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Abstract. Load balancing is a critical issue for the efficient operation of
peer-to-peer networks. We give two new load-balancing protocols whose
provable performance guarantees are within a constant factor of optimal.
Our protocols refine the consistent hashing data structure that underlies
the Chord (and Koorde) P2P network. Both preserve Chord’s logarith-
mic query time and near-optimal data migration cost.

Our first protocol balances the distribution of the key address space to
nodes, which yields a load-balanced system when the DHT maps items
“randomly” into the address space. To our knowledge, this yields the first
P2P scheme simultaneously achieving O(log n) degree, O(log n) look-up
cost, and constant-factor load balance (previous schemes settled for any
two of the three).

Our second protocol aims to directly balance the distribution of items
among the nodes. This is useful when the distribution of items in the
address space cannot be randomized—for example, if we wish to sup-
port range-searches on “ordered” keys. We give a simple protocol that
balances load by moving nodes to arbitrary locations “where they are
needed.” As an application, we use the last protocol to give an opti-
mal implementation of a distributed data structure for range searches on
ordered data.

1 Introduction

A core problem in peer to peer systems is the distribution of items to be stored
or computations to be carried out to the nodes that make up the system. A par-
ticular paradigm for such allocation, known as the distributed hash table (DHT),
has become the standard approach to this problem in research on peer-to-peer
systems [1–4].

An important issue in DHTs is load-balance — the even distribution of items
(or other load measures) to nodes in the DHT. All DHTs make some effort to
load-balance, generally by (i) randomizing the DHT address associated with
each item with a “good enough” hash function and (ii) making each DHT node



responsible for a balanced portion of the DHT address space. Chord is a proto-
typical example of this approach: its “random” hashing of nodes to a ring means
that each node is responsible for only a small interval of the ring address space,
while the random mapping of items means that only a limited number of items
land in the (small) ring interval owned by any node.

This attempt to load-balance can fail in two ways. First, the typical “ran-
dom” partition of the address space among nodes is not completely balanced.
Some nodes end up with a larger portion of the addresses and thus receive a
larger portion of the randomly distributed items. Second, some applications may
preclude the randomization of data items’ addresses. For example, to support
range searching in a database application the items may need to be placed in a
specific order, or even at specific addresses, on the ring. In such cases, we may
find the items unevenly distributed in address space, meaning that balancing the
address space among nodes is not adequate to balance the distribution of items
among nodes. We give protocols to solve both of the load balancing challenges
just described.

Address-Space Balancing. Current distributed hash tables do not evenly parti-
tion the address space into which keys get mapped; some machines get a larger
portion of it. Thus, even if keys are numerous and random, some machines re-
ceive more than their fair share, by as much as a factor of O(log n) times the
average.

To cope with this problem, many DHTs use virtual nodes: each real machine
pretends to be several distinct machines, each participating independently in the
DHT protocol. The machine’s load is thus determined by summing over several
virtual nodes’, creating a tight concentration of (total) load near the average. As
an example, the Chord DHT is based upon consistent hashing [5], which requires
O(log n) virtual copies to be operated for every node.

Virtual nodes have drawbacks. Besides increased storage requirements, they
demand network bandwidth. In general, to maintain connectivity of the network,
every (virtual) node must frequently ping its neighbors, make sure they are still
alive, and replace them with new neighbors if not. Running multiple virtual
nodes creates a multiplicative increase in the (very valuable) network bandwidth
consumed for maintenance.

Below, we will solve this problem by arranging for each node to activate only
one of its O(log n) virtual nodes at any given time. The node will occasionally
check its inactive virtual nodes, and may migrate to one of them if the distri-
bution of load in the system has changed. Since only one virtual node is active,
the real node need not pay the original Chord protocol’s multiplicative increase
in space and bandwidth costs. As in the original Chord protocol, our scheme
gives each real node only a small number of “legitimate” addresses on the Chord
ring, preserving Chord’s (limited) protection against address spoofing by mali-
cious nodes trying to disrupt the routing layer. (If each node could choose an
arbitrary address, then a malicious node aiming to erase a particular item could
take responsibility for that item’s key and then refuse to serve the item.)



Another nice property of this protocol is that the “appropriate” state of the
system (i.e., which virtual nodes are active), although random, is independent of
the history of item and node arrivals and departures. This Markovian property
means that the system can be analyzed as if it were static, with a fixed set
of nodes and items; such analysis is generally much simpler than a dynamic,
history-dependent analysis.

Combining our load-balancing scheme with the Koorde routing protocol [1],
we get a protocol that simultaneously offers (i) O(log n) degree per real node,
(ii) O(log n/ log log n) lookup hops, and (iii) constant factor load balance. Previ-
ous protocols could achieve any two of these but not all 3—generally speaking,
achieving (iii) required operating O(log n) virtual nodes, which pushed the de-
gree to O(log2 n) and failed to achieve (i).

Item Balancing. A second load-balancing problem arises from certain database
applications. A hash table randomizes the order of keys. This is problematic in
domains for which order matters—for example, if one wishes to perform range
searches over the data. This is one of the reasons binary trees are useful despite
the faster lookup performance of hash tables. An order-preserving dictionary
structure cannot apply a randomized (and therefore load balancing) hash func-
tion to its keys; it must take them as they are. Thus, even if the address space
is evenly distributed among the nodes, an uneven distribution of the keys (e.g.,
all keys near 0) may lead to all load being placed on one machine.

In our work, we develop a load balancing solution for this problem. Unfortu-
nately, the “limited assignments” approach discussed for key-space load balanc-
ing does not work in this case—it is easy to prove that if nodes can only choose
from a few addresses, then certain load balancing tasks are beyond them. Our
solution to this problem therefore allows nodes to move to arbitrary addresses;
with this freedom we show that we can load-balance an arbitrary distribution of
items, without expending much cost in maintaining the load balance.

Our scheme works through a kind of “work stealing” in which underloaded
nodes migrate to portions of the address space occupied by too many items.
The protocol is simple and practical, with all the complexity in its performance
analysis.

Extensions of our protocol can also balance weighted items, where the weight
of an item can for example reflect its storage size, or its popularity and the
resulting bandwidth requirements.

Preliminaries. We design our solutions in the context of the Chord DHT [4]
but our ideas seem applicable to a broader range of DHT solutions. Chord uses
Consistent Hashing to assign items to nodes, achieving key-space load balance
using O(log n) virtual nodes per real node. On top of Consistent Hashing, Chord
layers a routing protocol in which each node maintains a set of O(log n) carefully
chosen “neighbors” that it uses to route lookups in O(log n) hops. Our modifica-
tions of Chord are essentially modifications of the Consistent Hashing protocol
assigning items to nodes; we can inherit unchanged Chord’s neighbor structure



and routing protocol. Thus, for the remainder of this paper, we ignore issues of
routing and focus on the address assignment problem.

In this paper, we will use the following notation.

n is the number of nodes in system
N is the number of items stored in system (usually N � n)
`i is the number of items stored at node i
L = N/n is the average (desired) load in the system

As discussed above, Chord maps items and nodes to a ring. We represent this
space by the unit interval [0, 1) with the addresses 0 and 1 are identified, so all
addresses are a number between 0 and 1.

2 Address-Space Balancing

We will now give a protocol that improves consistent hashing in that every node
is responsible for a O(1/n) fraction of the address space with high probability
(whp), without use of virtual nodes. This improves space and bandwidth us-
age by a logarithmic factor over traditional consistent hashing. The protocol
is dynamic, with an insertion or deletion causing O(log log n) other nodes to
change their positions. Each node has a fixed set of O(log n) possible positions
(called “virtual nodes”); it chooses exactly one of those virtual nodes to become
active at any time—this is the only node that it actually operates. A node’s
set of virtual nodes depends only on the node itself (computed e.g. as hashes
h(i, 1), h(i, 2), . . . , h(i, c log n) of the node-id i), making malicious attacks on the
network difficult.

We denote the address (2b + 1)2−a by 〈a, b〉, where a and b are integers
satisfying 0 ≤ a and 0 ≤ b < 2a−1. This yields an unambiguous notation for all
addresses with finite binary representation. We impose an ordering ≺ on these
addresses according to the length of their binary representation (breaking ties
by magnitude of the address). More formally, we set 〈a, b〉 ≺ 〈a′, b′〉 iff a < a′ or
(a = a′ and b < b′). This yields the following ordering:

0 = 1 ≺ 1
2
≺ 1

4
≺ 3

4
≺ 1

8
≺ 3

8
≺ 5

8
≺ 7

8
≺ 1

16
≺ . . .

We describe our protocol in terms of an ideal “locally optimal” state it wants to
achieve.

Ideal state: Given any set of active virtual nodes, each (possibly inactive) vir-
tual node “spans” a certain range of addresses between itself and the suc-
ceeding active virtual node. Each real node has activated the virtual node
that spans the minimal possible (under the ordering just defined) address.

Note that the address space spanned by one virtual node depends on which other
virtual nodes are active; that is why the above is a local optimality condition.
Our protocol consists of the simple update rule that any node for which the



local optimality condition is not satisfied, instead activates the virtual node
that satisfies the condition. In other words, each node occasionally determines
which of its O(log n) virtual nodes spans the smallest address (according to ≺),
and activates that particular virtual node. Note that computing the “succeeding
active node” for each of the virtual nodes can be done using standard Chord
lookups.

Theorem 1. The following statements are true for the above protocol, if ev-
ery node has c log n virtual addresses that are chosen Ω(log n)-independently at
random.

(i) For any set of nodes there is a unique ideal state.
(ii) Given any starting state, the local improvements will eventually lead to this

ideal state.
(iii) In the ideal state of a network of n nodes, whp all neighboring pairs of

active nodes will be at most (4 + ε)/n apart, when ε ≤ 1/2 and c ≥ 1/ε2.
(This bound improves to (2 + ε)/n for very small ε.)

(iv) Upon inserting or deleting a node into an ideal state, in expectation at most
O(log log n) nodes have to change their addresses for the system to again
reach the ideal state.

Proof Sketch: The unique ideal state can be constructed as follows. The virtual
node immediately preceding address 1 will be active, since its real-node owner has
no better choice and cannot be blocked by any other active node from spanning
address 1. That real node’s other virtual nodes will then be out of the running
for activation. Of the remaining virtual nodes, the one most closely preceding
1/2 will become active for the same reason, etc. We continue in this way down
the ordered list of addresses. This greedy process clearly defines the unique ideal
state, showing (i).

Claim (ii) can be shown by arguing that every local improvement reduces
the “distance” of the current state to the ideal state (in an appropriately chosen
metric). We defer the details to the full version of this paper (cf [6, Lemma 4.5]),
where we also discuss the rate at which local improvements have to be performed
in order to guarantee load balance.

For the following, we will assume that virtual addresses are chosen indepen-
dently at random. As with to the original consistent hashing scheme [7], this
requirement can be relaxed to Ω(log n)-independence by applying results of [8]

To prove (iii), recall how we constructed the ideal state for claim (i) above
by successively assigning nodes to increasing addresses. In this process, suppose
we are considering one of the first (1 − ε)n addresses. Consider the interval I
of length ε/n preceding this address. At least εn of the real nodes have not yet
been given a place on the ring. Among the possible cεn log n possible virtual
positions of these nodes, with high probability one will land in the length-ε/n
interval I under consideration. So whp, for each of the first (1 − ε)n addresses
in the order, the virtual node spanning that address will land within distance
ε/n preceding the address. Since these first (1− ε)n addresses break up the unit
circle into intervals of size at most 4/n, claim (iii) follows. Note that for very



small ε, the first (1− ε)n addresses actually break up the unit circle in intervals
of size 2/n, which explains the additional claim.

For (iv), it suffices to consider a deletion since the system is Markovian,
i.e. the deletion and addition of a given node are symmetric and cause the
same number of changes. Whenever a node claiming an address is deleted, its
disappearance may reveal an address that some other node decides to claim,
sacrificing its current spot, which may recursively trigger some other node to
move. But each such migration means that the moving node has left behind no
address as good as the one it is moving to claim. Note also that only a few nodes
are close enough to any vacated address to claim it (distant ones will be shielded
by some closer active node), and thus, as the address being vacated gets higher
and higher in the order, it become less and less likely that any node that can
take it will want it. We can show that after O(log log n) such moves, no node
assigned to a higher address is likely to have a virtual node close to the vacated
address, so the movements stop. �

We note that the above scheme is highly efficient to implement in the Chord
P2P protocol, since one has direct access to the address of a successor. Moreover,
the protocol can also function when nodes disappear without invoking a proper
deletion protocol. By having every node occasionally check whether they should
move, the system will eventually converge towards the ideal state. This can be
done with insignificant overhead as part of the general maintenance protocols
that have to run anyway to update the routing information of the Chord protocol.

One possibly undesirable aspect of the above scheme is that O(log log n)
nodes change their address upon the insertion or deletion of a node, because
this will cause a O(log log n/n) fraction of all items to be moved. However, since
every node has only O(log n) possible positions, it can cache the items stored
at previous active positions, and will eventually incur little data migration cost:
when returning to a previous location, it already knows about the items stored
there. Alternatively, if every real node activates O(log log n) virtual nodes instead
of just 1, we can reduce the fraction of items moved to O(1/n) per node insertion,
which is optimal within a constant factor. All other performance characteristics
are carried over from the original scheme. It remains open to achieve O(1/n)
data migration and O(1) virtual nodes while attaining all the other metrics we
have achieved here.

Related Work. Two protocols that achieve near-optimal address-space load-
balancing without the use of virtual nodes have recently been given [9, 10]. Our
scheme improves upon them in three respects. First, in those protocols the ad-
dress assigned to a node depends on the rest of the network, i.e. the address is
not selected from a list of possible addresses that only depend on the node itself.
This makes the protocols more vulnerable to malicious attacks. Second, in those
protocols the address assignments depend on the construction history, making
them harder to analyze. Third, their load-balancing guarantees are only shown
for the “insertions only” case, while we also handle deletions of nodes and items.



3 Item Balancing

We have shown how to balance the address space, but sometimes this is not
enough. Some applications, such as those aiming to support range-searching
operations, need to specify a particular, non-random mapping of items into the
address space. In this section, we consider a dynamic protocol that aims to
balance load for arbitrary item distributions. To do so, we must sacrifice the
previous protocol’s restriction of each node to a small number of virtual node
locations—instead, each node is free to migrate anywhere. This is unavoidable:
if each node is limited to a bounded number of possible locations, then for any
n nodes we can enumerate all the addresses they might possibly occupy, take
two adjacent ones, and address all the items in between them: this assigns all
the items to one unfortunate node.

Our protocol is randomized, and relies on the underlying P2P routing frame-
work only insofar as it has to be able to contact “random” nodes in the system
(in the full paper we show that this can be done even when the node distribution
is skewed by the load balancing protocol). The protocol is the following (where
ε is any constant, 0 < ε < 1). Recall that each node stores the items whose
addresses fall between the node’s address and its predecessor’s address, and that
`j denotes the load on node j. Here, the index j runs from 1, 2, . . . , n in the order
of the nodes in the address space.

Item balancing: Each node i occasionally contacts another node j at random.
If `i ≤ ε`j or `j ≤ ε`i then the nodes perform a load balancing operation
(assume wlog that `i > `j), distinguishing two cases:

Case 1: i = j + 1: In this case, i is the successor of j and the two nodes handle
address intervals next to each other. Node j increases its address so that the
(`i − `j)/2 items with lowest addresses get reassigned from node i to node
j. Both nodes end up with load (`i + `j)/2.

Case 2: i 6= j + 1: If `j+1 > `i, then we set i := j + 1 and go to case 1.
Otherwise, node j moves between nodes i− 1 and i to capture half of node
i’s items. This means that node j’s items are now handled by its former
successor, node j + 1.

To state the performance of the protocol, we need the concept of a half-life [11],
which is the time it takes for half the nodes or half the items in the system to
arrive or depart.

Theorem 2. If each node contacts Ω(log n) other random nodes per half-life as
well as whenever its own load doubles, then the above protocol has the following
properties.

(i) With high probability, the load of all nodes is between ε
8L and 16

ε L.
(ii) The amortized number of items moved due to load balancing is O(1) per

item insertion or deletion, and O(N/n) per node insertion or deletion. �

The proof of this theorem relies on the use of a potential function (some con-
stant minus the entropy of the load distribution) that is large when the load



is unbalanced. We show that item insertions and node departures cause only
limited increases in the potential, while our balancing operation above causes a
significant decrease in the potential if it is large.

The traffic caused by the update queries necessary for the protocol is suffi-
ciently small that it can be buried within the maintenance traffic necessary to
keep the P2P network alive. (Contacting a random node for load information
only uses a tiny message, and does not result in any data transfers per se.) Of
greater importance for practical use is the number of items transferred, which is
optimal to within constants in an amortized sense.

Extensions and Applications. The protocol can also be used if items are repli-
cated to improve fault-tolerance, e.g. when an item is stored not only on the
node primarily responsible for it, but also on the O(log n) following nodes. In
that setting, the load `j refers only to the number of items for which a node j
is primarily responsible. Since the item movement cost of our protocol as well
as the optimum increase by a factor of O(log n), our scheme remains optimal
within a constant factor.

Our protocol can be adapted for the case when items have weights, and the
load of a node is the sum of the weights of the items stored at the node. The
weight of an item can reflect its size, or its bandwidth consumption, in case of
items with different popularity. The analysis is similar; we can show that the
insertion or deletion of an item of weight w causes an amortized weight of O(w)
to be moved. There is however, one restriction: the protocol can only balance
the load upto what the items allow locally. For example, consider two nodes, one
node storing a single item with weight 1, the other node a single item with weight
100. If these two nodes enter in a load exchange, then there is no exchange of
items what will equalize the two loads.

The above protocol can provide load balance even for data that cannot be
hashed. In particular, given an ordered data set, we may wish to map it to the
[0, 1) interval in an order-preserving fashion. Our protocol then supports the
implementation of a range search data structure. Given a query key, we can use
Chord’s standard lookup function to find the first item following that key in the
keys’ defined order. Furthermore, given items a and b, the data structure can
follow node successor pointers to return all items x stored in the system that
satisfy a ≤ x ≤ b. We give the first such protocol that achieves an O(log n +
Kn/N) query time (where K is the size of the output).

Related Work. Randomized protocols for load balancing by moving items have
received much attention in the research community. A P2P algorithm similar to
ours was studied in [12]. However, their algorithm only works when the set of
nodes and items are fixed (i.e. without insertions or deletions), and they give no
provable performance guarantees, only experimental evaluations.

A theoretical analysis of a similar protocol was given by Anagnostopoulos,
Kirsch and Upfal [13], who also provide several further references. In their set-
ting, however, items are assumed to be jobs that are executed at a fixed rate, i.e.
items disappear from nodes at a fixed rate. Moreover, they analyze the average



wait time for jobs, while we are more interested in the total number of items
moved to achieve load balance.

In recent independent work, Ganesan and Bawa [14] consider a load balancing
scheme similar to ours and point out applications to range searches. However,
their scheme relies on being able to quickly find the least and most loaded nodes
in the system. It is not clear how to support this operation efficiently without
creating heavy network traffic for these nodes with extreme load.

Complex queries such as range searches are also an emerging research topic
for P2P systems [15, 16]. An efficient range search data structure was recently
given [17]. However, that work does not address the issue of load balancing the
number of items per node, making the simplifying assumption that each node
stores only one item. In that setting, the lookup times are O(log N) in terms
of the number of items N , and not in terms of the number of nodes n. Also,
O(log N) storage is used per data item, meaning a total storage of O(N log N),
which is typically much worse than O(N + n log n).

4 Conclusion

We have given several provably efficient load balancing protocols for distributed
data storage in P2P systems. (More details and analysis can be found in a
thesis [6].) Our algorithms are simple, and easy to implement, so an obvious
next research step should be a practical evaluation of these schemes.

In addition, several concrete open problems follow from our work. First, it
might be possible to further improve the consistent hashing scheme as discussed
at the end of section 2. Second, our range search data structure does not eas-
ily generalize to more than one order. For example when storing music files, one
might want to index them by both artist and year, allowing range queries accord-
ing to both orderings. Since our protocol rearranges the items according to the
ordering, doing this for two orderings at the same time seems difficult. A simple
solution is to rearrange not the items themselves, but just store pointers to them
on the nodes. This requires far less storage, and makes it possible to maintain
two or more orderings at once. The drawback is that it requires another level
of indirection, which might be undesirable for fault-tolerance reasons. Lastly,
permitting nodes to choose arbitrary addresses in our item balancing protocol
makes it easier for malicious nodes to disrupt the operation of the P2P network.
It would be interesting to find counter-measures for this problem.
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