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Region-Based Fractal Image Compression

Hannes Hartensteissociate Member, IEEBatthias Ruhl, and Dietmar Saupe

Abstract—A fractal coder partitions an image into blocks most successful are Fisher's quadtree scheme [6] and Fisher’'s
that are coded via self-references to other parts of the image and Menlove’s horizontal—vertical partitions [7]. With these ap-

itself. In this paper we present a fractal coder that derives highly -, rqaches; the partition is hierarchical and built in a top—down
image-adaptive partitions and corresponding fractal codes in fashion '

a time-efficient manner using a region-merging approach. The . . . . . . .
proposed merging strategy leads to improved rate-distortion  In this paper we investigate highly image-adaptive partitions
performance compared to previously reported pure fractal coders, in order to improve the rate-distortion performance of fractal
and it is faster than other state-of-the-art fractal coding methods.  coding. The proposed fractal coder can be seen as a combina-
Index Terms—Fractal compression, image compression, image tion of segmentation-based image coding and fractal compres-
partitions, segmentation-based coding. sion. The partitions are derived in a bottom-up approach using
region merging. Compared to hierarchical tree-structured par-
titions a higher rate is required for encoding the irregular par-
titions. However, we will show that this investment pays off in
N fractal image compression an image is modeled as tlgms of an improved rate-distortion performance. With our re-
unique fixed point of a contractive operator on the space gfon-based fractal coder (RBFC) we build upon the approach of
images. This type of image representation was first proposgdomas and Deravi [8]. The image is first uniformly partitioned,
by Barnsley and Sloan [1], [2] and Jacquin [3], [4] who devisednd then neighboring range pairs are successively merged re-
the first practical fractal coder. Fractal coding has since beem@cing the total number of ranges one by one. Because of the
topic of active research because it has opened up a refreshirge number of choices during the merging process, a heuristic
new view to image compression. It leads to visually pleasingrategy has to be applied. We have developed such a strategy
results at high compression ratios, and it provides resolutifr the region merging that performs well. Moreover, we have
independent image descriptions. used an efficient coding scheme for the resulting partitions. The
In fractal compression the image to be encoded is partitiongsljion merging strategy and the efficient partition coding have
into image blocks called ranges. Each range is “coded” by a rééd to a much improved rate-distortion performance compared
erence to some other part of the image and by some transformesthe results reported in [8], e.g., a gain of about 5 dB PSNR is
tion parameters. These parameters describe how the referergistelined for theés12 x 512 Lenna image at a compression ratio
image part has to be adjusted with respect to contrast and brigift40: 1.
ness in order to give a good approximation to the range to beA specific advantage of our RBFC approach is the sig-
encoded. When one uses fixed length codes for the transform#icantly reduced encoding time compared to the other
tion parameters, the size of a fractal code is, up to the code wsite-of-the-art fractal coders. The encoding time efficiency is
the partition, proportional to the number of blocks of the partdue to a particular domain search heuristics and sophisticated
tion. Therefore, in order to obtain high compression ratios, onffgorithmic techniques that will be described in this paper.
a small number of blocks are allowed. Thus, the key point in The proposed fractal coding method represemisrafractal
fractal compression is to partition the image into a small numbesder in the sense that it does not employ a hybrid approach
of blocks that aresimilar to other image parts under certairthat combines fractal and transform coding. Nevertheless, our
transformations. Since it has been shown that the problem of #FC in combination with an additional full domain search
termining the best piecewise constant approximation for a givgives rate vs distortion results that are comparable to those of
number of ranges represents an NP-hard problem [5], it followse fractal-wavelet coder of Davis [9] and the fractal-DCT coder
that finding optimal partitions for fractal coding purposes is &f Barthel [10]. With the proposed scheme we believe to ex-
least as hard. Many partitioning methods have been proposedgiwit image-inherent self-similarities to the fullest; however, en-
fractal image compression; among the most widely known agdding times as well as rate-distortion performance are still not
competitive with state-of-the-art wavelet coders. Preliminary re-
t(()erts of our work on region-based fractal coding were presented
editor coordinating the review of this manuscript and approving it for publica!! [11]-13].
tion was Dr. Nasir Memon. This paper is organized as follows: in Section Il we present
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of Technology, Cambridge, MA 02139 USA (e-mail: ruhl@mit.edu). we feel that a solid mathematical formulation is indispensable
D. Saupe is with the Institut fir Informatik, Universitét Leipzig, Leipzig, Ger-, . . . .
many (e-mail: saupe@informatik.uni-leipzig.de). for the sake of clarity and rigor. A review of previously used par-
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region-based fractal coder is presented in Section 1V, and gartition’?, the geometric mapping and the value transformation
perimental results as well as comparisons to other fractal codars of the form

are discussed in Section V. In Section VI we discuss additional

studies, namely a rate-distortion optimization approach and g(z) = Z gr(e)1p(z), w(z,y)= Z vp(y)lp(x)
probabilistic region merging version. Our conclusions are sum- PeP PeP

marized in Section VII. ] )
where allgp andvp are affine mappings.Here,1p denotes

the characteristic function @?. For simplicity, we will interpret

Il. FUNDAMENTALS the image suppotX as a torus, and the affine mappingsare
_ then interpreteadnodulol. Each elemenP of the partition”
A. Fractal Image Modeling is called arange whereagy(P) = {g(x)|z € P} is called a

We start with a mathematical framework of fractal modelinfomain Obviously, these designations come from studying the
of images. We will use the framework given by an operator 43verses of the functiongp, P € P. In fractal compression
studied by Read [14] and Bajraktarevic [15] and will proceelferature one usually also calfs | P arange and’ [ ¢() a
from a rather general formulation to more and more restricté@main.
versions. The Read-Bajraktarevic operators have been previl? order to deal with digital images in the above framework,
ously used for generating fractal curves and surfaces by Dubygher restrictions apply to the partition and the value transfor-
[16] and Massopust [17], and for fractal compression by Bef1ation. Digital images are modeled as functions that are con-

ford et al. [18]. stant on each element of the uniform base partitign
Let X stand for the image suppdi, 1) x [0, 1), and let b b a1 b k41

the space of image&>°(X, R) consist of all bounded func- U, = {{_'“7 vt ) X [l7 L) 7

tions f: X — R. The spacd.*°(X, R) together with the metric n n n n

doo(f1, f2) = |1 = folleo = sup,ex |fi(x) — fo(x)| repre- 0< ky, by < n}

sents a complete metric space. An operdtorL™(X, R) — -

L>(X, R) is called contractive with respect to thg,-metric _
if there exists a constamtwith 0 < ¢ < 1 such thaf|F'(f,) — forasuitable: € N.We calll/ € U, aswellasf [ U, U € Uy,,
F(f2)lloo < ¢ |Ifi = folloo for all fi, fo € L>=(X,R). apixelandn the resolution of the image. Under the following

For a contractive operator on a complete metric space the g&nditions on the RB-operators one can avoid computations on

nach fixed point principle guarantees the existence of a unigéeSub-pixel” scale:
fixed point (cf. e.g., [19]). Thus, a contractive operatoon the * partition’? is adapted to the resolutian i.e., each” € P

space of images uniquely describes an images L>°(X, R), is a (edge-connected) union of elementd/qf Thus, the
namely the one that is characterized by the equafiti ) = base partitiori4, is a refinement of the partitiof;
Q. Given a contractive operatdt: L>=°(X, R) — L*=(X, R), » geometric mappingy is adapted to resolution, i.e., g

the corresponding fixed point can be obtained by applying the ~maps each pixel to a set of pixels. Precisely, since we are
operatorF iteratively to an arbitrary image, i.e., the fixed point dealing with half-open intervals, we require that {ore

Qp is given bylimy .., F*(f), Vf € L=(X, R). SinceQy U,, the closurgy(U7) equals the closur® for some subset
represents an attractive fixed point, it is also cali¢itiactor of V cu,.
F. Assume that one is given a contractive block-based RB-op-

In fractal image compression one is interested in (contractivefiator ' = v(-, g(-)) for a partition’ such thatP andg are
operators 1) whose attractors are good in approximating r@édiapted to resolution. Let A,, denote the averaging operator
world images and 2) that can be coded compactly. The cldbst projects an arbitrary (measuraflenage onto the space of
of block-based Read—Bajraktarevich operators have provenimgges of resolutiom, i.e., the value of a pixef [ U is ob-
meet these demands. tained by integrating the image function over the pielThen,

A Read-Bajraktarevich operator (RB-operatét) L>°(X the operatot;,: = A, o F'is also contractive and maps an
,R) — L>(X, R) is based on a self-mapping X — X that image of resolutiom to an image of the same resolution. Fur-
we call thegeometric mappingand on a function: X x R — thermore, the corresponding fixed pofit,, satisfies

R, called thevalue transformationand is given by
An(Qp) =Qp, . Q)

F(f)(z) = v(z, fg(z))). In other words, the fixed point of the operatb}, represents
the “projection to resolutiom” of the real attractor, i.e., of the

Thus, the valud’( £)(z) is determined using a place-dependeritractor qu. Equati.on (1) can be proven by taking iqto account
transformation of the grey value and some kind of self-referenti# linearity of the integral operator and the special forms of
contributed by the geometric mappigg functionsv andg [21]. Also note that, when computing, ()

A block-basedRB-operator is based on a partitighof the
image support. A partitiof® is a finite set of subsets ot such fionsvp = vp(es y), see, e.q., [20].

that UPGP P =X Pn P. = Qfor P # P, and allP € 2Since the averaging requires integration, one now has to be concerned with
‘P are (path-)connected. With a block-based RB-operator forr@asurability issues which we will neglect here.

IThe value transformationss can be generalized to place-dependent func-
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for U € U,, one can first compute the average valuefasn B. Inverse Problem
9(U), and then apply the value transformation to this averageg, far, we have discussed fractal image modeling. It remains
value. ) ) . to be shown how a fractal code can be constructed such that
The above discussion shows that when one is givenyd, corresponding attractor approximates a given image. Since
block-based RB-operator with partition and geometric mappiRge js interested in a compact representation, one is faced with
adapted to resolutiom, the corresponding fixed point canyye gptimization problem of finding that RB-operator whose at-
be easily decoded at resol_utloﬁénz k€ N. Thus, when gator gives the best approximation for a given bit rate neces-
an image is coded as the fixed point of such an Operalor g4y 1o specify the corresponding fractal code. Instead of aiming
it is represented in @esolution independerfashion. This is {4 fing the truly optimal fractal code for a given bit rate, one is

one of the special features of fractal image compression. The 5|1y confronted with the following problem. Given a class

relationship between the finite resolution attractors and the r%ﬁllRB-operators—for example, the class of RB-operators based
attractor has been first presented by Baha®al. [22]. on a fixed partitior/?, on a fixed set of domain addresses, and
_Now, let us focus on the specification of the geometric magy, 4 fixed (finite) set of feasible luminance parameters—one
ping and the value transformation for the case when one is giM@Ak g find in this class the operator whose attractor is closest
ablock-based RB-operatér = (-, g(-)) forapartition” such 4, the input image. In other words, the rate is constrained by
that’> andg are adapted to resolution Sincey is adapted, €ach ,ging 4 special subclass of RB-operators, and the quality of ap-
affine mappingp, I’ € P, has to be of the form proximation has to be maximized. This optimization problem,
o 0 . b called theinverse problem of fractal compressias NP-hard
gp(z1, z2) = < 01 ) o < 1) + <b1> [23]. Therefore, it is computationally infeasible to compute the
2 optimal RB-operator and a heuristic method is applied instead,
where called collage coding [24].
a1, as  positive integers; Here, one searches in a feasible subclass of contractive (w.r.t.

o orthogonal transform that consists of a rotation of H'€ ¢---metric) RB-operators for the one2whosellageEn(f )
multiple of 90 optionally followed by a reflection Minimizes thecollage error||f — F,.(f)||2. In detail this op-
at the horizontal axis: timization works as follows. Assume that one is given an input
(b1, by) is inthe se{((k,/n), (kn/n))|0 < ky, Ky, < n}32 imagef of resolution., a partition” adapted to this resolution,
In pra{ctice one usually sets = ’a2 —9 as it_has7been done in@nd a quantizer for the luminance parameters. Then, in order to
all of our experiments® stands for one of 8 orthogonal transMinimize ||/ — F.(f)|3 over the set of feasible RB-operators,
forms, the so-calleisometry optionsUsually, one restricts the On€ séarches for the optimal geometric mapping and value trans-
set of feasible translational vectafis , o). In fact, instead of formation for each range independently of the other ranges. In
specifying a translational vector one gives the absolute coor@[der to compare arange | > to all possible domains in the
nates—the so-calletbmain address-to which some reference 40main pool off [ P, itis helpful to interpret the range as an
point of the range, in our case the upper far left pixel of a rang@lément o™, wherem is the number of pixels of the range.
is mapped. We use a grid for the reference point coordinatesRCce €ach pixel of the range is compared foa2 pixel block

a2 2

the type of a domain, one should first perform an averaging ofxhe2
blocks of the domain to obtain a so-calleddebook blockA

2k, 20k, n codebook block then can also be interpreted as an element of

{( n T) ‘0 < ko, ki < LEJ } R™. The set of codebook blocks corresponding to a domain pool

is called acodebookLet R denote a range vector and IBtstand
with 1 < j < [log,n], as set of feasible domain addresse$or a codebook block vector. Then, the optimal luminance pa-
The corresponding set of domains for a given range is called tizeneters, 6 are obtained via
domain pooffor the range; forj = 1 we refer to it by the name
full domain pool Note that for ranges differing in size and shape (8, 0) = arg min [|[R— (sD + ol)|[3. 2
the domain pools for the ranges differ accordingly. o
The parameters, o € R of an affine value transformation Here,1 denotes a vector of dimensian with a 1 in each com-
vp(y) = sy + o are calledscaling factorandoffset They are ponent. The optimal luminance parameters as given in (2) are
also referred to akiminance parameters guantized to get coefficients,, o,; the quantizer also has to
To summarize, the information needed to specify an RB-opuarantee thag,| < 1 in order to ensure contractivity of the re-
erator with the above restrictions comprises the following.  sulting operator. The codebook blogk, with minimal approx-
« PartitionP. imation error using quantized luminance coefficients, i.e., the
« Translational vector or the corresponding domain addreggdebook blockD,. that minimizes the collage errd#(D, R)
for eachgp, P € P. When isometries are used, the spedor rangeR given by
ification for one of the eight choices is required.
« Scaling factors » and an offset > for eachvp, P € P. E(D, R): = ||R—(3,D +0,1)|3 3)
This specification of an RB-operator is also calledractal

code yields the fractal code for rang& consisting of the corre-

sponding domain address and isometry option as well as the
3The reader is reminded of our conventionnrfip arounds luminance parameteis,, ¢,. By searching for the best fitting
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Fig. 1. Hierarchical approaches: quadtree, horizontal-vertical, polygonal.

X

codebook block for each range, one determines for each ramgen done in the original work of Jacquin as well as, e.g., in
the optimal geometric mapping (the domain address and {i34], [10].
isometry option) and the optimal value transformation, and Fractal coding with horizontal-vertical (HV) partitions has
thus, together with the given partition one obtains the fractaéen presented in [7]. The image is segmented into rectangles.
code that minimizes the collage error. Thus, the collage coditfigho domain match with acceptable collage error is found for
method provides a fractal code for a given partition. In ordergiven rectangular range block, the block is split into two rect-
to vary the rate, ranges can be split or merged, and for thegles either by a horizontal or a vertical cut. The splitting is
newly constructed ranges a geometric mapping and a vahesed on the most significant horizontal or vertical edge and also
transformation has to be determined. Various partitioniigcorporates a rectangle degeneration prevention mechanism.
methods are discussed in the following section. For each split the direction and the splitting position have to be
coded. The HV partition generally is more expensive in rate than
the quadtree patrtition. In spite of the higher cost for the partition
1. PREVIOUS WORK information the simulation results, as given in [7], show a con-
In this section, we give a survey of the partitioning methoo%deraple "‘?pro"eme”t over th_e_ quadtreeTbased frac_t al coder.
for fractal compression. We do not give a survey on other aspe'gt@te'd'smrt'on OPt'ma' Hy-_pa_r titions were mtro_qluc_ed n [35.]'
of fractal coding and refer the reader to [6], [25], and [31]. A step fur';her in adaptivity is polygopal partitioning _that is
The most basic class of partitions for fractal image comprel@S€d 0n animage segmentation technique presented in [36] and
sion are uniform partitions, by which we denote a partition cor’?‘ppl_'_ed for fractgl enchmg by Reusens [37]. !t IS s.|mlla}r to HV
sisting ofsquareatomic blocks of size x j pixels. Uniform partitioning, but it also includes 4%nd 135 cuttl_ng _dlrectlons. _
partitions of other types can be defined by a regular tiling (ﬁeu_sens uses 'Fhe collage error as spllttlng cr|ter|0n, and the di-
the plane, but are rarely used for fractal image compressiEiFt'on and po_smon of.the cutis determined by a variance-based
[26]. For a uniform partition based on square atomic blocks tIkP pck-uniformity criterion.

block sizej has to be specified; apart from that uniform parti- Reusens has studied the polygonal partitions in order to
tions are image-independent. In the following we will focus Oﬂnalyze whether a higher degree in adaptivity improves the rate
image-adaptive partitioning schemes vs distortion behavior of fractal coding schemes. To this end

Reusens has compared the polygonal partition-based fractal
coder with a quadtree coder and an HV-coder which has been
obtained by restricting the polygonal partition-based coder to
Top—down quadtree-based fractal coders have been first grerizontal and vertical cuts. From Reusens study one might
sented in [27], [28]. Here, one starts with the whole image asanclude that better adaptivity does not improve rate-distortion
single range, and ranges are split into their four quadrants whgarformance. However, this is not the case as has been shown
the collage error for the range exceeds a given threshold. In [2§] Fisher's HV-coder as well as by our approach in this paper.
the splitting criterion based on the collage error is replaced byExample partitions for the hierarchical approaches are given
one based on the intensity variance of the range multiplied with Fig. 1.
the number of pixels in the range. Tests have shown a similar
rate-distortion performance as with the collage error-based - SPlit-and-Merge Approaches
terion. Davoineet al.[38]-[40] advocate the use of Delaunay trian-
Rate-distortion optimal quadtree partitions can be derivegailation as partitioning method. The advantage of triangulations
in a bottom-up fashion (cf. [30]); rate-distortion optimals the unconstrained orientation of edges. The Delaunay trian-
guadtrees have been employed for fractal compression in [gLjation maximizes the minimal interior angle of its triangles
Sect. 4.3]-[33]. The cost for describing a quadtree partitionvghich imposes some regularity. The method works as follows:
rather small, but there is only a limited adaptivity to the imagene starts with a Delaunay triangulation of a set of regularly dis-
content. A higher adaptivity can be obtained by additionallyibuted points. Then, the partition is refined by splitting nonuni-
considering unions of quadrants after splitting a range as Hasm triangles where uniformity is measured by the intensity

A. Top—Down and Bottom—Up Hierarchical Approaches
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variance of the range. This splitting step is performed by addifigxible and image-adaptive partitioning schemes. However, the
an additional point at the barycenter of the nonuniform triangbgproaches presented so far suffered from the fact that a higher
and by recomputing the Delaunay triangulation for the new sidxibility has led to excessive encoding times since during the
of points. The splitting is stopped via a uniformity criterion. Irencoding a large number of alternatives has to be tested. In this
the subsequent merging pass, a veptéxremoved, if all trian- section we put forward our region-based fractal coder (RBFC)
gles with vertexp have approximately the same intensity meathat generates highly image-adaptive partitions while keeping
value, and again the Delaunay triangulation of this new set thie computational costs of encoding low. With our RBFC the
points is computed. In [39], [40] the merging of two triangles isnage partitions for the ranges are derived in a bottom-up
also allowed when the resulting quadrilateral is convex and bdtshion by first uniformly partitioning the image, and then by
triangles have more or less the same grey value distribution. Thescessively merging neighboring ranges. In Section 1V-A
partition is coded by specifying the split and merge process.Wwe will focus on the region-merging strategy as well as on
order to deal with the large variety of different shapes, a wideomputational issues that make the coder time-efficient. In
class of geometric transformation is used instead of the us&action IV-B we will discuss an effective coding scheme for
affine one. The coding results presented in [40] are inferior tossless coding of the resulting irregular partitions. As will be
the results obtained with the HV approach. clear from the discussion of our merging strategy, the fractal
The Region-Based Fractal Coder Using Heuristic Seanth codes obtained with the region-based fractal coder can be
Thomas and Deravi [8] can also be regarded as a split-amtiproved by performing an additional full domain search as a
merge approach. One starts with a uniform partition, i.e., tHpostprocessing” step. A technique for performing such a full
image is split in atomic square blocks, e.g., of siz& 4 or domain search efficiently is presented in Section IV-C.
8 x 8 pixels. Then neighboring blocks are merged successivelyThe results presented in the following Section V will show
to build larger ranges of irregular shapes. Since one endstbhpt the region-based fractal coder outperforms the other pure
with a few large ranges, there are only a few parameters to stdractal coders with respect to rate-distortion performance as well
Thomas and Deravi give three methods differing in the level ak with respect to encoding speed, and it will be shown that
sophistication. With the basic algorithm, for a seed atomic blotke additional full search leads only to a small improvement
an optimal domain match is sought. Then it is checked whetharowing that our heuristic merging strategy performs very well.
this transformation can be extended to a neighboring block. This
extension step is stopped by a distortion criterion. Another se&d
is selected and the procedure goes on until the whole image is
coded. The other two approaches also include some updatinget us first elaborate on the difficulties involved in a region-

Merging Criterion

procedures and built-in competition. merging approach to fractal coding. Assume that one is given
a fractal code for an image, and two neighboring ranges have
C. Relation to Segmentation-Based Image Coding been selected for a merger. Then a fractal code for the new

partition is obtained by keeping all parameters of the previous

When one requires that all scaling parameters of fgactal code for the ranges not involved in the merger, and by
block-based RB-operator have to be zero, fractal coding baseg@lacing the parameters of the two selected ranges by a do-
on collage error minimization amounts to finding the optimahain address, isometry option and luminance parameters for the
piecewise constant approximation for an image. Therefoigew range. In order to determine a collage-optimal domain, a
image coding by piecewise constant approximations can §6main search for the new range is required. Now, when one
regarded as a special case of fractal image compression. Tis to find in a given fractal code the neighboring range pair
relates fractal coding with adaptive partitions segmenta- whose merger gives the least increase in collage error, one has
tion-based or second-generatiorimage coding [41], [42]. to know for eachneighboring range pair the best domain for
Second-generation coding methods take into account @ corresponding union of ranges. These considerations show
human visual system and its property to differentiate betwegiat there are two related questions with regard to region-based
edgedfeatures at a coarse scale) degture(features at a fine fractal coding: how can one maintain a fractal code during the
scale). In segmentation-based image coding the image pafierging process, and how does one decide what neighboring
tion represents the edges whereas the ranges of the partifigfge pair should be merged next? And, obviously, the main
represent smooth image regions that can be sufficiently weHallenge of the region-merging approach to fractal coding lies
approximated by low-order polynomials. We emphasize thif the problem of computational efficiency.
this is generally not the case in fractal coding with adaptive The region-merging process can be formalized as follows. Let
partitions: an important edge may cross a range since for sueBe an image of resolution, and letj denote the atomic block

a range a good domain might exist. size of the blocks of the initial uniform partition. The number of
atomic blockse is (n/;)?. The region merging process corre-
sponds to a sequencef partitions?y, - - -, P, _1, Where

V. REGION-BASED FRACTAL CODING the index gives the number of merging steps already performed,

and P, denotes the uniform partition with block sizeP; is
The partitioning scheme represents the main tool for thenstructed fronP;_;, 0 < i < ng, by merging two neigh-
rate control in a fractal coder. As the results of previous fracthbring ranges oP;_1, thus partitiori’®; hasnx — ¢ ranges. For
coders have indicated, fractal coding can profit from highls regionP € P let us denote the vector corresponding to range
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f I P by Rp and the codebook d®p by Dg,.. One then can
define the optimal collage error for imageand partitiori via

eP)= 3 | IR -0 +0,00) @ "
rcp £

where s, ¢, are the optimal quantized luminance parameters ol
for range R and codebook blockD. At each step in the :
merging process we are interested in finding partit@rgiven
the previous partitior®;_; such that the increase in collage
error

S(PZ) — S(Pi_l), 0<t < nr

is minimal, and the codebooks considered for determining the (@)
collage error (4) correspond to the full domain pools. Unfortu-
nately, the computational costs for finding such a sequence of k;j
) ) (PLUP,)
partitions depend on the sizes of the codebdBks , and only
very restricted sizes are manageable. ~ ———1d. L“j
Therefore, the key idea of our approach is to use small ’
codebooks that are constructed during the merging process
using some knowledge that has already been accumulated in
the process so far with respect to the self-similarities of the
image. To this end we maintain at each stegsendedractal
code that consists of
* an image partitior®;
« for each range in the partitioR: P,
a list of ng domain addressés), - - -, k,,—1;
optimal quantized luminance parametgys 6, for do- )
main k.
The extended fractal code differs from the standard one Beéd- 2. (a) Example for the selection of a domain for the union of two
. e neighboring range®;, P,. Whenk; is one of thenz domain addresses for
cause there are;; domain addresses specified for each range “e gomain, (P, U )
instead of a single one. These addresses will indicate the @@-case of a rotation af70°.
main pool considered for the corresponding ranggis a pa-

rameter of the method. For example, in the experiments reportgdy range consist of the better half (with respect to the collage
in Section Vn;s is set to 10. For the initial uniform partition error) of the2n; domain addresses considered for that range.

is considered foP; U P, and (b) considers

the domain addressés, -- -, k.1 are setto the addresses of Qyerall, the process starts with a fractal encoding having a
theng optimal or_nearly optimal—in terms of the collage errofarge rate and a small collage error. Each new partition has one
E(D, R)—domains for a range. less range. Thus, the rate decreases while the collage error in-

After the initialization phase we begin to merge neighboringreases. The process can be stopped when a given tolerance
range pairs. In order to obtain a matching domain block for thgreshold for the collage error is exceeded or when the desired
union of two ranges, we consider only domains at positions thafe is obtained. Several partitions obtained with the region-
are given by the lists of domain addresses inherited from the tyy@rging process are depicted in Fig. 3.
ranges. Of course, these domains have to be extended to matgh,en though the codebooks used during the merging are
the size and shape of the new range. Specificallysthead- small we propose two sub-algorithms to further reduce the

dresses asz:)?iated W(i;tgh a f?ﬂlﬁﬂf P represent the geometricencoding times; the first one is concerned with the initializa-
C0 np—1

mappingsgy ", -, gp . For a neighboring range pairtion, the second one with the data handling during the region
Py, P, we check the domains given by the geometric mappingserging process.
gg,"l“), e gg’ls‘l),ggo), sy gEi;‘”B—l) applied toP, UP; (an In the initialization phase a fractal encoding for a uniform par-

example is given in Fig. 2). The rationale behind this approatition is sought. Here, an acceleration method can be employed,
is that agooddomain for the new range should sufficiently wellespecially since all ranges have the same size. The method of
approximate both parts of the range, and, therefore, it will proBaupe [43] is particularly well suited for this case. We will
ably be an extension of one of tBe s choices. briefly outline this method. For a rang@ € R™\spar{1}

The new extended fractal code for partitiBpis derived from and a codebook bloclb < R™\spar{l} the collage error
the previous fractal code for partitio®,_; by replacing the in- ||[R — (3D + 61)||3 usingunquantizeduminance parameters
formation for the two merged ranges with the information fotan be expressed as
the new range. Thei domain addresses corresponding to the 1

ko denotes the address of the best matching domain. <<R’ R) - m

(R 1>2) (1 (D), X(R)Y).
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Fig. 3. Snapshots from a sequence of partitions derived with our region-based fractal coding method.

Here, x(R), x(D) denote the mean removed range and coda-merger of the range pair. One, therefore, can easily extract the
book block, respectively, normalized to unit variance. Thus, thange pair that has to be merged next. After picking the top el-
best codebook block for rangB is the one that maximizes ement, the priority queue has to be updated. The following key

{x(D), x(R))2. Since observation makes the updating simple and efficient. We can
delay the recomputation of the collage error of range pairs for
Ix(B) = x(D)I5 = 2 = 2{x(R), x(D)) which one member has been merged in the previous step since

) o the error for such a pair can only become larger. Because of this
the best codebook block is the one that minimizes the Eu-monotonicity property, it is sufficient to perform the recompu-
clidean distancgx (R) — x(D)||z2 or [[x(R) — (=x(D))ll2; ré-  tation when such an outdated pair is extracted as top element of
spectively, (note thag(—D) = —x(D)). Therefore, the code- ihe priority queue. In this case the correct collage error has to be
book search is reduced to a nearest neighbor search in the Edjnnuted and the element has to be reinserted into the priority
clidean space. Since all ranges are compared against the S§&K.e. Thus, when extracting the top element of the queue one
codebook blocks, a fast nearest neighbor search based on bipafy has to check whether the involved ranges arewtiid, i.e.,
space partitionsd-trees see [44]) leads to significant acceleryyhether they still exist in the current partition. An outline of the
ation factors. To further accelerate the initialization phase, oggtire procedure—where the stopping criterion is given by the
only performs approximatenearest neighbor search [45], i..,umber of ranges—is presented as Algorithm 1.
one only queries for points whose distance is at nibst ¢)
times larger than the distance of the closest neighbor, where
is the parameter of the method. Even for large values efg., Algorithm 1 Region-based fractal encoding
e = 2.5, the method produces excellent results. Because of timgut: image f € R™", number of domains
approximate nearest neighbor search, and because of the faper range ng, number of ranges in the
that the optimization is with respect to unquantized luminancefinal partition k, atomic block size j.
parameters, we are not guaranteed to obtain the optimal iniwalFind extended fractal code for the uni-
fractal code. However, experimental results have shown that thiform partition with atomic block size 7
method leads to a negligible loss in quality while providing a Initialize priority queue (PQ): put each
significant speedup [46]. neighboring range pair in the PQ, sorted

In the merging phase, one has to consider all neighboringby corresponding increase of collage
range pairs, and for a merger a range pair is chosen that givesrror.
the minimal increase in collage error. To support this task,vehile  current number of ranges >k do
priority queue with lazy evaluatiois maintained in which all e Extract top element of PQ.
neighboring range pairs are listed. The entries of the priority if involved ranges are still valid
queue are sorted by the increase of collage error resulting fronthen
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e Update partition: merge range pair. 31 3 1

e Update fractal code: determine ng 20 1 3
domains for new range. — 5 3 1 1 3

e Current number of ranges — current SUSTSETON S W:
number of ranges —1. ) )
else Fig. 4. Example of a region edge map.

e Update range pair. compute approxi-

mation error and reinsert in PQ. -
end if No| NE
end while
Output:  partition, opt. luminance param- ‘ w ®
eters, domain addresses, and isometry
options. Fig. 5. Context template for the encoding of symbol
B. Coding of Irregular Partitions there is no context dilution problem for encoding partitions of

We now discuss efficient encoding of partitions generated ifjpages of typical size, sayl2 x 512.
the region-based fractal coder. We have focused on two differentl he adaptive arithmetic coder is initialized by setting the fre-
methods to encode the configuration of range boundasfesn duency count for all events that can actually occur to 1. Only
codesandregion edge map3aNith chain codes the boundariesevents that cannot occur get a frequency count of 0. The fre-
between the ranges are traced resulting in a stream of symigiency count for an event is increased by 4 each time the event
that represent a starting point and actions liken right, go is observed. This incrementation step size has been experimen-
ahead and so on. The resulting stream of symbols is entrofglly determined to be the best choice for our application.
coded. The chain codes have been used to digitally represenfVithin MPEG-4 several shape coding technigues have been
curves since the publication of the paper of Freeman [47]. Whetvdied where shapes are given by means of contours, bitmaps,
tracing the boundary no edge should be traced twice, and, siféechroma-keying [50]. These methods are not directly appli-
in general there is no single path through the boundary grap#ple to encoding the partitions in region-based fractal image
that visits each edge exactly once, new starting points shouldasgnpression where a large set of regions must be encoded as a
given in an efficient (implicit) fashion. Details for constructingvhole in contrast to individual video objects in MPEG-4. How-
efficient chain codes are given in, e.g., [11]. Since the codiyer, our chain codes in [11] and the region edge maps discussed
results obtained with region edge maps outperform the ch&@Rove are closely related to the contour and bitmap coding ap-
Coding method, we will focus on region edge map encoding_ proaches studied in the MPEG group. As mentioned above, the

With a region edge map two bits are specified for each atonigion edge maps were more efficient than the chain codes even
block of the uniform partition from which the irregular partitionwhen the latter were equipped with sophisticated context mod-
has been derived. The two bits indicate whether there is an ed@fé1g. This is in line with the results of the MPEG-4 shape
i.e., arange boundary, to the north of the block and whether théfsling evaluation where the context-based arithmetic bit-map
is an edge to the west of the block. For instance, we let 0 sta¢Rfer (CAE) won over the contour coders. Intuitively, the reason
for no edge, 1 for a north edge, 2 for a west edge, and 3 fofgy lie inthe fact that regions are twodimensional. When we en-
north and a west edge. An example is given in Fig. 4. An efffode boundaries which are onedimensional, we may have less
cient method for encoding these region edge maps via contégherence in the symbol strings than there is coherence within a
modeling and adaptive arithmetic coding has been proposedii§nap or a region edge map. In other words, the context-based
Tate [48] and applied to the coding of palette images [49]. coding can be expected to be more powerful when applied to

The context used for the encoding of region edge maps dégion edge maps rather than contour chain codes.
pends on the neighbors to the west, north, northwest, and north-
east of the symbol to be coded (using the normal raster sé¢anAdditional Full Search
order all those neighbors are codeeforethe current symbol),  For a fractal code derived with our region-based fractal coder
see Fig. 5. Each of the 256 different symbol combinations #hch domain-range assignment is optimal only with respect to
{0, 1, 2, 3}* is considered to be a context for symaolOne  the restricted domain pool scheme presented in Section IV-A,
can easily see that from this choice of contexts one can infef., each domain represents the best out of a set of heuristically
some information for the symbol to be coded: for example, wheosem ; domains. One can expect better matching domains by
the symbols to the north and to the west of the current symh@insidering larger domain pools. In the following we will focus
are both zero indicating that there are no north and west edg@sthe problem of how to determine for a partition derived by
for these atomic blocks, one immediately knows that the curreslir RBFC a fractal code that assigns to each range an optimal
symbol has to be 0 or 3 since the range boundaries constituigofnain of the corresponding full domain pool. Thus, we need
connected graph.The number of contexts is small and, thusa fractal coder that is time-efficient in the presence of large ir-

regularly shaped ranges. With such a coder one can improve a

5The connectedness can be violated at the image boundaries because of V\];Fc%':tal code obtained by ou_r region-baseq f_raCtaI C_Oder* and, in
around ranges. turn, can evaluate the quality of our heuristic merging strategy.
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We propose a coder based on the fast cross-correlation propétreover, the calculation ofD.., n,, Dy, ne)s (Dag,ng, 1)
of the Fourier transform. This coder exploits the codebook cter 0 < n;, no < n/2 can be accelerated by the same cross
herence ofull codebooks, i.e., the codebooks that correspomarrelation technique. The products of tyje, 1) are obtained
to full domain pools [51]. by the cross correlation of the downscaled image with a “range”
In order to find the best matching domain for a range, one ha#ere all intensities are set to unity (called thage shape ma-
to determine for each domain the optimal luminance parani#x). The sum of squareld), D) is computed in a similar way
ters. To this end one has to compute Euclidean inner produlssquaring all intensities in the downscaled image before cross
(D, D), (D, 1), (D, R), (R, 1), and(R, R), whereR € R™ correlation.
denotes a range vector abde R™ a codebook vector, since In order to incorporate all isometry options, one can take ad-
5 vantage of direct methods to obtain the Fourier transforms for
[ = (sD + o1)[[3 rotated and reflected images. Therefore, there is no need to com-
= (D, D)s* +2(D, 1)o+ mo® — 2(R, D)s pute eight forward transforms for the eight isometric versions of
—2(R, 1)o+ (R, R). the downscaled image. Instead, one forward transform is com-
| puted and the Fourier transforms of the rotated and reflected
for a range consists df - n2/4 domains. For simplicity, we downscaled image are obtained directly in the Fourier domain.

o . : . The proposed FFT-based coder is particularly suited for ir-
will first assume that only one isometry option—no rotauonl,e ular partitions since it requires orero-paddinf a range
no flip—is allowed, i.e., the domain pool consistsidf/4 do- ? th'p th q dq t dg pd tﬁp g .h
mains. The corresponding full codebook consists of all bloc er this, the procedure does not depend on the range shape.

of the downscaled image (obtained by pixel averaging over di his approach shows significant speedups for ranges with more

joint 2 x 2 blocks) with the same size and shape as the ran% an 256 pixels compared to an optimized direct computation.
thus, the codebook blocks can be indexed Hig, 0 < or images of sizé12 x 512 and a range with 256 pixels the
il ¥, N2

n1, na < n/2. For large ranges the computational costs of t@peedup factor is about 6.§; for a range consisting of about 1000
domain search is dominated by the computation of the inniels the speedup factor is 25.

products{D,,, n,, R), 0 < n1, na < n/2. These inner prod-

ucts{Dy, n,, R}, 0 < ny, na < n/2 are the cross correlation V. RESULTS

.Of the correspond!ng range with the_downscaled image. Let aNn this section, we present coding results obtained with our
imagef of resolutionn, n even, be given as well as an appro-

priate partitior, and leth; € R™/2 xR™/2 represent the down- region-based fractal coder that utilizes the region edge map en-
scaled image vi’a ! coding scheme for the coding of the resulting partitions. The

results are given for the standard test images Lenna and boat.

For an image of resolution, n even, the full domain poo

adl Zhedl oy We have chosen the following parameter settings for our tests.
hi(ky, k)= Y > f (ﬁv g) : In the initialization phase, the image is uniformly partitioned
w=2k1 y=2k; into blocks of sizej x j; we have performed experiments for
Leth, € R*/2 x R™/2 denote @ero-paddedangef | P, Pe J = 3,4,5,6,7,8. The domain pool considered for the ini-
P, given by tial fractal code consists of the blocks of the uniformly par-
titioned image with atomic block siz2j x 2j plus the iso-
<ﬁ @) <ﬁ @) cP metric versions thereof. In our experiments the numbgiof
ha(ky, k2) = n'n)’ \n'mn : domain addresses per range has been set to 10. For the approx-
0, otherwise imate nearest neighbor search used as acceleration method for
Now, by calculating the cross correlatién o 1, i.e., the initialization phase the allowable approximation eer(of.

Section 1V-A) has been set to = 2.5. The quantization for
the luminance parameters is performed as it is done in Fisher’s
quadtree-based fractal coder [6] with levels for the scaling
factor and2” levels for the offset. We allow wrap-around ranges
as well as wrap-around domains to occur during the merging
one obtains allinner products between a range and the codebpticess.

blocks of the corresponding full domain pool. It is well-known InFig. 6(a), coding results for compression ratios up to 100: 1
that the cross correlation can be efficiently computed in tlage presented for the 8-bit Lenna image of Si¥ex 512 pixelss
Fourier domain for ranges that are not too small. This leads @ompression ratio vs PSNR curves are given which correspond
the following computation scheme for the inner products bés region merging processes that are initialized with uniform
tween a range and all codebook blocks of the corresponding @artitions varying with respect to the atomic block siz&he

n—1
hsohi(ng, no) = Z ho(ky, ko)
k1, ka=0
. h1((/€1 + nl)modn, (kQ + ﬂg)mOdTL)

main pool: atomic block size can be chosenin order to control the regularity
1) compute the 2D-FFT of the downscaled image of the resulting partitions. A small atomic block size is advanta-
2) build zero-padded rande; geous for very-high fidelity encodings while larger atomic block
3) compute the 2D-FFT 0f.,; sizes should be selected for high compression ratios.

4) perform the complex conjugate of previous transform;
5) do the (pointwise) complex multiplication of both trans- ey, image was obtained from the Waterloo BragZone [52].

forms; . 7Atthe right and bottom image boundaries the block sizes are adapted in order
6) do the inverse FFT of the result. to match the given image size.
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Fig. 6. (a) Compression ratio versus PSNR curves for the Lémax 512 Fig. 7. (a) Compression ratio versus PSNR curves for the bbatx 512

image obtained with the RBFC scheme starting with various atomic bloakage obtained with the RBFC scheme starting with various atomic block
sizes and (b) comparison of the RBFC approach with additional full searcizes and (b) comparison of the RBFC approach with additional full search,
the standard RBFC approach, the HV scheme, and the quadtree-based fréutastandard RBFC approach, the HV scheme, and the quadtree-based fractal
coder. coder.

We compare the results of the RBFC approach (with ar@omic block choice is taken into account. The RBFC approach
without additional full search) with the results obtained byith the additional full search can achieve coding gains of
Fisher's H\# and quadtree-based coders; the HV coder is co@-5—-0.8 dB for compression ratios between 20:1 and 100:1
sidered as a “reference coder” for the current state-of-the-arver the HV-results. It is obvious from Fig. 6(b) that a higher
fractal image compression. Results for #i2 x 512 Lenna flexibility of the partitioning method gives significant coding
image are given in Fig. 6(b). Here, we focus on high compregains over the more rigid quadtree-based approach. Fig. 7(a)
sion ratios, i.e., ratios between 20: 1 and 100: 1 since for tha®d (b) present corresponding results for #ie x 512 boat
ratios fractal coding methods have shown their competiti@age.
edge. All options for the HV coder have been enablaad the  Typical computing times (CPU seconds) for a single
decoding has been done without postprocessing. The optipRgo-PSNR curve are about 170 s on a Sparc processor at
for the quadtree coder has been settm 4 —M 7 —w 512 170 MHz. Let us compare the encoding times of the RBFC
—d 1D 2 —f —F° again no postprocessing has been pegnnroach and the HV coder [7] for a Lenna encoding at a
formed after the decoding. The RBFC yields a slightly bett@t,mpression ratio of 65 : 1. The RBFC approach requires about
rate-distortion curve compared to the HV method when fdi3q 5 4 results in a 29.5 dB PSNR. The HV coder with a
each compression ratio the PSNR value obtained with the bgtsindard full search (level 3) needs about 250 s and results

8We thank Y. Fisher for supplying us with a Sun-executable of his HV—codép a 28.8 dB PSNR. Ehabl|_ng all options for the HV coder
9Fisher’s optimization level O (cf. [6, p. 127]): “Compare each range witlglevel 0) leads to encoding times of about 3700 s and 29.2 dB
each possible domain in the image, using every possible symmetry operatP®SNR. The RBFC approach with additional full search has
The ratio of the lengths of the sides of the domain and range blocks arg, been implemented with hardware—optimized Fourier transforms
2% 3,3 x2,and3 x 3." .
on an SGI using a MIPS R5000 processor at 150 MHz. A65:1

10The options are outlined in [6, p. 260, 261]; the ranges are of dized, . .
8 x 8,16 x 16, and32 x 32, and a full search is performed. Lenna encoding costs about 2800 s and results in a 29.9 dB
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Fig. 8. (a) Decoded Lennial2 x 512 image at compression ratio 64:1 andFig. 9. (a) Partition corresponding to Fig. 8(a) (800 ranges) and (b) partition
30 dB PSNR and (b) decoded b&dR x 512 image at compression ratio 40 : 1 corresponding to Fig. 8(b) (1200 ranges).
and 29.8 dB PSNR.

PSNR. To summarize, the RBFC method slightly outperforms
the quality of the best HV encodings and is significantlyhe edges is in general excellent, high-frequency texture de-
faster than the HV coder. The additional full search obtains &ails, e.g., the structure of the sand in the boat image, cannot
additional gain of about 0.4 dB PSNR, however, this increasks reconstructed very well.
encoding times by about 2670 CPU seconds. In a fractal code obtained with the region-based fractal coder,
Figs. 8(a) and 9(a) show the decoded Lenna image aganuch larger part is used to specify the partition as in the case,
compression ratio of 64:1 and the corresponding patrtitioa.g., of a quadtree-based fractal code. Fig. 10(a) and (b) give the
The irregular structure of the partition results in less visiblelative and absolute partition coding costs for the Lenna encod-
blocking artifacts in the decoded image compared to quadtréegs based on an initial uniform partition with atomic block size
based fractally coded images. Figs. 8(b) and 9(b) show thex 4. For a compression ratio of 66 : 1 the RBFC scheme re-
decoded boat image at a compression ratio of 40:1 and thets in a fractal code of which about 44% specify the partition.
corresponding partition. The reconstruction quality and tHgy contrast, at the same compression ratio the fractal code de-
crispness of the images are visually pleasing considering tfied with the quadtree-based fractal coder needs only 3.5% of
high compression ratios. However, while the reconstruction tife total code size to define the partition.
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Fig. 11. Comparison of the rate-distortion performance of 1) our RBFC
approach, Il) the region-based coder that uses R/D-based region merging, and
IIl) Fisher's quadtree-based fractal coder.

the priority queue of the range block pairs is no longer justified
and, thus, all the rate changes need to be computed by entropy
encoding a whole partition for each range block pair in the
priority queue. Therefore, this approach is not practical, not
even for a single test in order to evaluate the losses caused by
not using the strict rate-distortion criterion for the merging step.
Thus, it is reasonable to relax the R/D criterion by replacing
the actual coding costs with some rate estimator that can be
more easily calculated. Our region-based fractal coder from

0 0 20 0 80 80 100 Section IV treats the rate just as a constant. In this section,
COMPRESSION RATIO we consider a simple rate estimator as a first approximation.
(b) Motivated by the image segmentation approaches of Mumford

Fig. 10. (a) Part of fractal code that is used to specify the partition (in perceﬁpd Shah [53] and Morel and SOIImm_I _[54] we have_ employed
and (b) absolute costs of the partition information; the data stems from tHee Euclidean lengtif(P) of the partition boundaries as an

encodings of thé12 x 512 Lenna image starting with a uniform partition with estimator for the actual partition coding costs. However, the

atomic block size 4. results obtained with this approach are inferior to the results

obtained with the pure distortion-based approach (cf. Fig. 11

VI. ADDITIONAL INVESTIGATIONS and [13]). Thus, a more accurate yet simple estimator is

A. R/D-Based Region Merging needed. This warrants further investigation relevant also for

, : o th tation-based i di h .
With the RBFC method the merging criterion is based on tr?e er segmentation-based image coding schemes

increase in distortion that results from merging two ranges. Ad-
ditionally, one may take into account the corresponding change
in rate. In this case the Lagrangian cost function The RBFC approach has outperformed the method of
Thomas and Deravi as well as the state-of-the-art top—down
E(P)+ A rae(P) ®) fractal coders. Nevertheless, since finding the optimal partition
is motivated where\ € R is the scale parameter and @ for an image at a given rate represents a difficult problem (as
denotes the sum of the coding costs for the region edge magicated in Section I), it is difficult to answer the question of
encoded partition and the transformation parameters of thew close the RBFC scheme gets to optimality. In order to ob-
fractal encoding. Thus, at each step the neighboring range gain an idea of the potential of highly image-adaptive partitions
is merged that gives the largest decrease with respect to thefractal coding, one can use a “screening” technique like our
cost function (5). The merging process continues until a furthevolutionary fractal codingpproach [11].
decrease of the cost function is no longer possible. Then theHere, egeneratiorconsists ofV, extended fractal codes (nor-
parameten is increased allowing merge operations again, amdally with differing partitions). A new generation is constructed
the procedure is iterated. However, the computational costs fam the previous one as follows. Each of thg extended
the procedure are prohibitive as can be seen as follows. For efielotal code is duplicated times. Then, in each of theV,, ex-
pair of neighboring ranges one has to keep track of the chartgaded fractal codes one neighboring range pair is randomly se-
in distortion and rate resulting from merging the two rangekected and merged. Finally, thé, best (with respect to the col-
After merging a range pair all those rates change because ldmge error) extended fractal codes are kept to form the new gen-
partition has changed. As a consequence the lazy evaluatioeiation. The domain search for a newly merged range is identical

Probabilistic Merging



HARTENSTEINet al: REGION-BASED FRACTAL IMAGE COMPRESSION

to the one described for our region-based fractal coder. As ini11]
tial generation,V,, copies of the initial code of our region-based
fractal coder are used.

In the experiments we have sat, to 10 ands to 20; the
number of domain addresseg maintained for each range in 3
an extended fractal code has been set again to 10. For examp[lle,
for the Lenna12 x 512 image we have obtained slightly better
rate-distortion curves of about 0.3 dB compared to the determiri4]
istic RBFC method. Of course, the probabilistic method spendgs,
much more time in the region merging phase, i.e., the region
merging takes about 100 times longer compared to the dete[rl-G]
ministic case.

These results indicate that with optimal partitions one would17]
get some improvement in the rate-distortion behavior, howeve
it appears, that the improvement would not be very large. ThiL ]
observation backs our heuristic region-merging strategy.

(12]

[19]
(20]

VIl. SUMMARY AND CONCLUSIONS [21]

In this paper, we have presented a fractal coder that is based
on highly image-adaptive partitions. The partitions are deriveg2
bottom-up via region merging. At each step the range pair that
gives the leastincrease in collage error is merged. This approa
is made computationally feasible by only performing a domai
search in small domain pools that are constructed during the
merging process. These domain pools represent self—similagz“]
ties in the image learned in the initialization phase and durin
the merging process. Time efficiency is obtained by 1) using
an initialization technique that applies nearest-neighbor searihG]
techniques and 2) by lazy evaluation of the priority queue o
range pairs during the merging phase.

Our region-based fractal coder clearly outperforms the curl?7]
rent state-of-the-art purely fractal coders with respect to rate vs
distortion performance as well as time efficiency. [28]
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