On the Streaming Model Augmented with a Sorting Primitive

Gagan Aggarwal Mayur Dataf Sridhar Rajagopaldn Matthias Ruhf
Stanford University Google IBM Almaden Google
Abstract ciently computable”; in fact, any problem that requires sig-

nificantly super-linear computation time is practically im-
The need to deal with massive data sets in many practi-possible to solve on these inputs. In this paper, we address
cal applications has led to a growing interest in computa- the question of “what is efficiently computable on massive
tional models appropriate for large inputs. The most impor- data sets”.
tant quality of a realistic model is that it can be efficiently The main bottleneck for massive data set computations
implemented across a wide range of platforms and operat-on modern computing hardware is the cost for I/O opera-
ing systems. tions, and usually not the cost for in-memory computations.
In this paper, we study the computational model that re- It is well-known that modern computing hardware is opti-
sults if the streaming model is augmented with a sorting mized for sequential access to data, and there are substantial
primitive. We argue that this model is highly practical, and penalties for non-sequential data access, manifested for ex-
that a wide range of important problems can be efficiently ample as seek times, cache misses, and pipeline stalls. This
solved in this (relatively weak) model. Examples are undi- has, in the past, led to an interest in the streaming model of
rected connectivity, minimum spanning trees, and red-bluecomputation [20, 5, 16], and practical applications built on
line segment intersection, among others. This suggests thathe streaming primitive [18, 10].
using more powerful, harder to implement models may not It is really hard to write code that accesses massive
always be justified. data sets non-sequentially without a substantial degrada-
Our main technical contribution is to show a hard- tion in performance compared to sequential access. Usually,
ness result for the “streaming and sorting” model, which this code would have to be platform and operating system
demonstrates that the main limitation of this model is that specific. Consequently, there are very few general-purpose
it can only access one data stream at a time. Since ourprimitives available that access data in a non-local fashion,
model is strong enough to solve “pointer chasing” prob- and still obtain maximal throughput from the 1/O subsys-
lems, the communication complexity based techniques comtem. Of these, “sorting” is the most readily available and
monly used in showing lower bounds for the streaming most researched primitive [3, 6, 26, 11].
model cannot be adapted to our model. We therefore have Consequently, streaming computations with an added
to employ new techniques to obtain these results. sorting primitive are a natural and efficiently implementable
Finally, we compare our model to a popular restriction class of massive data set computations. In this paper, we
of external memory algorithms that access their data mostly study this computational model and present results of two
sequentially. kinds. First, we establish that many natural problems solv-
able for massive data sets can already be solved in our
model. This indicates that it is not necessary to consider
more powerful models, as these do not seem to enable the
solution of more problems, but run the risk of being not ef-
ficiently implementable. Second, we show hardness results
Sfbr our model, i.e. demonstrate that there are clear limita-
tions to the computational power of this class.

1. Introduction

Recently, massive data sets have appeared in an increa:
ing number of application areas. The sheer size of this
data, often in the order of terabytes, means that “polyno-

mially computable” is no longer synonymous with “effi- o
1.1. Our Contributions

x Supported in part by a Stanford Graduate Fellowship and NSF Grant

EIA-0137761. E-Mailgagan@cs.stanford.edu First, we formally define the “streaming and sorting”
t E-Mail: datar@cs.stanford.edu model in section 2. We then demonstrate in section 3 that
$ E-Mail: sridhar@almaden.ibm.com “streaming and sorting” admits efficient solutions to a num-

§ E-Mail: ruhl@google.com ber of natural problems, such as undirected connectivity,

minimum spanning trees, suffix array construction, and 1.2. Related Work

even some geometric problems. Moreover, all problems

solvable in NC with a linear number of processors can also The “streaming model” was defined implicitly in the
be solved in our model. These problems are all known to work of Munro and Paterson [20], and even earlier, in the
be hard in the streaming model, suggesting that the addi-context of algorithms for systems with tape-based storage
tion of a sorting operation extends that model in a meaning-and litle memory. The growing interest in massive data set
ful way. computations has led to numerous publications on this topic

The fact that most of the problems studied under more in recent years; a comprehensive survey of this area is be-
powerful models (e.g. [1]) can be solved in our model yond the scope of this introduction.
demonstrates that the additional power of those models is The streaming primitive has been studied in the past few
not strictly necessary, and that by studying the “weaker” years in the graphics community (see [10, 22, 17, 18], which
class of “streaming and sorting”, we do not lose any real also list further references), and this application area re-
computational power, while gaining a simpler and provably cently also received some interest in the theory community
efficient model. [15, 2].

In section 4 we turn to hardness results for the “stream- Borodin, Nielsen and Rackoff [9] study a computational
ing and sorting” model, asking the question wicanhnot model in which the data is accessed sequentially, but the
be computed in our computational model. As far as we as-yet-unread part of the input can be re-sorted depending
are aware, there has been no past work on hardness resul@ the already read input. This way of combining stream-
on computational models that are strict extensions of theing and sorting is much more powerful than our approach,
streaming model. Our results might, therefore, be the first€.g. the problem ATERNATING SEQUENCE from section
of their kind. 4.1 thatis hard in our model is easy in theirs. However, their

to data can be split into several linear passes over the data@nd in fact does not seem practical in that setting.

with a known pattern of data reordering (sorting) between ~ The other computational models for massive data set
successive passes. A natural candidate for a problem tha€omputations studied in the literature are mostly restrictions
is hard for our model is therefore a problem that requires of the “external memory algorithms” (EMA) model intro-

a non-predictable order of data access. One such candidat@uced by Aggarwal and Vitter [4, 24]. Many of these mod-
is “pointer chasing”, in particular since it has a high com- €ls (such as the one by Abello et al [1]) inherit the potential
munication complexity (see e.g. [21]). Surprisingly, tae t0 access data in a non-sequential fashion, making them po-
round pointer chasing problem can be solvedDifiogk) tentially harder to implement efficiently in practice.

passes in the “streaming and sorting” model, and is there- ~ The “mostly-sequential” EMA model studied in section
fore not a “hard” problem for this model. This demonstrates 5 has been considered by several researchers [13, 14, 8],
that communication complexity techniques used to show Wwho emphasized that it is a particularly efficient subclass of
lower bounds in the streaming model (see e.g. [7]) cannotEMAs.

be adapted to show hardness results for our model.

In the main technical result of this paper, we introduce 2 Streaming and Sorting
a new problem called “alternating sequence” (a variant of
pointer chasing), and show its hardness for the “streaming e will first define the notion of a “streaming and sort-
and sorting” model. To this end, we develop a new lower- ing” algorithm. A streamis a sequence = xiXz...X, of
bounding technique based on purely combinatorial argu-jtemsx; € ¥, where is some problem-specific universe. A
ments. memory m streaming pagsa function computed by a Tur-

In section 5, we discuss the relationship between theing machineM with a local memory ofn bits that reads an
streaming and sorting model and another model previouslyinput streams$ and writes an output streaBtny (). The
discussed in the literature, which we name “linear exter- machineM is allowed to move only left-to-right on both
nal memory algorithms” (LEMA). Intuitively, this model is streams, i.e. it can only reaglin a single linear pass, and it
equivalent to a streaming and sorting model enhanced withcan only append to the output string, never erase what it has
the ability to concurrently access multiple streams and notalready written. Anmemory m sorting pass a function de-
just one. It turns out that the LEMA model is strictly more fined using a Turing machind with memorym that com-
powerful than streaming and sorting (without simultaneous putes a partial order o, i.e. given two items of, it re-
access to multiple streams); in particular, it can efficiently turns which one is greater, or whether they are equal or in-
solve the “alternating sequence” problem. comparable. Ifs is the input of a sorting pass, then the out-

We conclude the paper in section 6 by discussing further put Sori (S) is S reordered according to the partial order-
research directions and open problems. ing defined byM. Note that the result is not uniquely de-

fined if there are incomparable itemsJSnin practice, this Proof: Our algorithm is very similar to the one commonly
problem is easy to avoid. Also note théfs computation used inRNC to solve this problem. The algorithm proceeds
in the sorting pass is side-effect-free, i.e. no state is main-as follows. We assign a random number, a 3t inte-

tained between comparisons. ger, to each vertex of the graph. Then each vertex gets la-
beled by the smallest number among the ones assigned to
Definition 1 (StrSort) its neighbors and itself. We then merge all vertices that re-
We let StrSort(Psir, Psorts M) be the class of functions com- ceive the same label. In expectation, this reduces the number
putable by the composition of up to Psy Streaming passes of nodes in the graph by a constant factor. Thus, by repeat-
and Psore sorting passes, each with memory m, where we ing this process a logarithmic number of times, we obtain
assume that a graph without any edges, where each vertex represents

a connected component of the original graph. By keeping

* the local memory is maintained between streaming track of which intermediate verticegndt get merged into,

passes, and we can answer the connectivity query by simply checking
e streams produced at intermediate stages are of length whether they end up in the same component.
O(n), where n is the length of the input stream. The remainder of the proof consists of proving that the

number of nodes decreases by a constant factor in each
contraction phase, and that each such phase can be imple-

Note thatStrSort(p,0,m) is not streaming as it is usu- mented by an algorithm iStrSort(O(1), O(logn)).

ally defined, since customarily thepasses are performed correctness.We have to show that in expectation the num-

on the input stream, without ever writing any intermediate per of nodes decreases by a constant factor in each contrac-
streams. However, one can easily see that by constructingjon phase.

We set StrSort(p,m) := Uy, yr<pStrSort(p/, p”,m). O

the streams only implicitlyStrSort(p,0,m) can be simu- Suppose the number of nodes before a relabeling phase

lated by ap-pass streaming algorithm with memany- p isn. Since with high probability all randomly assigned num-

that does not produce any intermediate streams. bers are distinct, we can assume without loss of generality
that the assigned numbers are actudlly?,...,n}, since

3. Algorithms only their relative order matters for the relabeling. Further,

we can assume that there are no nodes with out-degree 0
As stated in the introduction, adding the sorting primitive in the graph, because if eithsiort are mapped to such a
greatly enhances the computational power of the streamingnode, we can decide the connectivity question immediately,
model, and many natural problems are efficiently solvable and otherwise these nodes can simply be ignored.
in the StrSort-model. By “efficiently”, we mean “using lit- A nodev can get assigned a label greater than only if
tle memory and few passes”. In particular we are interestedboth itself and its neighbors get assigned random numbers
in algorithms that use poly-logarithmic memory and a poly- greater tham/2. Since this only happens with probability
logarithmic number of passes. For this purpose, we define1/2 per node, and has at least one neighbargets a la-
PL-StrSort := UStrSort(O(log*n), O(log*n)). bel greater than/2 with probability at most 14. Thus, the
Clearly, tasks like computing the median, or computing expected number of nodes that receive a label greater than
frequency moments, while hard for the traditional stream- n/2 is onlyn/4. The expected total number of distinct la-
ing model, are trivial inPL-StrSort, requiring only a sin- bels in the relabeled graph is therefore at mZn;(assum-
gle sorting pass to order the input elements. We will now ing the worst case that all labels less thei2 are actually
discuss some non-trivial examples of problems solvable inused). This shows the desired reduction in size.

PL-StrSort, but not in the traditional streaming model. Implementation.Let us now sketch the implementation of

) o a contraction phase. We assume that our stream is the list
3.1. Undirected Connectivity V of the verticesn, Vs, . . ., Vi, followed by the listZ of the
vertex-pairs representing the edges. Since the graph is undi-

First, we give aPL-StrSort-algorithm for undirected rected,Z contains both pairgu,v) and (v,u) for an edge
s-t-connectivity. For this problem we assume that the in- panveeru andv.

put stream consists of edgés v) of an undirected graph
and two distinguished verticesandt, and the question is
whether there is a path frostot in the graph.

While both % and E are part of one stream, we will
sometimes state operations on the two halves independently,
assuming that in such a pass, the other half of the stream is

passed through unchanged.
Lemma 2

Undirected St-connectivity can be solved in randomized 1. First, in a pass ovet/, we produce a strear_ that
StrSort(O(logn), O(logn)). contains pairs of node nam&sand random distinct

numberg;, e.g. 3log-bit random numbers: 3. Compute the connected component§\WEy).

4. We now recursively compute minimum spanning trees
for
2. Now we determine the new label for each nOde, i.e. the (a) each connected Componen(m EO): and

lowest value of; among its neighbors and itself. (b) the graph\V/',E’) whereV' is the set of connected

(a) First, we sort the pair of strearsandE, so that components iV, Ep), andE’ contains the edges
the pairs(vi,ri) are directly followed by all edges in E \ Eg connecting pairs of components.
whose first component ig:

(V1,r1)(V2,12)(V3,13) ... (Vn,n)

It is not hard to see that the union of the edges in the in-
(v, r1) (v,) (Va,) ... (V,12) (Vo,) ... dividual spanning trees yields the answer to the minimum
) spanning tree problem fas.
In one pass on this stream, we can produce anew | the StrSort-implementation, the current stream al-
stream of edge€’, where for the first component \yays contains a concatenation of all sub-problems currently
of each edgey; is replaced by the corresponding peing considered. During a divide step, the edges corre-

ri- sponding to the newly created sub-problems might appear
(re,)(ra,-)...(ra,-)... in an arbitrary order in the input stream. By applying a sort-
(b) Now we sort® andZ’, so that the pairév;, r;) ap- ing pass, we can rearrange these edges so that edges belong-
pear right before all edges whose second compo-ing to the same sub-problem appear consecutively.
nent is equal t;: The algorithm is similar to Kruskal's algorithm, but
reorders computations in a way that is compatible with
(v1,r1) (o Va) (V) - (V2,12) (o, V2) - .. streaming computations. The sorting passes are used to re-

arrange the data so that they appear in the correct order for

In this stream, the number assigned to a node .
subsequent streaming passes.

v; occurs right before the list of numbers as-
signed to the nodes incident t@. Thus, in
one linear pass, we can determine the smal
est number among them for each, which
yields a stream. of nodesy; with their new la-
belsy;:

.. 3.3. Red-Blue Line Intersection

We now consider a geometrical problem, moti-
vated by geometric range queries, calledDRBLUE-
INTERSECTION The input is a list of red and blue line seg-

(v1,01)(V2,£2) (V3,£3) (Vin, L) ments in the plane. The red line segments are parallel to the
x-axis, the blue segments parallel to the y-axis. The out-
3. Now that we know the correct labels, all that remains put is the number of intersection points between red and
is to relabel the edges i#8. This can be done by re- blue line segments. (In many applications, one is actu-
peating step 2(a) for both the first and second compo- ally interested in a list of intersection points, but that might
nent of £, using L instead ofR.. While producing this require an output greater than the input, which our stream-
new stream, we can also eliminate all edges of the forming model does not allow.)
(¢,0), yielding a new stream of edg&ew
The new list of vertices can be obtained fraiby Lemma 3

outputting only the second componénbf each pair, RED-BLUE-INTERSECTIONcan be computed in determin-

sorting the result, and removing duplicates. istic StrSort(O(logn), O(logn)).

Proof: We assume that no endpoint of a blue line segment

lies on a red line segment. This assumption simplifies the

presentation, but can be removed by standard techniques.
Let theslab of a line segmentxy,y1) — (X2,Y¥2) (with

X1 < X2) be the vertical strifxz, X] x R of the plane. Then

the following claim follows by a simple case analysis.

3.2. Minimum Spanning Tree

Using the above algorithm for undirected connectivity as
a subroutine, it is not hard to compute minimum spanning
trees in the “streaming and sorting” model.

We are going to use a divide and conquer approach to

compute a minimum spanning tree of a grapk-= (V,E). Claim 4
The algorithm is as follows. The number of intersections of red and blue line segments
1. Sort the edgeskE = {ej,e,...,en} by increas- isequaltolL—U, where
ing weight. e L := the number of pairs of red line segments S and
2. LetEg = {€1,€,...,6y2} be the “lighter” half of the lower end-points of blue line segments p, such that p

edges. is in the slab of s and belows, and

Lemma 5

A uniform bounded fan-in circuits with width O(n) and
depth d(n) can be evaluated in deterministic StrSort us-
ing d(n) streaming and sorting passes, and O(logn) mem-

e U := the same for upper end-points of blue line seg-
ments. [

The streaming algorithm computes the two valuendU
and outputs their difference. For symmetry reasons, it is suf- -

ficient to show how to compute. For this, we create a proof Sketch: This Lemma can be shown similar to PRAM
stream of all red line segments and blue lower endpoints. g 1ations in the external memory model [12]. To evalu-

We use a divide-and-conquer approach, also known as disye 4 gircuit, we inductively generate for each letvef the
tributional sweep [24]. circuit a streany; that contains a list of the inputs taken by
The basic idea of the approach is the following. The the circuit nodes on that level, ordered by node. (Note that
input is divided intom vertical slabs|x;, x+1] x R where ¢, can easily be computed from the input.) One streaming
—00=Xp < X1 < -+ <Xm= o0, such thateach slab contains pass ons, can compute the outputs of all nodes on lesel
roughly the same number of blue lower endpoints. This di- To go from these outputs 8.1, all we have to do is rear-
vision can be easily accomplished by a sort operation. Nowyange them according to the input pattern of the next level.
we sort all these points by increasiggeoordinate. As we Thjs can be done by labeling the outputs with the numbers

process this stream, for each of tmeslabs, we keep track of the gates that take them as inputs (and creating duplicates
of the number of blue lower endpoints seen so far. Whenis gn output is input to multiple gates). Sorting on these la-

we encounter a red line segment, then for each slab that ifye|s yields the desired ordér.

crosses completely, we add the number of blue lower end-

points seen in that slab to our running sum. The (possibly)4 Hardness

two ends of a segment that do not completely cross a slab

are recursively passed.down to the subproblem in the slab The “streaming and sorting” model is clearly much more

it is in. We then recursively solve tha slab problems. In o6yl than the traditional streaming model, as evidenced
log,,n passes, this finds all possible intersections, proving by the algorithms mentioned above. So it is only natural to
Lemma 3[J ask whatcannotbe computed in this model.

Intuitively, problems hard for the streaming and sort-
ing model would require data access in unpredictable pat-
terns, i.e. the data accesses cannot be rearranged in a poly-
logarithmic number of fixed-order passes over the data. At
first glance, a good candidate for a hard problem might
therefore be “pointer-chasing”. In this problem, one is given
an array ofn numbers in the ranggl, ..., n}. If thei-th ar-

We note that a generalization of the above algo-
rithm can be used to solve the red-blue-intersection
problem for arbitrary orientations of red and blue line seg-
ments inStrSort(O(log?n), O(logn)). More details will be
in the full version of this paper.

3.4. Simulation of Circuits ray element ig, then we say that thieth element points to
the j-th element. Given a numbé&r we start at the first el-
Many other problems can be solvedRi-StrSort be- ement of the array, and then repeatedly move from the cur-

cause they also admit algorithms that access data in a sef€nt element to the element it points to. The output is the el-

ries of linear passes, interleaved with a known pattern of €ment we reach aftérsteps.

data reordering. Examples are substring matching, suffixar- However, while the pointer-chasing problem seems to re-

ray computations, undirected graph connectivity, comput- duire data access in arbitrary patterns, and is indeed very

ing maximal independent sets, finding a minimum cut in a hard from a communication complexity point of view [21],

undirected graph and many other problems (see [23] for ait can be solved ifPL-StrSort. This is because it is possible

more comprehensive overview). to square a graph in thetrSort model in a constant num-
Some of these results are consequences of the fact thap€" Of passes, i.e. we can compute the result of following

in our computational model, it is quite straightforward to POINters 2,4.,8,... times. This allows us to solve the pointer-

evaluate uniform linear width, poly-logarithmic depth cir- chasing problem i®(logk) passes in th&trSort model.

cuits. Since problems iNC that require only a linear num-

ber of processors can be solved by such circuits, this gives?-1. ALTERNATING SEQUENCE

us a systematic way of constructing streaming algorithms . .

for these problems. Examples of such problems are the \We now state a problem that builds on the pointer-

undirected connectivity algorithm mentioned above, and the €hasing paradigm, but while remaining conceptually sim-

computation of a maximal independent set [19]. ple, i_s provably intractable in th®trSort mod(_al. Th(_a prob-
lem is called ATERNATING SEQUENCEand is defined as

follows.

Input: A stream of pairs
(alvaél.) (a27 a/2) e (anvam(blv bél.)(b27 b/2) e (bnv bﬁ)
Output: The sequenca, bj, &, bj,ai;bj; ..., satisfying

(i) ir=1
(i) ik=min{i > i1 |a =bj_ }fork>2
(iii) j:k :énin{j > jk-1 | bj = a{k} for k > 1, using
Jo=0.

The sequence ends as soon as eithern, jx =nor
the minima in equations (ii) or (iii) do not exist.

This problem is best explained by an example. Con-
sider the following sequence, where tte,a))-pairs are
in the top stream, and thbj,bj)-pairs are in the bot-
tom stream. For this example, the output would start with
1,7,4,17,2,3,1,11,..

Stream a

L an] @3] @] 619 3] @y @] =

(W3] @4] @] Gy | 79| 1] BY] =
Stream b

Theorem 6

The problem ALTERNATING SEQUENCE can be solved in
StrSort(O((n/m)%/2),m). However, it cannot be solved in
deterministic StrSort(p,m) unless pm= Q(n/3). We as-
sume that elements are indivisible, and that only compar-
isons between elements are allowed.

4.2. Upper bound

Proof: We first give an algorithm to compute LAER-
NATING SEQUENCE in StrSort(O((n/m)¥/2),m). The al-
gorithm proceeds in (d/m)%/2 phases. In the first phase,
we construct a stream containifig/m)Y/2 copies of the se-
guence

(*) AlAzAmB]_BZB\/m,

whereA; and B; are short for(a;, &) and (bi,b}), respec-
tively (we will continue to use this notation for the remain-
der of this proof). Clearly, the stream has len@tn), and
can be constructed by outputting elements multiple times,
indexed by their desired position on the tape, followed by a
sorting pass.

We can use this stream to output the beginning of the an-

swer upto the point where either of the indidg®r jx be-
comes greater thagynm This is done as follows. When
reading the first sequence éfs, we keepA1,As,...,An

Since we process of A-elements for each copy ¢%),
after reading the whole stream, theelements have been
processed upto inder- (n/m)Y/2 = ,/am This shows that
we will make a progress af/nmon one of the two indices.

In the second (and later) phases, we repeat the same
pattern, but theA- and B-subsequences of lengt{ynm
start where we left off in the previous phase. Since one
of the indices advances bynm in each phase, we will
have constructed the whole output in at mosf¢nm=
O((n/m)¥/2) phases, which yields the claimed number of
passes.

4.3. Lower bound

We now show the harder part of the Theorem, the lower
bound ofp = Q(n/3/m) passes for th&trSort model. We
show this bound by fixing an arbitrary algorithm, and then
adversarially choosing its input such that it cannot output
the correct solution unless the number of passes meets the
claimed bound. In this adversarial model we only decide
on the equality of two items when the algorithm compares
them.

The proof consists of two main parts. First, we show that
in a single pass, we cannot make too much progress towards
the solution of the problem. This is because what&em)-
size input stream we use in that pass, there will be a roughly
v/n/mlength alternating sequence that we cannot output
based on linearly scanning the stream.

In the second part of our proof, we apply this con-
struction to a sequence of passes, which slightly weakens
the y/n/m-bound as the algorithm gains more information
about the processed data. In the end, it yield€xtré/3 /m)
lower bound on the number of passes.

The key lemma for the first half of the proof is the fol-
lowing. It shows that a string that contains all possible- A
TERNATING SEQUENCEanswers as subsequences must be
very long (at leash? + 1 symbols). The converse of this
statement is what we will need: a string of len@fn) can
only contain all ATERNATIVE SEQUENCEanswers for in-
stances of lengt®(,/n). Here and in the following, we will
useA andB; to stand for(a;, &) and(bj, b)), respectively.

Lemma 7

Let Sbe the set of alternating increasing sequences of the al-
phabet Z = {Aq,...,An, Ba,...,Bn}, i.e. strings of the form
[Ail]leAiszz .. 'Aik[Bjk] where ig < i(;+1 and j/ < j[j+1 for
1 < ¢ <k, and at most the very last symbol is equal to A, or

in memory. This enables us to construct the answer uptoBy. By [...] we mean that the symbol is optional. Let s be

ik <m, jx <+/nmon the following sequence &’s. When
we exhaust thé\'s in our memory, we continue to the next
stretch ofA’s, and putAn.1,...,Axm in memory, use that
with the following stretch oB’s, and so on.

a Z-string that contains all strings in S as subsequences (i.e.
the elements of each S € S occur in order in s, but not nec-
essarily consecutively). Then s has length at least n® + 1.
(]

Although we will not need this later, it is interesting

enough to note that the bound in the lemma is actually tight,

i.e. there are strings of lengtit + 1 of the desired form.
Let a; to be the string\ A1 1...Ay—1 andb; be the string
BiBi.1...Bn_1. Then the following string of length? + 1
has the desired properties:

biaibiazboazbzasbs...an_16n_1AnBn

Thus, going fromi to i + 1 there will be at most one
a(...,k¢), B(...,k,¢) pair for which one of the predicates
becomes false, after both having been true so far. Since at
the beginning, alh? sucha, B-pairs are true, it takes at least
n? elements of to hit all these pairs once. And for the last
pair hit, it takes one more character to satisfy the remain-
ing true predicate in it, se has to contain at leasf + 1
characters]

lower bound.

Proof (Lemma 7): Fix s € 2*, and lets; be the suffix ofs
that begins at position (e.g.s1 = s). We will now define
sets of strings such that all strings i§ have to appear as
subsequences . We setS; := S, and define the othe3
inductively. If thei-th symbol ofs is Ay, then we set

S.1={s|“sdoes not start witth" and (sc §VAs€e S)}.

Here “As’ stands for the string obtained by prependiig
to s. ReplacingAy with By gives the definition in the case
that thei-th symbol ofs is By.

It is not hard to see that for ea¢hhe strings inS nec-
essarily have to be contained as subsequencgs 8o to
show the desired lower bound on the lengths ot suffices
to show tha§ # 0 fori < n?+1.

Let us define predicated(i, k, ¢) andp(i,k, ¢) as ‘S con-
tains a string with the substringB,” and “S contains a
string with the substrin®,A¢”, respectively. If at least one
of these predicates is true, itimplies tisa# 0. We will now
show that going from to i + 1, not too many of the pred-
icates change from true to false. The intuition behind this
is that some predicates imply other predicates. For exam
ple a(i,k,¢) impliesB(i,K, ¢) for all K > k, since an alter-
nating sequence which contaiAgB, can be continued as
ABA for anyk’ > k. These implications limit the num-

ber of predicates that can become false. We will show the

following.

Claim 8

Let k,K,¢,¢' be numbers between 1 and n with k # K or
£ 0. I a(ik £), B(i,k,£), a(i,K,¢) and B(i,K,¢') are
all true, then at least three of a(i + 1,k,¢), B(i + 1,k,£),
a(i+21,K,¢) and B(i +1,K, ') are true.

Proof: Let us consider the case where thh element of
is anA-element, say\; (the “B-case” is similar). Then the
B-predicates will be unchanged fronto i + 1. And thea-
predicates can only changejit= k or j = K. In fact, the

A1A>...AyandB;B;. .. B, into one stream such that all pos-
sible answers to ATERNATING SEQUENCEappear as sub-
sequences in the interleaved stream. For our application of
streaming passes, we are however interested in the mini-
mum stream length such that a memamalgorithm could
produce all possible answers ta FERNATING SEQUENCE

This is answered by the following corollary.

Corollary 9

Let s be a string, such that all alternating sequences of the
form stated in Lemma 7 can be output by a linear scan of s
by a machine of memory m. Then the length of s is at least
()2 +1.0

Note that Corollary 9 is not tight, consider e.g. the case
m = Q(n), where the lower bound is just a constant, but
clearly eachh; and eactB; has to appear at least oncesin
giving a trivial lower bound of 8. But the corollary is still
strong enough for our purposes.

Proof (Corollary 9): Group the elements &, Ay, ..., An
into =7 groups ofm-+ 1 consecutive elements each (i.e.
A1, ...,Ans1 form the first groupAm. 2, . . ., Aomi2 the sec-
ond, and so on), and do the same for Bie. By “inter-
leaving anA-group with aB-group” we mean that we al-
ternate then+ 1 elements in thé\-group in ascending or-
der with them+ 1 elements of thé-group, for example
A1B1AB; ... A 1Bmy1 for the first two groups. Now con-
sider only the strings its that are concatenations of such
interleaved groups.

Any memorym algorithm outputting these strings upon
readings must for each interleaved group pair read at least
oneA-element and on8-element froms. This is because
the groups have sizen+ 1 each, so they could not possi-
bly have been entirely in memory before outputting the in-
terleaved group pair.

By restricting our view to “representatives of groups”,
not distinguishing the individual elements of groups, the

only way that both these predicates could become false is ifprevious observation implies thatmust actually be an in-

j = k=K holds. This implied # ¢, wlog ¢ < ¢'. But the
truth of B(i, k,) then implies tha§ and therefor& .. ; con-
tain strings that contaiB,A«B,, and thusa (i + 1k, ') re-
mains true, which proves the claim.

terleaved string in the sense of Lemma 7 on the group rep-

resentatives. Since there aggy A- and B-groups each,
Lemma 7 therefore implies thathas to have length at least
(7)?+1.0

For our adversarial argument, we now fix a particular the constant used for th©(n) upper bound on stream
streaming algorithm. We allow the algorithm to construct lengths.

arbitrary input streams for each of its passes. Even in this

more powerful model, we can still prove the lower bound.
To fix the input we will now inductively construct a se-
quence of numberst; <ty <tz <--- <t =n, and al-
ternating sequencaes C S, C 3 C --- C & (Where bysC §
we mean thasis a prefix ofs'), such that for all K i < k:

(i) sc is the correct output to the IAERNATING SE-
QUENCEproblem,

(i) all elements ofs not in 5.1 are from the set
{Ati;- .. 7A(i+1—l7B[i7- . '7Bti+1—l}| and

In summary, we can accomplish the selectiom'sfand
s’s as long agi.1 —t = Q(y/nm3(i+ 1)) for all i. This
gives the following upper bound da

_in(m) <n = _i\ﬁ: O(4/n/md)

Since 5K ; /i = O(k¥?), this means the construction
is possible fork up to (y/n/m3)%/3 = n/3/m, which con-
cludes the proof of Theorem Bl

(iii) s is chosen so that, even based on the comparisonsy 4 A decision version of ALTERNATING SE-

the algorithm performed in the first- 1 passes, it is

not possible for the algorithm to output the elements

of 5\ s_1 in order during pass

The last point implies in particular that the algorithm can-
not output the correct solution withikpasses.

QUENCE

A polynomial separation analogous to Theorem 6 can
also be shown using the following decision problem: the in-
put is just like ATERNATING SEQUENCE but now every

For the first step of the inductive construction, we choose pair (&) and (bj,b]) has acolor which is either red or

t, such that(t,/m+ 1)? 4 1 is greater than the length of
the stream in pass 1. This means thatan be chosen

asO(my/n), where the constant depends only on the con-

stant in theD(n) bound we imposed on the maximal stream
length. By Corollary 9 this implies that there will be an al-
ternating sequence of th and B; with indices bounded
by t» that cannot be output by a memaryalgorithm upon
reading the stream. We Ist be one such sequence.

blue. The desired answer is whether the last element of the
output of ALTERNATING SEQUENCEIs a red or a blue ele-
ment.

We briefly sketch how the computation of the #&R-
NATING SEQUENCE function can be reduced i8trSort
to this decision problem. We will do this with a factor
O(log?n) increase in the number of required passes. Thus,
the hardness of the function implies the hardness of the de-

For the inductive step, we have to modify our argument cision problem.

to account for the fact that the algorithm already has made

So suppose we have an oracle for the decision problem (a

some comparisons in the previous passes, and our choice dvit of care shows that each invocation of this oracle can be

S must be consistent with them.

replaced by a correspondirgjrSort algorithm in the fol-

In the previous — 1 passes, the algorithm can have per- lowing). First, this allows us to find the last element of the

formed a total oO((i — 1)nm) comparisons — each element

ALTERNATING SEQUENCE output (and not just its color)

in the memory could have been compared to every elementn O(logn) streaming passes. This is easily done using bi-

in the firsti — 1 streams. We are enforcing the policy that
whenever a comparison during pgsswvolves an element
with index greater that)..1, then we will always return “un-
equal”. Also, we enforce tha; # aj, g # aj, bi # b; and

bi # bj for alli # j.

For passi, we therefore want to choosg 1 such that
there is an alternating sequenge; \ s with indices be-
tweent; andtj;1 not contained in a stream of leng®(n),
and such that the sequence does consecutively contain
any of theO((i — 1)nm) pairs for which we already an-
swered “unequal”. If one excludes a setfA, B)-pairs
from appearing consecutively in the stringspthen a sim-
ple modification of the proof of Lemma 7 yields a lower
bound onls| of n? — ¢+ 1.

So we have to choosig,; such that((ti; 1 —t)/(m—+
1))2 —nm(i + 1) + 1 > O(n), which can be satisfied by
tir1—t = Q(y/nmé+nmB(i + 1)), in particular byt 1 —
ti = Q(v'nm?\/i+ 1), where the constant only depends on

nary search: color half the input pairs red and half the pairs
blue, and invoke the oracle. This shows us in which half of
the pairs the last element is. We then recurse on this half
(color it half red/half blue), and so on. Aft€(logn) appli-
cations of the oracle, we know the identity of the last ele-
ment.

The algorithm producing the last element of the-A
TERNATING SEQUENCE output can be used to give
a divide-and-conquer solution to LAERNATING SE-
QUENCE itself. For this, we consider the first half of
the input streams (al,a’l)(az,a’z)..‘(an/z,a;/z) and
(bl,b’l)(bz,b’z)...(bn/z,b;/z). Given the above algo-
rithm, we can compute the last two elements in the- A
TERNATING SEQUENCE output for these half-problems.
(The second-to-last element can be computed by first com-
puting the last element, and then deleting it and the part of
the stream following it from the input, and again comput-
ing the last element.)

The knowledge of these elements “in the middle” of the 5.2. Relation to StrSort

output allows us to split the input streams in half, and con-
struct solutions for both halves independently. Note that in

While LEMA is somewhat similar to th&8trSort model

each divide step, at least one of the streams gets split ex{in that the data is read and written sequentially), Bthe

actly in half, showing that onl{(logn) recursions are nec-
essary. Thus, ATERNATING SEQUENCEcan be reduced to
the red/blue decision problem, while multiplying the num-
ber of passes b@(log?n).

5. Linear Access External Memory Algo-
rithms

5.1. Definitions

In this section, we will elucidate the relationship of the
StrSort model to the well-studied external memory model.

External memory algorithms (EMAS) study the effect that
block-oriented external data storage has on the efficiency o
algorithms (see [24] for a recent survey). An external mem-
ory algorithm can access the external storage (disk) only.

in units of blocks (each containing items), and perfor-

mance is measured in terms of the total number of disk ac-

LEMA model turns out to be strictly more powerful than
the PL-StrSort model. Since we can sort irEMA using

a logarithmic number of passes, we can simulate any algo-
rithm for the PL-StrSort model in thePL-LEMA model
while increasing the number of passes by at most a loga-
rithmic factor. On the other hand, theLARERNATING SE-
QUENCE problem which needs at least a polynomial num-
ber of passes irBtrSort (as shown in Theorem 6) can
be solved very efficiently (using only two passes)Ph-
LEMA . The picture in section 4.1 suggests how to solve
it using concurrent access to two disks. First, one divides
the input onto two disks, one containing airs, and the
other theb-pairs. Then, we begin by readirg, and scan-
ning the second disk until a matchibgis found. Then we

fscan the first disk to find as matchingb’j, and so on, al-

ternating between the two disks. In this sense, the solution
makes maximal use of the fact that it can read the two disks
independently.

cesses (reads and writes). Thus, a good data storage schenée Conclusion

and exploitation of locality are necessary for efficient al-

gorithms. Theparallel disk modeintroduced by Vitter and
Shriver [25] has the following parameters:

N = problem size (in data items),

M = internal memory (in data items),

B = block transfer size (in data items), and
D = number of independent disk drives.

In this paper, we have studied a model for massive data
set computations — which we think can be efficiently imple-
mented — by extending the streaming model with a sorting
primitive. This model allows for the efficient solution of a
variety of natural problems known to be hard for the stream-
ing model, but computable using stronger models which are
harder to implement in practice. These problems include
undirected connectivity, MST, red-blue line intersections,

In this paper we are only interested in the single proces- 5nq several others. We have also proved one of the first hard-
sor case, so we will ignore the (sometimes studied) addi-pess results for models of massive data set computations

tional parameter of the number of processors.

that are strict extensions of the streaming model. The com-

As mentioned in the introduction, reading data items munication complexity based techniques which were pre-
sequentially from a disk achieves a substantially higher viously used in showing lower bounds for the streaming

throughput than performing random accesses. Thus, extermodel do not generalize to our model, and consequently,
nal memory algorithms that only perform sequential reads new methods had to be developed.

or writes are a particularly efficient subclass of EMAs. We

Since this computational class is a quite natural exten-

therefore define a linear access EMA (LEMA) as an EMA gjon, of the traditional streaming model, and efficiently im-

with the following parameter:

P = number of out-of-sequence reads/writes on the disks

(“passes”)

A read or write operation is considered “out-of-
sequence” if it does not act on the data block follow-

plementable in practice, it deserves further study. For ex-
ample, can a breadth first or depth first traversal of a graph
be computed efficiently in this model? Can our lower-

bound result be extended to randomized algorithms or the
bit model, where operations other than comparisons are al-
lowed? And are there more natural problems that are hard

ing the one last read or written on the corresponding disk.to solve in this model, yet can be realistically solved on

We are interested in algorithms for whidhand M are
small, i.e. poly-logarithmic irN. The class of these prob-
lems is denoted biPL-LEMA .

massive data sets? A candidate problem could besg-
QUENCE, in which given two strings, the problem is to de-
cide whether one is a subsequence of the other.

We have also compared the “streaming and sorting” [11] L. Chavet. FSORT, 2002. Available onlinevatvw.fsort.
model to a model we callddEMA , which is a restriction of
external memory algorithms to mostly linear accesses to ex-[12] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E.
ternal storage. We showed that the ability to read input from
two disks simultaneously maké&EMA strictly more pow-

erful than the “streaming and sorting” model. As mentioned [13]

above, it would be interesting to find more natural prob-
lems than ATERNATING SEQUENCEthat separate the two

classes. It is also an interesting open problem whether in-

(14]

creasing the number of independently accessible disks in
LEMA always leads to a polynomial increase in computa-

tional power. We saw such an increase in the case of on

versus two disks as demonstrated byTARNATING SE-
QUENCE

Acknowledgments

We thank Jon Feldman for his help in proving Lemma
7, the anonymous reviewers for their comments, and David[17]
Karger, T.S. Jayram, Piotr Indyk, Ron Fagin, and the partic-
ipants of the DIMACS Working Group on Streaming Data
Analysis for helpful discussions.

References

e[15]

(16]

(18]

[1] J. Abello, A. L. Buchsbaum, and J. R. Westbrook. A Func- [19]

(2]

(3]
(4]

(5]

(6]

(8]

&

(10]

tional Approach to External Graph AlgorithmsAlgorith-
micg, 32:437-458, 2002.

P. Agarwal, S. Krishnan, N. Mustafa, and S. Venkatasubra-
manian. Streaming Geometric Optimization Using Graphics
Hardware. Technical Report TD-5HL2NX, AT&T, 2003.

R. C. Agarwal. A Super Scalar Sort Algorithm for RISC Pro-
cessors. IfProceedings SIGMO[pages 240-246, 1996.

A. Aggarwal and J. S. Vitter. The input/output complexity of
sorting and related problem&€ommunications of the ACM
31(8):1116-1127, 1988.

N. Alon, Y. Matias, and M. Szegedy. The Space Complex-
ity of Approximating the Frequency Momentslournal of
Computer and System Sciencg8(1):137-147, 1999.

A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler,
J. M. Hellerstein, and D. A. Patterson. High-Performance
Sorting on Networks of Workstations. Proceedings SIG-
MOD, pages 243-254, 1997.

Z. Bar-Yossef, T. Jayram, R. Kumar, and D. Sivakumar. An
information statistics approach to data stream and communi-
cation complexity. IrProceedings FOCS002.

M. A. Bender, R. Cole, E. D. Demaine, and M. Farach-
Colton. Scanning and Traversing: Maintaining Data for
Traversals in a Memory Hierarchy. IRroceedings ESA
pages 139-151, Sept. 2002.

A. Borodin, M. N. Nielsen, and C. Rackoff. (Incremen-
tal) Priority Algorithms.Algorithmica 37(4):295-326, Sept.
2003.

I. Buck and P. Hanrahan. Data Parallel Computation on
Graphics Hardware. Manuscript, 2003.

[20

(21]

[22]

(23]

(24]

(25]

(26]

com.

Vengroff, and J. S. Vitter. External-Memory Graph Algo-
rithms. InProceedings SODAages 139-149, 1995.

M. Farach, P. Ferragina, and S. Muthukrishnan. Overcom-
ing the Memory Bottleneck in Suffix Tree Construction. In
Proceedings FOCS$ages 174-183, Nov. 1998.

M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On
the Sorting-Complexity of Suffix Tree Constructialournal

of the ACM 47(6):987-1011, 2000.

S. Guha, S. Krishnan, K. Mungala, and S. Venkatasubrama-
nian. Application of the Two-Sided Depth Testto CSG Ren-
dering. InProceedings of SIGGRAPH Symposium on Inter-
active 3D Graphics2003.

M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Comput-
ing on data streams. IDIMACS series in Discrete Mathe-
matics and Theoretical Computer Sciepeglume 50, pages
107-118, 1999.

G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett,
and P. Hanrahan. WireGL: A Scalable Graphics System for

Clusters. InProceedings of SIGGRARHbages 129-140,
2001.
G. Humphreys, M. Houston, Y.-R. Ng, R. Frank, S. Ahern,

P. Kirchner, and J. T. Klosowski. Chromium: A Stream Pro-
cessing Framework for Interactive Graphics on Clusters. In
Proceedings of SIGGRARIgages 693—-702, 2002.

M. Luby. A Simple Parallel Algorithm for the Maximal In-
dependent Set Problem. Rroceedings STO(ages 1-10,
1985.

] J. I. Munro and M. S. Paterson. Selection and Sorting with

Limited Storage. Theoretical Computer Scienc&2:315—
323, 1980.

S. J. Ponzio, J. Radhakrishnan, and S. Venkatesh. The com-
munication complexity of pointer chasindgournal of Com-
puter and System Sciences (JG$8)2):323—-355, 2001.

T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. Ray
Tracing on Programmable Graphics HardwarePtaceed-
ings of SIGGRAPHpages 703-712, 2002.

M. Ruhl. Efficient Algorithms for New Computational Mod-
els PhD thesis, Massachusetts Institute of Technology, Sept.
2003.

J. S. Vitter. External Memory Algorithms and Data Struc-
tures: Dealing with Massive DatACM Computing Surveys
33(2):209-271, 2001.

J. S. Vitter and E. A. M. Shriver. Algorithms for parallel
memory |: Two-level memorieslgorithmica 12(2-3):110—
147, 1994.

J. Wyllie. SPsort: How to Sort a Terabyte Quickly. Technical
report, IBM Almaden Research Center, 1999. Available on-
line at www.almaden.ibm.com/cs/gpfs-spsort.

html .

