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Abstract

We give a simple proof that GM-security and semantic security are equivalent security no-
tions for public key cryptosystems. By this we drastically simplify the original proof given by
Goldwasser, Micali et al.

1 Introduction

What does it mean for a public key cryptosystem to be secure? In their seminal paper on
notions of security for public-key cryptosystems [2], Goldwasser and Micali introduced two
security definitions which are still the mostly used ones today. The two notions are called
‘GM-security’ (also called polynomial security or indistinguishability) and ‘semantic security’.
Shortly thereafter Micali et al [3] showed that these two notions (and a third one, Y-security
introduced by Yao [4]) actually coincide. By far the most involved part of their proof is to show
that semantic security implies GM-security, i.e. all public key cryptosystems secure according to
the former definition are also secure according to the latter definition. This has led to the view
that these two notions of security are in some sense very “different”, and the proof is almost
never taught in cryptography classes due to its complexity.

In this paper, we show that by a slight (and very reasonable) modification of the definition of
semantic security, the proof that semantic security implies GM-security becomes very intuitive
and compact. This much shorter proof not only makes the relationship between these two
security notions much clearer, it also provides a more “efficient” reduction from one to the
other.

The rest of this paper is organized as follows. In section 2 we formally define “GM-security”
and “semantic security” for public key cryptosystems. We also detail how our definition of
semantic security differs from Goldwasser and Micali original definition in [2], and discuss why
this change is reasonable. In section 3 we prove the two notions equivalent. We conclude the
paper in section 4 with a discussion of the results.

2 Definitions

For the rest of this paper we follow the notation introduced in [3].
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2.1 Public Key Cryptosystems

Suppose we are given a familyM = {Mn | n ∈ N} of message spaces with associated probability
distributions. A public key cryptosystem for M is a probabilistic polynomial time (PPT) algo-
rithm C, that on input 1n outputs two polynomial-size circuits E and D, such that the following
holds:

• E is probabilistic and D is deterministic

• E takes an input from Mn and outputs a string from {0, 1}l, D takes an input from {0, 1}l,
and outputs an element from Mn, for some l.

• For all m ∈Mn, Pr(D(α) = m | (E,D)← C(1n); α← E(m)) = 1.

2.2 GM-Security

This definition (found in [3]) is essentially what Goldwasser and Micali [2] called polynomial
security. It is also called indistinguishability.

Definition 1 (GM-Security)
A public-key cryptosystem C is called GM-secure if for all c > 0, for all families of polynomial-
size probabilistic circuits Tn that take four inputs and output 0 or 1, and for all sufficiently large
n, the following holds:

∀m0,m1 ∈Mn : Pr(Tn(E,m0,m1, α) = i | i← {0, 1}; E ← C(1n); α← E(mi)) <
1
2

+ n−c.

2.3 Semantic Security

Definition 2 (Polynomially verifiable)
We call a function family F = {fn : Mn → Σ∗} polynomially verifiable if there is some k such

that |f(x)| < nk for all x ∈Mn, and there exists a family of polynomial-size probabilistic circuits
Vn such that for all x ∈Mn: Vn(x, f(x)) = 1, and Vn(x, y) = 0 if y 6= f(x).

Definition 3 (Semantic Security)
Let C be a public-key cryptosystem, and let M = {Mn} be a sequence of message spaces.
Let F = {fE : Mn → Σ∗} be a set of polynomially verifiable functions. Let pE :=
max{

∑
m∈f−1(v) Prn(m) | v ∈ Σ∗}. (pE is the maximum probability with which one could

guess fE(m) knowing only the probability distribution from which m has been drawn.) Let
p̃ = E[pe] be the expected value of pE over the random choice of E from C(1n).
C is called semantically secure if for all message space sequences M , for all polynomially

verifiable families of functions F , for every family of polynomial-size probabilistic circuits An,
for all c > 0, and for all sufficiently large n

Pr( An(E,α) = fE(m) | m←Mn; E ← C(1n); α← E(m) ) < p̃ +
1
nc

. (1)

Our definition differs from Goldwasser and Micali’s original definition in [2] only in that
we restrict F to contain polynomially verifiable functions, while the original definition allowed
any function. Micali et al put it thus ([3]): “Intuitively, f should be thought of as some
particular information about the plaintext that the adversary is going to try to compute from
the ciphertext...”. We think that our variant of the definition captures this notion of security
much better than the original one. What good would it do any adversary to “guess” a function
fE(m) from seeing an encryption of m, if he cannot even verify that his guess is correct. Making
the functions fE at least polynomially verifiable thus leads to a much more natural definition
of semantic security.
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And for this more natural definition of semantic security we give an elegant proof that it is
equivalent to GM-security.

Our result can easily be extended to work for polynomially computable relations RE instead
of functions fE . This is similar to the definition of semantic security used by Dolev et al [1].

3 Equivalence

In this section we prove that the the introduced notions of security are in fact equivalent. This
is originally due to Micali et al [3], but our proof is significantly more concise.

Theorem 1
All cryptosystems C that are GM-secure are also semantically secure, and vice versa. That is,
the two notions of security are equivalent.

3.1 Semantic Security =⇒ GM-Security

This implication is very easy to prove, and we just provide it for completeness. We prove the
contrapositive, i.e. that a cryptosystem which is not GM-secure is also not semantically secure.

Suppose An can distinguish two messages m0 and m1 from Mn, then if we impose the
probability distribution PrMn(m0) = PrMn(m1) = 1

2 on this space, any function f with f(m0) =
0, f(m1) = 1 can be predicted using An. So C is not semantically secure.

3.2 GM-Security =⇒ Semantic Security

Again we prove the contrapositive. Assume that C is not semantically secure, and the function
family F = {fE} can be predicted by the family A = {An(·, ·)} of polynomial-size probabilistic
circuits.
Consider the following algorithm Tn : (E,m0,m1, α)→ {0, 1}.

1. Let β ← An(E,α).

2. If β = fE(m0) but β 6= fE(m1), output 0.

3. If β = fE(m1) but β 6= fE(m0), output 1.

4. Otherwise, output a random value from {0, 1} with probability 1
2 each.

The test is very intuitive. We simply run An on the challenge α. Since we expect An to correctly
predict the value of fE , we compare its output β with fE(m0) and fE(m1). If exactly one of
the tests succeed, we output the corresponding message. Otherwise, we flip a coin as we did
not learn anything. Note that Tn runs is polynomially bounded since β

?= fE(m0) etc. can be
tested in polynomial time since fE is polynomially verifiable.

For specific m0 and m1, let

q(m0,m1) := Pr[Tn(E,m0,m1, α) = i | i← {0, 1}, E ← C(1n), α← E(mi)]

be the probability that Tn distinguishes encryptions of m0 and m1.
Since the algorithm Tn is symmetric in m0 and m1, q equals the expected probability that Tn

outputs 0 if α is an encryption of m0, i.e. without loss of generality we can assume that i = 0.
Now, our experiment can be viewed as the following. Pick m0 ←Mn, E ← C(1n), α← E(m0),
β ← An(E,α). Now we pick a brand new message m1 ← Mn and run steps 2–4 of Tn. q is the
probability that we output 0. Before computing q, we claim that

Pr[β = fE(m0)] ≥ p̃ +
1
nc

; Pr[β = fE(m1)] ≤ p̃ (2)
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Indeed, the first bound follows directly from (1), as β ← An(E,α) and α← E(m0). For the
second bound, we observe that for any fixed E, the message m1 is chosen independent of m0,
α← E(m0) and, therefore, β ← An(E,α). Hence, for any fixed E the probability that fE(m1)
equals β is at most the probability that it equals to any pre-specified element, which is at most
pE . Since for a fixed E, our probability is stochastically dominated by pE , we can take the
expectation over E to obtain the claimed bound.

We can now compute the probability q of outputting 0 in the following way (using Pr[A ∧
B] + Pr[A ∧ B̄] = Pr[A]):

q = Pr[β = fE(m0) ∧ β 6= fE(m1)] +
1
2
(Pr[β = fE(m0) = fE(m1)] + Pr[β 6∈ {fE(m0), fE(m1)}])

=
1
2

(Pr[β = fE(m0) ∧ β 6= fE(m1)] + Pr[β = fE(m0) ∧ β = fE(m1)]) +

1
2

(Pr[β = fE(m0) ∧ β 6= fE(m1)] + Pr[β 6= fE(m0) ∧ β 6= fE(m1)])

=
1
2

(Pr[β = fE(m0)] + Pr[β 6= fE(m1)]) =
1
2

+
1
2

(Pr[β = fE(m0)]− Pr[β = fE(m1)])

(2)

≥ 1
2

+
1
2

(
(p̃ +

1
nc

)− p̃

)
=

1
2

+
1

2nc

By the probabilistic method we therefore know that there are two specific messages m0 and
m1 which are distinguished by Tn. Thus C is not GM-secure. �

4 Conclusion

By giving a short proof for the equivalence of GM-security and semantic security we have shown
that these notions are actually much more similar then previously believed. Our reduction is
also more efficient, i.e. the prediction advantage decreased only from n−c to n−c

2 , while it went
to n−2c in the original reduction [2]. Finally, it is our hope that this simplified proof can be
used in a classroom setting to teach the equivalence between the two security notions.
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