
Secure Notarization of Paper Text Documents

Matthias Ruhl∗ Marshall Bern† David Goldberg†

Abstract

We present a method to notarize a paper document. This
method computes a set of features from the page, inputs
these features into a hash function, digitally signs the output,
and then prints the resulting signature on the page. The
notarized document is self-contained: verification does not
require reference to online information.

Introduction. Authentication of digital data is a well-
studied problem in computer science [8], but many impor-
tant, long-lived documents are still available only on paper.
Paper is traditionally authenticated either through elaborate
printing techniques (as in money) or through trusted signa-
tures and stamps (as in wills or contracts). Current technol-
ogy, however, has made it easier to counterfeit paper docu-
ments. In this work, we show how to use digital methods to
authenticate paper documents, and introduce concepts that
could be used for other cases of authenticating analog data.

We formalize the problem as follows. Given an ana-
log documentD, the signer computes a digital signature
s(D). Given a document/signature pair(D,s), the verifier
checks whethers is a valid signatures(D) for documentD.
The document signature should have the following security
properties: The verifier accepts a valid(D,s) pair with high
probability; the verifier rejects a pair(D′,s(D)) with high
probability if D andD′ differ “significantly”; and only the
signer can compute signatures that are accepted by the ver-
ifier. Moreover, the signatures(D) should be small, so that
it can be printed onto the document in a machine-readable
form such as bar codes or “data glyphs” [3], thus avoiding
the need to keep information online in perpetuity.

The desired properties pose a difficult problem, and
it was initially unclear whether a practical solution was
even possible. The solution we propose here usesfeatures
computed from the document, essentially the locations and
shapes of repeating components (e.g. letters) on the page.
These features should suffice for any document composed
of repeating components, even if the components cannot be
recognized as known symbols. Although these features are
fairly robust to scanner variation, we needed another key

∗MIT Laboratory for Computer Science, Cambridge, MA 02139, USA,
ruhl@theory.lcs.mit.edu

†Xerox PARC, Palo Alto, CA 94304, USA,{bern , gold-
berg }@parc.xerox.com

idea to make our method work: anassist channel, essentially
error correction bits for analog-to-digital conversion.

Most previous methods [1, 4] authenticate a document
by comparing its features to a known valid copy; unlike
our method they require an online copy. One exception is
the work of O’Gorman and Rabinovich [6], who present
a method of authenticating small photos. Their technique,
however, writes out the features themselves rather than a
hash of the features, and hence does not scale well to
large images or text pages. Adding hashing is not just an
incremental change. Hashing forces the feature computation
to be entirely reproducible, because a change in even one bit
will change the hash output.

Algorithm. Consider the following method, which is a
straightforward transfer of digital technology to paper doc-
uments: the trusted signer scans the document, passes the
bits through a one-way hash function, signs the hash using
public key cryptography, and finally affixes the signature to
the document in machine-readable form. Unfortunately this
simple scheme does not work. When the verifier scans the
document, he will not get exactly the same bits as the signer
and hence does not obtain the same hash. The verifier needs
an assist channel: a string of bits (also signed and printed
on the page in machine-readable form) that enables him to
recreate the same data each time. The idea of an assist chan-
nel is implicit in [5] and is currently being explored in detail
by Greene [2].

We now give an example of a very simple type of assist
channel. Imagine a feature that is a continuous function of
the input page and takes real values in the range[0,1], and
assume that scanner variation adds a small amount of noise
to the feature. One might discretize the feature value to two
bits to represent the ranges[0, 1

4), [1
4,

2
4), [2

4,
3
4), and[3

4,1],
and use a one-bit assist channel. An assist bit of 0 means
that discretization should be done by directly comparing the
measured feature value to the ranges, and a 1 means that1

8
should be added to the feature value before this comparison
in order to move it away from1

4, 2
4, or 3

4. So long as the
noise is never as large as116, this single-bitrounding hint
enables robust recomputation of the discretized feature.

A 300 dpi binary scan of a text page is roughly 1
MByte and varies significantly from scan to scan, so it is not
possible for a small assist channel to remove all variation.
Hence we are led to the problem of extracting document

1



features that can distinguish a valid scan from a subtle
forgery, yet are not as variable as the bitstream itself. At
the same time, we must devise an assist channel that ensures
feature robustness from scan to scan.

We now sketch what we came up with. We describe
the signer’s and verifier’s algorithms in parallel, although in
practice verification would take place after signing.

First, both signer and verifier scan the image at 300 dpi
in gray-scale mode. Then the verifier gives his image an ini-
tial coarse registration using registration marks pre-printed
in the corners of the document. The verifier also performs
histogram equalization using a gray-level histogram of the
signer’s image read in from the assist channel.

Second, both signer and verifier compute connected
components (cc’s for short), meaning maximal sets of ad-
jacent sufficiently dark pixels. In order to obtain agreement
between signer and verifier cc’s, the signer uses two differ-
ent darkness thresholds, one that tends to merge and one that
tends to split ambiguous cc’s. The signer puts into the assist
channel the bounding box of each merged cc that could pos-
sibly split up when scanned by the verifier. The verifier then
knows to merge cc’s that fall within each of these boxes.

Third, signer and verifier compute the xy-coordinates
of cc’s. Even after initial registration, pixels in the middle
of the page may still be misregistered. Luckily the verifier
can use the bounding boxes from the last step to correct this
problem. All of the verifier’s cc’s that are not in assist-
channel bounding boxes are moved by a weighted sum of
the translations observed at nearby boxes.

The coordinates of centroids of cc’s are rounded to the
nearest multiple of 16 pixels. The signer puts a list of all
coordinates that are close to a rounding boundary into the
assist channel, together with a bit indicating the direction
it should be rounded. Using these hints, the verifier can
reliably obtain exactly the same rounded coordinates.

Fourth, the signer and verifier must agree on an ordering
for cc’s. Subscripts, formulas, broken characters, etc. make
it difficult to find a robust ordering rule. Our method or-
ders cc’s in “chunks” (roughly text lines), approximately in
English reading order both within and between chunks. Co-
ordinates of initial cc’s in chunks and cc’s with ambiguous
order within a chunk are put into the assist channel.

The fifth and final step is to compute shape features that
characterize the gray-scale cc’s. In order to keep down the
size of the assist channel, cc’s are combined into clusters
using a tokenizing compressor [7], and shape features are
computed for only the first member of each cluster. We
include the cluster number for each component in the assist
channel. (Clustering also enables further security checks:
the verifier could check that a cluster’s members are indeed
very similar to each other.) The shape features themselves
are computed by convolving cc’s with a number oftest
functions, finding the maximum value in each of these

Document Chemistry Physics Software
Histogram 261 226 204
Bounding Boxes 2952 2020 1346
Locations 856 540 395
Ordering 2593 1924 1299
Shape Features 4956 4728 4327
Total 11,618 9438 7571

convolutions, and rounding these values to a small number
of bits. If an original value is close to a rounding threshold,
an appropriate rounding hint must be added to the assist
channel. In our experiments, we used 24 test functions
including horizontal, vertical and diagonal lines, T- and L-
shapes, and dots and rings.

Results. The method worked successfully on three different
makes of scanners and on various documents, including
complicated physics and chemistry journal pages. The
security appeared to be quite good; even tiny changes to the
page gave different hash values.

The table shows the size of the assist channel in bytes.
The hash itself is negligible—only 128 bits. Cryptographi-
cally signing the data (hash and assist channel) does not ex-
pand the size appreciably, so the table gives a fair indication
of the overall size of the signature. Even though our en-
coding is rather crude, the signature is slightly smaller than
token-compressed scans of the pages. To put the sizes in per-
spective, with a 600 dpi printer it is possible to write dense
but readable glyphs at about 0.8 KByte per square inch, giv-
ing a signature of 8–12 square inches. We are currently
investigating ways to reduce the size of the assist channel
without compromising security. An open theoretical prob-
lem is to determine lower bounds on the size of an assist
channel for analog-to-digital conversion.

References

[1] S. Bhattacharjee and M. Kutter. Compression tolerant image
authentication.Proceedings ICIP ’98, Chicago, 1998.

[2] D.H. Greene. Assist channel coding and processing.
Manuscript, 1999.

[3] D. Hecht. Embedded data glyph technology for hard-
copy digital documents.SPIE Proceeedings, 2171:341–352,
1994.

[4] C.-Y. Lin and S.-F. Chang. Generating robust digital signa-
ture for image/video authentication.Multimedia and Secu-
rity Workshop at ACM Multimedia ’98, September 1998.

[5] D.P. Lopresti and J.S. Sandberg. Certifiable optical character
recognition.Proceedings 2nd ICDAR, 1993.

[6] L. O’Gorman and I. Rabinovich. Identification of documents
via pattern recognition and public-key cryptography.IEEE
Trans. PAMI, 20(10):1097–1102, 1998.

[7] W. Rucklidge and D. Huttenlocher. A flexible network docu-
ment imaging architecture.SPIE Elect. Imaging, 2000.

[8] B. Schneier.Applied Cryptography. Wiley, 1995.

2


