
On the Streaming Model Augmented with a Sorting Primitive

Gagan Aggarwal∗

Stanford University
Mayur Datar†

Google
Sridhar Rajagopalan‡

IBM Almaden
Matthias Ruhl§

Google

Abstract

The need to deal with massive data sets in many practi-
cal applications has led to a growing interest in computa-
tional models appropriate for large inputs. The most impor-
tant quality of a realistic model is that it can be efficiently
implemented across a wide range of platforms and operat-
ing systems.

In this paper, we study the computational model that re-
sults if the streaming model is augmented with a sorting
primitive. We argue that this model is highly practical, and
that a wide range of important problems can be efficiently
solved in this (relatively weak) model. Examples are undi-
rected connectivity, minimum spanning trees, and red-blue
line segment intersection, among others. This suggests that
using more powerful, harder to implement models may not
always be justified.

Our main technical contribution is to show a hard-
ness result for the “streaming and sorting” model, which
demonstrates that the main limitation of this model is that
it can only access one data stream at a time. Since our
model is strong enough to solve “pointer chasing” prob-
lems, the communication complexity based techniques com-
monly used in showing lower bounds for the streaming
model cannot be adapted to our model. We therefore have
to employ new techniques to obtain these results.

Finally, we compare our model to a popular restriction
of external memory algorithms that access their data mostly
sequentially.

1. Introduction

Recently, massive data sets have appeared in an increas-
ing number of application areas. The sheer size of this
data, often in the order of terabytes, means that “polyno-
mially computable” is no longer synonymous with “effi-

∗ Supported in part by a Stanford Graduate Fellowship and NSF Grant
EIA-0137761. E-Mail:gagan@cs.stanford.edu

† E-Mail: datar@cs.stanford.edu
‡ E-Mail: sridhar@almaden.ibm.com
§ E-Mail: ruhl@google.com

ciently computable”; in fact, any problem that requires sig-
nificantly super-linear computation time is practically im-
possible to solve on these inputs. In this paper, we address
the question of “what is efficiently computable on massive
data sets”.

The main bottleneck for massive data set computations
on modern computing hardware is the cost for I/O opera-
tions, and usually not the cost for in-memory computations.
It is well-known that modern computing hardware is opti-
mized for sequential access to data, and there are substantial
penalties for non-sequential data access, manifested for ex-
ample as seek times, cache misses, and pipeline stalls. This
has, in the past, led to an interest in the streaming model of
computation [20, 5, 16], and practical applications built on
the streaming primitive [18, 10].

It is really hard to write code that accesses massive
data sets non-sequentially without a substantial degrada-
tion in performance compared to sequential access. Usually,
this code would have to be platform and operating system
specific. Consequently, there are very few general-purpose
primitives available that access data in a non-local fashion,
and still obtain maximal throughput from the I/O subsys-
tem. Of these, “sorting” is the most readily available and
most researched primitive [3, 6, 26, 11].

Consequently, streaming computations with an added
sorting primitive are a natural and efficiently implementable
class of massive data set computations. In this paper, we
study this computational model and present results of two
kinds. First, we establish that many natural problems solv-
able for massive data sets can already be solved in our
model. This indicates that it is not necessary to consider
more powerful models, as these do not seem to enable the
solution of more problems, but run the risk of being not ef-
ficiently implementable. Second, we show hardness results
for our model, i.e. demonstrate that there are clear limita-
tions to the computational power of this class.

1.1. Our Contributions

First, we formally define the “streaming and sorting”
model in section 2. We then demonstrate in section 3 that
“streaming and sorting” admits efficient solutions to a num-
ber of natural problems, such as undirected connectivity,

minimum spanning trees, suffix array construction, and
even some geometric problems. Moreover, all problems
solvable in NC with a linear number of processors can also
be solved in our model. These problems are all known to
be hard in the streaming model, suggesting that the addi-
tion of a sorting operation extends that model in a meaning-
ful way.

The fact that most of the problems studied under more
powerful models (e.g. [1]) can be solved in our model
demonstrates that the additional power of those models is
not strictly necessary, and that by studying the “weaker”
class of “streaming and sorting”, we do not lose any real
computational power, while gaining a simpler and provably
efficient model.

In section 4 we turn to hardness results for the “stream-
ing and sorting” model, asking the question whatcannot
be computed in our computational model. As far as we
are aware, there has been no past work on hardness results
on computational models that are strict extensions of the
streaming model. Our results might, therefore, be the first
of their kind.

Intuitively, a problem is solvable in our model if access
to data can be split into several linear passes over the data,
with a known pattern of data reordering (sorting) between
successive passes. A natural candidate for a problem that
is hard for our model is therefore a problem that requires
a non-predictable order of data access. One such candidate
is “pointer chasing”, in particular since it has a high com-
munication complexity (see e.g. [21]). Surprisingly, thek-
round pointer chasing problem can be solved inO(logk)
passes in the “streaming and sorting” model, and is there-
fore not a “hard” problem for this model. This demonstrates
that communication complexity techniques used to show
lower bounds in the streaming model (see e.g. [7]) cannot
be adapted to show hardness results for our model.

In the main technical result of this paper, we introduce
a new problem called “alternating sequence” (a variant of
pointer chasing), and show its hardness for the “streaming
and sorting” model. To this end, we develop a new lower-
bounding technique based on purely combinatorial argu-
ments.

In section 5, we discuss the relationship between the
streaming and sorting model and another model previously
discussed in the literature, which we name “linear exter-
nal memory algorithms” (LEMA). Intuitively, this model is
equivalent to a streaming and sorting model enhanced with
the ability to concurrently access multiple streams and not
just one. It turns out that the LEMA model is strictly more
powerful than streaming and sorting (without simultaneous
access to multiple streams); in particular, it can efficiently
solve the “alternating sequence” problem.

We conclude the paper in section 6 by discussing further
research directions and open problems.

1.2. Related Work

The “streaming model” was defined implicitly in the
work of Munro and Paterson [20], and even earlier, in the
context of algorithms for systems with tape-based storage
and little memory. The growing interest in massive data set
computations has led to numerous publications on this topic
in recent years; a comprehensive survey of this area is be-
yond the scope of this introduction.

The streaming primitive has been studied in the past few
years in the graphics community (see [10, 22, 17, 18], which
also list further references), and this application area re-
cently also received some interest in the theory community
[15, 2].

Borodin, Nielsen and Rackoff [9] study a computational
model in which the data is accessed sequentially, but the
as-yet-unread part of the input can be re-sorted depending
on the already read input. This way of combining stream-
ing and sorting is much more powerful than our approach,
e.g. the problem ALTERNATING SEQUENCE from section
4.1 that is hard in our model is easy in theirs. However, their
model was not meant for computations on massive data sets,
and in fact does not seem practical in that setting.

The other computational models for massive data set
computations studied in the literature are mostly restrictions
of the “external memory algorithms” (EMA) model intro-
duced by Aggarwal and Vitter [4, 24]. Many of these mod-
els (such as the one by Abello et al [1]) inherit the potential
to access data in a non-sequential fashion, making them po-
tentially harder to implement efficiently in practice.

The “mostly-sequential” EMA model studied in section
5 has been considered by several researchers [13, 14, 8],
who emphasized that it is a particularly efficient subclass of
EMAs.

2. Streaming and Sorting

We will first define the notion of a “streaming and sort-
ing” algorithm. A streamis a sequenceS = x1x2 . . .xn of
itemsxi ∈ Σ, whereΣ is some problem-specific universe. A
memory m streaming passis a function computed by a Tur-
ing machineM with a local memory ofm bits that reads an
input streamS and writes an output streamStrM(S). The
machineM is allowed to move only left-to-right on both
streams, i.e. it can only readS in a single linear pass, and it
can only append to the output string, never erase what it has
already written. Amemory m sorting passis a function de-
fined using a Turing machineM with memorym that com-
putes a partial order onΣ, i.e. given two items ofΣ, it re-
turns which one is greater, or whether they are equal or in-
comparable. IfS is the input of a sorting pass, then the out-
put SortM(S) is S reordered according to the partial order-
ing defined byM. Note that the result is not uniquely de-

fined if there are incomparable items inS ; in practice, this
problem is easy to avoid. Also note thatM’s computation
in the sorting pass is side-effect-free, i.e. no state is main-
tained between comparisons.

Definition 1 (StrSort)
We let StrSort(pStr, pSort,m) be the class of functions com-
putable by the composition of up to pStr streaming passes
and pSort sorting passes, each with memory m, where we
assume that

• the local memory is maintained between streaming
passes, and

• streams produced at intermediate stages are of length
O(n), where n is the length of the input stream.

We set StrSort(p,m) := ∪p′+p′′≤pStrSort(p′, p′′,m). �

Note thatStrSort(p,0,m) is not streaming as it is usu-
ally defined, since customarily thep passes are performed
on the input stream, without ever writing any intermediate
streams. However, one can easily see that by constructing
the streams only implicitly,StrSort(p,0,m) can be simu-
lated by ap-pass streaming algorithm with memorym· p
that does not produce any intermediate streams.

3. Algorithms

As stated in the introduction, adding the sorting primitive
greatly enhances the computational power of the streaming
model, and many natural problems are efficiently solvable
in theStrSort-model. By “efficiently”, we mean “using lit-
tle memory and few passes”. In particular we are interested
in algorithms that use poly-logarithmic memory and a poly-
logarithmic number of passes. For this purpose, we define
PL-StrSort := ∪kStrSort(O(logk n),O(logk n)).

Clearly, tasks like computing the median, or computing
frequency moments, while hard for the traditional stream-
ing model, are trivial inPL-StrSort, requiring only a sin-
gle sorting pass to order the input elements. We will now
discuss some non-trivial examples of problems solvable in
PL-StrSort, but not in the traditional streaming model.

3.1. Undirected Connectivity

First, we give aPL-StrSort-algorithm for undirected
s-t-connectivity. For this problem we assume that the in-
put stream consists of edges(u,v) of an undirected graph
and two distinguished verticess andt, and the question is
whether there is a path froms to t in the graph.

Lemma 2
Undirected s-t-connectivity can be solved in randomized
StrSort(O(logn),O(logn)).

Proof: Our algorithm is very similar to the one commonly
used inRNC to solve this problem. The algorithm proceeds
as follows. We assign a random number, a 3 logn-bit inte-
ger, to each vertex of the graph. Then each vertex gets la-
beled by the smallest number among the ones assigned to
its neighbors and itself. We then merge all vertices that re-
ceive the same label. In expectation, this reduces the number
of nodes in the graph by a constant factor. Thus, by repeat-
ing this process a logarithmic number of times, we obtain
a graph without any edges, where each vertex represents
a connected component of the original graph. By keeping
track of which intermediate verticessandt get merged into,
we can answer the connectivity query by simply checking
whether they end up in the same component.

The remainder of the proof consists of proving that the
number of nodes decreases by a constant factor in each
contraction phase, and that each such phase can be imple-
mented by an algorithm inStrSort(O(1),O(logn)).

Correctness.We have to show that in expectation the num-
ber of nodes decreases by a constant factor in each contrac-
tion phase.

Suppose the number of nodes before a relabeling phase
isn. Since with high probability all randomly assigned num-
bers are distinct, we can assume without loss of generality
that the assigned numbers are actually{1,2, . . . ,n}, since
only their relative order matters for the relabeling. Further,
we can assume that there are no nodes with out-degree 0
in the graph, because if eithers or t are mapped to such a
node, we can decide the connectivity question immediately,
and otherwise these nodes can simply be ignored.

A nodev can get assigned a label greater thann/2 only if
both itself and its neighbors get assigned random numbers
greater thann/2. Since this only happens with probability
1/2 per node, andv has at least one neighbor,v gets a la-
bel greater thann/2 with probability at most 1/4. Thus, the
expected number of nodes that receive a label greater than
n/2 is only n/4. The expected total number of distinct la-
bels in the relabeled graph is therefore at most3

4n (assum-
ing the worst case that all labels less thann/2 are actually
used). This shows the desired reduction in size.

Implementation.Let us now sketch the implementation of
a contraction phase. We assume that our stream is the list
V of the verticesv1,v2, . . . ,vn, followed by the listE of the
vertex-pairs representing the edges. Since the graph is undi-
rected,E contains both pairs(u,v) and (v,u) for an edge
betweenu andv.

While both V and E are part of one stream, we will
sometimes state operations on the two halves independently,
assuming that in such a pass, the other half of the stream is
passed through unchanged.

1. First, in a pass overV , we produce a streamR that
contains pairs of node namesvi and random distinct

numbersr i , e.g. 3 logn-bit random numbers:

(v1, r1)(v2, r2)(v3, r3) . . .(vn, rn)

2. Now we determine the new label for each node, i.e. the
lowest value ofr i among its neighbors and itself.

(a) First, we sort the pair of streamsR andE , so that
the pairs(vi , r i) are directly followed by all edges
whose first component isvi :

(v1, r1)(v1,)(v1,) . . .(v2, r2)(v2,) . . .

In one pass on this stream, we can produce a new
stream of edgesE ′, where for the first component
of each edge,vi is replaced by the corresponding
r i :

(r1,)(r1,) . . .(r2,) . . .

(b) Now we sortR andE ′, so that the pairs(vi , r i) ap-
pear right before all edges whose second compo-
nent is equal tovi :

(v1, r1)(,v1)(,v1) . . .(v2, r2)(,v2) . . .

In this stream, the numberr i assigned to a node
vi occurs right before the list of numbers as-
signed to the nodes incident tovi . Thus, in
one linear pass, we can determine the small-
est number among them for eachvi , which
yields a streamL of nodesvi with their new la-
bels`i :

(v1, `1)(v2, `2)(v3, `3) . . .(vn, `n)

3. Now that we know the correct labels, all that remains
is to relabel the edges inE . This can be done by re-
peating step 2(a) for both the first and second compo-
nent ofE , usingL instead ofR . While producing this
new stream, we can also eliminate all edges of the form
(`,`), yielding a new stream of edgesEnew.

The new list of vertices can be obtained fromL by
outputting only the second component`i of each pair,
sorting the result, and removing duplicates.�

3.2. Minimum Spanning Tree

Using the above algorithm for undirected connectivity as
a subroutine, it is not hard to compute minimum spanning
trees in the “streaming and sorting” model.

We are going to use a divide and conquer approach to
compute a minimum spanning tree of a graphG = (V,E).
The algorithm is as follows.

1. Sort the edgesE = {e1,e2, . . . ,em} by increas-
ing weight.

2. Let E0 = {e1,e2, . . . ,em/2} be the “lighter” half of the
edges.

3. Compute the connected components of(V,E0).

4. We now recursively compute minimum spanning trees
for

(a) each connected component in(V,E0), and

(b) the graph(V ′,E′) whereV ′ is the set of connected
components in(V,E0), andE′ contains the edges
in E \E0 connecting pairs of components.

It is not hard to see that the union of the edges in the in-
dividual spanning trees yields the answer to the minimum
spanning tree problem forG.

In the StrSort-implementation, the current stream al-
ways contains a concatenation of all sub-problems currently
being considered. During a divide step, the edges corre-
sponding to the newly created sub-problems might appear
in an arbitrary order in the input stream. By applying a sort-
ing pass, we can rearrange these edges so that edges belong-
ing to the same sub-problem appear consecutively.

The algorithm is similar to Kruskal’s algorithm, but
reorders computations in a way that is compatible with
streaming computations. The sorting passes are used to re-
arrange the data so that they appear in the correct order for
subsequent streaming passes.

3.3. Red-Blue Line Intersection

We now consider a geometrical problem, moti-
vated by geometric range queries, called RED-BLUE-
INTERSECTION. The input is a list of red and blue line seg-
ments in the plane. The red line segments are parallel to the
x-axis, the blue segments parallel to the y-axis. The out-
put is the number of intersection points between red and
blue line segments. (In many applications, one is actu-
ally interested in a list of intersection points, but that might
require an output greater than the input, which our stream-
ing model does not allow.)

Lemma 3
RED-BLUE-INTERSECTIONcan be computed in determin-
istic StrSort(O(logn),O(logn)).

Proof: We assume that no endpoint of a blue line segment
lies on a red line segment. This assumption simplifies the
presentation, but can be removed by standard techniques.

Let the slab of a line segment(x1,y1)− (x2,y2) (with
x1 < x2) be the vertical strip[x1,x2]×R of the plane. Then
the following claim follows by a simple case analysis.

Claim 4
The number of intersections of red and blue line segments
is equal to L−U , where

• L := the number of pairs of red line segments s and
lower end-points of blue line segments p, such that p
is in the slab of s and belows, and

• U := the same for upper end-points of blue line seg-
ments. �

The streaming algorithm computes the two valuesL andU
and outputs their difference. For symmetry reasons, it is suf-
ficient to show how to computeL. For this, we create a
stream of all red line segments and blue lower endpoints.
We use a divide-and-conquer approach, also known as dis-
tributional sweep [24].

The basic idea of the approach is the following. The
input is divided intom vertical slabs[xi ,xi+1]×R where
−∞ = x0 < x1 < · · ·< xm = +∞, such that each slab contains
roughly the same number of blue lower endpoints. This di-
vision can be easily accomplished by a sort operation. Now
we sort all these points by increasingy-coordinate. As we
process this stream, for each of them slabs, we keep track
of the number of blue lower endpoints seen so far. When
we encounter a red line segment, then for each slab that it
crosses completely, we add the number of blue lower end-
points seen in that slab to our running sum. The (possibly)
two ends of a segment that do not completely cross a slab
are recursively passed down to the subproblem in the slab
it is in. We then recursively solve them slab problems. In
logmn passes, this finds all possible intersections, proving
Lemma 3.�

We note that a generalization of the above algo-
rithm can be used to solve the red-blue-intersection
problem for arbitrary orientations of red and blue line seg-
ments inStrSort(O(log2n),O(logn)). More details will be
in the full version of this paper.

3.4. Simulation of Circuits

Many other problems can be solved inPL-StrSort be-
cause they also admit algorithms that access data in a se-
ries of linear passes, interleaved with a known pattern of
data reordering. Examples are substring matching, suffix ar-
ray computations, undirected graph connectivity, comput-
ing maximal independent sets, finding a minimum cut in a
undirected graph and many other problems (see [23] for a
more comprehensive overview).

Some of these results are consequences of the fact that
in our computational model, it is quite straightforward to
evaluate uniform linear width, poly-logarithmic depth cir-
cuits. Since problems inNC that require only a linear num-
ber of processors can be solved by such circuits, this gives
us a systematic way of constructing streaming algorithms
for these problems. Examples of such problems are the
undirected connectivity algorithm mentioned above, and the
computation of a maximal independent set [19].

Lemma 5
A uniform bounded fan-in circuits with width O(n) and
depth d(n) can be evaluated in deterministic StrSort us-
ing d(n) streaming and sorting passes, and O(logn) mem-
ory.

Proof Sketch:This Lemma can be shown similar to PRAM
simulations in the external memory model [12]. To evalu-
ate a circuit, we inductively generate for each level` of the
circuit a streamS` that contains a list of the inputs taken by
the circuit nodes on that level, ordered by node. (Note that
S1 can easily be computed from the input.) One streaming
pass onS` can compute the outputs of all nodes on level`.
To go from these outputs toS`+1, all we have to do is rear-
range them according to the input pattern of the next level.
This can be done by labeling the outputs with the numbers
of the gates that take them as inputs (and creating duplicates
if an output is input to multiple gates). Sorting on these la-
bels yields the desired order.�

4. Hardness

The “streaming and sorting” model is clearly much more
powerful than the traditional streaming model, as evidenced
by the algorithms mentioned above. So it is only natural to
ask whatcannotbe computed in this model.

Intuitively, problems hard for the streaming and sort-
ing model would require data access in unpredictable pat-
terns, i.e. the data accesses cannot be rearranged in a poly-
logarithmic number of fixed-order passes over the data. At
first glance, a good candidate for a hard problem might
therefore be “pointer-chasing”. In this problem, one is given
an array ofn numbers in the range{1, . . . ,n}. If the i-th ar-
ray element isj, then we say that thei-th element points to
the j-th element. Given a numberk, we start at the first el-
ement of the array, and then repeatedly move from the cur-
rent element to the element it points to. The output is the el-
ement we reach afterk steps.

However, while the pointer-chasing problem seems to re-
quire data access in arbitrary patterns, and is indeed very
hard from a communication complexity point of view [21],
it can be solved inPL-StrSort. This is because it is possible
to square a graph in theStrSort model in a constant num-
ber of passes, i.e. we can compute the result of following
pointers 2,4,8,... times. This allows us to solve the pointer-
chasing problem inO(logk) passes in theStrSort model.

4.1. ALTERNATING SEQUENCE

We now state a problem that builds on the pointer-
chasing paradigm, but while remaining conceptually sim-
ple, is provably intractable in theStrSort model. The prob-
lem is called ALTERNATING SEQUENCEand is defined as
follows.

Input: A stream of pairs
(a1,a′1)(a2,a′2) . . .(an,a′n)(b1,b′1)(b2,b′2) . . .(bn,b′n).

Output: The sequenceai1b j1ai2b j2ai3b j3 . . . , satisfying

(i) i1 = 1

(ii) ik = min{i > ik−1 | ai = b′jk−1
} for k≥ 2

(iii) jk = min{ j > jk−1 | b j = a′ik} for k ≥ 1, using
j0 = 0.

The sequence ends as soon as eitherik = n, jk = n or
the minima in equations (ii) or (iii) do not exist.

This problem is best explained by an example. Con-
sider the following sequence, where the(ai ,a′i)-pairs are
in the top stream, and the(b j ,b′j)-pairs are in the bot-
tom stream. For this example, the output would start with
1,7,4,17,2,3,1,11,. . . .

(2,3) (4,17) (2,3) (11,1) (1,11)

(17,3) (4,17) (3,8) (7,3) (17,2) (3,1)

(5,19)

Stream a

Stream b

(1,7)

(7,4)

Theorem 6
The problem ALTERNATING SEQUENCE can be solved in
StrSort(O((n/m)1/2),m). However, it cannot be solved in
deterministic StrSort(p,m) unless pm= Ω(n1/3). We as-
sume that elements are indivisible, and that only compar-
isons between elements are allowed.

4.2. Upper bound

Proof: We first give an algorithm to compute ALTER-
NATING SEQUENCE in StrSort(O((n/m)1/2),m). The al-
gorithm proceeds in 2(n/m)1/2 phases. In the first phase,
we construct a stream containing(n/m)1/2 copies of the se-
quence

(∗) A1A2 . . .A√nmB1B2 . . .B√nm,

whereAi and Bi are short for(ai ,a′i) and (bi ,b′i), respec-
tively (we will continue to use this notation for the remain-
der of this proof). Clearly, the stream has lengthO(n), and
can be constructed by outputting elements multiple times,
indexed by their desired position on the tape, followed by a
sorting pass.

We can use this stream to output the beginning of the an-
swer upto the point where either of the indicesik or jk be-
comes greater than

√
nm. This is done as follows. When

reading the first sequence ofA’s, we keepA1,A2, . . . ,Am

in memory. This enables us to construct the answer upto
ik ≤ m, jk ≤

√
nmon the following sequence ofB’s. When

we exhaust theA’s in our memory, we continue to the next
stretch ofA’s, and putAm+1, . . . ,A2m in memory, use that
with the following stretch ofB’s, and so on.

Since we processm of A-elements for each copy of(∗),
after reading the whole stream, theA-elements have been
processed upto indexm· (n/m)1/2 =

√
nm. This shows that

we will make a progress of
√

nmon one of the two indices.
In the second (and later) phases, we repeat the same

pattern, but theA- and B-subsequences of length
√

nm
start where we left off in the previous phase. Since one
of the indices advances by

√
nm in each phase, we will

have constructed the whole output in at most 2n/
√

nm=
O((n/m)1/2) phases, which yields the claimed number of
passes.

4.3. Lower bound

We now show the harder part of the Theorem, the lower
bound ofp = Ω(n1/3/m) passes for theStrSort model. We
show this bound by fixing an arbitrary algorithm, and then
adversarially choosing its input such that it cannot output
the correct solution unless the number of passes meets the
claimed bound. In this adversarial model we only decide
on the equality of two items when the algorithm compares
them.

The proof consists of two main parts. First, we show that
in a single pass, we cannot make too much progress towards
the solution of the problem. This is because whateverO(n)-
size input stream we use in that pass, there will be a roughly√

n/m-length alternating sequence that we cannot output
based on linearly scanning the stream.

In the second part of our proof, we apply this con-
struction to a sequence of passes, which slightly weakens
the

√
n/m-bound as the algorithm gains more information

about the processed data. In the end, it yields theΩ(n1/3/m)
lower bound on the number of passes.

The key lemma for the first half of the proof is the fol-
lowing. It shows that a string that contains all possible AL-
TERNATING SEQUENCEanswers as subsequences must be
very long (at leastn2 + 1 symbols). The converse of this
statement is what we will need: a string of lengthO(n) can
only contain all ALTERNATIVE SEQUENCEanswers for in-
stances of lengthO(

√
n). Here and in the following, we will

useAi andB j to stand for(ai ,a′i) and(b j ,b′j), respectively.

Lemma 7
Let Sbe the set of alternating increasing sequences of the al-
phabet Σ = {A1, . . . ,An, B1, . . . ,Bn}, i.e. strings of the form
[Ai1]B j1Ai2B j2 . . .Aik[B jk] where i` < i`+1 and j` < j`+1 for
1≤ ` < k, and at most the very last symbol is equal to An or
Bn. By [. . .] we mean that the symbol is optional. Let s be
a Σ-string that contains all strings in Sas subsequences (i.e.
the elements of each s∈ Soccur in order in s, but not nec-
essarily consecutively). Then s has length at least n2 + 1.
�

Although we will not need this later, it is interesting
enough to note that the bound in the lemma is actually tight,
i.e. there are strings of lengthn2 + 1 of the desired form.
Let ai to be the stringAiAi+1 . . .An−1 andbi be the string
BiBi+1 . . .Bn−1. Then the following string of lengthn2 + 1
has the desired properties:

b1a1b1a2b2a3b3a4b4 . . .an−1bn−1AnBn

We leave the details to the reader, and concentrate on the
lower bound.

Proof (Lemma 7): Fix s ∈ Σ∗, and letsi be the suffix ofs
that begins at positioni (e.g.s1 = s). We will now define
sets of stringsSi such that all strings inSi have to appear as
subsequences insi . We setS1 := S, and define the otherSi

inductively. If thei-th symbol ofs is Ak, then we set

Si+1 = {s| “s does not start withAk” and(s∈Si∨Aks∈Si)}.

Here “Aks” stands for the string obtained by prependingAk

to s. ReplacingAk with Bk gives the definition in the case
that thei-th symbol ofs is Bk.

It is not hard to see that for eachi the strings inSi nec-
essarily have to be contained as subsequences insi . So to
show the desired lower bound on the length ofs, it suffices
to show thatSi 6= /0 for i ≤ n2 +1.

Let us define predicatesα(i,k, `) andβ(i,k, `) as “Si con-
tains a string with the substringAkB`” and “Si contains a
string with the substringB`Ak”, respectively. If at least one
of these predicates is true, it implies thatSi 6= /0. We will now
show that going fromi to i + 1, not too many of the pred-
icates change from true to false. The intuition behind this
is that some predicates imply other predicates. For exam-
ple α(i,k, `) implies β(i,k′, `) for all k′ > k, since an alter-
nating sequence which containsAkB` can be continued as
AkB`Ak′ for any k′ > k. These implications limit the num-
ber of predicates that can become false. We will show the
following.

Claim 8
Let k,k′, `, `′ be numbers between 1 and n with k 6= k′ or
` 6= `′. If α(i,k, `), β(i,k, `), α(i,k′, `′) and β(i,k′, `′) are
all true, then at least three of α(i + 1,k, `), β(i + 1,k, `),
α(i +1,k′, `′) and β(i +1,k′, `′) are true.

Proof: Let us consider the case where thei-th element ofs
is anA-element, sayA j (the “B-case” is similar). Then the
β-predicates will be unchanged fromi to i + 1. And theα-
predicates can only change ifj = k or j = k′. In fact, the
only way that both these predicates could become false is if
j = k = k′ holds. This implies̀ 6= `′, wlog ` < `′. But the
truth ofβ(i,k, `) then implies thatSi and thereforeSi+1 con-
tain strings that containB`AkB`′ , and thusα(i +1,k, `′) re-
mains true, which proves the claim.�

Thus, going fromi to i + 1 there will be at most one
α(. . . ,k, `), β(. . . ,k, `) pair for which one of the predicates
becomes false, after both having been true so far. Since at
the beginning, alln2 suchα,β-pairs are true, it takes at least
n2 elements ofs to hit all these pairs once. And for the last
pair hit, it takes one more character to satisfy the remain-
ing true predicate in it, sos has to contain at leastn2 + 1
characters.�

Lemma 7 shows that is hard to interleave the two streams
A1A2 . . .An andB1B2 . . .Bn into one stream such that all pos-
sible answers to ALTERNATING SEQUENCEappear as sub-
sequences in the interleaved stream. For our application of
streaming passes, we are however interested in the mini-
mum stream length such that a memorym algorithm could
produce all possible answers to ALTERNATING SEQUENCE.
This is answered by the following corollary.

Corollary 9
Let s be a string, such that all alternating sequences of the
form stated in Lemma 7 can be output by a linear scan of s
by a machine of memory m. Then the length of s is at least
(n

m+1)2 +1. �

Note that Corollary 9 is not tight, consider e.g. the case
m = Ω(n), where the lower bound is just a constant, but
clearly eachAi and eachBi has to appear at least once ins,
giving a trivial lower bound of 2n. But the corollary is still
strong enough for our purposes.

Proof (Corollary 9): Group the elements ofA1,A2, . . . ,An

into n
m+1 groups ofm+ 1 consecutive elements each (i.e.

A1, . . . ,Am+1 form the first group,Am+2, . . . ,A2m+2 the sec-
ond, and so on), and do the same for theB’s. By “inter-
leaving anA-group with aB-group” we mean that we al-
ternate them+ 1 elements in theA-group in ascending or-
der with them+ 1 elements of theB-group, for example
A1B1A2B2 . . .Am+1Bm+1 for the first two groups. Now con-
sider only the strings inS that are concatenations of such
interleaved groups.

Any memorym algorithm outputting these strings upon
readings must for each interleaved group pair read at least
oneA-element and oneB-element froms. This is because
the groups have sizem+ 1 each, so they could not possi-
bly have been entirely in memory before outputting the in-
terleaved group pair.

By restricting our view to “representatives of groups”,
not distinguishing the individual elements of groups, the
previous observation implies thats must actually be an in-
terleaved string in the sense of Lemma 7 on the group rep-
resentatives. Since there arenm+1 A- and B-groups each,
Lemma 7 therefore implies thats has to have length at least
(n

m+1)2 +1. �

For our adversarial argument, we now fix a particular
streaming algorithm. We allow the algorithm to construct
arbitrary input streams for each of its passes. Even in this
more powerful model, we can still prove the lower bound.

To fix the input we will now inductively construct a se-
quence of numbers 1= t1 < t2 < t3 < · · · < tk = n, and al-
ternating sequencess1 ⊂ s2 ⊂ s3 ⊂ ·· · ⊂ sk (where bys⊂ s′

we mean thats is a prefix ofs′), such that for all 1≤ i < k:

(i) sk is the correct output to the ALTERNATING SE-
QUENCEproblem,

(ii) all elements of si not in si−1 are from the set
{Ati , . . . ,Ati+1−1,Bti , . . . ,Bti+1−1}, and

(iii) si is chosen so that, even based on the comparisons
the algorithm performed in the firsti−1 passes, it is
not possible for the algorithm to output the elements
of si \si−1 in order during passi.

The last point implies in particular that the algorithm can-
not output the correct solution withink passes.

For the first step of the inductive construction, we choose
t2 such that(t2/m+ 1)2 + 1 is greater than the length of
the stream in pass 1. This means thatt2 can be chosen
asO(m

√
n), where the constant depends only on the con-

stant in theO(n) bound we imposed on the maximal stream
length. By Corollary 9 this implies that there will be an al-
ternating sequence of theAi andBi with indices bounded
by t2 that cannot be output by a memorym algorithm upon
reading the stream. We lets1 be one such sequence.

For the inductive step, we have to modify our argument
to account for the fact that the algorithm already has made
some comparisons in the previous passes, and our choice of
si must be consistent with them.

In the previousi−1 passes, the algorithm can have per-
formed a total ofO((i−1)nm) comparisons – each element
in the memory could have been compared to every element
in the first i − 1 streams. We are enforcing the policy that
whenever a comparison during passj involves an element
with index greater thant j+1, then we will always return “un-
equal”. Also, we enforce thatai 6= a j , a′i 6= a′j , bi 6= b j and
b′i 6= b′j for all i 6= j.

For passi, we therefore want to chooseti+1 such that
there is an alternating sequencesi+1 \ si with indices be-
tweenti andti+1 not contained in a stream of lengthO(n),
and such that the sequence doesnot consecutively contain
any of theO((i − 1)nm) pairs for which we already an-
swered “unequal”. If one excludes a set of` (A,B)-pairs
from appearing consecutively in the strings ofS, then a sim-
ple modification of the proof of Lemma 7 yields a lower
bound on|s| of n2− `+1.

So we have to chooseti+1 such that((ti+1− ti)/(m+
1))2 − nm(i + 1) + 1 > O(n), which can be satisfied by
ti+1− ti = Ω(

√
nm2 +nm3(i +1)), in particular byti+1−

ti = Ω(
√

nm3
√

i +1), where the constant only depends on

the constant used for theO(n) upper bound on stream
lengths.

In summary, we can accomplish the selection ofti ’s and
si ’s as long asti+1− ti = Ω(

√
nm3(i +1)) for all i. This

gives the following upper bound onk:

k

∑
i=1

Ω(
√

nm3i)≤ n =⇒
k

∑
i=1

√
i = O(

√
n/m3)

Since ∑k
i=1

√
i = O(k3/2), this means the construction

is possible fork up to (
√

n/m3)2/3 = n1/3/m, which con-
cludes the proof of Theorem 6.�

4.4. A decision version of ALTERNATING SE-
QUENCE

A polynomial separation analogous to Theorem 6 can
also be shown using the following decision problem: the in-
put is just like ALTERNATING SEQUENCE, but now every
pair (ai ,a′i) and(b j ,b′j) has acolor which is either red or
blue. The desired answer is whether the last element of the
output of ALTERNATING SEQUENCEis a red or a blue ele-
ment.

We briefly sketch how the computation of the ALTER-
NATING SEQUENCE function can be reduced inStrSort
to this decision problem. We will do this with a factor
O(log2n) increase in the number of required passes. Thus,
the hardness of the function implies the hardness of the de-
cision problem.

So suppose we have an oracle for the decision problem (a
bit of care shows that each invocation of this oracle can be
replaced by a correspondingStrSort algorithm in the fol-
lowing). First, this allows us to find the last element of the
ALTERNATING SEQUENCE output (and not just its color)
in O(logn) streaming passes. This is easily done using bi-
nary search: color half the input pairs red and half the pairs
blue, and invoke the oracle. This shows us in which half of
the pairs the last element is. We then recurse on this half
(color it half red/half blue), and so on. AfterO(logn) appli-
cations of the oracle, we know the identity of the last ele-
ment.

The algorithm producing the last element of the AL-
TERNATING SEQUENCE output can be used to give
a divide-and-conquer solution to ALTERNATING SE-
QUENCE itself. For this, we consider the first half of
the input streams (a1,a′1)(a2,a′2) . . .(an/2,a

′
n/2) and

(b1,b′1)(b2,b′2) . . .(bn/2,b
′
n/2). Given the above algo-

rithm, we can compute the last two elements in the AL-
TERNATING SEQUENCE output for these half-problems.
(The second-to-last element can be computed by first com-
puting the last element, and then deleting it and the part of
the stream following it from the input, and again comput-
ing the last element.)

The knowledge of these elements “in the middle” of the
output allows us to split the input streams in half, and con-
struct solutions for both halves independently. Note that in
each divide step, at least one of the streams gets split ex-
actly in half, showing that onlyO(logn) recursions are nec-
essary. Thus, ALTERNATING SEQUENCEcan be reduced to
the red/blue decision problem, while multiplying the num-
ber of passes byO(log2n).

5. Linear Access External Memory Algo-
rithms

5.1. Definitions

In this section, we will elucidate the relationship of the
StrSort model to the well-studied external memory model.
External memory algorithms (EMAs) study the effect that
block-oriented external data storage has on the efficiency of
algorithms (see [24] for a recent survey). An external mem-
ory algorithm can access the external storage (disk) only
in units of blocks (each containingB items), and perfor-
mance is measured in terms of the total number of disk ac-
cesses (reads and writes). Thus, a good data storage scheme
and exploitation of locality are necessary for efficient al-
gorithms. Theparallel disk modelintroduced by Vitter and
Shriver [25] has the following parameters:

N = problem size (in data items),

M = internal memory (in data items),

B = block transfer size (in data items), and

D = number of independent disk drives.

In this paper we are only interested in the single proces-
sor case, so we will ignore the (sometimes studied) addi-
tional parameter of the number of processors.

As mentioned in the introduction, reading data items
sequentially from a disk achieves a substantially higher
throughput than performing random accesses. Thus, exter-
nal memory algorithms that only perform sequential reads
or writes are a particularly efficient subclass of EMAs. We
therefore define a linear access EMA (LEMA) as an EMA
with the following parameter:

P= number of out-of-sequence reads/writes on the disks
(“passes”)

A read or write operation is considered “out-of-
sequence” if it does not act on the data block follow-
ing the one last read or written on the corresponding disk.
We are interested in algorithms for whichP and M are
small, i.e. poly-logarithmic inN. The class of these prob-
lems is denoted byPL-LEMA .

5.2. Relation to StrSort

While LEMA is somewhat similar to theStrSort model
(in that the data is read and written sequentially), thePL-
LEMA model turns out to be strictly more powerful than
thePL-StrSort model. Since we can sort inLEMA using
a logarithmic number of passes, we can simulate any algo-
rithm for thePL-StrSort model in thePL-LEMA model
while increasing the number of passes by at most a loga-
rithmic factor. On the other hand, the ALTERNATING SE-
QUENCE problem which needs at least a polynomial num-
ber of passes inStrSort (as shown in Theorem 6) can
be solved very efficiently (using only two passes) inPL-
LEMA . The picture in section 4.1 suggests how to solve
it using concurrent access to two disks. First, one divides
the input onto two disks, one containing thea-pairs, and the
other theb-pairs. Then, we begin by readinga′1, and scan-
ning the second disk until a matchingb j is found. Then we
scan the first disk to find anai matchingb′j , and so on, al-
ternating between the two disks. In this sense, the solution
makes maximal use of the fact that it can read the two disks
independently.

6. Conclusion

In this paper, we have studied a model for massive data
set computations – which we think can be efficiently imple-
mented – by extending the streaming model with a sorting
primitive. This model allows for the efficient solution of a
variety of natural problems known to be hard for the stream-
ing model, but computable using stronger models which are
harder to implement in practice. These problems include
undirected connectivity, MST, red-blue line intersections,
and several others. We have also proved one of the first hard-
ness results for models of massive data set computations
that are strict extensions of the streaming model. The com-
munication complexity based techniques which were pre-
viously used in showing lower bounds for the streaming
model do not generalize to our model, and consequently,
new methods had to be developed.

Since this computational class is a quite natural exten-
sion of the traditional streaming model, and efficiently im-
plementable in practice, it deserves further study. For ex-
ample, can a breadth first or depth first traversal of a graph
be computed efficiently in this model? Can our lower-
bound result be extended to randomized algorithms or the
bit model, where operations other than comparisons are al-
lowed? And are there more natural problems that are hard
to solve in this model, yet can be realistically solved on
massive data sets? A candidate problem could be SUBSE-
QUENCE, in which given two strings, the problem is to de-
cide whether one is a subsequence of the other.

We have also compared the “streaming and sorting”
model to a model we calledLEMA , which is a restriction of
external memory algorithms to mostly linear accesses to ex-
ternal storage. We showed that the ability to read input from
two disks simultaneously makesLEMA strictly more pow-
erful than the “streaming and sorting” model. As mentioned
above, it would be interesting to find more natural prob-
lems than ALTERNATING SEQUENCEthat separate the two
classes. It is also an interesting open problem whether in-
creasing the number of independently accessible disks in
LEMA always leads to a polynomial increase in computa-
tional power. We saw such an increase in the case of one
versus two disks as demonstrated by ALTERNATING SE-
QUENCE.

Acknowledgments

We thank Jon Feldman for his help in proving Lemma
7, the anonymous reviewers for their comments, and David
Karger, T.S. Jayram, Piotr Indyk, Ron Fagin, and the partic-
ipants of the DIMACS Working Group on Streaming Data
Analysis for helpful discussions.

References

[1] J. Abello, A. L. Buchsbaum, and J. R. Westbrook. A Func-
tional Approach to External Graph Algorithms.Algorith-
mica, 32:437–458, 2002.

[2] P. Agarwal, S. Krishnan, N. Mustafa, and S. Venkatasubra-
manian. Streaming Geometric Optimization Using Graphics
Hardware. Technical Report TD-5HL2NX, AT&T, 2003.

[3] R. C. Agarwal. A Super Scalar Sort Algorithm for RISC Pro-
cessors. InProceedings SIGMOD, pages 240–246, 1996.

[4] A. Aggarwal and J. S. Vitter. The input/output complexity of
sorting and related problems.Communications of the ACM,
31(8):1116–1127, 1988.

[5] N. Alon, Y. Matias, and M. Szegedy. The Space Complex-
ity of Approximating the Frequency Moments.Journal of
Computer and System Sciences, 58(1):137–147, 1999.

[6] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler,
J. M. Hellerstein, and D. A. Patterson. High-Performance
Sorting on Networks of Workstations. InProceedings SIG-
MOD, pages 243–254, 1997.

[7] Z. Bar-Yossef, T. Jayram, R. Kumar, and D. Sivakumar. An
information statistics approach to data stream and communi-
cation complexity. InProceedings FOCS, 2002.

[8] M. A. Bender, R. Cole, E. D. Demaine, and M. Farach-
Colton. Scanning and Traversing: Maintaining Data for
Traversals in a Memory Hierarchy. InProceedings ESA,
pages 139–151, Sept. 2002.

[9] A. Borodin, M. N. Nielsen, and C. Rackoff. (Incremen-
tal) Priority Algorithms.Algorithmica, 37(4):295–326, Sept.
2003.

[10] I. Buck and P. Hanrahan. Data Parallel Computation on
Graphics Hardware. Manuscript, 2003.

[11] L. Chavet. FSORT, 2002. Available online atwww.fsort.
com.

[12] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E.
Vengroff, and J. S. Vitter. External-Memory Graph Algo-
rithms. InProceedings SODA, pages 139–149, 1995.

[13] M. Farach, P. Ferragina, and S. Muthukrishnan. Overcom-
ing the Memory Bottleneck in Suffix Tree Construction. In
Proceedings FOCS, pages 174–183, Nov. 1998.

[14] M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On
the Sorting-Complexity of Suffix Tree Construction.Journal
of the ACM, 47(6):987–1011, 2000.

[15] S. Guha, S. Krishnan, K. Mungala, and S. Venkatasubrama-
nian. Application of the Two-Sided Depth Test to CSG Ren-
dering. InProceedings of SIGGRAPH Symposium on Inter-
active 3D Graphics, 2003.

[16] M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Comput-
ing on data streams. InDIMACS series in Discrete Mathe-
matics and Theoretical Computer Science, volume 50, pages
107–118, 1999.

[17] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett,
and P. Hanrahan. WireGL: A Scalable Graphics System for
Clusters. InProceedings of SIGGRAPH, pages 129–140,
2001.

[18] G. Humphreys, M. Houston, Y.-R. Ng, R. Frank, S. Ahern,
P. Kirchner, and J. T. Klosowski. Chromium: A Stream Pro-
cessing Framework for Interactive Graphics on Clusters. In
Proceedings of SIGGRAPH, pages 693–702, 2002.

[19] M. Luby. A Simple Parallel Algorithm for the Maximal In-
dependent Set Problem. InProceedings STOC, pages 1–10,
1985.

[20] J. I. Munro and M. S. Paterson. Selection and Sorting with
Limited Storage. Theoretical Computer Science, 12:315–
323, 1980.

[21] S. J. Ponzio, J. Radhakrishnan, and S. Venkatesh. The com-
munication complexity of pointer chasing.Journal of Com-
puter and System Sciences (JCSS), 62(2):323–355, 2001.

[22] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. Ray
Tracing on Programmable Graphics Hardware. InProceed-
ings of SIGGRAPH, pages 703–712, 2002.

[23] M. Ruhl. Efficient Algorithms for New Computational Mod-
els. PhD thesis, Massachusetts Institute of Technology, Sept.
2003.

[24] J. S. Vitter. External Memory Algorithms and Data Struc-
tures: Dealing with Massive Data.ACM Computing Surveys,
33(2):209–271, 2001.

[25] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel
memory I: Two-level memories.Algorithmica, 12(2-3):110–
147, 1994.

[26] J. Wyllie. SPsort: How to Sort a Terabyte Quickly. Technical
report, IBM Almaden Research Center, 1999. Available on-
line at www.almaden.ibm.com/cs/gpfs-spsort.
html .

