
Discovering Hierarchy in Reinforcement Learning with HEXQ

Bernhard Hengst bernhardh@cse.unsw.edu.au

Computer Science and Engineering, University of New South Wales, UNSW Sydney 2052 AUSTRALIA

Abstract

An open problem in reinforcement learning
is discovering hierarchical structure. HEXQ,
an algorithm which automatically attempts
to decompose and solve a model-free fac-
tored MDP hierarchically is described. By
searching for aliased Markov sub-space re-
gions based on the state variables the algo-
rithm uses temporal and state abstraction to
construct a hierarchy of interlinked smaller
MDPs.

1. Introduction

Bellman (1961) stated that sheer enumeration would
not solve problems of any significance. In reinforce-
ment learning the size of the state space scales ex-
ponentially with the number of variables. Designers
try to manually decompose more complex problems to
make them tractable. Finding good decompositions
is usually an art-form. Many researchers have either
ignored where decompositions come from or pointed
to the desirability of automating this task (Boutilier
et al., 1999; Hauskrecht et al., 1998; Dean & Lin,
1995). More recently, Dietterich (2000b) concluded
that the biggest open problem in reinforcement learn-
ing is to discover hierarchical structure.

It was recognised by Ashby (1956) that learning is
worthwhile only when the environment shows con-
straint. One type of constraint present in many en-
vironments is the repetition of sub-structures. Ashby
stated that repetition is of considerable practical im-
portance in the regulation of very large systems. Rep-
etitions are commonplace. They are evident, for exam-
ple, at the molecular level, in daily routines, in office
layouts or even in just walking. One reason that re-
inforcement learning scales poorly is that sub-policies,
such as walking, need to be relearnt in every context.
It makes more sense to learn how to walk only once
and then reuse this skill wherever it is required. A
reinforcement learning agent that can find and learn
reusable sub-tasks and in turn employ them to learn

higher level skills would be more efficient.

In the rest of this paper we will describe the opera-
tion of a hierarchical reinforcement learning algorithm,
HEXQ, which attempts to solve model-free MDPs
more efficiently by finding and exploiting repeatable
sub-structures in the environment. The algorithm is
designed to automatically discover state and temporal
abstractions, find appropriate sub-goals and construct
a hierarchical representation to solve the overall MDP.
As a running example we will use the taxi task (Diet-
terich, 2000a) to illustrate how the algorithm works.
We also show results for a noisy Tower of Hanoi puzzle.

2. Representation and Assumptions

We start with the usual formulation of a finite MDP
with discrete time steps, states and actions (Sutton
& Barto, 1998). The objective is to find an optimal
policy by maximising the expected value of future dis-
counted rewards represented by the action-value func-
tion, Q (Watkins & Dayan, 1992). We also employ
semi-MDP theory (Puterman, 1994) which generalizes
MDPs to models with variable time between decisions.
We assume that the state is defined by a vector of d
state variables, x = (x1, x2, ..., xd). Large MDPs are
naturally described in this factored form. In this pa-
per we consider only negative reward non-discounted
finite horizon MDPs (stochastic shortest path prob-
lems), but the algorithm has been extended to han-
dle general finite MDPs. The issue of solving MDPs
efficiently is largely orthogonal and complementary to
the decomposition techniques discussed here. We have
used simple one-step backup Q-learning throughout.

HEXQ attempts to decompose a MDP by dividing
the state space into nested sub-MDP regions. De-
composition is possible when (1) some of the vari-
ables in the state vector represent features in the en-
vironment that change at less frequent time intervals,
(2) variables that change value more frequently retain
their transition properties in the context of the more
persistent variables and (3) the interface between re-
gions can be controlled. For example, if a robot nav-

igates around four equally sized rooms with intercon-
necting doorways (Parr, 1998) the state space can be
represented by the two variables, room-identifier and
position-in-room. The room changes less frequently
than the position. The position in each room needs
to be represented consistently to allow generalisation
across rooms, for example, by numbering cells from top
to bottom, left to right in each room. Most represen-
tations naturally label repeated sub-structures in this
way. Finally we need to be able to find sub-policies to
exit through each doorway with certainty. This will
become clearer in the next sections. In the absence
of these conditions or when they are only partially
present HEXQ will nevertheless solve the MDP dis-
covering abstractions where it can. In the worst case
it has to solve the ‘flat’ problem.

3. The Taxi Domain

Dietterich (2000a) created the taxi task (Figure 1) to
demonstrate MAXQ hierarchical reinforcement learn-
ing. For MAXQ the structure of the hierarchy is spec-
ified by the user. We will use the same domain to
illustrate how hierarchical decomposition can be au-
tomated. We will keep our description of HEXQ gen-
eral, but use the taxi domain to illustrate the basic
concepts. We start by reviewing the taxi problem.

In the taxi domain, a taxi, started at a random loca-
tion, navigates around a 5-by-5 grid world to pick up
and then put down a passenger. There are four possi-
ble source and destination locations, designated R, G,
Y and B. We encode these 1, 2, 3, 4 respectively. They
are called taxi ranks. The objective of the taxi agent
is to go to the source rank, pick up the passenger, then
navigate with the passenger in the taxi to the desti-
nation rank and put down the passenger. The source
and destination ranks are also chosen at random for
each new trial. At each step the taxi can perform one
of six primitive actions, move one square to the north,
south, east or west, pickup or putdown the passenger.
A move into a wall or barrier leaves the taxi location
unchanged. For a successful passenger delivery the re-
ward is 20. If the taxi executes a pickup action at a
location without the passenger or a putdown action at
the wrong destination it receives a reward of -10. For
all other steps the reward is -1. The trial terminates
following a successful delivery.

The taxi problem can be formulated as an episodic
MDP with the 3 state variables: the location of the
taxi (values 0-24), the passenger location including in
the taxi (values 0-4, 0 means in the taxi) and the desti-
nation location (values 1-4). Deterministic actions will
make the illustrations simpler. Results in section 7 are

Figure 1. The Taxi Domain.

based on stochastic actions. It is easy to see that for
the taxi to navigate to one of the ranks the navigation
policy can be the same whether it intends to pick up
or put down the passenger. The usual ‘flat’ formu-
lation of the MDP will solve the navigation sub-task
as many times as it reoccurs in the different contexts.
Dietterich has demonstrated how the problem can be
solved more efficiently with sub-task reuse by design-
ing a MAXQ hierarchy. We will now show how a hi-
erarchy can be generated automatically to solve the
problem.

4. Automatic Hierarchical
Decomposition

HEXQ uses the state variables to construct the hierar-
chy. The maximum number of levels in the hierarchy
is the same as number of state variables. For the taxi
domain there are three levels. The hierarchy is con-
structed, and levels are numbered from the bottom up.
The bottom level, level 1, is associated with the vari-
able that changes value most frequently. The rationale
is that sub-tasks that are used most often appear at
the lower levels and need to be learnt first. The first
level is the only level that interacts with the environ-
ment using primitive actions.

We start by observing one of the state variables. We
choose this variable on the basis that it changes value
most frequently. We now partition the states rep-
resented by the values of this variable into Markov
regions. The boundaries between regions are identi-
fied by ‘unpredictable’ (see subsection 4.2) transitions
which we call region exits. We then define sub-MDPs
over these regions and learn separate policies to leave
each region via its various exits.

Whole regions are then abstracted and combined with
the next most frequently changing state variable to
form abstract states at the next level in the hierarchy.
The exit policies just learnt become abstract actions

Table 1. Frequency of change for taxi domain variables over
2000 random steps.

Variable Frequency Order
Passenger location 4 2
Taxi location 846 1
Destination 0 3

at this next level.

At this stage we have a semi-MDP that has one less
variable in the state description and only abstract ac-
tions. We now repeat the above process on the reduced
problem forming at most one hierarchical level for each
state variable. If this abstraction does not reduce the
number of Q-values otherwise required we can simply
take the cartesian product of the current level state
with the next variable and continue the construction
of the hierarchy with this combined state. The top
level will have one sub-MDP which is solved by recur-
sively calling other sub-MDP policies as its actions.
Let us now describe this process in more detail.

4.1 Variable Ordering Heuristic

Just as lines in the inner loop of programs are executed
more frequently, variables that change value more fre-
quently are associated with lower levels of the hierar-
chy. Conversely, variables that change less frequently
set the context for the more frequently changing ones.
The hierarchy is constructed from the bottom up start-
ing with the variable that changes most frequently.

To order the variables, we allow our agent to explore
its environment at random for a set period of time and
keep statistics on the frequency of change of each of the
state variables. We then sort the variables based on
their frequency of change. For the taxi, table 1 shows
the frequency and order of each variable following a
2000 random action exploration run.

4.2 Discovering Repeatable Regions

HEXQ starts by projecting the entire state space onto
values of the variable that changes most frequently,
limiting the state space to these values. Obviously,
this makes the agent’s perception of the environment
highly aliased. Nevertheless, HEXQ now proceeds to
attempt to model the state transitions and rewards by
exploring the environment, taking random actions. It
models the state transitions as a directed graph (DG)
in which the vertices are the state values and the edges
are the transitions for each primitive action.

Following a set period of exploration in this manner,

transitions that are unpredictable (called exits) are
eliminated from the graph.

Definition 1 An exit is a state-action pair (se, a) sig-
nifying that taking action a from state se causes an
unpredictable transition. Transitions are unpredictable
when (1) the state transition or reward function is not
a stationary probability distribution, or (2) another
variable may change value (or the task terminates).

State se in definition 1 is a level e state (see subsec-
tion 4.3) and is referred to as an exit state. Action a is
primitive for level 1 and abstract for all higher levels.
An entry state is the state that is reached following an
exit. For the taxi location variable, all states are en-
tries because the taxi agent is restarted at any location
at random following the episodic trial exit.

We are left with a DG whose connections represent
predictable transitions between values of the first level
state variable. For the taxi example the directed graph
for the taxi location variable is shown in Figure 2. The
transitions labelled exits are not counted as edges. For
example, taking action pickup or putdown in state 23
is not predictable because it may change the passenger
location variable or reach the goal, respectively. How-
ever, we can predict the transitions anywhere else in
the environment. State 7, for example, always transi-
tions to state 2 on action north, 12 on south, 8 on east,
7 on west, 7 on pickup and 7 on putdown. We have
only drawn one edge to represent multiple transitions
between the same states in Figure 2 to avoid cluttering
the diagram.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

exits

exitsexits

exits

Figure 2. The directed graph of state transitions for the
taxi location. Exits are non-predictable state transitions
and not counted as edges of the graph.

We will now describe the general procedure to decom-
pose a DG into regions that will meet our purpose for
valid hierarchical state abstraction.

First we decompose the DG into strongly connected
components (SCCs). An efficient linear time algo-
rithm for this procedure can be found in Cormen et al.
(1999). The SCCs, as abstracted nodes, form a di-
rected acyclic graph (DAG). It is possible that there
are many connected SCCs in the DAG. Because we
only require that when we enter an abstract state we
can leave via any exit, we can combine some SCCs to
form regions. Whole regions will later be abstracted to
form higher level states. Our objective is to maximise
the size of these regions so as to minimise the number
of abstract states. Following the coalition of SCCs into
regions we may still have regions connected by edges
from the underlying DAG. We break these by forming
additional exits and entries associated with their re-
spective regions and repeat the entire procedure until
no additional regions are formed. The regions can be
labelled arbitrarily. We use consecutive integers for
convenience (see equation 1).

A region, therefore, is a combination of SCCs such
that any exit state in a region can be reached from
any entry with probability 1. Regions are generally
aliased in the environment. All the instances of these
generic regions partition the total state space.

Each region has a set of states, actions and predictable
(i.e. Markov) transition and reward functions. We can
therefore define a MDP over the region with an exit
(or sub-goal) as a transition to an absorbing state.
The solution to this ‘sub-MDP’ is a policy over the
region that will move the agent out of an exit start-
ing from any entry. We proceed to construct multi-
ple sub-MDPs one for each unique hierarchical exit
state (s1, s2, ...se) in each region. Sub-MDP policies
in HEXQ are learnt on-line, but a form of hierarchical
dynamic programming could be used directly as the
sub-task models have already been uncovered.

In the taxi example, the above procedure finds one
hierarchical level 1 region as reflected in figure 2. This
region has 8 exits. They are:

(s1 = 0, a = pickup), (s1 = 0, a = putdown),
(s1 = 4, a = pickup), (s1 = 4, a = putdown),
(s1 = 20, a = pickup), (s1 = 20, a = putdown),
(s1 = 23, a = pickup), (s1 = 23, a = putdown).

As there are 4 hierarchical exit states we create 4 sub-
MDPs at level 1 and solve them.

4.3 State and Action Abstraction

We are now in the position to tackle the second level
in the hierarchy. The process is similar to the first
level in that we will be searching for repeatable re-
gions. Except now the states and actions are based on

abstractions from the first level.

We define abstract states at the second level as the
cartesian product of the region labels and values of
the next state variable in the frequency ordering. A
convenient numerical method for generating abstract
state values is as follows:

se+1 = |re|xj + re (1)where

se+1 = abstract state value at level e+1
|re| = number of regions at level e
xj = next most frequent state variable value
re = region label from level e

The abstract actions available in each of these abstract
states are the policies leading to region exits at the
level below. Abstract actions are similar to composite
actions in Dietterich (2000a). The effect of taking an
abstract action in state se is to invoke and execute the
associated level e − 1 sub-MDP policy.

For the taxi example there is only one region at level
1 which we label 0. When we apply equation (1), the
level 2 hierarchy states, s2, simply correspond to the
values of the passenger location. We therefore generate
5 states at level 2. There are 8 abstract actions which
are the policies that lead to the exits listed previously.

It is generally the case that different abstract states
have different abstract actions. Also, because abstract
actions can take varying primitive time periods to ex-
ecute, we now have a semi-Markov decision problem.
This semi-MDP has one less variable than the original
MDP and uses only abstract actions.

1

2 3

4

0

(s1=0, a=pickup)

(s1=4, a=pickup) (s1=20, a=pickup)

(s1=23, a=pickup)

(s2 = 0, (s1 = 0, a = putdown))
(s2 = 0, (s1 = 4, a = putdown))
(s2 = 0, (s1 = 20, a = putdown))
(s2 = 0, (s1 = 23, a= putdown))

Level 2 exits {
Figure 3. State transitions for the passenger location vari-
able at level 2 in the hierarchy. There are 4 exits at level
2.

We repeat the level 1 procedure, finding regions and
exits using the abstract states and actions at level 2.

For the taxi, the region and exits at level 2 are shown
in figure 3. Note that the actions are abstract and
labelled using the exit notation from the first level.
There are 4 exits at level 2. They are also shown in
figure 3. For example, exit (s2 = 0, (s1 = 23, a =
putdown)) means: with the passenger in the taxi, nav-
igate to location s1 = 23 and putdown the passenger.
This is an exit because it may or may not lead to
the goal, depending on the destination location. We
generate 4 sub-MDPs for level 2 given the 4 unique
hierarchial exit states.

In this way we generate one level of hierarchy for each
variable in the original MDP. The only change to the
predictability criteria is that we only test state vari-
ables for change from the ones we have not yet pro-
cessed. When we reach the last state variable we solve
the top level sub-MDP represented by the final ab-
stract states and actions which solves the overall MDP.

1

2

3

4

(s2 = 0, (s1 = 0, a = putdown))

(s2 = 0, (s1 = 4, a = putdown))

(s2 = 0, (s1 = 20, a = putdown))

(s2 = 0, (s1 = 23, a = putdown))

Figure 4. The top level sub-MDP for the taxi domain show-
ing the abstract actions leading to the goal.

The top level sub-MDP for variable destination is
shown in figure 4. Note the nesting in the description
of abstract actions.

To illustrate the execution of a competent taxi agent
on the hierarchically decomposed problem, let us as-
sume the taxi is initially located randomly at cell 5,
the passenger is on rank 4 and wants to go to rank 3.

In the top level sub-MDP, the taxi agent perceives the
passenger destination as 3 and takes abstract action
(s2 = 0, (s1 = 20, a = putdown)). This sets the sub-
goal state at level 2 to s2 = 0 or in English, pick up
the passenger first. At level 2, the taxi agent perceives
the passenger location as 4, and therefore executes ab-
stract action (s1 = 23, a = pickup). This abstract ac-
tion sets the sub-goal state at level 1 to taxi location
s1 = 23, i.e. rank 4. The level 1 policy is now ex-

ecuted using primitive actions to move the taxi from
location s1 = 5 to the pickup location s1 = 23 and
the pickup action is executed on exit. Level 1 returns
control to level 2 where the state has transitioned to
s2 = 0. Level 2 now completes its instruction and takes
abstract action (s1 = 20, a = putdown). This again in-
vokes level 1 primitive actions to move the taxi from
location s1 = 23 to s1 = 20 and then putdown to exit.
Control is returned back up the hierarchy and the trial
ends with the passenger delivered correctly.

5. Hierarchical Value Function

HEXQ is similar to MAXQ in its approach to hierar-
chical execution using a decomposed value function,
but there are important differences.

The motivation for these new decomposition equations
is that they automatically solve the hierarchical credit
assignment problem (Dietterich, 2000a) by relegating
non-repeatable sub-task rewards further up the hier-
archy where they can be ‘explained’. The equations
also reduce nicely to the usual Q and value functions
for ‘flat’ MDPs if there is only one variable in the state
vector.

Definition 2 The recursively optimal hierarchical
exit Q-function Q∗

em(se, a) at level e in sub-MDP m
is the expected value after completing the execution of
(abstract) action a starting in (abstract) state se and
following the optimal hierarchical policy thereafter.

Q∗
em(se, a) =

∑
s′

T a
ses′ [Ra

se + V ∗
em(s′)] (2)

where

T a
ses′ = Pr{s′|se, a}
Ra

se = E{primitive reward after a|se, a}
s′ = hierarchical next state = (s1′

, ..., se′
)

Note that Q includes the expected primitive reward
immediately after sub-task exit, but does not include
any rewards accumulated while executing the sub-
tasks. The name HEXQ is derived from this function.

The recursively optimal hierarchical value function de-
composition is given by:

V ∗
em(s) = max

a

[
V ∗

e−1,me−1(a)(s) + Q∗
em(se, a)

]
(3)

where

me−1(a) = subMDP implementing action a

The manner in which regions are formed has ensured
that no action will exit a sub-MDP unintentionally.

For our special case of stochastic shortest path prob-
lems we avoid the introduction of the pseudo-reward
functions (Dietterich, 2000a). We can therefore update
all region sub-policies concurrently using off-policy
backups, similarly to all goals updating (Kaelbling,
1993).

6. Stochastic Considerations

HEXQ handles stochastic actions and rewards. The
aspects that need attention are explained in the fol-
lowing two sections.

6.1 Detecting Non-Markov Transitions

Exits can also occur (see definition 1) when a state
transition or reward is not predictable and a higher
level state variable does not change value. In the de-
terministic case it is easy to determine these exits. We
only need to find a transition to two different next
states or reward values for the same action to trig-
ger an exit condition. In the stochastic case we need
to record statistics and test the hypothesis that the
reward and state transitions (R and T functions in
equation 2) come from different probability distribu-
tions in some contexts. In theory it is possible to de-
termine this to any degree of accuracy given that we
can test all the individual contexts represented by the
higher level variables. In practice this is intractable,
because the combinations of higher level variables can
grow exponentially.

Instead, we keep the transition statistics over a shorter
period of time and compare these to their long term
average. The objective is to explicitly test whether the
probability distribution is stationary. We use a bino-
mial distribution based on average probabilities to test
when a temporally close sample of each transition is
outside an upper confidence limit. When this happens
we declare an exit. Similarly, to detect reward func-
tion non-stationarity we use the Kolmogorov-Smirnov
test.

6.2 Hierarchical Greedy Policy

A sub-MDP will stubbornly attempt to exit a re-
gion by the exit determined from the level above even
though the agent may have slipped closer to another
exit that is now more optimal (Hauskrecht et al.,
1998). The solution is to re-evaluate the optimum pol-
icy at every level after every step. This is only possible
after the uninterrupted exit policies have been learnt
and is referred to as a hierarchical greedy policy by
Dietterich (2000a).

7. Results

Figure 5 compares the performance of HEXQ against
MAXQ and a ‘flat’ learner on a stochastic taxi task,
with each of the four navigation actions performing as
intended 80% of the time and 20% of the time moving
the taxi randomly to the left or right of the intended
action.

10

100

1000

100 200 300 400

Trials
S

te
p

s
to

 P
as

se
n

g
er

 D
el

iv
er

y

500

Flat

HEXQ

MAXQ

Figure 5. Performance of HEXQ vs a ‘Flat’ learner and
MAXQ for the stochastic taxi.

The graph shows the number of primitive time steps
required to complete each successive trial averaged
over 100 runs. For all experiments the Q-learning rate
was set at 0.25. The initial Q-values were set to 0
and all actions were greedy, except for those during
hierarchy construction as described previously. Explo-
ration is implicitly forced by the initial Q-values and
the stochastic actions.

HEXQ performance improves in distinct stages as each
level of the hierarchy is constructed. After about 41
trials it surpasses the performance of the ‘flat’ learner.
While the ‘flat’ learner can start to improving perfor-
mance during the first trial, HEXQ must first order
the variables and find exits at the first level before
it can improve its performance. HEXQ then learns
more rapidly as it transfers sub-task skills. The in-
vestment in hierarchy construction ‘breaks even’ at 220
trials, where the cumulative number of time steps for
both the ‘flat’ learner and HEXQ are equal. With its
additional background knowledge MAXQ learns very
rapidly. In our version of MAXQ the slower conver-
gence evident is caused by learning the Q-values at all
levels simultaneously. Higher level Q-values are ini-
tially learnt with inflated costs from the lower level
partially learnt policies.

In terms of storage requirements for the value function,
a ‘flat’ learner uses a table of 500 states and 6 actions

= 3000 values. HEXQ requires 4 MDPs at level 1 with
25 states and 6 actions = 600 values. 4 MDPs at level
2 with 5 states and 8 actions = 160 values. 1 MDP at
level 3 with 4 states and 4 actions = 16 values. A total
of 776 values. MAXQ by comparison requires only 632
values. HEXQ, of course, is not told which actions to
apply at different levels and must discover these for
itself.

As a second example the performance of HEXQ is com-
pared to a ‘flat’ learner for a noisy 3 pin Tower of Hanoi
puzzle (ToH) with 7 disks. The state variables are the
disks. Their values represent the pin positions. Each
disk can be moved to another pin but only if no other
disk is moved in the process and the disks on each pin
remain ordered in size with the smallest on top. Ac-
tions are defined by disk and target pin. An example
action is move-disk3-to-pin2. There are three such ac-
tions per disk, at total of 21. The actions are stochastic
in the sense that having picked up a disk there is an
80% probability that an intended legal move will suc-
ceed and a 20% probability that the disk will attempt
to slip randomly to another pin. For illegal moves the
disks remains in situ. The reward is -1 per move. The
goal is to move all the disks to pin 3. Disks are ran-
domly (but legally) placed on the pins at the start of
each trial. The learners are model-free.

100

1000

10000

100000

1000000

0 1000 2000 3000 4000

Trials

M
ov

es
 to

 re
ac

h
go

al Flat

HEXQ

Figure 6. Performance of HEXQ vs a ‘Flat’ learner for a
stochastic Tower of Hanoi puzzle with 7 disks averaged
over 10 runs and smoothed.

From figure 6 we see that HEXQ learns the 7 disk ToH
in a fraction of number of trials of the ‘flat’ learner.
HEXQ takes about half the number of steps to con-
verge compared to the ‘flat’ learner. The recursive
value function implements a depth first search which
becomes expensive with 7 levels. This issue is shared
with MAXQ. A reasonable approach is to only eval-
uate the function to a certain depth. By analogy, in

planning a trip from New York to Sydney we do not
take into consideration which side of the bed to get
out of on our way to the bathroom on the day of de-
parture. In this example we have limited the search to
a depth of only 1. This is possible in the ToH because
the recursive constraints are such that the values below
level 1 cannot change the outcome. The ToH has al-
ternative action representations. Move-fromPin-toPin
would require only 6 actions. With this representation
HEXQ can quickly learn the deterministic n disk ToH
in time complexity of O(n2) and space complexity of
O(n). With general stochastic actions this representa-
tion fails to decompose because every action for every
disk state is an exit.

8. Limitations and Future Work

While HEXQ will not perform any worse than a ‘flat’
learner, it relies on certain constraints in the prob-
lem to allow it to find decompositions. If a subset
of the variables can form sub-MDPs and we can find
policies to reach their exits with probability 1 then
HEXQ can find a decomposition. To find sub-MDPs
it is necessary that some variables change on a longer
timescale. The requirement to be able to exit with
certainty ensures that learnt sub-tasks do not present
any uncontrollable surprises to higher level tasks. This
means that some benign problems, such as navigating
around a multi-room domain with stochastic actions
that slip in all directions, will not HEXQ decompose.
We leave to future work automatically finding condi-
tions under which the exit-with-certainty constraint
can be relaxed.

Problem characteristics may result in the discovery of
a large number of exits. For example, if a doorway
is modelled with three exit states, indicating that it
is possible to exit either left, right or centre, HEXQ
will generate and solve 3 sub-MDPs. A designer can
choose to combine exits and only generate one sub-
MDP. An improvement would be to extend HEXQ
to automatically combine exits leading to the same
next state. Exit combination heuristics based on gen-
eral transition properties, such as entering the same
next region or having small Q-value differences suggest
themselves. Exit combining will make some problems
decomposable as a composite exit may now be reached
with probability one. We leave to further study the
tradeoff between intra-region value improvement and
inter-region value deterioration as exits are combined.

The two heuristics employed by HEXQ are (1) variable
ordering and (2) finding non-stationary transitions. If
the frequency order of variables is changed HEXQ may
still be able to partially decompose the MDP, but in

most cases less efficiently. Decompositions under dif-
ferent variable combinations and orderings is further
discussed in Hengst (2000). An independent slowly
changing random variable would be sorted to the top
level in the hierarchy by this heuristic and the MDP
will fail to decompose as it is necessary to explore the
variable’s potential impact. Further research may be
better directed towards selecting relevant variables for
the task at hand rather than finding better sorting
heuristics.

For the second heuristic the penalty for recognising
extra exits is simply to generate some additional over-
head for HEXQ. These exits will require new policies
to be learnt and they in turn will need to be explored
as new abstract actions in the next level up the hier-
archy. This does not detract from the quality of the
solution in terms of optimality. If exits are missed
the solution may not be effected at all. Alternatively,
it may be more circuitous or, in the worst case, fail
altogether. It would be possible to incorporate recov-
ery procedures in HEXQ when new exits are belatedly
discovered. At this stage we rely on HEXQ to find all
relevant exits.

For deterministic shortest path problems HEXQ will
find a globally optimal policy. With stochastic actions
HEXQ, as MAXQ is recursively optimal.

9. Conclusion

HEXQ has tackled the problem of discovering hier-
archical structure in stochastic shortest path factored
MDPs. HEXQ will decompose MDPs if it can find
nested sub-MDPs where there are policies to reach any
exit with certainty. Generally it will perform well on
problems where it can identify large regions, few ex-
its and many contexts in which the sub-tasks are re-
quired. HEXQ has automated work that is usually
required to be performed by a designer. This includes
defining sub-tasks, finding sets of actions that can be
performed in each sub-task, finding sub-task termina-
tion conditions or sub-goals, finding usable state and
temporal abstractions and assigning credit hierarchi-
cally. Work is ongoing to generalise HEXQ, building
on the key idea of discovering Markov sub-spaces, to
handle hidden state and selective perception. We be-
lieve the discovery and manipulation of hierarchical
representations will prove essential for lifelong learn-
ing in autonomous agents.

References

Ashby, R. (1956). Introduction to cybernetics. London:
Chapman & Hall.

Bellman, R. (1961). Adaptive control processes: A
guided tour. Princeton, NJ: Princeton University
Press.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-
theoretic planning: Structural assumptions and
computational leverage. Journal of Artificial Intel-
ligence Research, 11, 1–94.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L.
(1999). Introduction to algorithms. Cambridge Mas-
sachusetts: MIT Press.

Dean, T., & Lin, S. H. (1995). Decomposition tech-
niques for planning in stochastic domains (Technical
Report CS-95-10). Department of Computer Science
Brown University.

Dietterich, T. G. (2000a). Hierarchical reinforcement
learning with the MAXQ value function decomposi-
tion. Journal of Artificial Intelligence Research, 13,
227–303.

Dietterich, T. G. (2000b). An overview of MAXQ hier-
archical reinforcement learning. SARA (pp. 26–44).

Hauskrecht, M., Meuleau, N., Kaelbling, L. P., Dean,
T., & Boutilier, C. (1998). Hierarchical solution
of Markov decision processes using macro-actions.
Fourteenth Annual Conference on Uncertainty in
Artificial Intelligence (pp. 220–229).

Hengst, B. (2000). Generating hierarchical structure in
reinforcement learning from state variables. PRICAI
2000 Topics in Artificial Intelligence (pp. 533–543).
San Francisco: Springer.

Kaelbling, L. P. (1993). Hierarchical learning in
stochastic domains: Preliminary results. Machine
Learning Proceedings of the Tenth International
Conference (pp. 167–173). San Mateo, CA: Morgan
Kaufmann.

Parr, R. E. (1998). Hierarchical control and learning
for Markov decision processes. Doctoral disserta-
tion, University of California at Berkeley.

Puterman, M. L. (1994). Markov decision processes:
Discrete stochastic dynamic programming. New
York, NY: John Whiley & Sons, Inc.

Sutton, R. S., & Barto, A. G. (1998). Reinforce-
ment learning: An introduction. Cambridge, Mas-
sachusetts: MIT Press.

Watkins, C. J. C. H., & Dayan, P. (1992). Technical
note: Q-learning. Machine Learning, 8, 279–292.

