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Abstract
We consider the problem of scheduling unit-length jobs on
identical parallel machines such that the makespan of the
resulting schedule is minimized. Precedence constraints im-
pose a partial order on the jobs, and both communication
and precedence delays impose relative timing constraints on
dependent jobs. The combination of these two types of tim-
ing constraints naturally models the instruction scheduling
problem that occurs during software compilation for state-
of-the-art VLIW (Very Long Instruction Word) processors
and multiprocessor parallel machines.

We present the first known polynomial-time algorithm
for the case where the precedence constraint graph is a forest
of in-trees (or a forest of out-trees), the number of machines
m is fixed, and the delays (which are a function of both the
job pair and the machines on which they run) are bounded
by a constantD.

Our algorithm relies on a new structural theorem
for scheduling jobs with arbitrary precedence constraints.
Given an instance with many independent dags, the theo-
rem shows how to convert, in linear time, a scheduleS for
only the largest dags into a complete schedule that is either
optimal or has the same makespan asS.

1 Introduction
In this paper we consider the problem of scheduling unit-
length jobs onm identical parallel machines to minimize
the makespan in the presence ofprecedence constraints,
precedence delaysandcommunication delays. Precedence
constraints model dependencies between the tasks; if job
j depends on jobi, then job j must be executed after job
i. Precedence delaysl i, j impose relative timing constraints;
job j cannot begin execution until at leastl i, j time steps after
job i completes. Communication delaysci, j impose delays
across machines; if jobsi and j run on different machines,
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job j cannot begin execution until at leastci, j time steps after
job i completes.

Previous algorithms for scheduling jobs on parallel ma-
chines consider either communication delays or precedence
delays, but not both. In this paper we generalize both types
of delays to a singleseparation delaỳ i, j,a,b, where job j
running on machineb cannot begin execution until at least
`i, j,a,b time units after jobi completes on machinea. More-
over, we overcome the restriction of previous exact algo-
rithms where delays could only be either 0 or 1.

We give a polynomial algorithm for the case where the
precedence graph is a forest1 and the delays are bounded
by a constantD. We also give a useful structural theorem
for instances where the precedence graph is a collection
of independent dags; we show that any scheduleS for the
largest dags can be converted, in linear time, into a complete
schedule that is either optimal or has the same makespan
as S. Our interest in this problem is motivated by the
instruction scheduling problem encountered by compilers
for emerging system architectures.

Instruction scheduling for parallel machine and VLIW
compilation. VLIW (Very Long Instruction Word) ar-
chitectures have recently begun to appear in a variety of
commercial processor and embedded system designs. In
these architectures, the processor contains multiple func-
tional units capable of executing basic operations in parallel
in one clock cycle. The VLIW processor is controlled by
meta-instructionsthat combine the instructions for the in-
dividual functional units into one single instruction word,
hence the name VLIW.

The VLIW architecture is the basis for Intel’s Itanium
chip (formerly code-named Merced), which is scheduled
for commercial release in 2000. It uses a new instruction
set named IA-64 [9], which was developed by Intel and
Hewlett-Packard, and is based on EPIC (Explicitly Parallel
Instruction Computing) – Intel’s adaptation of VLIW. VLIW
architectures have also been used in state-of-the-art Digital

1When we say that the precedence graph is a forest, we mean that it is
either a collection of in-trees, or a collection of out-trees.
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Signal Processor (DSP) designs, such as the popular Texas
Instruments TMS320C6x series [15].

The role of the compiler is much more crucial for
VLIW architectures than it is for traditional processors.
To exploit the inherent hardware parallelism, the compiler
must combine basic operations into meta-instructions in
an efficient way. When doing so, it has to observe the
data dependencies between the operations and the time it
takes to transfer data from one functional unit to another.
Since hardware based acceleration schemes such as branch
prediction or speculative execution become less powerful
on these implicitly parallel architectures, it is the compiler
that really determines the quality of the resulting code. This
quality is especially important in embedded system design,
where the code is only compiled once (making even lengthy
compilation times acceptable), but an optimal performance
is required of the resulting system.

Our scheduling problem exactly fits this model. Each
meta-instruction can be thought of as a slice of time, and the
functional units correspond to machines. Pipelining allows
all jobs to have unit execution time. Precedence constraints
encode the data dependencies, and delays encode the laten-
cies: variable pipeline lengths and limited bypassing cre-
ate variable precedence delays, and data movement between
functional units creates communication delays. Since all the
functional units are part of the same processor, precedence
delays and communication delays are on the same order of
magnitude, and should be considered together. Furthermore,
fixing the number of machines and imposing a bound on the
delays makes sense in this context; these quantities are a
function of the physical characteristics of the chip, and are
usually small2.

Determining a minimum makespan schedule for arbi-
trary instruction dependencies is a long-standing open prob-
lem (see section 1.1). We therefore focus on schedul-
ing forests, which often occur in practice, for example,
when processing expression trees or divide-and-conquer al-
gorithms.

Problem statement. We are given a set ofn jobs and
m machines on which to execute the jobs, wherem is a
constant. Each job has unit processing time. There exists
a directed acyclic precedence graphG = (V,E) on the jobs
V. With each precedence-constrained job pair(i, j) ∈ E,
and pair of machines(a,b), there is an associated non-
negative delaỳ i, j,a,b bounded by a constantD. The output
is a schedule assigning a job to each processor and time
slot. A schedule is legal iff it includes all jobs, and for
all precedence-constrained job pairs(i, j) ∈ E, if job j runs
on machineb at time t, job i must be scheduled on some
machinea beforetime t− `i, j,a,b (i.e., there must bèi, j,a,b

2As an example, Intel’s Itanium chip has six functional units, and Texas
Instruments’ TMS320C6x has eight.

time unitsbetweenthem).
We denote the completion time of jobj asCj . We are

concerned with minimizing the makespan,Cmax = maxj Cj .
Let C∗max be the optimal value ofCmax. Extending the
notation introduced by Graham et al. [8], we can denote
the problems considered in this paper asPm | prec; p j =
1;`i, j,a,b ∈ {0,1, . . . ,D} |Cmax.

We can also allow multiple instances of the same job
to be scheduled on different machines; this is calledjob
duplication. Allowing job duplication can make a difference
in the makespan of a schedule when computing the same
value twice is more efficient than transferring the value
across machines (see section 4.1).

Our contribution. We give a polynomial-time algorithm
for the problem where the precedence graphG is a forest:
Pm | tree; p j = 1;`i, j,a,b ∈ {0,1, . . . ,D} | Cmax. The algo-
rithm works with or without job duplication allowed on a
job-by-job basis.

Our result is more general than previous known poly-
nomial algorithms in both the precedence delay and the
communication delay communities for optimally schedul-
ing trees on a fixed number of processors. Previous re-
sults assumed at most unit time delays: Varvarigou, Roy-
chowdhury and Kailath [17] solvePm | tree; p j = 1;ci, j =
1 | Cmax. Bernstein and Gertner [1] solve 1| tree; p j =
1;l i, j ∈ {0,1} |Cmax. Our algorithm solves both these prob-
lems as special cases. Another important contribution of this
paper is the Merge theorem:

THEOREM 1.1. (THE MERGETHEOREM) Consider an in-
stance of Pm| prec; p j = 1;`i, j,a,b ∈ {0,1, . . . ,D} | Cmax

where the precedence graph G contains at least2m(D +
1)−1 independent dags. Given a schedule with makespan
T for only the jobs from the largest2m(D + 1)− 1 dags,
one can construct in linear time a schedule for all jobs with
makespanmax{

⌈
n
m

⌉
,T}.

Since this theorem holds forany dag, not just trees,
it shows that any heuristic or approximation algorithm for
scheduling only the jobs from large dags can be extended
into an algorithm for scheduling all jobs. The theorem might
also be applied to single dags after they have been broken
into independent pieces. Furthermore, since a schedule of
length

⌈
n
m

⌉
is clearly optimal, the new algorithm will have

the same performance guarantee as the original algorithm
with only a linear time additive cost in running time.

1.1 Related Work

Polynomial algorithms: precedence delays.Precedence
delays have been used to model single-processor latencies
that arise due to pipelined architectures. Bernstein and
Gertner [1] use a modification of the Coffman-Graham
algorithm [3] to solve 1| prec; p j = 1;l i, j ∈ {0,1} | Cmax.
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Finta and Liu [5] give a polynomial time algorithm for
the more general 1| prec; p j ; l i, j ∈ {0,1} | Cmax. Both of
these algorithms crucially depend on assuming unit-delays
between jobs.

Polynomial algorithms: communication delays. In the
classical models of parallel computation, communication
delays are orders of magnitude larger than precedence de-
lays, so algorithms for scheduling on parallel machines
have generally ignored precedence delays. A survey by
Chŕetienne and Piccoleau [2] gives an overview of the work
in this area.

All previous polynomial-time algorithms for a bounded
number of machines work only for the special case of unit
communication delays. Varvarigou, Roychowdhury and
Kailath [17] show thatPm | tree;ci j = 1;p j = 1 | Cmax

is solvable in timeO(n2m) by converting the tree into one
without delays. This conversion relies heavily on the fact
that that the delays are unit-length. The special casem= 2
was shown to be solvable inO(n2) time by Picouleau [14],
and was later improved to linear time by Lenstra, Veldhorst
and Veltman [11], using a type of list scheduling.

Finta and Liu [6] give a quadratic algorithm for
P2 | SP1;p j = 1;ci j = 1 | Cmax, where SP1 are series-
parallel-1graphs, a subclass of series-parallel graphs. There
has also been some work on approximation algorithms for
an arbitrary number of machines. Möhring and Scḧaffter
[12] give a good overview of this area.

Several authors (e.g. [10, 13]) have considered related
problems where the number of processors is unbounded,
i.e. the schedule can use as many processors as desired.
However, that model is fundamentally different from the one
we study, since optimal schedules usually make extensive
use of the unlimited parallelism.

Hardness results. Even without any delays, the problem is
NP-hard if the precedence relation is arbitrary and the num-
ber of machines is part of the input. This is the classic re-
sult of Ullman [16], showing NP-hardness ofP | prec; p j =
1 | Cmax. Lenstra, Veldhorst and Veltman [11] show the
problem is still NP-hard when the precedence graph is a
tree and there are unit communication delays (P | tree;ci j =
1;p j = 1 |Cmax).

Engels [4] proves NP-hardness for the single-machine
case when the precedence constraints form chains, and the
delays are restricted to be either zero or a single input value,
i.e., he shows 1| chain; p j = 1;l i, j ∈ {0,d} | Cmax to be
strongly NP-hard, whered is an input to the problem.

When the processing times are not unit, the problem
is also NP-hard. Engels [4] shows that scheduling chains
with job processing times of either one or two and constant
precedence delays, i.e., 1| chain; p j ∈ {1,2}; l i, j = D ≥
2 |Cmax, is strongly NP-hard.

Thus the only natural gap between our result and NP-

hard problems is the generalization to arbitrary precedence
structures on a fixed number of machines, i.e., the prob-
lem Pm | prec; p j = 1;`i, j,a,b ∈ {0,1, . . . ,D} | Cmax. How-
ever, this gap comes as no surprise, since the famous 3-
processor scheduling problem ([7], problem [OPEN8]) is
a special case. It turns out that even an algorithm for the
one-processor version where all delays are equal to three
(1 | prec; p j = 1;`i, j = 3 | Cmax) could be used to solve in-
stances of 3-processor scheduling (P3 | prec; p j = 1 |Cmax).
The reduction is straightforward.

1.2 Organization

The remainder of the paper is organized as follows. In
section 2 we give the proof of the Merge Theorem. In
section 3 we use the Merge Theorem as the foundation for
a scheduling algorithm that solves the single processor case,
where the precedence graph is a collection of chains. We
present the full algorithm in section 4. We conclude in
section 5 with a brief discussion of our results.

2 Proof of the Merge Theorem
We begin by proving the Merge Theorem for the case
where we have chain precedence constraints and only one
processor (G is a collection ofk independent paths,m= 1).
This proof establishes all of the techniques used for the
general case and is less obscured by details. We then sketch
the natural generalization to dags, parallel processors and
general separation delays.

2.1 Special Case: chain precedence constraints, one
processor

Our goal is as follows: Given a schedule of the 2D + 1
largest chains that finishes at timeT, we must construct
a complete schedule for allk chains that finishes at time
max{n,T}. As a running example consider the instance
shown in figure 1. This example consists of 7 chains with
a total of n = 21 jobs. The maximum precedence delay
is D = 2. Figure 1a shows a feasible schedule for the
2D+1 = 5 largest chains with makespanC∗max = n. We will
construct the new schedule in four steps.

Step 1: Truncating. Let ni be the number of jobs in thei-th
largest chain. We begin by removing the lastn2D+1 jobs in
each of the scheduled chains from the current schedule (as
in figure 1b, where 2D + 1 = 5 andn5 = 2). We call these
deleted sub-chains thetails. Note that we have removed
2D+1 tails with exactlyn2D+1 jobs in each tail.

Step 2: Shifting operations. Next, we modify the schedule
with the tails removed by shifting jobs so that they are
executed as early as possible. Beginning at the first time
slot, we traverse the schedule through timeT. Whenever
we encounter a hole (time slot that does not have a job
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Figure 1:Problem instance (on left) and construction of an optimal schedule (on right), forD = 2. The instance is composed of two chains with 5 jobs,
two chains with three jobs, two chains with two jobs and one chain with one job. All delays between consecutive jobs in a chain are 2. Constructing the
schedule:a) A schedule for the large chains.b) Step 1, deleting the tails of the large chains.c-g) Step 2, shifting jobs earlier in the schedule until at most
D chains remain active.h) Step 3, Putting the tails of the active chains back into the schedule.i) An optimal schedule after inserting the remaining jobs
using the round-robin of Step 4.

scheduled in it) in the schedule, we try to fill that hole by
moving a job earlier in the schedule (as in figure 1c-g).

We can always fill a hole with a job that is currently
scheduled later, if, at the position of the hole, at least
D + 1 of the chains areactive, i.e., they have not yet been
scheduled up to the point at which they were truncated. To
see why this is possible, note that ifD + 1 chains are still
active, at least one of these chains has not been executed
during the lastD time steps before the hole. Therefore, if
we move the next job of that chain into the current hole, it
will be executed at leastD time units after its predecessor.
The precedence delay is satisfied after this move since the
delay is at mostD.

After repeatedly moving jobs to fill holes, we will either
finish shifting all of the truncated chains or reach the first
hole that we cannot fill without violating a delay constraint
(as in figure 1g). The resulting schedule is tight before that
hole (i.e. there are no holes before it), and there are at most
D of the truncated chains active at that position (recall that
we can always move a job if more thanD chains are still
active). In the example (figure 1g), chains 1 and 2 are still
active at the first hole.

Step 3: Re-inserting some of the tails. We now reinsert
the tails of the (at mostD) chains that are still active at the
first hole (as in figure 1h). We reinsert these jobs at their
positions given by the original schedule. These positions
in the schedule are still unoccupied, since jobs were only
moved to time slots earlier than the first hole. Moreover, the
makespan of the total schedule is still at mostT.

Step 4: A Round-Robin for Scheduling Tails and Short
Chains. We are now left with the tails of at leastD + 1
chains, each containing exactlyn2D+1 jobs, whose truncated
versions finished before the first hole (call these tails the
blue chains) andk− (2D + 1) short chains, each containing
at mostn2D+1 jobs (call these thered chains). The red
chains are the ones that were not among the 2D + 1 largest.
In the example, the sub-chains consisting of the lastn2D+1 =
2 jobs in chains 3, 4 and 5 are blue, and chains 6 and 7 are
red.

Completing the schedule is done by filling holes with
the remaining jobs in a round-robin fashion, i.e., we cycle
through the chains (both the red and blue chains) in some
fixed order, inserting the next job of each one, until they are
all scheduled.
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We have to be a bit careful about the firstD holes we fill
in this process, since the blue chains cannot start too close
to their predecessors from their original chain.

This problem can be solved by systematically choosing
the order we cycle through the chains. Since there are at
leastD + 1 blue chains, one of their predecessors has not
been executed during the lastD steps, so we can safely
schedule that chain first. Among the remaining blue chains,
one has not been executed in the lastD− 1 steps, and
therefore it can be scheduled second, and so on. We fix this
order of the blue chains (in the example, we let this order
be 3,4,5), and then follow it with any order of the red chains
(6,7 in the example).

Since all blue chains have the same length, they all
finish on the same round. Furthermore, the red chains finish
on or before this round, since they are no longer than the
blue chains. Therefore, every round consists of at least
D + 1 different chains, and we can fill every hole until the
round-robin ends.

Thus, we have scheduled all jobs, obeying the chain
precedence constraints and the precedence delays (as in
figure 1i). If this step 4 did not fill all the holes that
existed after step 3, then we know that our schedule still
has makespan at mostT. Otherwise, the new schedule has
no idle time, and has makespann. Also, the running time
of each step of this construction can be made linear in the
number of jobs.

2.2 Dags, parallel processors, and general separation
delays

There is a natural generalization of the above construction to
dags, parallel processors and general separation delays. We
sketch the necessary changes, and leave the details for the
full version of the paper.

Given a schedule with makespanT for the largest
2m(D + 1)− 1 dags, we must construct a schedule for all
the dags with makespan max{

⌈
n
m

⌉
,T}. We follow the same

four basic steps as before.
Previously, for chains, the first step of the construction

removed the lastn2D+1 jobs from the large scheduled chains.
Now, in the general case we remove then2m(D+1)−1 jobs
from each dag that arescheduledlast (ties are broken
arbitrarily). In step 2 of the chains case, we shifted jobs to
earlier in the schedule as long as at leastD+1 of the chains
were still active. To be able to shift jobs in the general case,
we now needm(D + 1) dags active. Step 3 is identical; we
reinsert the jobs from the dags that are still active at the first
hole we cannot fill.

Now at step 4 in the general case, there are at least
m(D + 1) blue dags, each containing the same number
of jobs, and several smallerred dags (the ones which
were not in the initial schedule). On step 4 of the chains

case (the round-robin fill-in step), notice that we made no
assumptions about the delays between the jobs in the red and
blue chains other than that they were bounded byD. So for
dags, we first topologically sort the dags in an arbitrary way,
making them chains. Then we perform the round-robin as
before. The red chains finish first, the blue chains all finish
on the same round, and we have either finished before time
T, or filled every hole. The running time of each step is still
linear in the number of jobs.�

3 A Dynamic Program for Chains
We will now state a first simple version of our algorithm
for the case whereG is a collection of chains, and there
is only one processor (m = 1). In the next section, we
give a more general version that works for trees on parallel
processors. The algorithm given here is slightly less efficient
than we can achieve; it runs in timeO(n3D+1). We will
briefly sketch how to improve this toO(n2D+1) at the end
of the section. We give this slightly less efficient algorithm
because it establishes some of the machinery used for the
the general case.

The Merge Theorem shows how to construct an optimal
schedule, assuming we know how to optimally schedule the
2m(D + 1)−1 largest chains in the precedence graph. This
immediately suggests an algorithm:

1. Dynamic Program. Use a dynamic program to opti-
mally schedule the 2m(D + 1)−1 largest chains in the
input, setting aside the other chains for the moment.

2. Merging. Apply the Merge Theorem to schedule the
chains we set aside during the dynamic program.

The dynamic program we will use can be thought of as
finding the shortest path through a state space, where state
transitions correspond to the scheduling of jobs on a single
time step. Every state encodes ‘where we are’ in the current
schedule; it records the jobs available to be scheduled on the
upcoming time step, as well as a recent history of the current
schedule, which we will use to determine when jobs become
available in the future. More precisely, states have the form
〈A,P〉, where

• A is a set we call theactive set. This is the set
of currently active jobs, i.e. the jobs which can be
scheduled in the next time step.

• P is a vector of lengthD, whose entries either contain
jobs or are empty. These are thepast jobs, the jobs
that have been scheduled within the lastD time steps.
Essentially,P is a ‘window’ into the lastD time steps
of the schedule.

The following operations define both the legal transi-
tions between states and the scheduling/status updating done
by a search passing through this transition:
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1. Schedule a jobj in A. Shift the windowP one time
step forward, yieldingPnew, whose last entry isj. It is
also possible to not schedule any job (this is the only
possibility if the active set is empty). In that case,Pnew

will have an empty last entry.

2. Use the information inP to determine the setB of
jobs which become available on this new time step
(the delays from their parents has just elapsed). Since
the delays are bounded byD, the information inP is
sufficient to make this determination.

3. SetAnew equal to the new set of active jobs,(A\{ j})∪
B. The new state is〈Anew,Pnew〉.

Creating an optimal schedule now corresponds to find-
ing a shortest path from thestart state〈A,P〉 (whereA con-
sists of the roots of the 2D + 1 largest chains, andP is an
empty vector), to anend state(one whereA is empty, and
all jobs inP have no children that are not also inP).

The above dynamic program is enough to schedule
chains on a single processor (m = 1) in polynomial time.
This is because we can bound the size of the active setA.
The setA can contain at most one job per chain, since no
two jobs from the same chain can be active at the same time.
Since the size ofA is therefore limited by 2D + 1, there are
only O(n2D+1) possible values forA. Since there areO(nD)
possible values forP, the number of states is bounded by
O(n3D+1). This bound is polynomial, and therefore we can
find the optimal schedule for the largest 2D + 1 chains in
polynomial time.

The second step (Merging) in our algorithm for chains
is quite simple. Suppose the resulting schedule for the
largest 2D + 1 chains has lengthT. We then apply the
Merge Theorem to construct a schedule of all jobs of length
max{n,T}. SinceT was a lower-bound on the optimal so-
lution for the whole problem, the schedule must be optimal.

As a side note, we can reduce the size of the state space
for chains and one processor toO(n2D+1). Each state stores,
for each chain, the last job executed and how long ago it was
executed. This is enough information to determineA andP
as above.

4 The Algorithm for Trees
In this section we give a polynomial time algorithm for
scheduling jobs with tree precedence constraints, separation
delays, and possible duplication of jobs. We assume that
the precedence graphG forms a collection of out-trees. By
reversing the time-line, the algorithm can also be used to
schedule a collection of in-trees.

4.1 Notes on Job Duplication

Before we turn to the actual algorithm, we will briefly dis-
cuss job duplication. When scheduling jobs under separa-

tion delay constraints, it sometimes pays to execute a job
multiple times on different processors. This is especially
true if many other jobs depend on this one job, and it is time-
consuming to move data from one processor to another.

The simplest example is an out-tree consisting of three
nodes: a root with two children. The delay between the root
and its children is 0 if they run on the same processor, and
10 otherwise. Suppose we want to schedule this instance on
two processors. Clearly, without duplication, the shortest
solution uses three time steps (schedule all three jobs on
one processor). However, if we execute the root on both
processors, we can execute both children in the next time
step, resulting in a schedule of length two.

While duplication is clearly useful, it does not appear
in completely arbitrary ways in a schedule. In fact, there
always exists an optimal schedule in which no two copies
of a job are executed more thanD time steps apart. To
see this, consider a job that is executed twice, where the
second execution is more thanD time steps after the first.
In that case we can just delete the second one, since all its
children were already available at the time the second copy
was executed.

4.2 Overview of the Algorithm

We now turn to the scheduling algorithm for trees. The
algorithm consists of the same two phases as the algorithm
for chains given in the previous section: a dynamic program
and a merging step. The states in our dynamic program will
be similar to the ones in the previous section. They are
of the form 〈A,P〉, whereA contains jobs available on all
processors andP contains a ‘window’ into the pastD time
steps of the schedule.

The transitions given in the previous section are not
general enough to schedule trees, since the number of
concurrently active jobs inA may grow without bound, e.g,
if a job has many children that all become available at the
same time. If the size ofA is not bounded, the size of our
state space will not be polynomial in size. To overcome
this problem, we limit the maximum number of jobs inA
to be 2m(D + 1)− 1. Whenever a transition increases the
number of active jobs above that number, weset asidethe
jobs from all but the largest 2m(D + 1)− 1 trees rooted at
these potentially active jobs. In the Merging step we will
include the jobs from these set aside trees into the schedule.

To simplify the presentation, we introduce the notion of
thestatusof a job. This status is not explicitly stored in the
state, but is useful when we think about how the dynamic
program creates a schedule. We say a job is:

• active, if it can be scheduled right away onall proces-
sors, since all delays from its predecessor have elapsed,

• waiting, if it has not been scheduled, and there is
a processor on which it cannot run yet (because its
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Figure 2:Example of an input tree and a state transition from〈A2,P2〉 to 〈A3,P3〉. The maximum delayD is 2 and all delays̀i, j,a,b are equal to 2. There
are two machines (m= 2). The active setA2 consists of only job 5, as it is the only one available. The transition schedules job 5 on the first machine, and
nothing on the second machine. Jobs 6 through 18 all become available, but only 2m(D + 1)−1 = 11 can be inA3, so jobs 17 and 18, the ones with the
fewest number of jobs in their subtree, are set aside, along with the jobs in their subtrees. The new active setA3 is {6,7, . . . ,16}.

predecessor has not been executed yet, or not long
enough ago),

• scheduled, if it has already been scheduled on some
processor, or

• set aside, if the dynamic program has decided to ignore
it, and will be scheduled only later in the Merging step.

4.3 A new dynamic program

The state space contains all pairs〈A,P〉, whereA is the ac-
tive set, limited to 2m(D + 1)− 1 jobs, andP is anm×D
matrix recording the lastD time steps of the schedule. This
means that we haveO(n3mD+2m−1) states in the dynamic
program, making finding a shortest path possible in poly-
nomial time.

The state transitions are more complex than in the
algorithm from the previous section. An example state
transition can be found in figure 2. If we are at a state〈A,P〉,
we can go to a new state〈Anew,Pnew〉, as follows:

1. Choose jobsj1, j2, . . . , jm to be executed on them
processors. Set their status toscheduled. Each job j i
can be one of the following:

• nothing (no job scheduled)

• any job in the setA

• any job in the matrixP that is executable on pro-
cessori at the current time step (job duplication)

• any child of a job in matrixP that is executable on
processori (but not all processors) at the current
time step (partially available job)

2. The new matrixPnew is P shifted forward by one row,
with the new last row( j1, j2, . . . , jm). All jobs that were
in the first row ofP (the one that got shifted out) that
are still in Pnew (due to job duplication) are removed
from Pnew.

3. Using the information inP, determine the set of jobsB
that on this step become available onall processors,
and have not been executed before, and setAnew to
(A\{ j1, j2, . . . , jm})∪B.

4. If Anew has more than 2m(D+1)−1 elements, remove
all but the 2m(D + 1)− 1 ‘largest’ jobs from the set,
where ‘largest’ is measured in terms of the size of the
sub-tree rooted at the job. These removed jobs, along
with all the jobs contained in their sub-trees, areset
aside. They will be dealt with in the Merging phase.

The start stateof the dynamic program is〈A0,P0〉,
whereA0 consists of the roots of the 2m(D + 1)−1 largest
trees, andP is the empty matrix. Theend stateshave the
form 〈A,P〉 whereA is empty, and all jobs inP either have
no children, or their children are also inP.

As we traverse the path from a start state to an end state,
the status of each job evolves as in figure 3. It is not hard
to see that at the end of the path, every job is classified as
eitherscheduledor set aside.

4.4 Merging and Correctness

A path of lengthT from a start state to an end state in the
state-space defined above gives a schedule of lengthT for
part of the tree. We need to show how the jobsset aside
by the path can be merged back into the schedule. In the

scheduled set aside

active

waiting

Figure 3:The life of a job.
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remainder of this section, we will show two lemmas. The
first lemma will establish that we can find a path in the state
space that can be converted into an optimal schedule via
Merging. The second lemma will show how to perform this
Merging step.

Before stating the lemmas, we need three definitions.
First, we define the setUq for a stateq, which contains all
the jobs whichmustappear after stateq in any legal schedule
(these are the jobs which areavailable or waiting at that
state). This set is completely determined by the information
contained in〈A,P〉.

DEFINITION 4.1. (DEPENDENTJOBS) For a state q=
〈A,P〉, let Uq contain all jobs in A, all descendants of jobs in
A, and all descendants of jobs in P that are not yet available
on all processors, and that are not in P themselves.�

Now we define the deadline of stateq to be the latest
possible point on a path whereq can appear so that all the
dependent jobs ofq can still fit into the schedule without
making it longer thanC∗max:

DEFINITION 4.2. (DEADLINE) Let q= 〈A,P〉 be a state.

Thedeadlineof q is the value
⌊
C∗max−

|Uq|
m

⌋
. �

In any path in state space that corresponds to an optimal
schedule, every state must appear before its deadline. We
formalize this in a definition.

DEFINITION 4.3. (ADMISSIBLE PATH) A path in the state
space from a start state to an end state is calledadmissible
iff for all x from 0 to C∗max, the x-th state on the path has a
deadline of at least x.�

We will now show that an admissible path always exists,
that it can be found in polynomial time, and how to convert
it into an optimal schedule.

LEMMA 4.1. (DYNAMIC PROGRAM CORRECTNESS)
There always exists an admissible path that can be found in
polynomial time.

Proof: An admissible path, if it exists, can easily be
found by breadth-first search through the state space of the
dynamic program we just constructed. The deadline of each
state can be determined beforehand3. At depth x of the
search, we extend the search only to states with a deadline
of at leastx+1.

Now we show that such a path always exists. We show
this by constructing an admissible path(q0,q1, ...,qC∗max)
using an optimal scheduleSas a template. We assume that

3Note that we have to knowC∗max to compute the deadline. But since
C∗max≤ nD, we can find the value using binary search with a multiplicative
increase ofO(logn) in running time.

Shas no unnecessary job duplications (jobs whose removal
from the schedule would maintain feasibility).

We will proceed along the schedule, and at thex-th
step take the state transition fromqx−1 = 〈A,P〉 to qx that
corresponds to executing the jobs in thex-th time slice of
S that are inP∪Uqx−1. There must be such a transition,
because for every job inP∪Uqx−1 that is executed inSat that
time slice, it is either inA, or its parent appears inP at the
same position as it appears inS(easily shown by induction).

It remains to show that the so constructed path is
admissible. Note that when we are at stateqx along the
path, then all jobs inUqx have to appear after time slotx
in the scheduleS. Because we are executing ‘down’ the
trees, and we never add to a setUqx to obtainUqx+1, we have
Uqx ⊆Uqy if x> y. So, if x> y, and a job inUqy−1 appears
in S at time stepy (and so is not inUqy by construction), it
will not be inUqx. This means that none of the jobs inUqx

can appear at or before thex-th time step inS, and therefore
all appear after it. But this impliesd|Uqx|/me ≤ C∗max− x,
which shows that the path is admissible.�

Now that we have a schedule for part of the tree, we need to
merge the jobs we set aside back into the schedule. Here is
where we use the Merge Theorem.

LEMMA 4.2. (MERGING) Given an admissible path, an
optimal schedule can be constructed in time O(n2).

Proof: An admissible path can be directly converted into a
scheduleS of the same length that contains all but the jobs
which wereset aside. We now show how to incorporate the
set aside jobs into the schedule, while making it not longer
than the optimal schedule.

We do this by traversing the path from its end to its
beginning. When we reach a stateqx at which jobs were set
aside, we include them into the schedule as follows. Since
trees were set aside at that state, there must be 2m(D+1)−1
larger trees rooted at the jobs inqx’s active set. The jobs in
these ‘active’ trees are already in the schedule, since either
they were scheduled by the admissible path, or they were set
aside later, in which case we already merged them into the
schedule (recall we are traversing it backwards).

This means we can apply the Merge Theorem to merge
the set aside trees into the schedule. Since we started with
an admissible path, we know that the number of jobs not yet
scheduledatqx does not exceedm· (C∗max−x), the available
room in the schedule. Therefore, merging the set aside
trees does not make the schedule longer than the optimal
schedule. We repeat this procedure for all states and obtain
an optimal schedule.

Since applying the Merge Theorem for every state costs
linear time, and there might be up ton states on the path, the
total time for the merging operation isO(n2). �

8



5 Conclusion
In this paper we have given the first polynomial-time multi-
processor scheduling algorithm for tree-based precedence
constraints that impose precedence and communication de-
lays. As opposed to previous results, separation delays
`i, j,a,b can depend on jobs and machines, and can have val-
ues other than 0 and 1, as long as they are bounded by a
constantD. That makes our algorithm more general and
applicable to the instruction scheduling for VLIW architec-
tures. The potentially long running time of the algorithm
is acceptable to embedded system designers since the soft-
ware is compiled only once and an optimal performance is
required of the resulting system.

The algorithm for trees uses an unconventional dynamic
program, where partial paths in state space do not corre-
spond to partial schedules, but rather have to be transformed
into a solution during the Merging phase. The running time
of our algorithm depends exponentially on the number of
processorsm and maximum delayD, making it impracti-
cal for large values of these constants. However, it is the
dynamic programming part of the algorithm that incurs this
runtime; the merging step only takesO(n2) time. This sug-
gests using an heuristic instead of the optimal dynamic pro-
gram to produce a path through the state space. The Merge
Theorem can then be used to incorporate the remaining trees
into the schedule. Finding good heuristics, from both a the-
oretical and an experimental point of view, is a very inter-
esting open problem. We plan to continue our work in this
direction.

Another intriguing question is whether our techniques
can be extended to the case whereG is an arbitrary dag. The
Merge Theorem still holds for these inputs. But our dynamic
program critically uses the fact that once a branch occurs,
the subtrees are completely independent. A more compli-
cated dynamic program might get around this problem with-
out a large increase in the size of the state space. As already
mentioned in the introduction, this is very likely a hard prob-
lem, since an algorithm for just the single-processor case
with D = 3 can be used to solve the famous open 3-processor
scheduling problem.
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