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Abstract— Anatomical network analysis is considered as a
significant way to study brains. The attributes of anatomical
networks vary across network nodal scales and therefore a
scalable network mapping method is needed. Here, a new
framework for mapping scalable brain anatomical networks
via d-MRI is presented. The modelling of nodes is based on the
structural basis of brain connections (white matter) and the
scale of network nodes is determined by the clustering number
of white matter fibers’ endpoints. d-MRI datasets from glioma
patients and healthy people were tested in this framework.
All mapped networks have small-world characteristics, and
demonstrate the effects of glioma on brain network connectivity.

I. INTRODUCTION

The whole human brain is one of the most complex
natural systems, usually modelled as a network [1]. The
characterization of the global architecture of the connectivity
patterns has gained significant interests in recent years. The
study of brain connectivity could provide an insight of how
human brain specifies different regions and integrates them
to emerge functional brain states [2]. From a clinical aspect,
the brain network properties can also be used as diagnostic
markers, and the investigation can help us understand the
pathogenesis and treatment of brain disorders [3].

Based on different magnetic resonance imaging (MRI)
modalities, two different types of human brain networks can
be mapped: functional networks and anatomical networks.
Typically, a functional brain network is constructed from
correlated activity between functional grey-matter regions
over time, through resting-state-functional-MRI (rs-fMRI),
electroencephalography (EEG) or magnetoencephalography
(MEG). An anatomical network is based on white-matter
fiber bundles that connect spatially isolated grey-matter re-
gions, using diffusion-MRI (d-MRI). Previous works have
mainly investigated the mapping and characteristics of func-
tional human brain networks [4]–[7]. The derivation and
analysis of anatomical brain networks, however, have been
poorly studied, because of the challenges in mapping the
elements of anatomical brain networks with respect to nodes
and connections [2], [8].
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Some studies have revealed an intimate relationship be-
tween a human brain’s functional network and anatomical
network, which share common topological features [3], since
an individual neural node’s pattern of connections with other
nodes partly determines its functionality in the network and
the entire anatomical connectivity places constraints on each
node’s interactions with others [9]. Functional networks and
anatomical networks profile one person’s brain from two
perspectives. On the other hand, anatomical connectivity is
the structural basis of functional connectivity. For a complete
understanding of human brain, a comprehensive map of
structural connectivity is required [2].

Diffusion MRI is capable of illustrating brain white-
matter pathways in-vivo and non-invasively by exploiting
the anisotropic properties of white-matter fiber bundles [10].
The motion of water molecules inside fiber bundles can be
labeled during diffusion image acquisition. On the basis of
the measurements, the microstructure at every imaged brain
location can be captured and fiber bundle trajectories can
be inferred (a so-called tractography technique) [11]. White
matter is the structural basis of connections in brain networks
and anatomical brain networks can be mapped through the
reconstruction of white matter structures. The challenges are
how to define the nodes (functional regions in grey matter)
in the networks and the connections (white-matter pathways)
between the nodes [8].

Currently, no single parcellation scheme for human brain
regions is universally accepted. It is not clear what the
optimal scale (neuronal, micro-column or regional scale)
is for brain connectivity characterization. Previous works
have investigated the connectivity patterns in the cerebral
cortex of human beings [12], and studied the whole human
brain anatomical networks [13] via d-MRI. For these, the
cerebral cortex or grey matter tissues were segmented into
tens of different regions by registering the subjects with
atlases, like automated anatomic labeling (AAL) atlas [14].
Some researchers have attempted to map a high-resolution
structural brain network by simply segmenting the cortex into
1.5cm2-size homogenous patches according to their gyral
coordinates [15], which only relied on the their positions on
the cortical surface.

In the present paper, our interest lies on the modelling of
scalable human brain anatomical networks. First, we propose
a new scalable network nodal definition method, capable of
mapping high-resolution brain networks, according to the
anatomy of white matter. Tractography provides the entire
white-matter structure of any person, in terms of fiber tracts.
Scalable nodes of brain networks are defined by clustering
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each tract’s end points. Then, we validate our methods
by modelling the brain networks of glioma patients and
normal people. Not only previous small-world analysis is
employed, other three important graph properties will also
be investigated.

II. MATERIALS AND METHODS

A. Datasets

The present study included 20 d-MRI data sets. Ten of
them were from patients diagnosed with brain glioma, pro-
vided by Beijing Tiantan Hospital. The scans were performed
on a Siemens 3.0T MRI scanner. d-MRI were acquired
by using an Echo-Planar Imaging (EPI) -based sequence:
coverage of the whole brain, 5.20-mm slice thickness with
no interslice gap, 25 axial slices, time repetition (TR) = 3600
ms, echo time (TE) = 95 ms, 64 diffusion directions with b
= 1000 s/mm2, in-plane acquisition matrix = 128 × 128.
The other ten of the datasets were from the open datasets
of normal people in the community National Alliance for
Medical Image Computing (http://hdl.handle.net/1926/1687).
The scans were acquired on a 3 Tesla General Electric
system using an EPI-based diffusion imaging sequence:
coverage of the whole brain, 1.70-mm slice thickness with
no interslice gap, 85 axial slices, TR = 17000 ms, TE = 78
ms, 51 diffusion directions with b = 900 s/mm2, in-plane
acquisition matrix = 144 × 144.

B. Preprocessing

DTIPrep (http://www.nitrc.org/projects/dtiprep) is used to
perform preprocessing of Diffusion Weighted MRI (DWI)
datasets [16], which includes image and diffusion infor-
mation checking, eddy-current artifacts correction and head
motion artifacts correction.

C. Reconstruction of Anatomical Connections by Tractogra-
phy

Our framework of mapping brain anatomical networks
from d-MRI is based on the structural connectivity (white
matter) in human brains. Tractogarphy is a computational
method of tracing fiber tracts by following probable tract ori-
entations, on the basis of d-MRI, which actually reconstructs
the white matter. Since white matter provides connectivity
information in the brain networks modeling, it is significant
to choose a tractography method which can infer a more
complete structure of white matter.

Unscented Kalman filtering (UKF) tractography [17] is
employed here to map a white matter structure from one’s
diffusion weighted MRI data. Specifically, part of our
datasets are from brain glioma patients. Gliomas usually
deform other brain tissues and appear together with edema.
The fluid in edema changes the anisotropic properties of its
nearby region and d-MRI captures the white matter fibers’
microstructure at each location by the measurements of
the anisotropic properties. Tracing the fiber tracts inside of
edema becomes a challenge and some studies have reported
that UKF tractography addresses the challenge better than
other tractography methods do [18].

D. Network Node Definition
Our brain network node modelling is based on white mat-

ter fiber clustering. Tractography provides fiber trajectories in
terms of the course of anatomical fiber tracts (mm diameter)
and the scale is fine enough to map a high-resolution (around
10000-node) brain network. Ideally, the two endpoints of
each fiber tract reach grey matter and can be regarded as
abstraction of adequately segmented functional regions. For
mapping scalable networks, these points need to be clustered
into coarse-scale nodes and the scale depends on the number
of clusters we set. Modelling network nodes from fiber tracts,
we adopt a five-step process: (1) extracting all the endpoints
of fibers (to be clustered), (2) assigning each endpoint with
affinities with other points and calculating the entire pairwise
endpoint affinity matrix, (3) creating a spectral embedding
of all endpoints, (4) using the k-means algorithm in the
embedding space to find k clusters, (5) computing the center
of mass of each cluster’s points as our network nodes.

Fig. 1. Illustration of computation of the MCP distance from fiber i to
fiber j. In this figure, 5 equidistant points are used to represent each fiber
and the distance from each point in fiber i to its closest point in fiber j is
computed.

The affinity of two endpoints is determined by the simi-
larity of their corresponding tracts, which is reasonable since
a bundle (cluster) of tracts usually connects one functional
region with another region. We quantify the pairwise tract
similarity by computing the mean closest point (MCP)
distance dmcp of the two tracts, which is a commonly
used measure in white matter tracts segmentation [19]. The
computation of this distance is illustrated in Fig. 1. It is
calculated by:

dmcpij =
1

n

n∑
k=1

dk (1)

where n is the number of the equidistant points used to
represent each fiber (n equals to 15 in our methods, but
for simplification, each fiber is represented by 5 points in
Fig. 1.) and dk is the distance from point K in fiber i to its
closest point in fiber j. The MCP distance is a directional
distance. We symmetrize it by taking the minimum value of
the two distances dmcpij and dmcpji :

di,j = min(dmcpij , dmcpji) (2)

The similarity Si,j of fiber i and fiber j is converted from
di,j by a Gaussian Kernel:

Si,j = e−di,j
2/σ2

(3)
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Fig. 2 illustrates the whole brain tractography results of one
glioma patient and their internal similarity assignment.

For the affinity W of the endpoints in fibers, if two
endpoints are in the same side of the fibers, then the affinity
equals the similarity of their corresponding fibers; otherwise,
the affinity is set to be 0 (The range of S is (0, 1].). For the
example in Fig.1, point A with C are in the same side, and
point A with B or D are in opposite sides. A and B are
the two endpoints of the same fiber so they are judged in
opposite sides; The Euclidean distance between A and D is
larger than that between A and C so A and D are also judged
in opposite sides. Therefore, WA,B/D = 0 and WA,C = Si,j .

By computing the leading eigenvectors of the entire pair-
wise endpoint affinity matrix W, the spectral embedding of
all endpoints can be created. We employ the embedding
method described in [20]. In the embedding space, the k-
means algorithm is employed to find k groups of points. The
center of mass for each cluster of points, which represents
this region (cluster), is a node in our network. An example
of so-generated 400 network nodes is illustrated in Fig.2.

(a) (b) (c)

Fig. 2. Illustration of white matter fiber tracts from one glioma patient,
the fibers’ internal similarity assignment and an example of 400 network
nodes from this patient. For the sub-figure (b), more similar the colors of
two tracts are, higher their similarity value W is.

E. Node-node Connectivity
The connection between two nodes is characterised by the

number of fiber tracts which connect the two nodes (the
two cluster of points that the two nodes represent) and their
neighbor nodes. For example, there are only three nodes in a
network and the number of fiber tracts which connect node a
with b is Na,b and node b is close to node c. If the Euclidean
distance between node b and c is less than a threshold α,
then the fiber tracts connecting a and c will contribute to the
connection of node a and b. The arc weight between node
a and b is ma,b = Na,b + βNa,c. Here (for the 400-node
network), we set α to be 5mm and β to be 0.1. A so-mapped
undirected weighted network is illustrated in Fig. 3.

III. RESULTS
Using the human brain anatomical network mapping

framework described above, 400-node anatomical networks
were estimated for the 10 healthy people and 10 glioma
patients. Graph theory is commonly used for the analysis
or feature extraction of complex networks. Some methods in
graph analysis have been widely used in the analysis of brain
networks. Here, we employ the property of small-worldness
to validate our results and other three aspects to characterize
our mapped networks.

Fig. 3. Illustration of a glioma patient’s 400-node brain anatomical network.
The widthes of the lines are proportional to their arc weights and the sizes
of the points are proportional to the degrees of these points. The red chunk
represents the glioma. Only large-degree nodes are illustrated in this figure.

A. Small-worldness

Previous works have reported that functional and anatom-
ical human brain networks both exhibit ”small-world” at-
tributes [7], [13]. Small-worldness is related to two concepts:
average shortest path length (ASPL) and clustering coeffi-
cient (CC). λ represents the ratio of ASPL of a graph to
its random graph which contain the same number of nodes
(λ ≡ ASPLreal/ASPLrandom). γ represents the ratio of
CC of a graph to its random graph (γ ≡ CCreal/CCrandom).
The ”small-world” condition lies in satisfying σ ≡ γ

λ > 1.
The results from the 20 data sets (Table I) confirm the

expected small-world property of the 20 mapped human
brain anatomical networks and the mean parameters of
interest are γmean = 1.18, λmean = 0.94 and σmean = 1.29.

B. Characterizing Brain Anatomical Networks

Three graph attributes are employed to characterize the
10 healthy people’s and 10 glioma patients’ brain networks:
average betweenness centrality, average degree and global
efficiency. The results of the characterizations are illustrated
in Fig. 4. Glioma in the brain can infiltrate or displace white
matter fibers. The mapped brain networks demonstrate the
effects of glioma.

IV. CONCLUSION

We propose a framework for mapping scalable human
brain anatomical networks via d-MRI and ”small-world”
attribute is used to validate our results. The scales of the
networks are based on the clustering of white matter fibers’
endpoints. Three graph attributes are employed to character-
ize the glioma’s effects on brain connectivity.

For future work, more categories of datasets and more
scales of networks will be examined and tested, to somewhat
find optimal nodal scales for different problems.
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TABLE I
OBTAINED HUMAN BRAIN ANATOMICAL NETWORKS PROPERTIES

Subjects 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

γ 0.96 0.94 0.93 0.99 0.98 0.95 0.93 0.94 0.96 0.97 1.99 1.03 1.46 1.68 1.06 1.71 1.54 1.54 1.23 0.82
λ 0.92 0.65 0.71 0.76 0.74 0.64 0.65 0.64 0.76 0.63 1.74 0.96 1.18 1.27 1.01 1.33 1.19 1.33 1.01 0.62
σ 1.04 1.44 1.31 1.31 1.33 1.48 1.43 1.48 1.26 1.53 1.14 1.07 1.24 1.32 1.05 1.29 1.29 1.16 1.23 1.32
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Fig. 4. Illustration of three brain network characteristic attributes between healthy people and glioma patients. (a) is for average betweenness centrality.
(b) is for average degree. (c) is for global efficiency.
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