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Region-Based Fractal Image Compression
Hannes Hartenstein, Associate Member, IEEE, Matthias Ruhl, and Dietmar Saupe

Abstract—A fractal coder partitions an image into blocks
that are coded via self-references to other parts of the image
itself. In this paper we present a fractal coder that derives highly
image-adaptive partitions and corresponding fractal codes in
a time-efficient manner using a region-merging approach. The
proposed merging strategy leads to improved rate-distortion
performance compared to previously reported pure fractal coders,
and it is faster than other state-of-the-art fractal coding methods.

Index Terms—Fractal compression, image compression, image
partitions, segmentation-based coding.

I. INTRODUCTION

I N fractal image compression an image is modeled as the
unique fixed point of a contractive operator on the space of

images. This type of image representation was first proposed
by Barnsley and Sloan [1], [2] and Jacquin [3], [4] who devised
the first practical fractal coder. Fractal coding has since been a
topic of active research because it has opened up a refreshing
new view to image compression. It leads to visually pleasing
results at high compression ratios, and it provides resolution
independent image descriptions.

In fractal compression the image to be encoded is partitioned
into image blocks called ranges. Each range is “coded” by a ref-
erence to some other part of the image and by some transforma-
tion parameters. These parameters describe how the referenced
image part has to be adjusted with respect to contrast and bright-
ness in order to give a good approximation to the range to be
encoded. When one uses fixed length codes for the transforma-
tion parameters, the size of a fractal code is, up to the code for
the partition, proportional to the number of blocks of the parti-
tion. Therefore, in order to obtain high compression ratios, only
a small number of blocks are allowed. Thus, the key point in
fractal compression is to partition the image into a small number
of blocks that aresimilar to other image parts under certain
transformations. Since it has been shown that the problem of de-
termining the best piecewise constant approximation for a given
number of ranges represents an NP-hard problem [5], it follows
that finding optimal partitions for fractal coding purposes is at
least as hard. Many partitioning methods have been proposed for
fractal image compression; among the most widely known and
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most successful are Fisher’s quadtree scheme [6] and Fisher’s
and Menlove’s horizontal–vertical partitions [7]. With these ap-
proaches, the partition is hierarchical and built in a top–down
fashion.

In this paper we investigate highly image-adaptive partitions
in order to improve the rate-distortion performance of fractal
coding. The proposed fractal coder can be seen as a combina-
tion of segmentation-based image coding and fractal compres-
sion. The partitions are derived in a bottom-up approach using
region merging. Compared to hierarchical tree-structured par-
titions a higher rate is required for encoding the irregular par-
titions. However, we will show that this investment pays off in
terms of an improved rate-distortion performance. With our re-
gion-based fractal coder (RBFC) we build upon the approach of
Thomas and Deravi [8]. The image is first uniformly partitioned,
and then neighboring range pairs are successively merged re-
ducing the total number of ranges one by one. Because of the
large number of choices during the merging process, a heuristic
strategy has to be applied. We have developed such a strategy
for the region merging that performs well. Moreover, we have
used an efficient coding scheme for the resulting partitions. The
region merging strategy and the efficient partition coding have
led to a much improved rate-distortion performance compared
to the results reported in [8], e.g., a gain of about 5 dB PSNR is
obtained for the Lenna image at a compression ratio
of 40 : 1.

A specific advantage of our RBFC approach is the sig-
nificantly reduced encoding time compared to the other
state-of-the-art fractal coders. The encoding time efficiency is
due to a particular domain search heuristics and sophisticated
algorithmic techniques that will be described in this paper.

The proposed fractal coding method represents apurefractal
coder in the sense that it does not employ a hybrid approach
that combines fractal and transform coding. Nevertheless, our
RBFC in combination with an additional full domain search
gives rate vs distortion results that are comparable to those of
the fractal-wavelet coder of Davis [9] and the fractal-DCT coder
of Barthel [10]. With the proposed scheme we believe to ex-
ploit image-inherent self-similarities to the fullest; however, en-
coding times as well as rate-distortion performance are still not
competitive with state-of-the-art wavelet coders. Preliminary re-
ports of our work on region-based fractal coding were presented
in [11]–[13].

This paper is organized as follows: in Section II we present
a precise framework of fractal image representation and the
fractal coding problem. While the basic fractal coding princi-
ples can easily be understood from a conceptual point of view,
we feel that a solid mathematical formulation is indispensable
for the sake of clarity and rigor. A review of previously used par-
titioning methods for fractal coding is given in Section III. Our
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region-based fractal coder is presented in Section IV, and ex-
perimental results as well as comparisons to other fractal coders
are discussed in Section V. In Section VI we discuss additional
studies, namely a rate-distortion optimization approach and a
probabilistic region merging version. Our conclusions are sum-
marized in Section VII.

II. FUNDAMENTALS

A. Fractal Image Modeling

We start with a mathematical framework of fractal modeling
of images. We will use the framework given by an operator as
studied by Read [14] and Bajraktarevic [15] and will proceed
from a rather general formulation to more and more restricted
versions. The Read–Bajraktarevic operators have been previ-
ously used for generating fractal curves and surfaces by Dubuc
[16] and Massopust [17], and for fractal compression by Bed-
ford et al. [18].

Let stand for the image support , and let
the space of images consist of all bounded func-
tions . The space together with the metric

repre-
sents a complete metric space. An operator

is called contractive with respect to the -metric
if there exists a constantwith such that

for all .
For a contractive operator on a complete metric space the Ba-
nach fixed point principle guarantees the existence of a unique
fixed point (cf. e.g., [19]). Thus, a contractive operatoron the
space of images uniquely describes an image ,
namely the one that is characterized by the equation

. Given a contractive operator ,
the corresponding fixed point can be obtained by applying the
operator iteratively to an arbitrary image, i.e., the fixed point

is given by , . Since
represents an attractive fixed point, it is also calledattractor of

.
In fractal image compression one is interested in (contractive)

operators 1) whose attractors are good in approximating real
world images and 2) that can be coded compactly. The class
of block-based Read–Bajraktarevich operators have proven to
meet these demands.

A Read–Bajraktarevich operator (RB-operator)
is based on a self-mapping that

we call thegeometric mapping, and on a function
, called thevalue transformation, and is given by

Thus, the value is determined using a place-dependent
transformation of the grey value and some kind of self-reference
contributed by the geometric mapping.

A block-basedRB-operator is based on a partitionof the
image support. A partition is a finite set of subsets of such
that for , and all

are (path-)connected. With a block-based RB-operator for a

partition , the geometric mapping and the value transformation
are of the form

where all and are affine mappings.1 Here, denotes
the characteristic function of. For simplicity, we will interpret
the image support as a torus, and the affine mappingsare
then interpretedmodulo1. Each element of the partition
is called arange, whereas is called a
domain. Obviously, these designations come from studying the
inverses of the functions . In fractal compression
literature one usually also calls a range and a
domain.

In order to deal with digital images in the above framework,
further restrictions apply to the partition and the value transfor-
mation. Digital images are modeled as functions that are con-
stant on each element of the uniform base partition

for a suitable . We call as well as ,
a pixel and the resolution of the image. Under the following
conditions on the RB-operators one can avoid computations on
a “sub-pixel” scale:

• partition is adapted to the resolution, i.e., each
is a (edge-connected) union of elements of. Thus, the
base partition is a refinement of the partition ;

• geometric mapping is adapted to resolution, i.e.,
maps each pixel to a set of pixels. Precisely, since we are
dealing with half-open intervals, we require that for

the closure equals the closure for some subset
.

Assume that one is given a contractive block-based RB-op-
erator for a partition such that and are
adapted to resolution. Let denote the averaging operator
that projects an arbitrary (measurable2) image onto the space of
images of resolution , i.e., the value of a pixel is ob-
tained by integrating the image function over the pixel. Then,
the operator is also contractive and maps an
image of resolution to an image of the same resolution. Fur-
thermore, the corresponding fixed point satisfies

(1)

In other words, the fixed point of the operator represents
the “projection to resolution ” of the real attractor, i.e., of the
attractor of . Equation (1) can be proven by taking into account
the linearity of the integral operator and the special forms of
functions and [21]. Also note that, when computing

1The value transformationsv can be generalized to place-dependent func-
tionsv = v (x; y), see, e.g., [20].

2Since the averaging requires integration, one now has to be concerned with
measurability issues which we will neglect here.
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for , one can first compute the average value ofon
, and then apply the value transformation to this average

value.
The above discussion shows that when one is given a

block-based RB-operator with partition and geometric mapping
adapted to resolution , the corresponding fixed point can
be easily decoded at resolutions . Thus, when
an image is coded as the fixed point of such an operator,
it is represented in aresolution independentfashion. This is
one of the special features of fractal image compression. The
relationship between the finite resolution attractors and the real
attractor has been first presented by Baharavet al. [22].

Now, let us focus on the specification of the geometric map-
ping and the value transformation for the case when one is given
a block-based RB-operator for a partition such
that and are adapted to resolution. Since is adapted, each
affine mapping , has to be of the form

where
positive integers;
orthogonal transform that consists of a rotation of a
multiple of 90 optionally followed by a reflection
at the horizontal axis;
is in the set .3

In practice, one usually sets , as it has been done in
all of our experiments. stands for one of 8 orthogonal trans-
forms, the so-calledisometry options. Usually, one restricts the
set of feasible translational vectors . In fact, instead of
specifying a translational vector one gives the absolute coordi-
nates—the so-calleddomain address—to which some reference
point of the range, in our case the upper far left pixel of a range,
is mapped. We use a grid for the reference point coordinates of
the type

with , as set of feasible domain addresses.
The corresponding set of domains for a given range is called the
domain poolfor the range; for we refer to it by the name
full domain pool. Note that for ranges differing in size and shape
the domain pools for the ranges differ accordingly.

The parameters of an affine value transformation
are calledscaling factorandoffset. They are

also referred to asluminance parameters.
To summarize, the information needed to specify an RB-op-

erator with the above restrictions comprises the following.

• Partition .
• Translational vector or the corresponding domain address

for each , . When isometries are used, the spec-
ification for one of the eight choices is required.

• Scaling factor and an offset for each , .
This specification of an RB-operator is also called afractal
code.

3The reader is reminded of our convention ofwrap arounds.

B. Inverse Problem

So far, we have discussed fractal image modeling. It remains
to be shown how a fractal code can be constructed such that
the corresponding attractor approximates a given image. Since
one is interested in a compact representation, one is faced with
the optimization problem of finding that RB-operator whose at-
tractor gives the best approximation for a given bit rate neces-
sary to specify the corresponding fractal code. Instead of aiming
to find the truly optimal fractal code for a given bit rate, one is
usually confronted with the following problem. Given a class
of RB-operators—for example, the class of RB-operators based
on a fixed partition , on a fixed set of domain addresses, and
on a fixed (finite) set of feasible luminance parameters—one
has to find in this class the operator whose attractor is closest
to the input image. In other words, the rate is constrained by
using a special subclass of RB-operators, and the quality of ap-
proximation has to be maximized. This optimization problem,
called theinverse problem of fractal compression, is NP-hard
[23]. Therefore, it is computationally infeasible to compute the
optimal RB-operator and a heuristic method is applied instead,
called collage coding [24].

Here, one searches in a feasible subclass of contractive (w.r.t.
the -metric) RB-operators for the one whosecollage
minimizes thecollage error . In detail this op-
timization works as follows. Assume that one is given an input
image of resolution , a partition adapted to this resolution,
and a quantizer for the luminance parameters. Then, in order to
minimize over the set of feasible RB-operators,
one searches for the optimal geometric mapping and value trans-
formation for each range independently of the other ranges. In
order to compare a range to all possible domains in the
domain pool of , it is helpful to interpret the range as an
element of , where is the number of pixels of the range.
Since each pixel of the range is compared to a pixel block
of a domain, one should first perform an averaging of the
blocks of the domain to obtain a so-calledcodebook block. A
codebook block then can also be interpreted as an element of

. The set of codebook blocks corresponding to a domain pool
is called acodebook. Let denote a range vector and letstand
for a codebook block vector. Then, the optimal luminance pa-
rameter are obtained via

(2)

Here, denotes a vector of dimension with a 1 in each com-
ponent. The optimal luminance parameters as given in (2) are
quantized to get coefficients ; the quantizer also has to
guarantee that in order to ensure contractivity of the re-
sulting operator. The codebook block with minimal approx-
imation error using quantized luminance coefficients, i.e., the
codebook block that minimizes the collage error
for range given by

(3)

yields the fractal code for range consisting of the corre-
sponding domain address and isometry option as well as the
luminance parameters . By searching for the best fitting
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Fig. 1. Hierarchical approaches: quadtree, horizontal–vertical, polygonal.

codebook block for each range, one determines for each range
the optimal geometric mapping (the domain address and the
isometry option) and the optimal value transformation, and
thus, together with the given partition one obtains the fractal
code that minimizes the collage error. Thus, the collage coding
method provides a fractal code for a given partition. In order
to vary the rate, ranges can be split or merged, and for the
newly constructed ranges a geometric mapping and a value
transformation has to be determined. Various partitioning
methods are discussed in the following section.

III. PREVIOUS WORK

In this section, we give a survey of the partitioning methods
for fractal compression. We do not give a survey on other aspects
of fractal coding and refer the reader to [6], [25], and [31].

The most basic class of partitions for fractal image compres-
sion are uniform partitions, by which we denote a partition con-
sisting ofsquareatomic blocks of size pixels. Uniform
partitions of other types can be defined by a regular tiling of
the plane, but are rarely used for fractal image compression
[26]. For a uniform partition based on square atomic blocks the
block size has to be specified; apart from that uniform parti-
tions are image-independent. In the following we will focus on
image-adaptive partitioning schemes.

A. Top–Down and Bottom–Up Hierarchical Approaches

Top–down quadtree-based fractal coders have been first pre-
sented in [27], [28]. Here, one starts with the whole image as a
single range, and ranges are split into their four quadrants when
the collage error for the range exceeds a given threshold. In [29]
the splitting criterion based on the collage error is replaced by
one based on the intensity variance of the range multiplied with
the number of pixels in the range. Tests have shown a similar
rate-distortion performance as with the collage error-based cri-
terion.

Rate-distortion optimal quadtree partitions can be derived
in a bottom-up fashion (cf. [30]); rate-distortion optimal
quadtrees have been employed for fractal compression in [31,
Sect. 4.3]–[33]. The cost for describing a quadtree partition is
rather small, but there is only a limited adaptivity to the image
content. A higher adaptivity can be obtained by additionally
considering unions of quadrants after splitting a range as has

been done in the original work of Jacquin as well as, e.g., in
[34], [10].

Fractal coding with horizontal–vertical (HV) partitions has
been presented in [7]. The image is segmented into rectangles.
If no domain match with acceptable collage error is found for
a given rectangular range block, the block is split into two rect-
angles either by a horizontal or a vertical cut. The splitting is
based on the most significant horizontal or vertical edge and also
incorporates a rectangle degeneration prevention mechanism.
For each split the direction and the splitting position have to be
coded. The HV partition generally is more expensive in rate than
the quadtree partition. In spite of the higher cost for the partition
information the simulation results, as given in [7], show a con-
siderable improvement over the quadtree-based fractal coder.
Rate-distortion optimal HV-partitions were introduced in [35].

A step further in adaptivity is polygonal partitioning that is
based on an image segmentation technique presented in [36] and
applied for fractal encoding by Reusens [37]. It is similar to HV
partitioning, but it also includes 45and 135 cutting directions.
Reusens uses the collage error as splitting criterion, and the di-
rection and position of the cut is determined by a variance-based
block-uniformity criterion.

Reusens has studied the polygonal partitions in order to
analyze whether a higher degree in adaptivity improves the rate
vs distortion behavior of fractal coding schemes. To this end
Reusens has compared the polygonal partition-based fractal
coder with a quadtree coder and an HV-coder which has been
obtained by restricting the polygonal partition-based coder to
horizontal and vertical cuts. From Reusens study one might
conclude that better adaptivity does not improve rate-distortion
performance. However, this is not the case as has been shown
by Fisher’s HV-coder as well as by our approach in this paper.

Example partitions for the hierarchical approaches are given
in Fig. 1.

B. Split-and-Merge Approaches

Davoineet al. [38]–[40] advocate the use of Delaunay trian-
gulation as partitioning method. The advantage of triangulations
is the unconstrained orientation of edges. The Delaunay trian-
gulation maximizes the minimal interior angle of its triangles
which imposes some regularity. The method works as follows:
one starts with a Delaunay triangulation of a set of regularly dis-
tributed points. Then, the partition is refined by splitting nonuni-
form triangles where uniformity is measured by the intensity
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variance of the range. This splitting step is performed by adding
an additional point at the barycenter of the nonuniform triangle
and by recomputing the Delaunay triangulation for the new set
of points. The splitting is stopped via a uniformity criterion. In
the subsequent merging pass, a vertexis removed, if all trian-
gles with vertex have approximately the same intensity mean
value, and again the Delaunay triangulation of this new set of
points is computed. In [39], [40] the merging of two triangles is
also allowed when the resulting quadrilateral is convex and both
triangles have more or less the same grey value distribution. The
partition is coded by specifying the split and merge process. In
order to deal with the large variety of different shapes, a wider
class of geometric transformation is used instead of the usual
affine one. The coding results presented in [40] are inferior to
the results obtained with the HV approach.

TheRegion-Based Fractal Coder Using Heuristic Searchof
Thomas and Deravi [8] can also be regarded as a split-and-
merge approach. One starts with a uniform partition, i.e., the
image is split in atomic square blocks, e.g., of size or

pixels. Then neighboring blocks are merged successively
to build larger ranges of irregular shapes. Since one ends up
with a few large ranges, there are only a few parameters to store.
Thomas and Deravi give three methods differing in the level of
sophistication. With the basic algorithm, for a seed atomic block
an optimal domain match is sought. Then it is checked whether
this transformation can be extended to a neighboring block. This
extension step is stopped by a distortion criterion. Another seed
is selected and the procedure goes on until the whole image is
coded. The other two approaches also include some updating
procedures and built-in competition.

C. Relation to Segmentation-Based Image Coding

When one requires that all scaling parameters of a
block-based RB-operator have to be zero, fractal coding based
on collage error minimization amounts to finding the optimal
piecewise constant approximation for an image. Therefore,
image coding by piecewise constant approximations can be
regarded as a special case of fractal image compression. This
relates fractal coding with adaptive partitions tosegmenta-
tion-based or second-generationimage coding [41], [42].
Second-generation coding methods take into account the
human visual system and its property to differentiate between
edges(features at a coarse scale) andtexture(features at a fine
scale). In segmentation-based image coding the image parti-
tion represents the edges whereas the ranges of the partition
represent smooth image regions that can be sufficiently well
approximated by low-order polynomials. We emphasize that
this is generally not the case in fractal coding with adaptive
partitions: an important edge may cross a range since for such
a range a good domain might exist.

IV. REGION-BASED FRACTAL CODING

The partitioning scheme represents the main tool for the
rate control in a fractal coder. As the results of previous fractal
coders have indicated, fractal coding can profit from highly

flexible and image-adaptive partitioning schemes. However, the
approaches presented so far suffered from the fact that a higher
flexibility has led to excessive encoding times since during the
encoding a large number of alternatives has to be tested. In this
section we put forward our region-based fractal coder (RBFC)
that generates highly image-adaptive partitions while keeping
the computational costs of encoding low. With our RBFC the
image partitions for the ranges are derived in a bottom-up
fashion by first uniformly partitioning the image, and then by
successively merging neighboring ranges. In Section IV-A
we will focus on the region-merging strategy as well as on
computational issues that make the coder time-efficient. In
Section IV-B we will discuss an effective coding scheme for
lossless coding of the resulting irregular partitions. As will be
clear from the discussion of our merging strategy, the fractal
codes obtained with the region-based fractal coder can be
improved by performing an additional full domain search as a
“postprocessing” step. A technique for performing such a full
domain search efficiently is presented in Section IV-C.

The results presented in the following Section V will show
that the region-based fractal coder outperforms the other pure
fractal coders with respect to rate-distortion performance as well
as with respect to encoding speed, and it will be shown that
the additional full search leads only to a small improvement
showing that our heuristic merging strategy performs very well.

A. Merging Criterion

Let us first elaborate on the difficulties involved in a region-
merging approach to fractal coding. Assume that one is given
a fractal code for an image, and two neighboring ranges have
been selected for a merger. Then a fractal code for the new
partition is obtained by keeping all parameters of the previous
fractal code for the ranges not involved in the merger, and by
replacing the parameters of the two selected ranges by a do-
main address, isometry option and luminance parameters for the
new range. In order to determine a collage-optimal domain, a
domain search for the new range is required. Now, when one
likes to find in a given fractal code the neighboring range pair
whose merger gives the least increase in collage error, one has
to know for eachneighboring range pair the best domain for
the corresponding union of ranges. These considerations show
that there are two related questions with regard to region-based
fractal coding: how can one maintain a fractal code during the
merging process, and how does one decide what neighboring
range pair should be merged next? And, obviously, the main
challenge of the region-merging approach to fractal coding lies
in the problem of computational efficiency.

The region-merging process can be formalized as follows. Let
be an image of resolution, and let denote the atomic block

size of the blocks of the initial uniform partition. The number of
atomic blocks is . The region merging process corre-
sponds to a sequence of partitions , where
the index gives the number of merging steps already performed,
and denotes the uniform partition with block size. is
constructed from , , by merging two neigh-
boring ranges of , thus partition has ranges. For
a region let us denote the vector corresponding to range
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by and the codebook of by . One then can
define the optimal collage error for imageand partition via

(4)

where are the optimal quantized luminance parameters
for range and codebook block . At each step in the
merging process we are interested in finding partitiongiven
the previous partition such that the increase in collage
error

is minimal, and the codebooks considered for determining the
collage error (4) correspond to the full domain pools. Unfortu-
nately, the computational costs for finding such a sequence of
partitions depend on the sizes of the codebooks , and only
very restricted sizes are manageable.

Therefore, the key idea of our approach is to use small
codebooks that are constructed during the merging process
using some knowledge that has already been accumulated in
the process so far with respect to the self-similarities of the
image. To this end we maintain at each step anextendedfractal
code that consists of

• an image partition ;
• for each range in the partition:

a list of domain addresses ;
optimal quantized luminance parameters for do-
main .

The extended fractal code differs from the standard one be-
cause there are domain addresses specified for each range
instead of a single one. These addresses will indicate the do-
main pool considered for the corresponding range.is a pa-
rameter of the method. For example, in the experiments reported
in Section V is set to 10. For the initial uniform partition
the domain addresses are set to the addresses of
the optimal or nearly optimal—in terms of the collage error

—domains for a range.4

After the initialization phase we begin to merge neighboring
range pairs. In order to obtain a matching domain block for the
union of two ranges, we consider only domains at positions that
are given by the lists of domain addresses inherited from the two
ranges. Of course, these domains have to be extended to match
the size and shape of the new range. Specifically, thead-
dresses associated with a range represent the geometric
mappings . For a neighboring range pair

we check the domains given by the geometric mappings
, applied to (an

example is given in Fig. 2). The rationale behind this approach
is that agooddomain for the new range should sufficiently well
approximate both parts of the range, and, therefore, it will prob-
ably be an extension of one of the choices.

The new extended fractal code for partitionis derived from
the previous fractal code for partition by replacing the in-
formation for the two merged ranges with the information for
the new range. The domain addresses corresponding to the

4k denotes the address of the best matching domain.

(a)

(b)

Fig. 2. (a) Example for the selection of a domain for the union of two
neighboring rangesP ; P . Whenk is one of then domain addresses for
P , the domaing (P [ P ) is considered forP [ P and (b) considers
the case of a rotation of270 .

new range consist of the better half (with respect to the collage
error) of the domain addresses considered for that range.

Overall, the process starts with a fractal encoding having a
large rate and a small collage error. Each new partition has one
less range. Thus, the rate decreases while the collage error in-
creases. The process can be stopped when a given tolerance
threshold for the collage error is exceeded or when the desired
rate is obtained. Several partitions obtained with the region-
merging process are depicted in Fig. 3.

Even though the codebooks used during the merging are
small we propose two sub-algorithms to further reduce the
encoding times; the first one is concerned with the initializa-
tion, the second one with the data handling during the region
merging process.

In the initialization phase a fractal encoding for a uniform par-
tition is sought. Here, an acceleration method can be employed,
especially since all ranges have the same size. The method of
Saupe [43] is particularly well suited for this case. We will
briefly outline this method. For a range span
and a codebook block span the collage error

usingunquantizedluminance parameters
can be expressed as
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Fig. 3. Snapshots from a sequence of partitions derived with our region-based fractal coding method.

Here, denote the mean removed range and code-
book block, respectively, normalized to unit variance. Thus, the
best codebook block for range is the one that maximizes

. Since

the best codebook block is the one that minimizes the Eu-
clidean distance or , re-
spectively, (note that ). Therefore, the code-
book search is reduced to a nearest neighbor search in the Eu-
clidean space. Since all ranges are compared against the same
codebook blocks, a fast nearest neighbor search based on binary
space partitions (kd-trees, see [44]) leads to significant acceler-
ation factors. To further accelerate the initialization phase, one
only performs anapproximatenearest neighbor search [45], i.e.,
one only queries for points whose distance is at most
times larger than the distance of the closest neighbor, where
is the parameter of the method. Even for large values of, e.g.,

, the method produces excellent results. Because of the
approximate nearest neighbor search, and because of the fact
that the optimization is with respect to unquantized luminance
parameters, we are not guaranteed to obtain the optimal initial
fractal code. However, experimental results have shown that this
method leads to a negligible loss in quality while providing a
significant speedup [46].

In the merging phase, one has to consider all neighboring
range pairs, and for a merger a range pair is chosen that gives
the minimal increase in collage error. To support this task, a
priority queue with lazy evaluationis maintained in which all
neighboring range pairs are listed. The entries of the priority
queue are sorted by the increase of collage error resulting from

a merger of the range pair. One, therefore, can easily extract the
range pair that has to be merged next. After picking the top el-
ement, the priority queue has to be updated. The following key
observation makes the updating simple and efficient. We can
delay the recomputation of the collage error of range pairs for
which one member has been merged in the previous step since
the error for such a pair can only become larger. Because of this
monotonicity property, it is sufficient to perform the recompu-
tation when such an outdated pair is extracted as top element of
the priority queue. In this case the correct collage error has to be
computed and the element has to be reinserted into the priority
queue. Thus, when extracting the top element of the queue one
only has to check whether the involved ranges are stillvalid, i.e.,
whether they still exist in the current partition. An outline of the
entire procedure—where the stopping criterion is given by the
number of ranges—is presented as Algorithm 1.

Algorithm 1 Region-based fractal encoding
Input: image , number of domains

per range , number of ranges in the
final partition , atomic block size .
Find extended fractal code for the uni-
form partition with atomic block size .
Initialize priority queue (PQ): put each
neighboring range pair in the PQ, sorted
by corresponding increase of collage
error.

while current number of ranges do
Extract top element of PQ.

if involved ranges are still valid
then
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Update partition: merge range pair.
Update fractal code: determine

domains for new range.
Current number of ranges current

number of ranges .
else

Update range pair: compute approxi-
mation error and reinsert in PQ.
end if

end while
Output: partition, opt. luminance param-

eters, domain addresses, and isometry
options.

B. Coding of Irregular Partitions

We now discuss efficient encoding of partitions generated by
the region-based fractal coder. We have focused on two different
methods to encode the configuration of range boundaries:chain
codesandregion edge maps. With chain codes the boundaries
between the ranges are traced resulting in a stream of symbols
that represent a starting point and actions liketurn right, go
ahead, and so on. The resulting stream of symbols is entropy
coded. The chain codes have been used to digitally represent
curves since the publication of the paper of Freeman [47]. When
tracing the boundary no edge should be traced twice, and, since
in general there is no single path through the boundary graph
that visits each edge exactly once, new starting points should be
given in an efficient (implicit) fashion. Details for constructing
efficient chain codes are given in, e.g., [11]. Since the coding
results obtained with region edge maps outperform the chain
coding method, we will focus on region edge map encoding.

With a region edge map two bits are specified for each atomic
block of the uniform partition from which the irregular partition
has been derived. The two bits indicate whether there is an edge,
i.e., a range boundary, to the north of the block and whether there
is an edge to the west of the block. For instance, we let 0 stand
for no edge, 1 for a north edge, 2 for a west edge, and 3 for a
north and a west edge. An example is given in Fig. 4. An effi-
cient method for encoding these region edge maps via context
modeling and adaptive arithmetic coding has been proposed by
Tate [48] and applied to the coding of palette images [49].

The context used for the encoding of region edge maps de-
pends on the neighbors to the west, north, northwest, and north-
east of the symbol to be coded (using the normal raster scan
order all those neighbors are codedbeforethe current symbol),
see Fig. 5. Each of the 256 different symbol combinations in

is considered to be a context for symbol. One
can easily see that from this choice of contexts one can infer
some information for the symbol to be coded: for example, when
the symbols to the north and to the west of the current symbol
are both zero indicating that there are no north and west edges
for these atomic blocks, one immediately knows that the current
symbol has to be 0 or 3 since the range boundaries constitute a
connected graph.5 The number of contexts is small and, thus,

5The connectedness can be violated at the image boundaries because of wrap-
around ranges.

Fig. 4. Example of a region edge map.

Fig. 5. Context template for the encoding of symbol!.

there is no context dilution problem for encoding partitions of
images of typical size, say .

The adaptive arithmetic coder is initialized by setting the fre-
quency count for all events that can actually occur to 1. Only
events that cannot occur get a frequency count of 0. The fre-
quency count for an event is increased by 4 each time the event
is observed. This incrementation step size has been experimen-
tally determined to be the best choice for our application.

Within MPEG-4 several shape coding techniques have been
studied where shapes are given by means of contours, bitmaps,
or chroma-keying [50]. These methods are not directly appli-
cable to encoding the partitions in region-based fractal image
compression where a large set of regions must be encoded as a
whole in contrast to individual video objects in MPEG-4. How-
ever, our chain codes in [11] and the region edge maps discussed
above are closely related to the contour and bitmap coding ap-
proaches studied in the MPEG group. As mentioned above, the
region edge maps were more efficient than the chain codes even
when the latter were equipped with sophisticated context mod-
eling. This is in line with the results of the MPEG-4 shape
coding evaluation where the context-based arithmetic bit-map
coder (CAE) won over the contour coders. Intuitively, the reason
may lie in the fact that regions are twodimensional. When we en-
code boundaries which are onedimensional, we may have less
coherence in the symbol strings than there is coherence within a
bitmap or a region edge map. In other words, the context-based
coding can be expected to be more powerful when applied to
region edge maps rather than contour chain codes.

C. Additional Full Search

For a fractal code derived with our region-based fractal coder
each domain-range assignment is optimal only with respect to
the restricted domain pool scheme presented in Section IV-A,
i.e., each domain represents the best out of a set of heuristically
chosen domains. One can expect better matching domains by
considering larger domain pools. In the following we will focus
on the problem of how to determine for a partition derived by
our RBFC a fractal code that assigns to each range an optimal
domain of the corresponding full domain pool. Thus, we need
a fractal coder that is time-efficient in the presence of large ir-
regularly shaped ranges. With such a coder one can improve a
fractal code obtained by our region-based fractal coder, and, in
turn, can evaluate the quality of our heuristic merging strategy.
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We propose a coder based on the fast cross-correlation property
of the Fourier transform. This coder exploits the codebook co-
herence offull codebooks, i.e., the codebooks that correspond
to full domain pools [51].

In order to find the best matching domain for a range, one has
to determine for each domain the optimal luminance parame-
ters. To this end one has to compute Euclidean inner products

, , , , and , where
denotes a range vector and a codebook vector, since

For an image of resolution , even, the full domain pool
for a range consists of domains. For simplicity, we
will first assume that only one isometry option—no rotation,
no flip—is allowed, i.e., the domain pool consists of do-
mains. The corresponding full codebook consists of all blocks
of the downscaled image (obtained by pixel averaging over dis-
joint blocks) with the same size and shape as the range;
thus, the codebook blocks can be indexed via

. For large ranges the computational costs of the
domain search is dominated by the computation of the inner
products . These inner prod-
ucts are the cross correlation
of the corresponding range with the downscaled image. Let an
image of resolution , even, be given as well as an appro-
priate partition , and let represent the down-
scaled image via

Let denote azero-paddedrange
, given by

otherwise

Now, by calculating the cross correlation , i.e.,

mod mod

one obtains all inner products between a range and the codebook
blocks of the corresponding full domain pool. It is well-known
that the cross correlation can be efficiently computed in the
Fourier domain for ranges that are not too small. This leads to
the following computation scheme for the inner products be-
tween a range and all codebook blocks of the corresponding do-
main pool:

1) compute the 2D-FFT of the downscaled image;
2) build zero-padded range ;
3) compute the 2D-FFT of ;
4) perform the complex conjugate of previous transform;
5) do the (pointwise) complex multiplication of both trans-

forms;
6) do the inverse FFT of the result.

Moreover, the calculation of ,
for can be accelerated by the same cross
correlation technique. The products of type are obtained
by the cross correlation of the downscaled image with a “range”
where all intensities are set to unity (called therange shape ma-
trix). The sum of squares is computed in a similar way
by squaring all intensities in the downscaled image before cross
correlation.

In order to incorporate all isometry options, one can take ad-
vantage of direct methods to obtain the Fourier transforms for
rotated and reflected images. Therefore, there is no need to com-
pute eight forward transforms for the eight isometric versions of
the downscaled image. Instead, one forward transform is com-
puted and the Fourier transforms of the rotated and reflected
downscaled image are obtained directly in the Fourier domain.

The proposed FFT-based coder is particularly suited for ir-
regular partitions since it requires onlyzero-paddingof a range.
After this, the procedure does not depend on the range shape.
This approach shows significant speedups for ranges with more
than 256 pixels compared to an optimized direct computation.
For images of size and a range with 256 pixels the
speedup factor is about 6.6; for a range consisting of about 1000
pixels the speedup factor is 25.

V. RESULTS

In this section, we present coding results obtained with our
region-based fractal coder that utilizes the region edge map en-
coding scheme for the coding of the resulting partitions. The
results are given for the standard test images Lenna and boat.

We have chosen the following parameter settings for our tests.
In the initialization phase, the image is uniformly partitioned
into blocks of size ; we have performed experiments for

. The domain pool considered for the ini-
tial fractal code consists of the blocks of the uniformly par-
titioned image with atomic block size plus the iso-
metric versions thereof. In our experiments the numberof
domain addresses per range has been set to 10. For the approx-
imate nearest neighbor search used as acceleration method for
the initialization phase the allowable approximation error(cf.
Section IV-A) has been set to . The quantization for
the luminance parameters is performed as it is done in Fisher’s
quadtree-based fractal coder [6] with levels for the scaling
factor and levels for the offset. We allow wrap-around ranges
as well as wrap-around domains to occur during the merging
process.

In Fig. 6(a), coding results for compression ratios up to 100 : 1
are presented for the 8-bit Lenna image of size pixels.6

Compression ratio vs PSNR curves are given which correspond
to region merging processes that are initialized with uniform
partitions varying with respect to the atomic block size.7 The
atomic block size can be chosen in order to control the regularity
of the resulting partitions. A small atomic block size is advanta-
geous for very-high fidelity encodings while larger atomic block
sizes should be selected for high compression ratios.

6The image was obtained from the Waterloo BragZone [52].
7At the right and bottom image boundaries the block sizes are adapted in order

to match the given image size.
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(a)

(b)

Fig. 6. (a) Compression ratio versus PSNR curves for the Lenna512 � 512

image obtained with the RBFC scheme starting with various atomic block
sizes and (b) comparison of the RBFC approach with additional full search,
the standard RBFC approach, the HV scheme, and the quadtree-based fractal
coder.

We compare the results of the RBFC approach (with and
without additional full search) with the results obtained by
Fisher’s HV8 and quadtree-based coders; the HV coder is con-
sidered as a “reference coder” for the current state-of-the-art in
fractal image compression. Results for the Lenna
image are given in Fig. 6(b). Here, we focus on high compres-
sion ratios, i.e., ratios between 20 : 1 and 100 : 1 since for those
ratios fractal coding methods have shown their competitive
edge. All options for the HV coder have been enabled9 and the
decoding has been done without postprocessing. The options
for the quadtree coder has been set tom 4 M 7 w 512

d 1 D 2 f F;10 again no postprocessing has been per-
formed after the decoding. The RBFC yields a slightly better
rate-distortion curve compared to the HV method when for
each compression ratio the PSNR value obtained with the best

8We thank Y. Fisher for supplying us with a Sun-executable of his HV-coder.
9Fisher’s optimization level 0 (cf. [6, p. 127]): “Compare each range with

each possible domain in the image, using every possible symmetry operation.
The ratio of the lengths of the sides of the domain and range blocks are2� 2,
2 � 3, 3 � 2, and3 � 3.”

10The options are outlined in [6, p. 260, 261]; the ranges are of sizes4� 4,
8� 8, 16� 16, and32� 32, and a full search is performed.

(a)

(b)

Fig. 7. (a) Compression ratio versus PSNR curves for the boat512 � 512

image obtained with the RBFC scheme starting with various atomic block
sizes and (b) comparison of the RBFC approach with additional full search,
the standard RBFC approach, the HV scheme, and the quadtree-based fractal
coder.

atomic block choice is taken into account. The RBFC approach
with the additional full search can achieve coding gains of
0.5–0.8 dB for compression ratios between 20 : 1 and 100 : 1
over the HV-results. It is obvious from Fig. 6(b) that a higher
flexibility of the partitioning method gives significant coding
gains over the more rigid quadtree-based approach. Fig. 7(a)
and (b) present corresponding results for the boat
image.

Typical computing times (CPU seconds) for a single
ratio-PSNR curve are about 170 s on a Sparc processor at
170 MHz. Let us compare the encoding times of the RBFC
approach and the HV coder [7] for a Lenna encoding at a
compression ratio of 65 : 1. The RBFC approach requires about
130 s and results in a 29.5 dB PSNR. The HV coder with a
standard full search (level 3) needs about 250 s and results
in a 28.8 dB PSNR. Enabling all options for the HV coder
(level 0) leads to encoding times of about 3700 s and 29.2 dB
PSNR. The RBFC approach with additional full search has
been implemented with hardware-optimized Fourier transforms
on an SGI using a MIPS R5000 processor at 150 MHz. A 65 : 1
Lenna encoding costs about 2800 s and results in a 29.9 dB
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(a)

(b)

Fig. 8. (a) Decoded Lenna512 � 512 image at compression ratio 64 : 1 and
30 dB PSNR and (b) decoded boat512�512 image at compression ratio 40 : 1
and 29.8 dB PSNR.

PSNR. To summarize, the RBFC method slightly outperforms
the quality of the best HV encodings and is significantly
faster than the HV coder. The additional full search obtains an
additional gain of about 0.4 dB PSNR, however, this increases
encoding times by about 2670 CPU seconds.

Figs. 8(a) and 9(a) show the decoded Lenna image at a
compression ratio of 64 : 1 and the corresponding partition.
The irregular structure of the partition results in less visible
blocking artifacts in the decoded image compared to quadtree-
based fractally coded images. Figs. 8(b) and 9(b) show the
decoded boat image at a compression ratio of 40 : 1 and the
corresponding partition. The reconstruction quality and the
crispness of the images are visually pleasing considering the
high compression ratios. However, while the reconstruction of

(a)

(b)

Fig. 9. (a) Partition corresponding to Fig. 8(a) (800 ranges) and (b) partition
corresponding to Fig. 8(b) (1200 ranges).

the edges is in general excellent, high-frequency texture de-
tails, e.g., the structure of the sand in the boat image, cannot
be reconstructed very well.

In a fractal code obtained with the region-based fractal coder,
a much larger part is used to specify the partition as in the case,
e.g., of a quadtree-based fractal code. Fig. 10(a) and (b) give the
relative and absolute partition coding costs for the Lenna encod-
ings based on an initial uniform partition with atomic block size

. For a compression ratio of 66 : 1 the RBFC scheme re-
sults in a fractal code of which about 44% specify the partition.
By contrast, at the same compression ratio the fractal code de-
rived with the quadtree-based fractal coder needs only 3.5% of
the total code size to define the partition.
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(a)

(b)

Fig. 10. (a) Part of fractal code that is used to specify the partition (in percent)
and (b) absolute costs of the partition information; the data stems from the
encodings of the512�512 Lenna image starting with a uniform partition with
atomic block size 4.

VI. A DDITIONAL INVESTIGATIONS

A. R/D-Based Region Merging

With the RBFC method the merging criterion is based on the
increase in distortion that results from merging two ranges. Ad-
ditionally, one may take into account the corresponding change
in rate. In this case the Lagrangian cost function

rate (5)

is motivated where is the scale parameter and rate
denotes the sum of the coding costs for the region edge map
encoded partition and the transformation parameters of the
fractal encoding. Thus, at each step the neighboring range pair
is merged that gives the largest decrease with respect to the
cost function (5). The merging process continues until a further
decrease of the cost function is no longer possible. Then the
parameter is increased allowing merge operations again, and
the procedure is iterated. However, the computational costs for
the procedure are prohibitive as can be seen as follows. For each
pair of neighboring ranges one has to keep track of the change
in distortion and rate resulting from merging the two ranges.
After merging a range pair all those rates change because the
partition has changed. As a consequence the lazy evaluation in

Fig. 11. Comparison of the rate-distortion performance of I) our RBFC
approach, II) the region-based coder that uses R/D-based region merging, and
III) Fisher’s quadtree-based fractal coder.

the priority queue of the range block pairs is no longer justified
and, thus, all the rate changes need to be computed by entropy
encoding a whole partition for each range block pair in the
priority queue. Therefore, this approach is not practical, not
even for a single test in order to evaluate the losses caused by
not using the strict rate-distortion criterion for the merging step.
Thus, it is reasonable to relax the R/D criterion by replacing
the actual coding costs with some rate estimator that can be
more easily calculated. Our region-based fractal coder from
Section IV treats the rate just as a constant. In this section,
we consider a simple rate estimator as a first approximation.
Motivated by the image segmentation approaches of Mumford
and Shah [53] and Morel and Solimini [54] we have employed
the Euclidean length of the partition boundaries as an
estimator for the actual partition coding costs. However, the
results obtained with this approach are inferior to the results
obtained with the pure distortion-based approach (cf. Fig. 11
and [13]). Thus, a more accurate yet simple estimator is
needed. This warrants further investigation relevant also for
other segmentation-based image coding schemes.

B. Probabilistic Merging

The RBFC approach has outperformed the method of
Thomas and Deravi as well as the state-of-the-art top–down
fractal coders. Nevertheless, since finding the optimal partition
for an image at a given rate represents a difficult problem (as
indicated in Section I), it is difficult to answer the question of
how close the RBFC scheme gets to optimality. In order to ob-
tain an idea of the potential of highly image-adaptive partitions
for fractal coding, one can use a “screening” technique like our
evolutionary fractal codingapproach [11].

Here, agenerationconsists of extended fractal codes (nor-
mally with differing partitions). A new generation is constructed
from the previous one as follows. Each of the extended
fractal code is duplicated times. Then, in each of the ex-
tended fractal codes one neighboring range pair is randomly se-
lected and merged. Finally, the best (with respect to the col-
lage error) extended fractal codes are kept to form the new gen-
eration. The domain search for a newly merged range is identical
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to the one described for our region-based fractal coder. As ini-
tial generation, copies of the initial code of our region-based
fractal coder are used.

In the experiments we have set to 10 and to 20; the
number of domain addresses maintained for each range in
an extended fractal code has been set again to 10. For example,
for the Lenna image we have obtained slightly better
rate-distortion curves of about 0.3 dB compared to the determin-
istic RBFC method. Of course, the probabilistic method spends
much more time in the region merging phase, i.e., the region
merging takes about 100 times longer compared to the deter-
ministic case.

These results indicate that with optimal partitions one would
get some improvement in the rate-distortion behavior, however,
it appears, that the improvement would not be very large. This
observation backs our heuristic region-merging strategy.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have presented a fractal coder that is based
on highly image-adaptive partitions. The partitions are derived
bottom-up via region merging. At each step the range pair that
gives the least increase in collage error is merged. This approach
is made computationally feasible by only performing a domain
search in small domain pools that are constructed during the
merging process. These domain pools represent self-similari-
ties in the image learned in the initialization phase and during
the merging process. Time efficiency is obtained by 1) using
an initialization technique that applies nearest-neighbor search
techniques and 2) by lazy evaluation of the priority queue of
range pairs during the merging phase.

Our region-based fractal coder clearly outperforms the cur-
rent state-of-the-art purely fractal coders with respect to rate vs
distortion performance as well as time efficiency.
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