Parallel Processor Scheduling with Delay Constraints

Daniel W. Engels Jon Feldmah David R. Kargef ~ Matthias Ruhi

MIT Laboratory for Computer Science
Cambridge, MA 02139, USA

Abstract job j cannot begin execution until at le@s} time steps after

We consider the problem of scheduling unit-length jobs oh)bil:c):om_pletesl. ithms f heduling iob llel
identical parallel machines such that the makespan of th%in revious aigorithms for scheduling Jobs on paraflel ma-

resulting schedule is minimized. Precedence constraints inj- es consider either commumcatlon delays or precedence
pose a partial order on the jobs, and both communicatio plays, but not both. In this paper we generalize both types
8

and precedence delays impose relative timing constraints delays to a singleeparation delay,.ap, where jobj
dependent jobs. The combination of these two types of ti tnning on mgchlnda gannot begin execution _unt|I at least
ing constraints naturally models the instruction scheduling:j-2b iMe units aftert:]ob co;n_pltgtes cf)n machine Morte-l
problem that occurs during software compilation for state- Ve We overcome fhe restriction ol previous exact algo-

of-the-art VLIW (Very Long Instruction Word) processorsmhms Wh_ere delays cogld only_be either 0 or 1.
and multiprocessor parallel machines. We give a polynomial algorithm for the case where the

We present the first known polynomial-time algorithmprecedence graph is a foresind the delays are bounded

for the case where the precedence constraint graph is afof)éte_1 constanD. We also give a useful structgral ”‘eore”.‘
of in-trees (or a forest of out-trees), the number of machin %r' instances where .the precedence graph is a collection
mis fixed, and the delays (which are a function of both thf independent dags; we ShOW. that any schgﬁﬂer the

job pair and the machines on which they run) are bound groest dags can b(_e convert_ed, in linear time, into a complete
by a constan. schedule that is either optimal or has the same makespan

Our algorithm relies on a new structural theoren’ipJlSS Our interest in this problem is motivated by the

for scheduling jobs with arbitrary precedence constraint _struct|or_1 scheduling prgblem encountered by compilers
r emerging system architectures.

Given an instance with many independent dags, the the&
rem shows how to convert, in linear time, a schedsifer Instruction scheduling for parallel machine and VLIW
only the largest dags into a complete schedule that is eithesmpilation. VLIW (Very Long Instruction Word) ar-

optimal or has the same makespargas chitectures have recently begun to appear in a variety of
commercial processor and embedded system designs. In
1 Introduction these architectures, the processor contains multiple func-

: . . .tional units capable of executing basic operations in parallel
In this paper we consider the problem of scheduling unit- b 9 P P

:2 ~in one clock cycle. The VLIW processor is controlled by
length jobs onm identical parallel machines to minimize . . :) . .
. . meta-instructionghat combine the instructions for the in-
the makespan in the presence ptcedence constraints

recedence delavand communication delavsPrecedence dividual functional units into one single instruction word,
P yan y .ance the name VLIW.

gonstraints mo'de'l dependepcies between the tasks;. I] The VLIW architecture is the basis for Intel's Itanium
j depends on job, then jobj must be executed after job chip (formerly code-named Merced), which is scheduled

i. Precedence delayis; impose relative timing constraints; ; . . .
iob | cannot begin execution until at ledst time steps after for commercial release in 2000. It uses a new instruction
100] 9] P set named 1A-64 [9], which was developed by Intel and

]; Ct;éscsorr:gfgﬁse's?g %@;ﬁ:g@“&?\ (:)iladﬁelrrgr?f rsneac(:jr?ilr?g: Hewlett-Packard, and is based on EPIC (Explicitly Parallel
1 J " Instruction Computing) — Intel's adaptation of VLIW. VLIW

architectures have also been used in state-of-the-art Digital
*E-Mail: dragon@Ics.mit.edu
TE-Mail: jonfeld@theory.lcs.mit.edu

*E-Mail: karger@theory.lcs.mit.edu IWhen we say that the precedence graph is a forest, we mean that it is
SE-Mail: ruhl@theory.lcs.mit.edu either a collection of in-trees, or a collection of out-trees.

Signal Processor (DSP) designs, such as the popular Texise unitsbetweerthem).
Instruments TMS320C6x series [15]. We denote the completion time of jgbasC;. We are

The role of the compiler is much more crucial forconcerned with minimizing the makesp&uax = max; C;.
VLIW architectures than it is for traditional processorsLet C; ., be the optimal value oCmayx. Extending the
To exploit the inherent hardware parallelism, the compilenotation introduced by Graham et al. [8], we can denote
must combine basic operations into meta-instructions ithe problems considered in this paperRas | preg p; =
an efficient way. When doing so, it has to observe th&;/;jap € {0,1,...,D} | Crax.
data dependencies between the operations and the time it We can also allow multiple instances of the same job
takes to transfer data from one functional unit to anotheto be scheduled on different machines; this is cajtzul
Since hardware based acceleration schemes such as brashaplication Allowing job duplication can make a difference
prediction or speculative execution become less powerful the makespan of a schedule when computing the same
on these implicitly parallel architectures, it is the compilevalue twice is more efficient than transferring the value
that really determines the quality of the resulting code. Thiacross machines (see section 4.1).
quality is espec[ally |mp0rtaqt in embeddeq system deS|ge)ur contribution.
where the code is only compiled once (making even lengt

compilation times acceptable), but an optimal performanclgm | treep = 1if ap € {0,1 D} | C The algo
] — &t Pt A max- -

is required of the resulting system. : . . ; e
Our scheduling problem exactly fits this model. Eac _r|thm works with or without job duplication allowed on a

meta-instruction can be thought of as a slice of time, and tﬂgb_by_JOb basis,

functional units correspond to machines. Pipelining allows Our result is more general than previous known poly-
b - P 9 nomial algorithms in both the precedence delay and the

all jobs to have unit execution time. Precedence ConStraim(SJmmunication delay communities for optimally schedul-

encode the data dependencies, and delays encode the Iafen- : .
. . Lo S . INg trees on a fixed number of processors. Previous re-
cies: variable pipeline lengths and limited bypassing cre- L i .
: sults assumed at most unit time delays: Varvarigou, Roy-
ate variable precedence delays, and data movement betwegn . .
chowdhury and Kailath [17] solvem | treg p; = 1;¢ij =

functional units creates communication delays. Since all tr’f% C Bernstein and Gertner [1] solve |itree pj —
max-] —

We give a polynomial-time algorithm
hf}gr the problem where the precedence gr&pls a forest:

functional units are part_of the same processor, precede | € {0,1} | Crmax. OUr algorithm solves both these prob-
delays and communication delays are on the same order gf’ ; . oo .
.) lems as special cases. Another important contribution of this

magnitude, and should be considered together. Furthermore, ~ . .

- . .) aper is the Merge theorem:

fixing the number of machines and imposing a bound on trﬁa

delays makes sense in this context; these quantities areF@aeorem 1.1. (THE MERGE THEOREM) Consider an in-

function of the physical characteristics of the chip, and aretance of Pm preG pj = 1;4ijap € {0,1,...,D} | Crmax

usually sma_ﬁ._ . where the precedence graph G contains at lezsfD +
Determining a minimum makespan schedule for arbit) — 1 independent dags. Given a schedule with makespan

trary instruction dependencies is a long-standing open profp- for only the jobs from the large@m(D + 1) — 1 dags,

lem (see section 1.1). We therefore focus on schedune can construct in linear time a schedule for all jobs with

ing forests, which often occur in practice, for examplemakespamnax{[],T}.

. . ct m
when processing expression trees or divide-and-conquer al- _)
gorithms. Since this theorem holds fany dag, not just trees,

]) it shows that any heuristic or approximation algorithm for
Problem statement. \We are given a set ofl jobs and gcheduling only the jobs from large dags can be extended
m machines on which to execute the jobs, wheTes & ntg an algorithm for scheduling all jobs. The theorem might
con_stant. Each_job has unit processing time. The_re eXistfso pe applied to single dags after they have been broken
a directed acyclic precedence graph= (V,E) on the jobs jniq independent pieces. Furthermore, since a schedule of
V. With each precedence-constrained job gaif) € E, |ength [L] is clearly optimal, the new algorithm will have
and pair of machinega,b), there is an associated non-yhe same performance guarantee as the original algorithm

negative delay; j ap bounded by a constadt. The output ith only a linear time additive cost in running time.
is a schedule assigning a job to each processor and time

slot. A schedule is legal iff it includes all jobs, and for] 1 Related Work

all precedence-constrained job pajrs) € E, if job j runs

on machineb at timet, job i must be scheduled on somePolynomial algorithms: precedence delays. Precedence

machinea beforetimet — /; j o1 (i.€., there must bé; j o, delays have been used to model single-processor latencies
that arise due to pipelined architectures. Bernstein and

" ZAs an example, Intel’s Itanium chip has six functional units, and Texa&ertner [1] use a modification of the Coffman-Graham

Instruments’ TMS320C6x has eight. algorithm [3] to solve 1 prec pj = 1;lij € {0,1} | Crax.

2

Finta and Liu [5] give a polynomial time algorithm for hard problems is the generalization to arbitrary precedence
the more general 1 prec pj;lij € {0,1} | Cmax. Both of structures on a fixed number of machines, i.e., the prob-
these algorithms crucially depend on assuming unit-delaysm Pm | prec pj = 1,4 jap € {0,1,...,D} | Cnax. How-
between jobs. ever, this gap comes as no surprise, since the famous 3-
processor scheduling problem ([7], problem [OPENS]) is

Polynomial algorithms: communication delays. In the ; .
. a special case. It turns out that even an algorithm for the
classical models of parallel computation, communication

X ne-processor version where all delays are equal to three
delays are orders of magnitude larger than precedence de-

lays, so algorithms for scheduling on parallel machinej;nireesqopfj;prléii’ej;o? lsccﬁneaé)uﬁ;g?gzs ;?d_tf |s(<:)nlq\$)|n-
have generally ignored precedence delays. A survey b% o ! o '
e reduction is straightforward.

Chrétienne and Piccoleau [2] gives an overview of the work
in this area.

All previous polynomial-time algorithms for a bounded
number of machines work only for the special case of unithe remainder of the paper is organized as follows. In
communication delays. Varvarigou, Roychowdhury angection 2 we give the proof of the Merge Theorem. In
Kailath [17] show thatPm | treecj = 1;pj = 1 | Crmax section 3 yve use t_he Merge Theorem r;_\s the foundation for
is solvable in timeO(n?™) by converting the tree into one a scheduling algorithm that solves the single processor case,
without delays. This conversion relies heavily on the facthere the precedence graph is a collection of chains. We
that that the delays are unit-length. The special case2 Present the full algorithm in section 4. We conclude in
was shown to be solvable @(n?) time by Picouleau [14], section 5 with a brief discussion of our results.
and was later improved to linear time by Lenstra, Veldhorst
and Veltman [11], using a type of list scheduling. 2 Proof of the Merge Theorem

Finta and Liu [6] give a quadratic algorithm for \ye pegin by proving the Merge Theorem for the case
P2 | SPLipj = 1;Gj = 1 | Cmax where SPL areseries- \ pare we have chain precedence constraints and only one
parallel-1graphs, a subclass of serlesfpargllel grap_hs. Theﬁ?ocessor((; is a collection ok independent pathsy = 1).
has also been some work on approximation algorithms @i proof establishes all of the techniques used for the
an arbitrary number of machines. diring and Scaffter onara| case and is less obscured by details. We then sketch

[12] give a good overview of this area. _ the natural generalization to dags, parallel processors and
Several authors (e.g. [10, 13]) have considered relateg%neral separation delays.

problems where the number of processors is unbounded,
..e. the schedule can use as many processors as desired. Special Case: chain precedence constraints, one
However, that model is fundamentally different from the one processor

we study, since optimal schedules usually make extensi\(/sa i foll . Gi hedule of th 2 1
use of the unlimited parallelism. ur goal is as follows: Given a schedule of thB 2

largest chains that finishes at tinfe we must construct
Hardness results. Even without any delays, the problem isa complete schedule for ad chains that finishes at time
NP-hard if the precedence relation is arbitrary and the nunmax{n,T}. As a running example consider the instance
ber of machines is part of the input. This is the classic reéshown in figure 1. This example consists of 7 chains with
sult of Ullman [16], showing NP-hardness®@fl preg pj = a total ofn = 21 jobs. The maximum precedence delay
1| Cmax Lenstra, Veldhorst and Veltman [11] show theis D = 2. Figure 1a shows a feasible schedule for the
problem is still NP-hard when the precedence graph is 2D + 1 = 5 largest chains with makesp&f,,, = n. We will
tree and there are unit communication deldystfee cij = construct the new schedule in four steps.

1;pj =1| Cnax- . C
i | Cmax) tep 1: Truncating. Letn; be the number of jobs in thieth

Engels [4] proves NP-hardness for the single-machirfaﬂ hai begin b i the | obs i
case when the precedence constraints form chains, and est chain. We begin by removing the lags 1 Jobs in

delays are restricted to be either zero or a single input valu%"fl(f‘h of the scheduled chains from the current schedule (as
i.e., he shows 1 chainp; = 1;lij € {0,d} | Cmax to be in figure 1b, where R +1 =5 andns = 2). We call these
strc;ngly NP-hard. where is an i'n;ut 0 the problem deleted sub-chains thiils. Note that we have removed

When the processing times are not unit, the problel%D+1 tails with exactlynp.,; jobs in each tail.
is also NP-hard. Engels [4] shows that scheduling chairstep 2: Shifting operations. Next, we modify the schedule
with job processing times of either one or two and constantith the tails removed by shifting jobs so that they are
precedence delays, i.e., |Ichainp; € {1,2};lij = D > executed as early as possible. Beginning at the first time
2 | Cmax is strongly NP-hard. slot, we traverse the schedule through tifhe Whenever
Thus the only natural gap between our result and NRve encounter a hole (time slot that does not have a job

1.2 Organization

3

o] o

Job chains

NN

NNEE
N
AN

wnlsl| o

NSNS
SIS

NN
NSNS
AN

NP (W N

NN

NSRS

n)
N
N

=]
]
N
=]
=
N
= o)

1 1 1

HFHHEH
o [a & o |~
ESIIN
N
N

=]

levlole ols v w~lowoslo ko sl] -

NSNS NN NN

l=[r

Figure 1:Problem instance (on left) and construction of an optimal schedule (on righf),#o2. The instance is composed of two chains with 5 jobs,

two chains with three jobs, two chains with two jobs and one chain with one job. All delays between consecutive jobs in a chain are 2. Constructing the
schedulea) A schedule for the large chaink) Step 1, deleting the tails of the large chaingy) Step 2, shifting jobs earlier in the schedule until at most

D chains remain activeh) Step 3, Putting the tails of the active chains back into the schefud optimal schedule after inserting the remaining jobs

using the round-robin of Step 4.

scheduled in it) in the schedule, we try to fill that hole byStep 3: Re-inserting some of the tails. We now reinsert
moving a job earlier in the schedule (as in figure 1c-g). the tails of the (at modD) chains that are still active at the
We can always fill a hole with a job that is currentlyfirst hole (as in figure 1h). We reinsert these jobs at their
scheduled later, if, at the position of the hole, at leagtositions given by the original schedule. These positions
D + 1 of the chains aractive,i.e., they have not yet been in the schedule are still unoccupied, since jobs were only
scheduled up to the point at which they were truncated. Tmoved to time slots earlier than the first hole. Moreover, the
see why this is possible, note thatDf+ 1 chains are still makespan of the total schedule is still at mbst
active, at least one of these chains has not been executed
during the lasD time steps before the hole. Therefore, if?tep 4: A Round-Robin for Scheduling Tails and Short

. o .(f“,hains. We are now left with the tails of at leaft+ 1
we move the next job of that chain into the current hole, L1 ains. each containing exacti 'obs. whose truncated
will be executed at leadd time units after its predecessor. ' g 31 JOLS,

. . . . versions finished before the first hole (call these tails the
The precedence delay is satisfied after this move since tBF .) -
delay is at mosb Ue chains) ank — (2D + 1) short chains, each containing
y X at mostnyp1 jobs (call these theed chains). The red

After repeatedly moving jobs to fill holes, we will either :
finish shifting all of the truncated chains or reach the firsFhalns are the ones that were not among e largest.

hole that we cannot fill without violating a delay constrain n the example, the sub-chains consisting of therlast, =

L : o jobs in chains 3, 4 and 5 are blue, and chains 6 and 7 are
(as in figure 1g). The resulting schedule is tight before tha
hole (i.e. there are no holes before it), and there are at most™
D of the truncated chains active at that position (recall th%e
we can always move a job if more th@chains are still
active). In the example (figure 1g), chains 1 and 2 are st
active at the first hole.

Completing the schedule is done by filling holes with
remaining jobs in a round-robin fashion, i.e., we cycle
i}[wough the chains (both the red and blue chains) in some
Ixed order, inserting the next job of each one, until they are
all scheduled.

We have to be a bit careful about the fibsholes we fill case (the round-robin fill-in step), notice that we made no
in this process, since the blue chains cannot start too cloaesumptions about the delays between the jobs in the red and
to their predecessors from their original chain. blue chains other than that they were boundedbyso for

This problem can be solved by systematically choosindags, we first topologically sort the dags in an arbitrary way,
the order we cycle through the chains. Since there are iiaking them chains. Then we perform the round-robin as
leastD + 1 blue chains, one of their predecessors has nbefore. The red chains finish first, the blue chains all finish
been executed during the labt steps, so we can safely on the same round, and we have either finished before time
schedule that chain first. Among the remaining blue chaing,, or filled every hole. The running time of each step is still
one has not been executed in the IBst- 1 steps, and linear in the number of jobs]
therefore it can be scheduled second, and so on. We fix this

order of the blue chains (in the example, we let this orde® A Dynamic Program for Chains
be 3,4,5), and then follow it with any order of the red chain .) . . .
) Wit y I ?Ne will now state a first simple version of our algorithm

(6,7 in the example). . . .
Since all blue chains have the same length, they e{l‘?r the case wher& is a collection of chains, and there

finish on the same round. Furthermore, the red chains finidh only one processom(= 1). In the next section, we

on or before this round, since they are no longer than t1Qive a more general version that works for trees on parallel

blue chains. Therefore, every round consists of at |ea%trocessors. The algorithm given here is slightly less efficient
' than we can achieve; it runs in tin@(n°+1). We will

D + 1 different chains, and we can fill every hole until the_ " . . D41
round-robin ends. briefly sketch how to improve this t®(n“®**) at the end

of the section. We give this slightly less efficient algorithm
ilaecause it establishes some of the machinery used for the
rﬁ general case.
The Merge Theorem shows how to construct an optimal
hedule, assuming we know how to optimally schedule the
m(D + 1) — 1 largest chains in the precedence graph. This
immediately suggests an algorithm:

Thus, we have scheduled all jobs, obeying the cha
precedence constraints and the precedence delays (a§
figure 1i). If this step 4 did not fill all the holes that
existed after step 3, then we know that our schedule st
has makespan at most Otherwise, the new schedule ha
no idle time, and has makespan Also, the running time
of each step of this construction can be made linear in thel. Dynamic Program. Use a dynamic program to opti-
number of jobs. mally schedule the®(D + 1) — 1 largest chains in the

input, setting aside the other chains for the moment.
2.2 Dags, parallel processors, and general separation
delays

There is a natural generalization of the above construction to _ _
dags, parallel processors and general separation delays. We The dynamic program we will use can be thought of as

sketch the necessary changes, and leave the details for #éling the shortest path through a state space, where state
full version of the paper. transitions correspond to the scheduling of jobs on a single

Given a schedule with makespah for the largest time step. Every state encodes ‘where we are’ in the current
2m(D + 1) — 1 dags, we must construct a schedule for afchedule; it records the jobs available to be scheduled on the
the dags with makespan m@%] ,T}. We follow the same upcoming time step, as well as a recent history of the current
four basic steps as before. schedule, which we will use to determine when jobs become

Previously, for chains, the first step of the constructiogvailable in the future. More precisely, states have the form
removed the lastp .1 jobs from the large scheduled chains.(A P), where
Now, in the general case we remove thigyp. 1)1 jobs e Ais a set we call theactive set This is the set
from each dag that arscheduledlast (ties are broken of currently active jobs, i.e. the jobs which can be
arbitrarily). In step 2 of the chains case, we shifted jobs to gcheduled in the next time step.
earlier in the schedule as long as at ldast 1 of the chains
were still active. To be able to shift jobs in the general case, ® P is a vector of lengttD, whose entries either contain
we now needn(D + 1) dags active. Step 3 is identical; we ~ jobs or are empty. These are thast jobs the jobs
reinsert the jobs from the dags that are still active at the first ~ that have been scheduled within the IBstime steps.
hole we cannot fill. Essentially,P is a ‘window’ into the lastD time steps

Now at step 4 in the general case, there are at least ©f the schedule.

m(D + 1) blue dags, each containing the same number The following operations define both the legal transi-

of jobs, and several smalleed dags (the ones which tions between states and the scheduling/status updating done

2. Merging. Apply the Merge Theorem to schedule the
chains we set aside during the dynamic program.

5

1. Schedule a jolj in A. Shift the windowP one time tion delay constraints, it sometimes pays to execute a job
step forward, yielding®ew, Whose last entry ig. Itis multiple times on different processors. This is especially
also possible to not schedule any job (this is the onlyrue if many other jobs depend on this one job, and it is time-
possibility if the active set is empty). In that cafgsw COnsuming to move data from one processor to another.
will have an empty last entry. The simplest example is an out-tree consisting of three

. S . nodes: a root with two children. The delay between the root

2. .Use the. information |rP_to determlqe the S@ of and its children is O if they run on the same processor, and
Jort:s (;NT'Ch Pecorﬂe. available hon Fh's nlew tlr;e S'.[eqo otherwise. Suppose we want to schedule this instance on
g]ee deelaa;/yssa:(;nl;(gu?(;gﬁgttsheﬁifjgri:ts)%ssng.isSInmo processors. Clegrly, without duplication, the shortest

. ; N solution uses three time steps (schedule all three jobs on
sufficient to make this determination. one processor). However, if we execute the root on both

3. SetAnewequal to the new set of active joligy\ {j})U processors, we can execute both children in the next time
B. The new state i$Anew, Prew) - step, resulting in a schedule of length two.

While duplication is clearly useful, it does not appear

_ Creating an optimal schedule now corresponds to finds ¢ompletely arbitrary ways in a schedule. In fact, there
ing a shortest path from tretart state(A, P) (whereA con- 5yays exists an optimal schedule in which no two copies
sists of the roots of the[2+ 1 largest chains, anBlis an ¢ o job are executed more thdn time steps apart. To
empty vector), to arend state(one whereA is empty, and geq this, consider a job that is executed twice, where the

all jobs inP have no children that are not alsofj. second execution is more th&ntime steps after the first.
The above dynamic program is enough to schedul@ {hat case we can just delete the second one, since all its

chains on a single processan & 1) in polynomial time. chjjgren were already available at the time the second copy
This is because we can bound the size of the activéset was executed.

The setA can contain at most one job per chain, since no
two jobs from the same chain can be active atthe same timgo oy erview of the Algorithm

Since the size oA is therefore limited by P + 1, there are Wi ¢ o th heduli lqorithm for t Th
only O(n?*1) possible values foA. Since there ar®(nP) € now turn to the scheduling aigorithm for trees. —1he

possible values foP, the number of states is bounded byalgorlthm consists of the same two .ph?.SES as th.e algorithm
O(n®1). This bound is polynomial, and therefore we Car{or chains given in the previous section: a dynamic program

find the optimal schedule for the largedd 2 1 chains in and a merging step. The states in our dynamic program will
polynomial time be similar to the ones in the previous section. They are

The second step (Merging) in our algorithm for chain?f the form (A, P), Wh‘?feA c‘ontalns,J_obs available on all
is quite simple. Suppose the resulting schedule for trfyocessors an@ contains a ‘window’ into the padd time
largest D + 1 chains has lengtfi. We then apply the steps of the sghedule._ . . .
Merge Theorem to construct a schedule of all jobs of length The transitions given in the previous section are not
max(n,T}. SinceT was a lower-bound on the optimal SO_general enough to schedule trees, since the number of

lution for the whole problem, the schedule must be optimafOnCurrentIy active jobs iA may grow without bound, e.g,

As a side note, we can reduce the size of the state spa{Eg jOb. has many c_hildren_ that all become avai]able at the
for chains and one processor@n?+1). Each state stores same time. If the size oA is not bounded, the size of our
for each chain, the last job executed and how long ago it W%%ate space will not be polynomial in size. To overcome

executed. This is enough information to determinandP is problem, we [imit the maximum ”“.”.‘ber_ of jobs An
as above. to be 2n(D + 1) — 1. Whenever a transition increases the

number of active jobs above that number, set asidehe

. jobs from all but the largestr2 D + 1) — 1 trees rooted at

4 The Algorithm for Trees these potentially active jobs. In the Merging step we will
In this section we give a polynomial time algorithm forinclude the jobs from these set aside trees into the schedule.
scheduling jobs with tree precedence constraints, separation To simplify the presentation, we introduce the notion of
delays, and possible duplication of jobs. We assume thtite statusof a job. This status is not explicitly stored in the
the precedence grafhforms a collection of out-trees. By state, but is useful when we think about how the dynamic
reversing the time-line, the algorithm can also be used frogram creates a schedule. We say a job is:

schedule a collection of in-trees. . .
e active if it can be scheduled right away afl proces-

4.1 Notes on Job Duplication sors, since all delays from its predecessor have elapsed,
Before we turn to the actual algorithm, we will briefly dis- e waiting, if it has not been scheduled, and there is
cuss job duplication. When scheduling jobs under separa- a processor on which it cannot run yet (because its

6

114} _p |14
2131772 <2 3 >
. :5 . :F%3
Schedule: 5,-
(St aside on this tranifion) Az ={5} As={67....16}

Figure 2:Example of an input tree and a state transition fri@m P2) to (Az,P3). The maximum delaf is 2 and all delay$; j »» are equal to 2. There

are two machines{= 2). The active sef; consists of only job 5, as it is the only one available. The transition schedules job 5 on the first machine, and
nothing on the second machine. Jobs 6 through 18 all become available, bun@Bly-2l) — 1 = 11 can be imgz, so jobs 17 and 18, the ones with the
fewest number of jobs in their subtree, are set aside, along with the jobs in their subtrees. The new acfilse{6¢7, . ..,16}.

predecessor has not been executed yet, or not long. Using the information if®, determine the set of joli®
enough ago), that onthis step become available all processors,

o and have not been executed before, andAge}, to
e scheduled if it has already been scheduled on some (A\ {j1, j2,---,im}) UB.

processor, or
4. If Ajewhas more thanr®(D + 1) — 1 elements, remove

o set asideif the dynamic program has decided toignore all but the 2n(D + 1) — 1 ‘largest’ jobs from the set,
it, and will be scheduled only later in the Merging step. where ‘largest’ is measured in terms of the size of the
sub-tree rooted at the job. These removed jobs, along
4.3 A new dynamic program with all the jobs contained in their sub-trees, st
The state space contains all paifsP), whereA is the ac- aside They will be dealt with in the Merging phase.
tive set, limited to (D + 1) — 1 jobs, andP is anmx D
matrix recording the lasb time steps of the schedule. This
means that we hav®(n®mP+2M-1) states in the dynamic

program, making finding a shortest path possible in p°|yfbrm (A,P) whereA is empty, and all jobs iP either have

nom_lrak: t|m;e.t transitions are mor mplex than in tha® children, or their children are alsolh
ne state transitions are more compie a € Aswe traverse the path from a start state to an end state,
algorithm from the previous section. An example statg . A :
e status of each job evolves as in figure 3. It is not hard

transition can be found in figure 2. Ifwe are at.as(@tﬂ?% to see that at the end of the path, every job is classified as
we can go to a new stat@new, Prew), as follows: eitherscheduledr set aside

The start stateof the dynamic program igAg, Po),
whereAq consists of the roots of then®D + 1) — 1 largest
trees, andP is the empty matrix. Thend statehave the

1. Choose jobsji, jo2,...,jm to be executed on then

processors. Set their statusgcheduled Each jobj; 4.4 Merging and Correctness

can be one of the following: A path of lengthT from a start state to an end state in the
state-space defined above gives a schedule of lendh
e nothing (no job scheduled) part of the tree. We need to show how the jales aside
e any job in the seA by the path can be merged back into the schedule. In the
e any job in the matriXP that is executable on pro- .
cessol at the current time step (job duplication) waltin
e any child of a job in matriyP that is executable on l
processor (but not all processors) at the current]
time step (partially available job) active
2. The new matriXPew is P shifted forward by one row, / \
with the new last rowj, j2,..., jm). All jobs that were scheduled set aside
in the first row ofP (the one that got shifted out) that
are still in P,ew (due to job duplication) are removed Figure 3:The life of a job.
from Phew

remainder of this section, we will show two lemmas. TheShas no unnecessary job duplications (jobs whose removal

first lemma will establish that we can find a path in the statBom the schedule would maintain feasibility).

space that can be converted into an optimal schedule via We will proceed along the schedule, and at #ath

Merging. The second lemma will show how to perform thisstep take the state transition froge_1 = (A, P) to gy that

Merging step. corresponds to executing the jobs in théh time slice of
Before stating the lemmas, we need three definition$ that are inPuUUg, _,. There must be such a transition,

First, we define the sel, for a stateg, which contains all because for every job IRUU, , thatis executed ifat that

the jobs whichmustappear after statgin any legal schedule time slice, it is either im, or its parent appears i at the

(these are the jobs which aewailable or waiting at that same position as it appearsStfeasily shown by induction).

state). This set is completely determined by the information It remains to show that the so constructed path is

contained in(A, P). admissible. Note that when we are at stgjealong the
path, then all jobs ifJg, have to appear after time slat
DEFINITION 4.1. (DEPENDENTJOBS) For a state = in the schedule&S Because we are executing ‘down’ the

<A7 P>, let Uq contain all jObS in A, all descendants ijObS intreeS, and we never add to a BQI to ObtaianHl, we have
A, and all descendants of jobs in P that are not yet availablgqx C Uy, if x>y. So, ifx >y, and a job iquy,l appears
on all processors, and that are not in P themsel\eés. in Sat time Ster_‘y (and SO is not irtqu by Construction), it
will not be inUg,. This means that none of the jobslig,
can appear at or before theh time step irS, and therefore
all appear after it. But this implie§Uq,|/m] < Ciax— X,
which shows that the path is admissible.

Now we define the deadline of stafgto be the latest
possible point on a path whetecan appear so that all the
dependent jobs off can still fit into the schedule without
making it longer thar€y,

DEFINITION 4.2. (DEADLINE) Let g= (A,P) be a state. Now that we have asche(_:lule for pgrt of the tree, we need t(_)
.) . g merge the jobs we set aside back into the schedule. Here is
Thedeadlineof g is the Valuetcmax_ TJ - O where we use the Merge Theorem.

In any path in state space that corresponds to an optimal

schedule, every state must appear before its deadline. EMMA 4.2. (MERGING) Given an a_dm.|53|ble path, an
formalize this in a definition. optimal schedule can be constructed in tim@X).

DEFINITION 4.3. (ADMISSIBLE PATH) A path in the state Proof: An admissible path can be directly converted into a

space from a start state to an end state is caliddhissible scheduleS of the same length that contains all but the jobs

iff for all x from 0 to G, the x-th state on the path has awhich wereset aside We now show how to incorporate the

deadline of at least X set aside jobs into the schedule, while making it not longer
than the optimal schedule.

We will now show that an admissible path always exists, We do this by traversing the path from its end to its
that it can be found in polynomial time, and how to Converbeginning_ When we reach a stageat which jobs were set
itinto an optimal schedule. aside, we include them into the schedule as follows. Since

trees were set aside at that state, there mustifp2-1) — 1
LEMMA 4.1. (DYNAMIC PROGRAM CORRECTNES$ larger trees rooted at the jobsdg's active set. The jobs in
There always exists an admissible path that can be found {Rege active’ trees are already in the schedule, since either
polynomial time. they were scheduled by the admissible path, or they were set
aside later, in which case we already merged them into the
ﬁ%hedule (recall we are traversing it backwards).
This means we can apply the Merge Theorem to merge

Proof: An admissible path, if it exists, can easily be
found by breadth-first search through the state space of t

i j . Th line of . : . g
dynamic program We.JUSt constructed. The deadline o ea(fne set aside trees into the schedule. Since we started with
state can be determined beforenndAt depthx of the an admissible path. we know that the number of iobs not vet
search, we extend the search only to states with a deadlineh Issible paih, w W . u Job y

scheduledt gy does not exceenh- (C;;,,— X), the available

of at leas+ 1. room in the schedule. Therefore, merging the set aside
Now we show that such a path always exists. We sho¥\? : ' ging

this by constructing an admissible patti,ds, .., Gc:..) rees does not make the schedule longer than the optimal

using an optimal scheduBas a template. We assume thatSChedl.Jle' We repeat this procedure for all states and obtain
an optimal schedule.

3Note that we have to know, ., to compute the deadline. But since Slrl]ce applylng the Merge Theorem for every state costs
C.ax < ND, we can find the value using binary search with a multiplicativdinear time, and there might be upntates on the path, the

increase oD(logn) in running time. total time for the merging operation ®(n?). O]
8

5 Conclusion

In this paper we have given the first polynomial-time multi- [
processor scheduling algorithm for tree-based precedence
constraints that impose precedence and communication deF4]
lays. As opposed to previous results, separation delays
4 j.ap can depend on jobs and machines, and can have val-
ues other than 0 and 1, as long as they are bounded by [&]
constantD. That makes our algorithm more general and
applicable to the instruction scheduling for VLIW architec-
tures. The potentially long running time of the algorithm

is acceptable to embedded system designers since the soff
ware is compiled only once and an optimal performance is
required of the resulting system.

The algorithm for trees uses an unconventional dynamig-,
program, where partial paths in state space do not corre-
spond to partial schedules, but rather have to be transformed
into a solution during the Merging phase. The running time{[g]
of our algorithm depends exponentially on the number of
processorsn and maximum delay), making it impracti-
cal for large values of these constants. However, it is the
dynamic programming part of the algorithm that incurs this[®]
runtime; the merging step only tak€n?) time. This sug-
gests using an heuristic instead of the optimal dynamic pr(glo]
gram to produce a path through the state space. The Merge
Theorem can then be used to incorporate the remaining trees
into the schedule. Finding good heuristics, from both a thgy)
oretical and an experimental point of view, is a very inter-
esting open problem. We plan to continue our work in this
direction. [12]

Another intriguing question is whether our techniques
can be extended to the case wh@ris an arbitrary dag. The
Merge Theorem still holds for these inputs. But our dynamic
program critically uses the fact that once a branch occurle,3]
the subtrees are completely independent. A more compli-
cated dynamic program might get around this problem with-
out a large increase in the size of the state space. As alre ¥
mentioned in the introduction, this is very likely a hard prob-
lem, since an algorithm for just the single-processor case
with D = 3 can be used to solve the famous open 3-processpas]
scheduling problem.

(16]
Acknowledgments a7

We would like to thank John Dunagan, Ryan O’Donnell and
April Rasala for their helpful comments on this paper.

References

[1] David Bernstein and Izidor Gertner. Scheduling expressions
on a pipelined processor with a maximal delay of one cycle.
ACM Transactions on Programming Languages and Systems
11(1):57-66, January 1989.

[2] P. Chiétienne and C. Picouleau. Scheduling with communi-
cation delays: A survey. In P. Citienne, Jr. E. G. Coffman,

9

J. K. Lenstra, and Z. Liu, editor§cheduling Theory and its
Applications pages 65-90. John Wiley & Sons Ltd, 1995.

] E.G. Coffman, Jr. and R.L. Graham. Optimal sequencing for

two-processor systemgcta Informatica 1:200-213, 1972.
Daniel W. Engels. Scheduling for Hardware-Software Par-
titioning in Embedded System DesigrPhD thesis, Mas-
sachusetts Institute of Technology, 2000.

Lucian Finta and Zhen Liu. Single machine scheduling
subject to precedence delayRAMATH: Discrete Applied
Mathematics and Combinatorial Operations Research and
Computer Scienc&0, 1996.

] Lucian Finta, Zhen Liu, loannis Milis, and Evripidis Bampis.

Scheduling UET-UCT series—parallel graphs on two proces-
sors. Theoretical Computer Scienc&62(2):323-340, Au-
gust 1996.

Michael R. Garey and David S. Johnsoi€omputers and
Intractability: A Guide to the Theory of NP-Completeness
Freeman, 1979.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rin-
nooy Kan. Optimization and approximation in deterministic
sequencing and scheduling: A Survefnnals of Discrete
Mathematics5:287-326, 1979.

Intel Corporation. The 1A-64 Architecture Software Devel-
oper’s Manuaj January 2000.

Hermann Jung, Lefteris Kirousis, and Paul Spirakis. Lower
bounds and efficient algorithms for multiprocessor schedul-
ing of dags with communication delays. Rroceedings of
SPAA pages 254-264, 1989.

Jan Karel Lenstra, Marinus Veldhorst, and Bart Veltman. The
complexity of scheduling trees with communication delays.
Journal of Algorithms20(1):157-173, January 1996.

Rolf H. Mdhring and Markus W. Séffter. A simple approx-
imation algorithm for scheduling forests with unit processing
times and zero-one communication delays. Technical Report
506, Technische Universit Berlin, Germany, 1995.

Christos H. Papadimitriou and Mihalis Yannakakis. Opti-
mization, approximation, and complexity classes (extended
abstract). IrProceedings of the Twentieth Annual ACM Sym-
posium on Theory of Computingages 229-234, May 1988.
C. Picouleau. Etude de prol#mes les systnes distrubs
PhD thesis, Univ. Pierre et Madame Curie, Paris, France,
1992.

Texas Instruments. TMS320C6000 Programmer’s Guide
March 2000.

J. D. Ullman.NP-complete scheduling problem3ournal of
Computer and System Scienctd(3):384—-393, June 1975.
Theodora A. Varvarigou, Vwani P. Roychowdhury, Thomas
Kailath, and Eugene Lawler. Scheduling in and out forests in
the presence of communication delay&EE Transactions

on Parallel and Distributed System#(10):1065-1074, Oc-
tober 1996.

