
Combinatorial Problems on Strings with
Applications to Protein Folding

Alantha Newman1 and Matthias Ruhl2

1 MIT Laboratory for Computer Science
Cambridge, MA 02139

alantha@theory.lcs.mit.edu
2 IBM Almaden Research Center

San Jose, CA 95120
ruhl@almaden.ibm.com

Abstract. We consider the problem of protein folding in the HP model
on the 3D square lattice. This problem is combinatorially equivalent to
folding a string of 0’s and 1’s so that the string forms a self-avoiding walk
on the lattice and the number of adjacent pairs of 1’s is maximized. The
previously best-known approximation algorithm for this problem has a
guarantee of 3

8
= .375 [HI95]. In this paper, we first present a new 3

8
-

approximation algorithm for the 3D folding problem that improves on
the absolute approximation guarantee of the previous algorithm. We then
show a connection between the 3D folding problem and a basic combina-
torial problem on binary strings, which may be of independent interest.
Given a binary string in {a, b}∗, we want to find a long subsequence of
the string in which every sequence of consecutive a’s is followed by at
least as many consecutive b’s. We show a non-trivial lower-bound on the
existence of such subsequences. Using this result, we obtain an algorithm
with a slightly improved approximation ratio of at least .37501 for the
3D folding problem. All of our algorithms run in linear time.

1 Introduction

We consider the problem of protein folding in the HP model on the three-
dimensional (3D) square lattice. This optimization problem is combinatorially
equivalent to folding a string of 0’s and 1’s, i.e. placing adjacent elements of the
string on adjacent lattice points, so that the string forms a self-avoiding walk on
the lattice and the number of adjacent pairs of 1’s is maximized. Figure 1 shows
an example of a 3D folding of a binary string.
Background. The widely-studied HP model was introduced by Dill [Dil85,Dil90].
A protein is a chain of amino acid residues. In the HP model, each amino acid
residue is classified as an H (hydrophobic or non-polar) or a P (hydrophilic or
polar). An optimal configuration for a string of amino acids in this model is
one that has the lowest energy, which is achieved when the number of H-H con-
tacts (i.e. pairs of H’s that are adjacent in the folding but not in the string) is
maximized. The protein folding problem in the hydrophobic-hydrophilic (HP)



2 Alantha Newman and Matthias Ruhl

model on the 3D square lattice is combinatorially equivalent to the problem we
just described: we are given a string of P’s and H’s (instead of 0’s and 1’s) and
we wish to maximize the number of adjacent pairs of H’s (instead of 1’s). An
informative discussion on the HP model and its applicability to protein folding
is given by Hart and Istrail [HI95].
Related Work. Berger and Leighton proved that this problem is NP-hard [BL98].
On the positive side, Hart and Istrail gave a simple algorithm with an approxima-
tion guarantee of 3

8OPT −Θ(
√

OPT ) [HI95]. Folding in the HP model has also
been studied for the 2D square lattice. This variant is also NP-hard [CGP+98].
Hart and Istrail gave a 1

4 -approximation algorithm for this problem [HI95], which
was recently improved to a 1

3 -approximation algorithm [Ala02].
Our Contribution. Improving on the approximation guarantee of 3

8 for the 3D
folding problem has been an open problem for almost a decade. In this paper, we
first present a new 3D folding algorithm (Section 2.1). Our algorithm produces
a folding with 3

8OPT − Θ(1) contacts, improving the absolute approximation
guarantee. We then show that if the input string is of a certain special form,
we can modify our algorithm to yield 3

4OPT − O(δ(S)) contacts, where δ(S)
is the number of transitions in the input string S from sequences of 1’s in odd
positions in the string to sequences of 1’s in even positions. This is described in
Section 2.2.

In Section 3, we reduce the general 3D folding problem to the special case
above, yielding a folding algorithm producing .439 · OPT − O(δ(S)) contacts.
This reduction is based on a simple combinatorial problem for strings, which
may be of independent interest.

We call a binary string from {a, b}∗ block-monotone if every maximal se-
quence of consecutive a’s is immediately followed by a block of at least as many
b’s. Suppose we are given a binary string with the following property: every
suffix of the string (i.e. every sequence of consecutive elements that ends with
the last element of the string) contains at least as many b’s as a’s. What is the
longest block-monotone subsequence of the string? It is easy to see that we can
find a block-monotone subsequence with length at least half the length of the
string by removing all the a’s. In Section 3.1, we show that there always is a
block-monotone subsequence containing at least a (2 −

√
2) ≈ .5857 fraction of

the string’s elements.
Finally, we combine our folding algorithm with a simple, case-based algorithm

that achieves .375·OPT +Ω(δ(S)) contacts, which is described in the full version
of this paper. We thereby remove the dependence on δ(S) in the approximation
guarantee and obtain an algorithm with a slightly improved approximation guar-
antee of .37501 for the 3D folding problem. Due to space restrictions, all proofs
are omitted and can be found in the full version of this paper.

2 A New 3D Folding Algorithm

Let S ∈ {0, 1}n represent the string we want to fold. We refer to each 0 or 1
as an element. We let si represent the ith element of S, i.e. S = s1s2 . . . sn. We



Combinatorial Problems on Strings with Applications to Protein Folding 3

refer to a 1 in an odd position (i.e. si = 1 with odd index i) as an odd-1 and
a 1 in an even position (i.e. si = 1 with even index i) as an even-1. An odd or
even label is determined by an element’s position in the input string and does
not change at any stage of the algorithm. We will use O[S] and E [S] to denote
the number of odd-1’s and even-1’s, respectively, in a string S. For example, for
S = 10111100101101, we have O[S] = 5 and E [S] = 4.

Note that because the square lattice is bipartite, the odd/even label deter-
mines the set of lattice points on which an element can be placed. For example,
suppose we divide the lattice points into two bipartite sets, one red and one
blue. If the first element of the string is placed on a red lattice point, then all
the elements in odd positions in the string will be placed on red lattice points
and all the elements in even positions in the string will be placed on blue lattice
points.

A contact between two elements placed on the square lattice can therefore
only occur between an odd-1 and an even-1. Each lattice point is adjacent to six
neighboring lattice points. In any folding, if an odd-1 is placed on a particular
lattice point, two neighboring lattice points will be occupied by preceding and
succeeding (even) elements of the string unless the element is one of the two
endpoints of the string. Therefore, there are four remaining adjacent lattice
points with which contacts can be formed. Thus, an upper bound on the size of
an optimal solution is OPT ≤ 4 min{O[S], E [S]}+ 2.

2.1 The Diagonal Folding Algorithm

We now present an algorithm that produces a folding with at least 3
8OPT −

Θ(1) contacts in the worst case, thereby improving the absolute approximation
guarantee of the algorithm of Hart and Istrail [HI95]. Our algorithm is based
on diagonal folds. The algorithm guarantees that contacts form on and between
two adjacent 2D planes. Each point in the 3D lattice has an (x, y, z)-coordinate,
where x, y, and z are integers. We will fold the string so that all contacts occur on
or between the planes z = 0 and z = 1. The Diagonal Folding Algorithm
is described on the next page and illustrated in Figure 1.

Lemma 1. The Diagonal Folding Algorithm produces a folding with at
least 3

8OPT −O(1) contacts.

2.2 Relating Folding to String Properties

As the number of 1’s placed on the diagonal in the Diagonal Folding Al-
gorithm increases, the length (i.e. 1

2 min{O[S], E [S]}) of the resulting folding
increases in a direction parallel to the line x = y. The height of the folding may
also increase depending on the maximum distance between consecutive odd-1’s
in SO or consecutive even-1’s in SE . However, regardless of the input string, the
resulting folding has the same constant width in the direction parallel to the line
x = −y. In other words, although the algorithm produces a three-dimensional
folding, with increasing k and n, the folding may increase in length and height



4 Alantha Newman and Matthias Ruhl

Diagonal Folding Algorithm

Input: a binary string S.
Output: a folding of the string S.

1. Let k = min{O[S], E [S]}.
2. Divide S into two strings such that SO contains at least half the odd-1’s and SE

contains at least half the even-1’s. We can do this by finding a point on the string
such that half of the odd-1’s are on one side of this point and half the odd-1’s
are on the other side. One of these sides contains at least half of the even-1’s. We
call this side SE and the remaining side SO. Then we replace all the even-1’s in
SO with 0’s and replace all the odd-1’s in SE with 0’s.

3. Place the first odd-1 in SO on lattice point (1, 1, 1) and the next odd-1 in SO on
lattice point (2, 2, 1) and so on. For the first k

4
of the odd-1’s in SO, place the

ith odd-1 on lattice point (i, i, 1). Then place the (k/4+1) odd-1 on lattice point
(k/4− 1, k/4+1, 1). For the first k

4
− 1 of the even-1’s in SE , place the ith even-1

on lattice point (i, i + 1, 1). Use the dimensions z ≥ 1 to place the strings of
0’s between consecutive odd-1’s in SO and the strings of 0’s between consecutive
even-1’s in SE .

4. Place the (k/4 + 2) odd-1 in SO on lattice point (k/4− 2, k/4 + 1, 0). Then place
the (k/4 + i) odd-1 in SO on lattice point (k/4− i + 1, k/4− i + 2, 0). Place the
(k/4) even-1 in SE on lattice point (k/4−1, k/4−1, 0). Place the (k/4+ i) even-1
in SE on lattice point (k/4 − i − 1, k/4 − i − 1, 0). Use the dimensions z ≤ 0 to
place the strings of 0’s between consecutive 1’s in SO or SE .

but not in width. We will explain how we can use this unused space to improve
the algorithm for a special class of strings.

By consecutive odd-1’s we mean odd-1’s that are not separated by even-1’s
and similarly for consecutive even-1’s. For example, in the string 1010001100011,
there is a sequence of 3 consecutive odd-1’s followed by two consecutive even-1’s
followed by an odd-1.

Definition 2. A string SO is called odd-monotone if every maximal sequence
of consecutive even-1’s is immediately preceded by at least as many consecutive
odd-1’s.

An even-monotone string is defined analogously. For example, the string
10101100011 is odd-monotone and the string 0100010101101101011 is even-
monotone. We define a switch as follows:

Definition 3. A switch is an odd-1 followed by an even-1 (separated only by
0’s). We denote the number of switches in S by δ(S).

For example, for the string S = 100100010101101101011, δ(S) = 2 since there
are two transitions (underlined) from a maximal sequence of consecutive odd-1’s
to a sequence of even-1’s. We use these definitions in the following theorem.



Combinatorial Problems on Strings with Applications to Protein Folding 5

z=0

z=1

x

y z

Fig. 1. This figure illustrates Steps 3 and 4 of the Diagonal Folding Algorithm.
In the folding resulting from this algorithm, all contacts are formed on or between the
2D planes z = 0 (lower) and z = 1 (upper). Black dots represent 1’s and white dots
represent 0’s.

Theorem 4. Let S = SOSE and let SO be an odd-monotone string and SE be
an even-monotone string such that O[SO] = E [SE ] and E [SO] = O[SE ]. Then
there is a linear time algorithm that folds these two strings achieving 3

4OPT −
16δ(S)−O(1) contacts.

The main idea behind the proof of Theorem 4 is that we partition the el-
ements in SO and SE into main-diagonal elements and off-diagonal elements.
We then use the Diagonal Folding Algorithm to fold the main-diagonal
elements along the direction x = y and the off-diagonal elements into branches
along the direction x = −y (see Figure 2). All 1’s will receive 3 contacts except
for a constant number of 1’s for each off-diagonal branch, which correspond to
switches in the strings SO and SE , and a constant number at the ends of the main
diagonal. This yields the claimed number of 3

4OPT −O(δ(S))−O(1) contacts.
To precisely define main-diagonal and off-diagonal elements, we use addi-

tional notation. We use 0k and 1k (for some integer k ≥ 0) to refer to the strings
consisting of k 0’s and k 1’s, respectively. By writing S = Ek for some integer k,
we mean that S is of the form S = 02i0+1102i1+1102i2+1102i3+1 . . . 02ik−1+110ik

for integers ij ≥ 0, and all the 1’s in S are even-1’s. Likewise, we write S =
Ok to refer to a string of the same form where all 1’s are odd-1’s, i.e. S =
102i1+1102i2+1 102i3+1 . . . 02ik−1+110ik . So we can express any string SE as SE =



6 Alantha Newman and Matthias Ruhl

Ea1Ob1Ea2Ob2 . . . EakObk for k = δ(SE) and integers ai and bi. If SE is even-
monotone, then ai ≥ bi for all i. We can express any string SO as SO =
Oc1Ed1Oc2Ed2 . . . Oc`Ed` for ` = δ(SO) and integers ci and di. If SO is even-
monotone, then ci ≥ di for all i.

Definition 5. For an odd-monotone string SO = Oc1Ed1Oc2Ed2 . . . Oc`Ed` , the
first set of ci−di odd-1’s in each block, i.e. the elements Oc1−d1Oc2−d2 . . . Oc`−d` ,
are the main-diagonal elements and the remaining elements Od1Ed1Od2Ed2 . . .
Od`Ed` are the off-diagonal elements in SO.

For even-monotone strings, we define main-diagonal and off-diagonal ele-
ments analogously. In our modified algorithm, it will be useful to have SE and
SO in a special form. Two sets of off-diagonal elements in SO, OdiEdi and
Odi+1Edi+1 , are separated by ci+1 − di+1 odd-1’s that are main-diagonal ele-
ments. We want them to be separated by a number of main-diagonal elements
that is a multiple of 8. This will guarantee that the off-diagonals used to fold
the off-diagonal elements are regularly spaced so that none of the off-diagonal
folds interfere with each other. We will use the following simple lemma.

Lemma 6. For any odd-monotone string SO it is possible to change at most
8δ(SO) 1’s to 0’s so that the resulting string S′ is of the form S′ = Oa1Eb1Oa2Eb2

. . . Oak , where ai − bi is a positive multiple of 8 for 1 ≤ i < k.

We note that there is an analogous version of Lemma 6 for even-monotone
strings. With this preparation, we can now state our folding algorithm.

Off-Diagonal Folding Algorithm

Input: A binary string S = SOSE , such that SO is odd-monotone, SE is even-
monotone, O[SO] = E [SE ] and E [SO] = O[SE ].
Output: A folding of the string S.

1. Change at most 8δ(S) 1’s to 0’s in SO and SE to yield the form specified in
Lemma 6.

2. Run Diagonal Folding Algorithm on main-diagonal elements along the di-
rection x = y and change from plane z = 0 to z = 1 when the length of the main
diagonal equals 4 · bO[SO]/8c+ 2.

3. Run Diagonal Folding Algorithm on the off-diagonal elements along the
direction x = −y. The off-diagonal elements attached to the main-diagonal el-
ements on the plane z = 1 are folded along the diagonals x = −y + 8k. The
off-diagonal elements attached to the main-diagonal elements on the plane z = 0
are folded along the diagonals x = −y + 8k + 4. (See Figure 2.)



Combinatorial Problems on Strings with Applications to Protein Folding 7

z=0

z=1

Fig. 2. Folding the off-diagonal elements in Step 3 of the Off-Diagonal Folding Al-
gorithm. The main-diagonal elements are represented by the dashed lines on the main
diagonal. The off-diagonal elements are represents by the solid lines on the off-diagonals.
This figure shows how the repetitions of the Diagonal Folding Algorithm on the
off-diagonals interleave and thus so not interfere with each other. The closeup gives an
example of how the off-diagonal folds are connected to the main diagonal.

3 Combinatorial Problems on Strings

In this section, we present a combinatorial theorem about binary strings that
allows us to use the algorithm from Section 2.2 for the general 3D folding prob-
lem. The binary strings that we consider in this section are from the set {a, b}∗.
Given a string to fold in {0, 1}∗, we map it to a corresponding string in {a, b}∗ by
representing each odd-1 by an a and each even-1 by a b. For example, the string
10100101 would be mapped to the string aabb. We will use theorems about the
strings in {a, b}∗ to prove theorems about subsequences of the strings in {0, 1}∗
that we want to fold.

The combinatorial problem that we want to solve is the following: given a
string S ∈ {0, 1}∗ such that E [S] = O[S], we want to divide the string into two
substrings such that one contains an even-monotone subsequence and the other
contains an odd-monotone subsequence and the number of 1’s contained in these



8 Alantha Newman and Matthias Ruhl

monotone subsequences is as large as possible, since the 1’s in these subsequences
are the 1’s that will have contacts in the Off-Diagonal Folding Algorithm.

Given a string S ∈ {0, 1}∗, we will treat it as a loop L(S) by attaching its
endpoints. In other words, we are only going to consider foldings of the string
that place the first and last element of S on adjacent lattice points. (If S has
odd length, we can add a 0 to the end of the string and fold this string instead
of S; a folding of this augmented string will yield a valid folding of the original
string.)

Lemma 7. Let L(S) ∈ {0, 1}∗ be a loop, and k = min{O[S], E [S]}. Then it is
possible to change some 1’s of L(S) to 0’s such that there is a partition L(S) =
SOSE with SO and SE odd- and even-monotone, respectively, O[SO] = E [SE ],
E [SO] = O[SE ], and O[SO]+O[SE ] ≥ (2−

√
2)k. Furthermore, this partition can

be constructed in linear time.

To prove this lemma, we first apply Lemma 2.2 from [Ala02] to cut the
string into two substrings and then apply Theorem 13 to each substring. Lemma
7 implies that every 3D folding instance can be converted into the case required
by Theorem 4 by converting not too many 1’s into 0’s. We obtain the following
corollary of Lemma 7 and Theorem 4.

Corollary 8. There is a linear time algorithm for the 3D folding problem that
generates at least .439 ·OPT − 16δ(S)−O(1) contacts.

3.1 Block-Monotone Subsequences

Let S be a binary string, S ∈ {a, b}n. We will use the following definitions.

Definition 9. Let na(S) and nb(S) denote the number of a’s and b’s, respec-
tively, in a string S.

Definition 10. A block is a maximal substring of consecutive a’s or b’s in a
binary string.

Definition 11. A binary string is block-monotone if every block of a’s is im-
mediately followed by a block of at least as many b’s.

For example, the string bbbbaaabb has two blocks of b’s (of length four and two)
and one block of a’s (of length three). An example of a block-monotone string
is baaabbbaaabbbb. The string aabbaaabb is not block-monotone.

Given a binary string S, our goal is to find a long block-monotone subse-
quence. It is easy to see that S contains a block-monotone subsequence of length
at least nb(S) since the subsequence of b’s is trivially block-monotone. It is also
easy to see that there are strings for which we cannot do better than this. For
example, consider the string biai. In this string, there is no block monotone sub-
sequence that contains any of the a’s. Thus, we will put a stronger condition on
the binary strings in which we want to find long block-monotone subsequences.



Combinatorial Problems on Strings with Applications to Protein Folding 9

Notation. α := 1− 1√
2
≈ 0.2929

Definition 12. A binary string S = s1 . . . sn is suffix-monotone if for every
suffix Sk = sk+1 . . . sn, 0 ≤ k < n, we have nb(Sk) ≥ α · (n− k).

For example if every suffix of S has at least as many b’s as a’s, the string is
suffix-monotone. We will give an algorithm to prove the following theorem.

Theorem 13. Suppose S is a suffix-monotone string of length n. Then there
is a block-monotone subsequence of S with length at least n − na(S)(2

√
2 − 2).

Furthermore, such a subsequence can be found in linear time.

If na(S) ≤ 1
2n and S is suffix-monotone, then Theorem 13 states that we

can find a block-monotone subsequence of length at least (2−
√

2) > .5857 the
length of S. This is accomplished by the following algorithm.

Block-Monotone Algorithm

Input: a suffix-monotone string S = s1 . . . sn

Output: a block-monotone subsequence of S
Let Si = s1 . . . si, Si = si+1 . . . sn for i : 1 < i ≤ n
1. If s1 = b:

(i) Find the largest index k such that Sk is a block of b’s and output Sk

2. If s1 = a:
(i) Find the smallest index k such that:

nb(Sk) ≥ αk
(ii) Let S′

` = s`+1 . . . sk for ` : 1 ≤ ` < k
(iii) Find ` such that:

na(S`) ≤ nb(S
′
`)

na(S`) + nb(S
′
`) is maximized

(iv) Remove all the b’s from S` and output S`

(v) Remove all the a’s from S′
` and output S′

`

3. Repeat algorithm on string Sk

4 Conclusion

We conclude by stating an approximation guarantee independent of δ(S). In the
full version of this paper, we give a case-based algorithm whose approximation
guarantee is 3

8OPT + O(δ(S)). This algorithm is based on the following idea:
Suppose SO and SE contain half the odd-1’s and half the even-1’s, respectively.
We use the Diagonal Folding Algorithm, but for each switch in SO, we use
different local foldings to obtain an additional (constant) number of contacts,
e.g. we use an even-1 in the switch to obtain another contact with an odd-1
placed on the main diagonal. The performance of this algorithm is summarized
in Lemma 14, which in combination with Corollary 8 yields Lemma 15.



10 Alantha Newman and Matthias Ruhl

Lemma 14. We can modify the Diagonal Folding Algorithm to create a
folding with 3

8OPT + δ(S)
256 −O(1) contacts for any binary string S.

Lemma 15. There is a linear time algorithm for the 3D folding problem that
creates a folding with .37501 ·OPT −O(1) contacts for any binary string S.

We have described an algorithm for protein folding in the HP model on the 3D
square lattice that slightly improves on the previously best-known algorithm to
yield an approximation guarantee of .37501. The contribution of this paper is
not so much the actual gain in the approximation ratio, but the demonstration
that the previously best-known algorithm is not optimal, even though there have
been no improvements for almost a decade.

In closing, we discuss the problem of finding block-monotone subsequences
of binary strings. One way to improve the approximation ratio of our algorithm
is to improve the guarantee given by Theorem 13. We note that we only apply
Theorem 13 to binary strings in which every suffix contains at least as many b’s
as a’s—a stronger condition than our definition of block-monotone. Theorem 13
implies that such strings contain block-monotone subsequences of at least .5857
their length. We conjecture that the real lower bound is actually 2

3 their length.
Currently, the best upper bound we are aware of is the string:

aaaaabaaaabaaabaababbbaaabaaabababaababbbbbbbbbbbbbb

whose longest block-monotone subsequence is a18b19, which is 37
52 ≈ 71.15% of

the length of the original string.
Acknowledgments. We thank Santosh Vempala for many helpful discussions
and suggestions and comments on the presentation. We thank Edith Newman
for drawing Figures 1 and 2.

References

[Ala02] Alantha Newman. A New Algorithm for Protein Folding in the HP Model.
In Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2002.

[BL98] Bonnie Berger and Tom Leighton. Protein Folding in the Hydrophobic-
Hydrophilic (HP) Model is NP-Complete. In Proceedings of the 2nd Con-
ference on Computational Molecular Biology (RECOMB), 1998.

[CGP+98] P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, and M. Yan-
nakakis. On the Complexity of Protein Folding. In Proceedings of the 2nd
Conference on Computational Molecular Biology (RECOMB), 1998.

[Dil85] K. A. Dill. Theory for the Folding and Stability of Globular Proteins. Bio-
chemistry, 24:1501, 1985.

[Dil90] K. A. Dill. Dominant Forces in Protein Folding. Biochemistry, 29:7133–
7155, 1990.

[HI95] William E. Hart and Sorin Istrail. Fast Protein Folding in the Hydrophobic-
hydrophilic Model within Three-eighths of Optimal. In Proceedings of the
27th ACM Symposium on the Theory of Computing (STOC), 1995.


