). �

Following Fagin’s 1974 result [9] that the logicΣ1
1 (exis-

tential second order logic) capturesNP, logical characteri-
zations have been found for many other complexity classes
such asP [13, 24], PSPACE[1], and LOGSPACE[14].
For the latter characterizations the structures have to be or-
dered, as otherwise the logics fail to express even simple
statements such as ‘the structure has an even size’. It is an

2Here∃=bxϕ is used as shorthand for∃≥bxϕ∧∀y(∃≥yxϕ→ y≤ b). We
also writex+y = z instead of+xyz.

open problem whether there exist logical characterizations
of these classes that also hold for structures without an or-
dering.

As mentioned in the introduction, Barrington et al.
showed the following theorem in [3].

Theorem 1 (Barrington, Immerman, Straubing)
FOC(<,+,×) captures TC0. �

To be precise, instead of+ and×, Barrington et al. use
a predicate calledBIT, whereBIT(i, j) is true iff thei-th bit
in the binary representation ofj is 1. ButBIT and{+,×}
have the same expressive power when added to first-order
logic with counting quantifiers (for a proof see, e.g, section
1.2.1 in [17]).

2.5. Ehrenfeucht-Fräısśe Games

Ehrenfeucht-Fräısśe games (EF-games) are a game-
theoretic method to prove inexpressibility results for log-
ics. They were invented by Ehrenfeucht [7] based on work
by Fräısse [10]. We will give a short introduction to EF-
games, and refer the reader to [5] for a more thorough cov-
erage. Whenever we use the term “EF-game” in this paper,
we mean an EF-game for the logicFOC.

An EF-game proceeds as follows. Given are two struc-
turesA andB (with domainsA andB, respectively) of the
same signature and a numberM ≥ 1. The game consists of
M moves, where two players I and II (also called “spoiler”
and “duplicator”, respectively) choose elements(ai)i=1,...,M

from A and elements(bi)i=1,...,M from B, according to the
following rules.

Every move starts by player I deciding whether to make
a point moveor a set move. Then the following happens
(assume this is themth move anda1,b1, . . . ,am−1,bm−1

have already been chosen).

Point Move:

1. Player I chooses a structure (A or B). If I choosesA ,
I picks an elementam from that structure, otherwise, I
picks an elementbm from B.

2. Player II then selects an element from the other struc-
ture, so if I choosesA , II picks an elementbm from B,
and if I choseB, II picks an elementam from A .

Set Move:

1. Player I chooses a structure (A or B) – for the fol-
lowing we assume I choseA (otherwise exchange the
roles ofA andB). Player I then picks ani < m and a
setA0⊆ A with |A0|= ai .

2. Player II picks a subsetB0⊆ B with |B0|= bi .



3. Player I chooses an elementbm from B0.

4. Player II selects an elementam from A0.

Note that if we haveai = bi = 1 for somei, then the point
move is just a special case of the set move. We nevertheless
make the distinction, since it helps structure our reasoning
later on; we can first consider the ‘simple’ point move, and
then extend our results to the more complex set move.

Player II wins aM-Move EF-game iff afterM moves
the mapping(a1,a2, . . . ,aM) 7→ (b1,b2, . . . ,bM) is a partial
isomorphism fromA to B, i.e. it preserves equality and the
relations on the two structures. Otherwise, player I wins.

Obviously, if A andB are isomorphic, player II can al-
ways win by mirroring the moves of player I in the other
structure. But more generally the following theorem holds
– a variant of the theorem due to Ehrenfeucht for first-order
logic. A proof can be found in [8].

Theorem 2
The following two statements are equivalent:

(i) Player II has a winning strategy for the M-move EF-
game on two structures A and B .

(ii) A and B satisfy the same FOC formulas of quantifier
rank ≤M. �

For inexpressibility results we use the following corol-
lary of Theorem 2:

Corollary 3
Let K and L be classes of finite structures, such that there
exist sequences (Ai)i∈N in K and (Bi)i∈N in L, where for
every M ≥ 1 player II has a winning strategy for the M-
move EF-game on AM and BM .

Then K and L cannot be distinguished by a FOC-
formula. �

3. Main Theorem

“Deterministic transitive closure” is the following ques-
tion: Given a directed graphG = (V,E), where every node
has out-degree at most 1, and two nodess, t ∈ V; is there
a path inG from s to t? This problem is obviously in
LOGSPACE. Our main theorem, which we prove in this
section, is the following.

Theorem 4
Deterministic transitive closure (DTC) cannot be expressed
in FOC(<,+).

It then immediately follows that

Corollary 5
FOC(<,+) does not capture LOGSPACE. �

3.1. Proof of main theorem

For each natural numberM we construct two structures
AM = ({0, . . . ,NM},<,+,EAM ) and BM = ({0, . . . ,NM},
<,+,EBM ), whereE is a binary relation that represents a
directed graph where every vertex has an out-degree of at
most 1. We will have that

(i) 0 andNM are connected via anEAM -path

(ii) 0 andNM arenotconnected via anEBM -path

(iii) Player II has a winning strategy for theM-move
Ehrenfeucht-Fräısśe Game onAM andBM.

Since the first and last element of the ordering, 0 and
NM, are FO-definable in ordered structures, Corollary 3
then immediately implies thatDTC cannot be expressed in
FOC(<,+).

So letM ≥ 1 be fixed for the rest of this proof, and we
just writeA , B, N instead ofAM, BM, NM.

3.2. Construction ofA and B

To define the size of the structuresA andB, we use a
function r : {4, . . . ,M + 4} → N that will also play a role
later in the proof. During the proof we will repeatedly make
use of the fact thatr(m) is ‘much larger’ thanr(m+ 1) for
all m∈ {4, . . . ,M + 3}. In fact, the exact definition ofr
does not matter much, as long as it satisfies all size con-
straints imposed by the proof. When reading the proof, it
is therefore helpful to ignore the exact definition ofr, and
just convince oneself that all constraints in the proof can be
satisfied simultaneously.

The functionr is recursively defined as follows:

• r(M +4) := 1

• r(m) :=
(

(6r(m+1))12m ·α
)α

,

whereα = lcm(1,2, . . . , r(m+1))+2.

SetR := 3r(4)3 · r(4)! and fix the size of our structures
asN := (4R+1)R.

We define the edge relations as follows:

EA := {(a,b) | a+R= b }

EB := {(a,b) | a+2R= b }

Obviously 0 andN are connected via anEA -path (since
N is a multiple ofR) but not via anEB -path (sinceN is not
a multiple of 2R).



3.3. Strategy

We have to show that these two structures cannot be dis-
tinguished using anM-move Ehrenfeucht-Fraı̈sśe-game. To
this end we state a strategy for player II that ensures that all
mappings(a1, . . . ,am) 7→ (b1, . . . ,bm) occurring during the
game will be partial isomorphisms.

The crucial strategy element for player II is to
make certain that all partial isomorphisms(a1, . . . ,am) 7→
(b1, . . . ,bm) occurring during the game can be extended to
linear combinations∑αiai 7→ ∑αibi with “simple” coeffi-
cientsαi . If this were not the case, player I could quickly
establish that the two structures are not isomorphic.

For example, if we havea2 = 5 ·a1 in one structure, but
b2 6= 5 · b1 in the other structure, then player I could play
2 ·a1,3 ·a1,5 ·a1 in A , and player II would be forced to re-
spond with 2·b1, 3·b1, 5·b1 since the new elements can be
expressed as sums of already chosen elements. Apparently
player II would lose in this case.

More precisely, the linear combinations player II must
preserve have the following form.

Definition 3 (Ld(a))

Ld(a1, . . . ,am) :={
m

∑
i=1

pi

qi
·ai ∈ Z

∣∣∣ pi ,qi ∈ Z, |pi |, |qi | ≤ d, qi 6= 0

}
�

We can now define setsWm (4 ≤ m≤ M + 4) that are
winning situations for player II. The functionr used in the
definition is the one we used above to define the sizeN of
our structures. Note thatr decreases rapidly; intuitively,
at the beginning of the game, player II has to preserve a
large number of linear equations to account for all possible
strategies player I might take, while as the game progresses,
player II has to preserve fewer and fewer linear combina-
tions.

Definition 4 (Wm)

Wm :=
{

(a1, . . . ,am) 7→ (b1, . . . ,bm)
∣∣∣

(a1,a2,a3,a4) = (0,1,R,N),
(b1,b2,b3,b4) = (0,1,2R,N),
π : Lr(m)(a1, . . . ,am)→ Lr(m)(b1, . . . ,bm) with

π

(
m

∑
i=1

pi

qi
ai

)
=

m

∑
i=1

pi

qi
bi

is a (well-defined) isomorphism
}
�

“Well-defined isomorphism” means that

m

∑
i=1

pi

qi
ai ∈ Z ⇐⇒

m

∑
i=1

pi

qi
bi ∈ Z

and

m

∑
i=1

pi

qi
ai =

m

∑
i=1

p′i
q′i

ai ⇐⇒
m

∑
i=1

pi

qi
bi =

m

∑
i=1

p′i
q′i

bi

for all pi , p′i , qi , q′i with absolute value≤ r(m), and thatπ is
an isomorphism preserving<, + andE.

Note that for every mapping (a1, . . . ,am) 7→
(b1, . . . ,bm) ∈ Wm we must then necessarily have
ai ≡ bi mod lcm(1,2, . . . , r(m)) for all i ∈ {1, . . . ,m},
since otherwiseπ would not preserve integrality.

Our claim that player II has a winning strategy for theM-
move EF-game can be split into the following two lemmas.

Lemma 6
(0,1,R,N) 7→ (0,1,2R,N) ∈W4 (i.e. W4 is not empty)

Lemma 7
If a game-situation (a1, . . . ,am) 7→ (b1, . . . ,bm) ∈Wm (m<
M + 4) arises, player II can always enforce that am+1 and
bm+1 are chosen such that (a1, . . . ,am+1) 7→ (b1, . . . ,bm+1)
is in Wm+1.

I.e., we actually show a stronger statement than player
II just having a winning strategy for theM-move EF-game.
We show that II can win aM-move game, where four
elements in each structure ((0,1,R,N) and(0,1,2R,N)) are
already fixed at the beginning of the game.

Proof of Lemma 6: We have to show that the mapping
(0,1,R,N) 7→ (0,1,2R,N) can be extended to an isomor-
phism π : Lr(4)(0,1,R,N)→ Lr(4)(0,1,2R,N). Intuitively,
the reason for this being possible is that the elements of
the two quadruples belong to the same residue classes for
all moduli less thanr(4), and that 1, 2R andN are so ‘far
apart’ that they satisfy only trivial addition relations.

More formally, first, we have that for allpi , qi (1≤ i ≤ 3)
of no more thanr(4) in absolute value, the following holds.

p1

q1
·1+

p2

q2
·R+

p3

q3
·N∈Z ⇐⇒ p1

q1
·1+

p2

q2
·2R+

p3

q3
·N∈Z

To see this, just note thatR, 2RandN are multiples ofr(4)!,
and thereforeq2 andq3 evenly divideR, 2R, andN. Thus,
both sums are integral if and only ifp1/q1 is an integer.

Next, we have to check whetherπ preserves equality and
ordering. It suffices to show that for allpi , qi (1≤ i ≤ 6) of



no more thanr(4) in absolute value, the following holds.

sign

(
p1

q1
·1+

p2

q2
·R+

p3

q3
·N−

(
p4

q4
·1+

p5

q5
·R+

p6

q6
·N
))

(1)

= sign

(
p1

q1
·1+

p2

q2
·2R+

p3

q3
·N−

(
p4

q4
·1+

p5

q5
·2R+

p6

q6
·N
))
(2)

To see that this equality holds, note thatN was chosen
such that it is much larger thanR, andR is much larger than
1. If p3

q3
6= p6

q6
we have∣∣∣∣ p1

q1

∣∣∣∣+ ∣∣∣∣ p4

q4

∣∣∣∣+(∣∣∣∣ p2

q2

∣∣∣∣+ ∣∣∣∣ p5

q5

∣∣∣∣) ·2R

≤ 8r(4) ·R< N
r(4)2 <

∣∣∣∣ p3

q3
− p6

q6

∣∣∣∣ ·N
Thus, the values of expressions (1) and (2) are both equal to
the sign ofp3

q3
− p6

q6
.

If, on the other hand,p3
q3

= p6
q6

holds, but p2
q2
6= p5

q5
, then

we have∣∣∣∣ p1

q1

∣∣∣∣+ ∣∣∣∣ p4

q4

∣∣∣∣≤ 2r(4)≤ R
r(4)2 <

∣∣∣∣ p2

q2
− p5

q5

∣∣∣∣ ·R
and the expressions (1) and (2) are both equal to the sign
of p2

q2
− p5

q5
. In the case wherep2

q2
= p5

q5
and p3

q3
= p6

q6
, the

expressions are identical.
Checking thatπ respects+ can be done in a similar fash-

ion; a little calculation shows that

p1

q1
+

p2

q2
R+

p3

q3
N+

p′1
q′1

+
p′2
q′2

R+
p′3
q′3

N =
p′′1
q′′1

+
p′′2
q′′2

R+
p′′3
q′′3

N

holds if and only if for alli ∈ {1,2,3}:

pi

qi
+

p′i
q′i

=
p′′i
q′′i

And the same is true if we replaceR by 2R. So these rela-
tions are trivially preserved byπ.

The mappingπ then also respectsE, since the edge-
relation is defined in terms of the addition relation and the
fixed elementsRand 2R. �

Proof of Lemma 7: We will show this lemma by stating an
explicit strategy for player II. First we consider the easier
point move case. As mentioned in the introduction, strate-
gies for this case can also be found in [12, 21]. Then we
will state the set move strategy which will be a non-trivial
generalization of the point move.

Assume that the game situation(a1, . . . ,am) 7→
(b1, . . . ,bm) ∈ Wm has arisen, where(a1, . . . ,a4) =
(0,1,R,N) and (b1, . . . ,b4) = (0,1,2R,N). Let π be
the induced isomorphism betweenLr(m)(a1, . . . ,am) and
Lr(m)(b1, . . . ,bm). In the following we will abbreviate the
tuples(a1, . . . ,am) and(b1, . . . ,bm) asa andb, respectively.

Point Move

Assume that player I chooses a new elementam+1 in struc-
ture A (the case of player I choosing an element ofB is
handled symmetrically). We have to choose a new element
bm+1 such that(a,am+1) 7→ (b,bm+1) is in Wm+1. We dis-
tinguish two cases.

In the first case,am+1 is “close” to the previously cho-
sen elements, and already in the domain ofπ. Here we can
just setbm+1 := π(am+1). In the second case,am+1 is “far”
from all previously chosen elements, i.e. does not satisfy
any non-trivial addition relations with them. In this case it
suffices forbm+1 to satisfy the same ordering constraints
as am+1 and belong to the same residue classes asam+1

for moduli less thanr(m+ 1). We will see that this is al-
ways possible, sincer(m) was chosen large enough to leave
plenty of ‘room’ between the elements{bi}.

We will now give the details of the strategy in the two
cases.

Case 1:am+1 ∈ L3r(m+1)6(a)

Here, am+1 is a linear combinationam+1 = ∑m
i=1

p′i
q′i

ai of

{a1, . . . ,am} with “small” coefficients. Therefore any linear
combination∑m+1

i=1
pi
qi

ai of {a1, . . . ,am+1} can be rewritten
as a linear combination

m

∑
i=1

(
pi

qi
+

pm+1p′i
qm+1q′i

)
ai

of {a1, . . . ,am} with “slightly larger” coefficients. So we
have

Lr(m+1)(a,am+1)⊆ L6r(m+1)8(a)⊆ Lr(m)(a),

where the last inclusion holds by definition ofr(m). Thus,
by setting bm+1 := π(am+1) we have an isomorphism
betweenLr(m+1)(a,am+1) andLr(m+1)(b,bm+1) that is just
a restriction of the old isomorphismπ.

Case 2:am+1 6∈ L3r(m+1)6(a)

Let amin and amax be the greatest (respectively least) ele-
ments ofL3r(m+1)6(a) less (respectively greater) thanam+1,
andbmin andbmax be their images underπ.

0 bmin bm+1 bmax N

A

B

0 amin am+1 amax N

We claim that it is sufficient for player II to choosebm+1

such that



• bm+1 ∈ {bmin+1, . . . ,bmax−1}, and

• am+1≡ bm+1 mod lcm(1,2, . . . , r(m+1))

Let us first see that it is always possible to find such a
bm+1. If bmax− bmin > lcm(1, . . . , r(m+ 1)), then such a
bm+1 obviously exists, since there has to be an element be-
longing to the same residue class asam+1 betweenbmin and
bmax.

So assume thatbmax−bmin≤ lcm(1, . . . , r(m+1)) holds.
Since, by definition,r(m)≥ lcm(1,2, . . . , r(m+1)) we have
{1, . . . , lcm(1,2, . . . , r(m+1))} ⊆ Lr(m)(a) (as “linear com-
binations” ofa2 = b2 = 1). Sinceπ is the identity mapping
on these linear combinations of 1 and preserves the addition
predicate, we have thatamax−amin = bmax−bmin. Further-
more we have for allk≤ lcm(1,2, . . . , r(m+1)) that

amax+k
lcm(1,2, . . . , r(m+1))

∈ Z⇔ bmax+k
lcm(1,2, . . . , r(m+1))

∈ Z

and thereforeamax≡ bmax mod lcm(1,2, . . . , r(m+ 1)), and
the same foramin andbmin.

So amin and bmin (and amax and bmax) belong to the
same residue classes modulo lcm(1,2, . . . , r(m+ 1)). It
then follows withamax− amin = bmax− bmin that for each
residue classam+1 modulo lcm(1,2, . . . , r(m+ 1)) between
amin and amax the same residue class exists betweenbmin

and bmax, and we can choose abm+1 according to the
restrictions given above.

After having seen that we can always choose abm+1

according to the restrictions given above, we now have to
show that this choice ofbm+1 necessarily leads to a map-
ping (a,am+1) 7→ (b,bm+1) ∈Wm+1.

So let bm+1 be chosen as above and letπ′ :
Lr(m+1)(a,am+1)→ Lr(m+1)(b,bm+1) be the extension of the
mapping(a,am+1) 7→ (b,bm+1). We have to show thatπ′ is
a well-defined isomorphism, which requires checking the
same properties as in the proof of Lemma 6.

• First, we have that

m+1

∑
i=1

pi

qi
ai ∈ Z⇐⇒

m+1

∑
i=1

pi

qi
bi ∈ Z,

since for everyi bothai andbi lie in the same residue
class3 modulo lcm(1, . . . , r(m+1)) and therefore mod-
ulo lcm(q1,q2, . . . ,qm+1).

• π′ respects equality and ordering. Leta =

∑m+1
i=1

pi
qi

ai and a′ = ∑m+1
i=1

p′i
q′i

ai be two elements of

3Foram+1 andbm+1 we have this by choice ofbm+1, for the otheri this
holds sinceπ preserves integrality, i.e. since we havep+ai

q ∈Z⇔ p+bi
q ∈Z

for all p,q≤ r(m+1).

Lr(m+1)(a,am+1) with a< a′ (the casea = a′ is han-

dled in the same manner). Ifpm+1
qm+1

=
p′m+1
q′m+1

then the

inequality is equivalent to

m

∑
i=1

pi

qi
ai <

m

∑
i=1

p′i
q′i

ai

This inequality is independent ofam+1, so sinceπ′
agrees withπ on Lr(m+1)(a) andπ respects the order-
ing, we have that

m

∑
i=1

pi

qi
bi <

m

∑
i=1

p′i
q′i

bi

And addingpm+1
qm+1

bm+1 =
p′m+1
q′m+1

bm+1 on both sides of the

inequality does not change its validity.

If, on the other handpm+1
qm+1
6= p′m+1

q′m+1
(say it is>), then the

inequality can be solved foram+1:

am+1 <
m

∑
i=1

(
qm+1q′m+1

pm+1q′m+1− p′m+1qm+1

)(
p′iqi − piq′i

qiq′i

)
ai

The linear combination on the right is an element of
L2r(m+1)4(a), and therefore an element ofL3r(m+1)6(a).
Since we chosebm+1 such that it satisfies the same
ordering-relations asam+1 regarding the elements of
L3r(m+1)6(b), this inequality is preserved byπ′.

• To see thatπ′ preserves+, consider an equality of the
following form:

m

∑
i=1

pi

qi
ai +

m

∑
i=1

p′i
q′i

ai =
m

∑
i=1

p′′i
q′′i

ai

If pm+1
qm+1

+
p′m+1
q′m+1

=
p′′m+1
q′′m+1

, then the equality is independent

of the value ofam+1, and thus preserved byπ′. If it de-
pends on the value ofam+1, we can solve the equation
for am+1, obtaining

am+1 =
m

∑
i=1

pi
qi

+ p′i
q′i
− p′′i

q′′i
p′′m+1
q′′m+1
− pm+1

qm+1
− p′m+1

q′m+1

·ai

But this impliesam+1 ∈ L3r(m+1)6(a), in contradiction
to the choice ofam+1.

• And finally, E is preserved, since it is defined in terms
of the addition predicate.

Set Move

Player I chooses an elementai and a setA0 ⊆ {0,1, . . . ,N}
with |A0| = ai (again the case of player I choosing an ele-
ment and subset fromB is handled symmetrically). Player



II has to answer with a setB0 with |B0| = bi . We want
to chooseB0 in such a way that whatever element player I
chooses in it, we can answer according to our point move
strategy with an element ofA0.

In the point move case we distinguished between two
cases for a new element: whether it is in the setL3r(m+1)6(a)
or not. Since we want to eventually apply our point move
strategy, we do the same here. LetA1 := A0∩L3r(m+1)6(a)
and A2 := A0 \A1. We will chooseB1 and B2 such that
should player I choose an elementbm+1 from B1, we can
answer (according to our point move strategy) with an ele-
mentam+1 of A1 and likewise forB2 andA2.

• SetB1 := {π(a) | a∈ A1}, the images ofA1 underπ.
Clearly, if player I chooses any element inB1 we can
answer with its pre-image underπ from A1; this is case
1 of the point move.

• For the definition ofB2, recall case 2 in the point
move. We found that abm+1 could be answered by
any am+1 that is in the same residue class modulo
lcm(1,2, . . . , r(m+ 1)) and in the same ‘interval’ be-
tween elements ofL3r(m+1)6(a) and L3r(m+1)6(b), re-
spectively.

For c,d ∈ L3r(m+1)6(a), such thatc< d and there are
no further elements ofL3r(m+1)6(a) betweenc andd,
andr ∈ {0,1, . . . , lcm(1,2, . . . , r(m+1))−1}, let Ic,d,r
andI ′c,d,r be the following sets:

Ic,d,r := {a | c< a< d,a≡ r mod lcm(1,2, . . . , r(m+1))}
I ′c,d,r := {b | π(c)< b< π(d),

b≡ r mod lcm(1,2, . . . , r(m+1))}

When player I chooses an element inI ′c,d,r we can an-
swer with any element fromIc,d,r . So letn be minimal
such that for appropriately chosenc j ,d j , r j

A2⊆
n⋃

j=1

Ic j ,d j ,r j .

We then set

B2 :=
n⋃

j=1

I ′c j ,d j ,r j
,

and as in case 2 of the point move it is clear that if
player I chooses any element fromB2, say fromI ′cl ,dl ,r l

,
we can answer with any element ofIcl ,dl ,r l ∩A2; and the
latter set is non-empty sincen was chosen minimally.

It follows from the previous discussion that if player II
choosesB0⊆B1∪B2 arbitrary with|B0|= bi , then player II
will always be able to answer player I’s choice ofbm+1∈B0

with anam+1 ∈ A0 according to the point move strategy. So
all that remains to be shown is that|B1∪B2| ≥ bi holds, i.e.,
that we can actually choose aB0 of the required size.

To this end we will show that

(i) s := |L3r(m+1)6(a)|+ ∑n
i=1 |Ic j ,d j ,r j | is an element of

Lr(m)(a), and that

(ii) π(s) = |B1∪B2|.
Since we know thatai ≤ s, and thatπ preserves the ordering,
the inequalityπ(ai) ≤ π(s) must also hold, i.e. we have
bi ≤ |B1∪B2|, and the proof is finished.

First, we bound the size ofL3r(m+1)6(a). In the lin-
ear combinations∑m

i=1
pi
qi

ai of elementsa1, . . . ,am that
make upL3r(m+1)6(a), each of the 2m pj ’s and q j ’s ap-
pearing in the linear combinations can have values from
{0,±1,±2, . . . ,±3r(m+ 1)6}. Since

p j
q j

= −p j
−q j

, etc., a lot
of these choices lead to the same values. The number
(6r(m+ 1)6)2m therefore is a conservative upper bound for
the number of elements inL3r(m+1)6(a).

This implies that |L3r(m+1)6(a)| is an element of

L(6r(m+1)6)2m(a) and ofL(6r(m+1)6)2m(b) – as a ‘linear com-
bination’ ofa1 = b1 = 1.

We now turn to∑n
i=1 |Ic j ,d j ,r j |. First, the number of ‘in-

tervals’]c j ,d j [ in L3r(m+1)6(a) is bounded by the number of
elements of that set, and therefore we have

n≤ (6r(m+1)6)2m · lcm(1, . . . , r(m+1)).

As for |Ic j ,d j ,r j |, its size is equal to either⌊
d j −c j −1

lcm(1,2, . . . , r(m+1))

⌋
or

⌈
d j −c j −1

lcm(1,2, . . . , r(m+1))

⌉
.

This means that there is some

ej ∈ {0,±1,±2, . . . ,±lcm(1,2, . . . , r(m+1))}

such that

|Ic j ,d j ,r j |=
d j −c j −1+ej

lcm(1,2, . . . , r(m+1))
.

Similarly, we have that

|I ′c j ,d j ,r j
|=

π(d j)−π(c j)−1+ej

lcm(1,2, . . . , r(m+1))
.

Usingc j ,d j ∈ L3r(m+1)6(a) this implies that

|Ic j ,d j ,r j | ∈ L(6r(m+1)6)2lcm(1,...,r(m+1))(a).

And therefore

s= |L3r(m+1)6(a)|+
n

∑
i=1
|Ic j ,d j ,r j |

∈ L(n+1)((6r(m+1)6)2mlcm(1,...,r(m+1)))(n+1)(a)⊆ Lr(m)(a)

Here we used the (easily verified) fact, that the sum ofk
elements ofLd(a) is in Lkdk(a).

We also established that π(|L3r(m+1)6(a)|) =
|L3r(m+1)6(b)|, and that π(|Ic j ,d j ,r j |) = |I ′c j ,d j ,r j

|. Since

s can be expressed as the sum of these values inLr(m)(a),
so canπ(s) in Lr(m)(b), and thereforeπ(s) = |B1∪B2|, as
claimed.�



3.4.FOC(<,+) is weaker thanFOC(<,+,×)

The previous proof gives us an immediate corollary:

Corollary 8
FOC(<,+) is strictly weaker than FOC(<,+,×).

Proof: The two structures given in the preceding proof are
distinguishable inFOC(<,+,×) since we just have to ask
whether the only element to which 0 has an edge evenly
divides the maximum element.�

4. Conclusion

We have shown that the logicFOC(<,+) does not cap-
tureLOGSPACE, since it cannot express deterministic tran-
sitive closure. This may be one of the first meaningful re-
sults about the expressibility of first-order logic augmented
with counting quantifiers in the presence of an ordering and
non-trivial arithmetic operators.

As Corollary 8 shows, the proof breaks down in presence
of a multiplication predicate. This is not surprising, as this
case corresponds to the open questionTC0 vs. LOGSPACE.
The intuitive reason why the problem becomes much harder
is that we used the fact that the combinatorial structure of
the addition operation is very simple. But, as number the-
ory evidences, addition and multiplication taken together
exhibit a very involved structure. Therefore constructing
an explicit EF-game strategy for this general case seems to
be very difficult.

A natural next question therefore is: if not multiplication,
what other (most likely weaker) operations can we add to
FOC, and still prove inexpressibility results?
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