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Abstract I=Y¥xd(x) and express that “there are at legstistinct el-
ementsx that satisfyp(x)”. There has been a great interest
An important open question in complexity theory is inrecentyears in the expressiveness of first-order logic aug-
whether the circuit complexity class ?& (strictly) weaker mented with counting quantifiers, which we will c&OC
than LOGSPACE. This paper considers this question fromin this paper.
the viewpoint of descriptive complexity theory. This is mostly due to the fact that this logic, in the
T can be characterized as the class of queries express-presence of an ordering, and addition and multiplication
ible by the logic FOG<,+, x), which is first-order logic ~ predicates (we call this logicFOC(<,+, x)"), captures
augmented by counting quantifiers on ordered structuresthe circuit complexity clas3 C° [3], the class of uniform
that have addition and multiplication predicates. We show polynomial-size, constant depth, threshold circuits. It is
that in first-order logic with counting quantifiers and only an important open question whethB€® is weaker than
an addition predicate it is not possible to express “deter- LOGSPACE even whether it is strictly weaker thaP is
ministic transitive closure” on ordered structures. As thisis unknown [2].
a LOGSPACE-complete problem, this logic therefore fails  To see whether a logic capture©GSPACEit is suf-
to capture LOGSPACE. It also directly follows from our ficient to determine whether it can express “deterministic
proof that in the presence of counting quantifiers, multipli- transitive closure”. Deterministic transitive closu2T(C)
cation cannot be expressed in terms of addition and order- is the problem where given a directed graph whose vertices
ing alone. all have out-degree at most 1, and two nodesdt, one
has to decide whether there is a path freto t. DTC is
LOGSPACEcomplete under quantifier-free reductions [8].
1. Introduction The main result of the present paper is that first-order
with counting quantifiers on ordered structures with an ad-
dition predicate (we call this logid®OC(<,+)") and a bi-

The interest in finite model theory from a complexit ) i
y prextty nary relatiorE, i.e. on structures of the form

theory point of view is motivated by the fact that “descrip-
tive complexity theory” allows to rephrase complexity the-
oretic questions in a purely logical framework [15, 16, 17].
This allows one to attack these questions from a New Per-c4nnotexpress the deterministic transitive closur&ofnd
spective and using different tools, such as Ehrenfeucht-y, < tails to capture OGSPACE

Frais®-games.

In this paper, we study the expressive power of first-
order logic augmented with counting quantifiers on ordered
structures. Expressions in first-order logic are built from
relational expressio@xx; ... % and equalitiex; = xo us-

ﬂ:({o’l""7N}7<’+7E)7

We prove this main result by giving an explicit winning
strategy for the second player in an Ehrenfeuchidsea

From a descriptive complexity theory point of view, it
) - o shows that the multiplication predicate must be essential
ng the.co_nnectlvesx, Vi and the quantlfleré andy. shouldFOC(<, +, x) in fact equaLOGSPACE Moreover,
The limitations of the expressiveness of first-order logic are from our proof we can also directly conclude the stronger
well-known (see, e.g., [5]), most notably that it lacks any result thaF OC(<, +) # FOC(<, +, x) meaning that mul-

ability to ‘count. Itis not even possible to express the fact tiplication is essential to capturifigC®, too. We thus obtain
that a structure has even size.

Adding ‘counting quantifiers’ to the logic remedies this ?
fact. Counting quantifiers are expressions of the form FOC(<,+) G FOC(<,+, x) = TC? # LOGSPACE



1.1. Related work tifiers, corresponding to a ‘set move’ in the Ehrenfeucht-
Frais€-game.

Most of the previous work on the expressibility of count-  After completing this paper, we noticed a reference in
ing quantifiers considered two-sorted structures, which con-[8] to an (as yet) unpublished manuscript of Lindell that
sist of a finite “vertex domain” (the ‘actual’ structure) and a seems to imply the result stated in this paper. Our result
(possibly infinite) number domain. was derived independently, and might also be interesting in

Infinite number domains with arbitrary operations, as in- its own right due to its proof technique.
troduced by Gadel and Gurevich in their ‘meta-finite model
theory’ [11], were considered by Benedikt and Keisler [4], 1.2. Outline of paper
who proved separations for several variations of counting

quantifiers on such structures. This paper is structured as follows. In section 2, we
In the work more closely related to this paper, finite present the notions and definitions from finite model theory
structures of the form used in this paper. In section 3 we state and prove our main
theorem. In the last section 4 we summarize our results and
A= ({07 L. N} Avo,va,... W <+, xR, qu) discuss possible future research directions.

were considered. Here, the relatidR8 apply only to the 2. Logics and games
vertex domain{Vvp, . ..,vn }, and the ordering and arithmetic

operations apply only to the number domdm1,... ,N}.
For a counting formul&@=Yx ¢(x), x ranges over the vertex
domain, whiley ranges over the number domain.

By splitting the structure in this way, it is possible to con-
sider structures that areot ordered. Etessami [8] showed
that if one has only a successor relatiSron the vertex
domain, then first-order logic with counting, addition and
multiplication cannot express the transitive closur§and
therefore fails to captuleOGSPACE The proofin the jour-
nal version of the paper relies on the fact that first-order
|Ogic with Counting quantifiers can 0n|y express local prop- Our notation Sllghtly deviates from the other literature
erties, which follows from [22]. Libkin [18, 19, 20] also  On counting quantifiers. This is due to the fact that we con-
considered local properties of a variety of logics involving Sider only one-sorted structures. In the presence of a total
counting quantifiers. ordering on the structure, a separate number domain does

Unfortunately, in the presence of a total ordering, these NOt give any additional expressibilityso for simplicity we
proof techniques do not apply anymore, since all elementsavoid using it.
of the structure are directly “connected” by the ordering. Usually the name=O(C) is given to first-order logic

The result of this paper may therefore be one of the very With quantifiers on two-sorted structures with i pred-
few non-trivial statements about the expressibility of first- icate on the “number domain”. In order not to confuse the
order logic with counting quantifiers on ordered structures. "eéader, we will call first-order order logic with counting on
By avoiding two-sorted structures, it also seems more natu-Single-sorted domairisOC.
ral than other results in this area.

To prove our main result, we give an explicit winning 2.2. Structures
strategy for player Il in an Ehrenfeucht-Fsg&-game for
the logicF OC. Winning strategies for Ehrenfeucht-Fsge- All structures we consider in this paper are finite with
games for first order logiwithoutcounting quantifiers, but  domains{0,1,...,N} whereN € N. If we considero-
in the presence of an addition predicate, have been studstructures (wherg is the se{Ry, ..., R} of relations on the
ied before. Most of them are related to techniques used bystructure) ands includes one or more of the relation sym-
Presburger for the quantifier elimination ©h(Z) [23]; a bols <, 4+ andx, then these relations are always interpreted
very readable exposition of such a strategy can be found inas the “natural” ordering, addition and multiplication rela-
section 3.3 of [12]. Lynch [21] also gave a similar strategy tions, respectively, on the sg8,...,N}. Note that+ and x
when proving inexpressibility results for first-order logic on are always relations, not functions, in this paper.
structures Wlth an E.lddltlon r_elat|_on. . . 10ne can identify each numbemith the unique ‘vertex’ element;

The main technical contribution of this paper is the eX- that satisfies=y y < x, and in this way use all relations of the number
tension of the strategy in the presence of counting quan-domain also on the vertex domain, and vice versa.

In this section we give the definitions necessary for the
rest of the paper, in particular of the logleOC(<,+)
which will be the main concern of this paper. We then de-
scribe the Ehrenfeucht-Asze-game for this logic, a game-
theoretic method to prove inexpressibility results. Our no-
tation follows [5, 6].

2.1. Remarks on Notation




2.3. FOC

The logicFOC studied in the following is the extension
of first order logic obtained by addirgpunting quantifiers
These quantifiers have the following form:

32¥x¢ wherex, y are variables andl is aF OC-formula.

The variablexin 32Yx¢ is bound by the quantifier, whileis
still free. The formula is satisfied by a structufie= (A,R)
and a variable assignmepiff there are at leagd(y) distinct
elementsa € A, such tha(4,B2) = ¢.

Definition 1 (FOC, FOC(<,+),FOC(<,+, X),...)

FOC is the logic obtained by adding counting quantifiers
to first order logic. For allT C {+, x,<}, FOC(1) is FOC
restricted to structures that have the relations from T, inter-
preted in the ‘natural’ way. [

Note thatFOC(+), FOC(<) andFOC(<,+) have the

open problem whether there exist logical characterizations
of these classes that also hold for structures without an or-
dering.

As mentioned in the introduction, Barrington et al.
showed the following theorem in [3].

Theorem 1 (Barrington, Immerman, Straubing)
FOC(<,+, x) captures TCO. [

To be precise, instead af and x, Barrington et al. use
a predicate calleBIT, whereBIT (i, j) is true iff thei-th bit
in the binary representation ¢fis 1. ButBIT and{+, x}
have the same expressive power when added to first-order
logic with counting quantifiers (for a proof see, e.g, section
1.2.1in[17]).

2.5. Ehrenfeucht-Fraisse Games

Ehrenfeucht-Fris€ games (EF-games) are a game-
theoretic method to prove inexpressibility results for log-

same expressive power, since an ordering can be defined itics. They were invented by Ehrenfeucht [7] based on work

terms of an addition, and vice vefsa

a<b <= I@+x=DbAX+x#X),

atb=c <« I Pxa<xax<oc).
2.4. Capturing complexity

Central to the relationship between finite model theory
and complexity theory is the notion of a logiapturinga

complexity class. Complexity classes are usually defined
in terms of languages, but strings over a finite alphabet can
easily be encoded as (ordered) relational structures. This
means that strings and structures can be used interchang

ably, which leads to the following definition.

Definition 2 (Capturing a complexity class)
A logic L is said to capturea complexity class C iff for every
class K of o-structures in C there is a sentence ¢ € L (and
vice versa), such that for all O-structures A the following
holds:

AeK = A4E¢

(A4 is in K iff 4 satisfies the sentence §). [

Following Fagin’s 1974 result [9] that the Iogic“il (exis-
tential second order logic) capturlid, logical characteri-

zations have been found for many other complexity classes

such asP [13, 24], PSPACE[1], and LOGSPACE[14].

For the latter characterizations the structures have to be or-
dered, as otherwise the logics fail to express even simple
statements such as ‘the structure has an even size'. Itis an

2Here3=Px¢ is used as shorthand farx¢ A Vy(32Yxd — y < b). We
also writex+y = zinstead of+-xyz

by Frasse [10]. We will give a short introduction to EF-
games, and refer the reader to [5] for a more thorough cov-
erage. Whenever we use the term “EF-game” in this paper,
we mean an EF-game for the logt©C.

An EF-game proceeds as follows. Given are two struc-
tures4 and B (with domainsA andB, respectively) of the
same signature and a numiir> 1. The game consists of
M moves, where two players | and Il (also called “spoiler”
and “duplicator”, respectively) choose elemefagi-1,_..m
from 4 and element$b; )i—1...m from B, according to the
following rules.

Every move starts by player | deciding whether to make

a point moveor a set move Then the following happens

?éssume this is thed" move anday,bs,...,am 1,bm-1

have already been chosen).

Point Move:

1. Player | chooses a structur@ or B). If | chooses4,
| picks an elemend, from that structure, otherwise, |
picks an elemerth,, from B.

2. Player Il then selects an element from the other struc-
ture, so if | choosed, Il picks an elemeniby, from B,
and if | choseB, Il picks an elemend,, from 4.

Set Move:

1. Player | chooses a structurd (r B) — for the fol-
lowing we assume | chosg (otherwise exchange the
roles of 4 andB). Player | then picks ah< mand a
setAy C Awith [Ag] = &.

2. Player Il picks a subs@&p C B with |Bp| = by.



3. Player | chooses an elemdst from Bg. 3.1. Proof of main theorem

4. Player Il selects an elemesy, from Ag.
For each natural numbéd we construct two structures

Note that if we havey = bj = 1 for somé, thenthe point ~ Aw = ({0,...,Nu},<,+,E™) and By = ({0,...,Nw},
move is just a special case of the set move. We nevertheless:, +,E?M), whereE is a binary relation that represents a
make the distinction, since it helps structure our reasoningdirected graph where every vertex has an out-degree of at
later on; we can first consider the ‘simple’ point move, and most 1. We will have that
then extend our results to the more complex set move.

Player Il wins aM-Move EF-game iff afteM moves
the mappingas,az,...,am) — (b1,by,...,bu) is a partial
isomorphism from4 to B, i.e. it preserves equality and the
relations on the two structures. Otherwise, player | wins.

Obviously, if 2 and B are isomorphic, player Il can al-
ways win by mirroring the moves of player | in the other
structure. But more generally the following theorem holds
— avariant of the theorem due to Ehrenfeucht for first-order
logic. A proof can be found in [8].

(i) 0 andNy are connected via d&™-path
(i) 0 andNy arenotconnected via ak?™-path

(iii) Player 1l has a winning strategy for th&-move
Ehrenfeucht-Fris® Game ongy andBy.

Since the first and last element of the ordering, 0 and
Nwv, are FO-definable in ordered structures, Corollary 3
then immediately implies thaT C cannot be expressed in
FOC(<,+).

So letM > 1 be fixed for the rest of this proof, and we
just write 4, B, N instead of4y, Bu, Nv.

Theorem 2
The following two statements are equivalent:

(i) Player II has a winning strategy for the M-move EF-

ame on two structures 4 and ‘B. .
& o Stuet 3.2. Construction of 2 and B

(i) A and ‘B satisfy the same F OC formulas of quantifier

rank < M. T To define the size of the structuresand B, we use a

functionr : {4,...,M +4} — N that will also play a role
later in the proof. During the proof we will repeatedly make
use of the fact that(m) is ‘much larger’ tharr(m+ 1) for
all me {4,...,M+3}. In fact, the exact definition of
does not matter much, as long as it satisfies all size con-
straints imposed by the proof. When reading the proof, it
is therefore helpful to ignore the exact definitionrpfand
just convince oneself that all constraints in the proof can be
satisfied simultaneously.

The functionr is recursively defined as follows:

For inexpressibility results we use the following corol-
lary of Theorem 2:

Corollary 3
Let K and L be classes of finite structures, such that there
exist sequences (4 )ien in K and (B)ien in L, where for
every M > 1 player Il has a winning strategy for the M-
move EF-game on Ay and By,.

Then K and L cannot be distinguished by a FOC-
formula. [

3. Main Theorem

“Deterministic transitive closure” is the following ques-
tion: Given a directed grapB = (V,E), where every node
has out-degree at most 1, and two nodgs= V; is there
a path inG from s to t? This problem is obviously in
LOGSPACE Our main theorem, which we prove in this
section, is the following.

Theorem 4
Deterministic transitive closure (DT C) cannot be expressed
in FOC(<,+).

It then immediately follows that

Corollary 5
FOC(<,+) does not capture LOGSPACE J

e r(M+4):=1

o r(m):= ((Br(m+ l))lzmﬂ)a,

wherea =lem(1,2,...,r(m+1)) + 2.

SetR:= 3r(4)3-r(4)! and fix the size of our structures

asN:= (4R+ 1R

We define the edge relations as follows:

b)|a+R=b}

E7 = {(
E? .= {(ab)|a+2R=D}

(

a’
a’

Obviously 0 andN are connected via aB?-path (since

N is a multiple ofR) but not via arE2-path (sinceN is not
a multiple of R).



3.3. Strategy “Well-defined isomorphism” means that

_ W_e have tq show that these two structuﬂre§ cannot be dis- iﬂai €T iﬂbi c7
tinguished using aM-move Ehrenfeucht-Fias-game. To i i

this end we state a strategy for player Il that ensures that all

mappings(ay, . ..,am) — (b,...,bm) occurring during the  and

game will be partial isomorphisms.

The crucial strategy element for player Il is to < Pi Pa= a. —s b| _ & by
make certain that all partial isomorphisr(e,...,am) — =i i Zl Z
(b, ...,bm) occurring during the game can be extended to
linear combinations aja; — 3 ajb; with “simple” coeffi- for all pi, pi, g, o with absolute value< r(m), and thatrtis
cientsa;. If this were not the case, player | could quickly anisomorphism preserving, + andE.
establish that the two structures are not isomorphic. Note that for every mapping (a,...,am) —

For example, if we have; = 5-a; in one structure, but ~ (by,...,by) € Wy we must then necessarily have
b2 # 5-by in the other structure, then player | could play a = bj mod lcm(1,2,...,r(m)) for all i € {1,...,m},
2-a1,3-a1,5 a1 in 4, and player Il would be forced to re-  since otherwiset would not preserve integrality.
spond with 2by, 3-by, 5- by since the new elements canbe  Qur claim that player Il has a winning strategy for e

expressed as sums of already chosen elements. Apparently,ove EF-game can be split into the following two lemmas.
player Il would lose in this case.

More precisely, the linear combinations player Il must

preserve have the following form. Lemma 6

(0,1,R,N) — (0,1,2R,N) € Wy (i.e. Wy is not empty)
Definition 3 (Lq(3))

Lemma 7
If a game-situation (@, ...,am) — (b1,...,bm) € Wn (m<
Lq(ay,...,am) = M + 4) arises, player II can always enforce that 8my1 and
o bmy1 are chosen such that (ay,...,8ms1) — (b1,...,bme1)
{Zq' an‘p.,q.eZ Ipil, |ai| <d, q.;éo} is in Wi 1.
S Ui

l.e., we actually show a stronger statement than player
Il just having a winning strategy for tHd-move EF-game.
We show that Il can win aM-move game, where four
elements in each structur@(1,R,N) and(0,1,2R,N)) are
already fixed at the beginning of the game.

We can now define setf, (4 < m< M +4) that are
winning situations for player Il. The functianused in the
definition is the one we used above to define the kizsf
our structures. Note that decreases rapidly; intuitively,
at the beginning of the game, player Il has to preserve a
large number of linear equations to account for all possible
strategies player | might take, while as the game progresses
player Il has to preserve fewer and fewer linear combina-
tions.

Proof of Lemma 6: We have to show that the mapping
(0,1,R,N) — (0,1,2R,N) can be extended to an isomor-
phism7t: L;(4)(0,1,R,N) — L;(4)(0,1,2R N). Intuitively,
the reason for this being possible is that the elements of
the two quadruples belong to the same residue classes for
all moduli less tham(4), and that 1, R andN are so ‘far
apart’ that they satisfy only trivial addition relations.

More formally, first, we have that for ai, i (1 <i < 3)
{ ag,...,am) > (b,..., bm) of no more tham (4) in absolute value, the following holds.

(
(a1,a2,83,a4) = (0,1,R N),

Definition 4 (W)

P1 P2 P3 p1 p2 Ps3
—1+—-R+—-N€Z <= — 2R+—-NeZ
(b1,b2,b3,ba) = (0.1, 2R,N), 81 0z ds CI1 Q2 as
T L ( )(a17 7am) - Lr(m)(bla---vbm) Wlth
. To see this, just note th& 2RandN are multiples of (4)!,
n( &ai> b — b and therefore), andqs evenly divideR, 2R, andN. Thus,
=R =1 both sums are integral if and only i /q; is an integer.

Next, we have to check whethapreserves equality and

is a (well-defined) isomorphism } B ordering. It suffices to show that for g, g; (1 <i < 6) of



no more tham (4) in absolute value, the following holds. Point Move

S|gn< Ly P2 g B3 (& 4P Ry Pe N)> Assume that player | chooses a new elenmaqt, in struc-
il G2 U3 4 s Q6 ture 4 (the case of player | choosing an element®is
1) handled symmetrically). We have to choose a new element

—S|gn<pl 14 P2 ory PN (&_1+E -2R+@~N)) bm.1 such that(@ ams1) ~ (b, bms1) is in Wins1. We dis-
a1 a2 a3 04 05 Je tinguish two cases.

(2) In the first caseam.,1 is “close” to the previously cho-
sen elements, and already in the domaimoHere we can
just setby1 ;= T(am+1). In the second casey. 1 is “far”
from all previously chosen elements, i.e. does not satisfy
any non-trivial addition relations with them. In this case it

To see that this equality holds, note tiftwas chosen
such that it is much larger tha® andR is much larger than
1IfF 2 #8 p6 we have

P1 Pa P2 Ps suffices forbyn. 1 to satisfy the same _ordering constraints
a a + ( @ + 05 ) 2R asamn1 and belong to the same residue classesa@s
for moduli less tham(m+ 1). We will see that this is al-
<8r(4)-R< lz < Ps _ Ps N ways possible, sinagm) was chosen large enough to leave
r(4) a3 G plenty of ‘room’ between the elemengb; }.
Thus, the values of expressions (1) and (2) are both equalto We will now give the details of the strategy in the two
the sign of 2 — gg. cases.
If, on the other handgg = £ holds, butg? # ¢, then
we have Case L:ami1 € Lgr(my1)6(3)
Py + Pa <2r(4) < —= L Here, amy1 is a linear combinatiory1 = 0, p'a of
G| |Ga r(4? a2 o o

.,am} with “small” coefficients. Therefore any linear
and the expressions (1) and (2) are both equal to the S'Qrbomblnatlonzl”‘” Pig of {ay,...,amy1} can be rewritten
of 2 g:. In the case Wher% = p5 and gg = pﬁ , the as a linear comb|nat|on

expr2e35|ons are identical. " ,
Checking thattrespectst can be done in a similar fash- zl (pi + Pm+1p; > a

ion; a little calculation shows that O Omeadf
P1 " szjL psNJr Py P P R paN _ pilj; P P 2Ry P p3 of {as,...,an} with “slightly larger” coefficients. So we
a o a3 a % U a9 Q3 have
holds if and only if for alli € {1,2,3}: Le(me1) (@ 8mi1) € Ly me1)s(8) € Li(m) (@),
. / /!

B_' + Pr_ p—}, where the last inclusion holds by definitionidim). Thus,

4 4 d by setting bmy1 := T(ame1) We have an isomorphism
And the same is true if we replageby 2R. So these rela-  betweenl;(m; 1)(a am+1) andLy(m;y) (b,bm.1) that is just
tions are trivially preserved bs. a restriction of the old isomorphism

The mappingr then also respectg, since the edge-
relation is defined in terms of the addition relation and the Case 2:am1 & Lg;(m;1)6(3)
fixed elementRand R B
Let amin and amaX be the greatest (respectively least) ele-
Proof of Lemma 7: We will show this lemma by stating an  ments ofL, m1)6 a) less (respectively greater) thag 1,
explicit strategy for player Il. First we consider the easier andbmin ancgbmax be their images undet.
point move case. As mentioned in the introduction, strate-

gies for this case can also be found in [12, 21]. Thenwe 0 8min 8mt1  8max N
will state the set move strategy which will be a non-trivial
generalization of the point move.

Assume that the game situatioffay,...,an) —
(b1,...,bm) € Wy has arisen, where(ay,...,as) =
(0,1,RN) and (by,...,bs) = (0,1,2RN). Let T be 55 ) " N
the induced isomorphism betwedn (as,...,am) and min max

m) (b1, ..,bm). In the following we will abbreviate the We claim that it is sufficient for player Il to choosg, 1

tuples(ay, ..., am) and(by, ..., by) asa andb, respectively. such that



[ ] bm+1 S {bm|n+ :I.7 ey bmax— 1}, and

® ami1 = bmya mod lem(1,2,...,r(m+ 1))

Let us first see that it is always possible to find such a
bmi1. If Bmax— bmin > lcm(1,...,r(m+ 1)), then such a
bmn 1 obviously exists, since there has to be an element be-
longing to the same residue classaas 1 betweerbm,, and
Brmaxe

So assume thdtax— bmin <lcm(d,...,r(m+1)) holds.
Since, by definitionr (m) > lem(1,2,...,r(m+1)) we have
{1,...,lem(1,2,...,r(m+1))} C Lym)(a) (as “linear com-
binations” ofay = b, = 1). Sincertis the identity mapping
on these linear combinations of 1 and preserves the addition
predicate, we have thafax— amin = Pmax— bmin. Further-
more we have for ak <lcm(1,2,...,r(m+1)) that

bmax+ k
lem(1,2,...,r(m+1))

Amax+ K
lem(1,2,...,r(m+1)) €Le

ez

and therefor@max = bmaxmod lcm(1,2,...,
the same foBmin andbmin.

S0 amin and bmin (and amax and byay belong to the
same residue classes modulo [dn2,...,r(m+1)). It
then follows withamax— amin = Pmax— bmin that for each
residue classyn 1 modulo len(1,2,...,r(m+ 1)) between
amin and amax the same residue class exists betwbgnm
and bmax, and we can choose k.1 according to the
restrictions given above.

r(m—+1)), and

After having seen that we can always choosbrai
according to the restrictions given above, we now have to
show that this choice dbn, 1 necessarily leads to a map-
ping (&, am1) — (b,bmi1) € W1

So let bm.; be chosen as above and let :
Lr(mt1) (3@ 8ms1) — Le(mr1) (b, bmy 1) be the extension of the
mapping(a, am:1) — (b,bms1). We have to show that is
a well-defined isomorphism, which requires checking the
same properties as in the proof of Lemma 6.

e First, we have that
Ly "L
—8 €71 +— —b ez,
i; Qi i; G

since for every botha andb; lie in the same residue
clas$ modulo len(1,...,r(m+1)) and therefore mod-

U|O Icm(qla QZ; o 7qm+1)'
e T respects equality and ordering. Lad =
st Ba and d = m+1p’a be two elements of

3Foram; 1 andbm, 1 we have this by choice diy,.1, for the othei this
holds sincatpreserves integrality, i.e. since we ha?%?i €Els % ez
forall p,q<r(m+1).

Lr(mt1)(3,am1) With a < & (the casea = & is han-
i 1 pm+1

dled in the same manner). % T then the

inequality is equivalent to

pi Ao
—a < ) =g
S G i; ql/
This inequality is independent &y, 1, SO sincer’

agrees withrron L, y,,.1)() andm respects the order-
ing, we have that

< p < P
Zhi<y 2hb
i;Qi | i;qi/ |

And addingPe:2 by, ; = gfmlbml on both sides of the
m+-1
inequality does not change its validity.

mi1 s Pt o
If, on the other han% £ m"”l (say itis>), then the
inequality can be solved f@,1:

< Om-19m 1 ) (pfqi - pigf )
ant1 < a
! i; ( pm+1Q§n+1 - p/m+1Qm+1 gig

The linear combination on the right is an element of
Lor(m+1)4(3), and therefore an elementiof; . 1)6(a).
Since we chosd,, 1 such that it satisfies the same
ordering-relations asm1 regarding the elements of
L3r(m+l)5(5)v this inequality is preserved hy.

To see thatt preservest, consider an equality of the

following form:
a' + Z = q// &
I

Pmi1 | Pt _ pm+1 PR
fquJrqm+l e , then the equality is independent

of the value ofa, 1, and thus preserved by. If it de-
pends on the value @&k, 1, we can solve the equation
for am 1, obtaining

/
Omi1 Omil Opyg

But this impliesam.1 € L (m,1)6(a), in contradiction
to the choice o 1.

And finally, E is preserved, since it is defined in terms
of the addition predicate.

Set Move

Player | chooses an elememtand a seyy C {0,1,...,N}

with |Ag|
ment and subset from8 is handled symmetrically). Player

= g (again the case of player | choosing an ele-



Il has to answer with a sé8y with |Bo| = bj. We want () s:= [Lg(mr1s@]+ Yilqllc;a;r;| is an element of
to chooseBy in such a way that whatever element player | Ly(m (@), and that
chooses in it, we can answer according to our point move .
strategy with an element @%. (i) m(s) = |B1UBg|.
In the point move case we distinguished between two Since we know thad; < s, and thattpreserves the ordering,

cases for a new element: whether itis in thelsgt, 16 (a) the inequalitym(a;) < mi(s) must also hold, i.e. we have
or not. Since we want to eventually apply our point move b; < |B1UBsy|, and the proof is finished.

strategy, we do the same here. et:= Ao N Ly (m;.1)6(3) First, we bound the size dfg ,1)6(8). In the lin-
and Ay := Ag\ A1. We will chooseB; and By such that ear combinations;{llga of elementsay,...,an that

should player | choose an elemdnt,; from B;, we can make upLSr(m+1)6(a)1 each of the & p’s and gj’s ap-
answer (according to our point move strategy) with an ele- pearing in the linear combinations can have values from
mentam, 1 of A; and likewise forBz andAy. {0,41,42,...,+3r(m+1)%}. Since g = =%, etc., a lot
e SetB; = {n(a) | ac A}, the images of\; underrt of these choices lead to the same values. The number
Clearly, if player | chooses any elementBa we can (6r(m+1)8)2™ therefore is a conservative upper bound for
answer with its pre-image undarfrom Ag; thisis case  the number of elements Iy, ., 1)6(8).

1 of the point move. This implies that |Lg iy 1)6(3)| is an element of

e For the definition ofB,, recall case 2 in the point  L(er(m+1)s)2n(@) a@nd ofL gy, 1)62m(D) — a@s a ‘linear com-
move. We found that &m.1 could be answered by Pination’ofag = by = 1. _ _
any am.1 that is in the same residue class modulo ~ We Now turn toy L, [Ig; g; r|- First, the number of ‘in-
lcm(1,2,...,r(m+ 1)) and in the same ‘interval’ be- tervals’|cj, dj[ in Ly (m;.1)6(3) is bounded by the number of
tween elements o4 (p,16(8) and Ly . 16(b), re- elements of that set, and therefore we have
spectively. n< (6r(m+1)%2™.lcm(1,...,r(m+1)).

Forc,d € Lg;(m1)s(a), such that < d and there are As for I, g, ;. its size is equal to either

no further elements ats ,,1)6(a) betweenc andd, o

andr € {0,1,...,lcm(1,2,...,r(m+1)) — 1}, letleq, { dji—¢—-1 J " { dj—cj—1 w
andl’ , . be the following sets: ' lem(1,2,...,r(m+1)) lem(1,2,...,r(m+1))

cd,r
This means that there is some
lcar:={alc<a<d,a=rmodlcm1,2,...,r(m+1))} S S 1SS

'é,d,r = {b| T(c) < b< m(d), g € {0,+1,+2,...,+lem(1,2,...,r(m+1))}
b=rmodlcm1,2,....,r(m+1))} such that
dj—cj—1+¢
' i = i~ (I
When player I chooses an elementfn , we canan lejdy.ri | lem(L,2,...,r(m+1))
swer with any element frorfy 4 ;. So letn be minimal o
such that for appropriately chosepd;, | Similarly, we have that
n = m(dj) —m(cj) —1+¢
Ao C e iy 4 Jem(1,2,.. ., r(m+ 1))
= Usingcj,d; € Ly (m1)6(@) this implies that
We then set
B, = LnJ ! ||Cj,dj,fj € I-(6r(m—~-1)6)2Icm(1 ..... r(m+1))(a)
Pt Gdin And therefore

and as in case 2 of the point move it is clear that if  _ L o(a)| + C e d r|
player | chooses any element frdp, say froml/, 4, Sr(m-+1) i; 1R
we can answer with any elementlgfq r, NA; and the 5 5

i s , cL m (@) CL a
latter set is non-empty sincewas chosen minimally. (D ((6r(miDEem(1...o(mi-1)) ) (B) € Lr(m) (3)

It follows from the previous discussion that if player Il Here we usgd _th_e (easn_y verified) fact, that the surk of
elements ot.4(a) is in L, (a).

choose®y C By UB; arbitrary with|Bg| = bj, then player |1 . -
will always be able to answer player I's choicetgf 1 € Bg We also established  that T Lar(mi2p (@) =

with anam;1 € Ag according to the point move strategy. So |L3r(m+1)6(b)|' and that(|le; a;.r[) = “éj,dj,r,- - Since
all that remains to be shown is th8 UB2| > by holds, i.e., ~ Scan be expressed as the sum of these valuésif(a),
that we can actually chooseBg of the required size. so canr(s) in Ly (b), and thereforet(s) = [B1 UB;|, as

To this end we will show that claimed.l
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