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Frequency Di�eomorphisms for

E�cient Image Registration
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Jie Luo2, P. Ellen Grant2, and Polina Golland1

1 Computer Science and Arti�cial Intelligence Laboratory, MIT
2 Boston Children's Hospital, Harvard Medical School

Abstract. This paper presents an e�cient algorithm for large deforma-
tion di�eomorphic metric mapping (LDDMM) with geodesic shooting
for image registration. We introduce a novel �nite dimensional Fourier
representation of di�eomorphic deformations based on the key fact that
the high frequency components of a di�eomorphism remain stationary
throughout the integration process when computing the deformation as-
sociated with smooth velocity �elds. We show that manipulating high
dimensional di�eomorphisms can be carried out entirely in the bandlim-
ited space by integrating the nonstationary low frequency components of
the displacement �eld. This insight substantially reduces the computa-
tional cost of the registration problem. Experimental results show that
our method is signi�cantly faster than the state-of-the-art di�eomorphic
image registration methods while producing equally accurate alignment.
We demonstrate our algorithm in two di�erent applications of image
registration: neuroimaging and in-utero imaging.

1 Introduction

Di�eomorphisms have been widely used in the �eld of image registration [7,
6], atlas-based image segmentation [4, 10], and anatomical shape analysis [14,
22]. In this paper, we focus on a time-varying velocity �eld representation for
di�eomorphisms as it supplies a distance metric that is critical to statistical
analysis of anatomical shapes, for instance, by least squares, geodesic regression,
or principal modes detection [13, 16, 22].

In spite of the advantages of supporting Riemannian metrics in LDDMM, the
extremely high computational cost and large memory footprint of the current
implementations has limited the use of time-varying velocity representations in
important applications that require computational e�ciency. The original LD-
DMM optimization performs gradient decent on the entire time-varying velocity
�eld that is de�ned on a dense image grid. Since a geodesic is uniquely de-
termined by its initial conditions on the velocity �eld, the geodesic shooting
algorithm has been shown to reduce the computational complexity and improve
optimization landscape by manipulating the initial velocity via the geodesic evo-
lution equations [20]. FLASH (�nite dimensional Lie algebras for shooting) [23]
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is a recent variant of LDDMM with geodesic shooting that employs a low dimen-
sional bandlimited representation of the initial velocity �eld to further improve
the convergence and e�ciency of the optimization. The algorithm still maps the
velocity �elds from the low dimensional Fourier space back to the full image do-
main to perform forward integration at each iteration [23]. The computational
complexity of this step thus dominates the entire procedure of di�eomorphic
image registration.

Previous works that aimed to improve di�eomorphic representations have re-
duced the high degrees of freedom available to represent the velocity �elds, but
not the di�eomorphisms themselves. In this paper, we adopt the low dimensional
representation of the tangent space of di�eomorphisms [23] and propose an ef-
�cient way to compute di�eomorphisms in the bandlimited space, thus further
reducing the computational complexity of image registration. Our approach is
based on the important insight that only the low frequency components of the
di�eomorphisms vary over time when integrating a bandlimited velocity �eld to
obtain the deformation. Since the optimization of image registration can be di-
rectly solved by advecting the inverse of di�eomorphisms [17], we propose a novel
Fourier representation of the deformation in the inverse coordinate system that
is computed entirely in the low dimensional bandlimited space. The theoretical
tools developed in this paper are broadly applicable to other parametrization
of di�eomorphic transformations, such as stationary velocity �elds [2, 3, 19]. To
evaluate the proposed algorithm, we perform image registration of real 3D MR
images and show that the accuracy of the propagated segmentations is compa-
rable to that obtained via the state-of-the-art di�eomorphic image registration
methods, while the runtime and the memory demands are dramatically lower
for our method. We demonstrate the method in the context of atlas-based seg-
mentation of brain images and of temporal alignment of in-utero MRI scans.

2 Background

Before introducing our development, we provide a brief overview of continuous
di�eomorphisms endowed with metrics on vector �elds [6, 21] and of the �nite
dimensional Fourier representation of the tangent space of di�eomorphisms [23].

Given an open and bounded d-dimensional domain Ω ⊂ Rd, we use Diff(Ω) to
denote a space of continuous di�erentiable and inverse di�erentiable mappings
of Ω onto itself. The distance metric between the identity element e and any
di�eomorphism φ

dist(e, φ) =

∫ 1

0

(Lvt, vt) dt (1)

depends on the time-varying Eulerian velocity �eld vt (t ∈ [0, 1]) in the tangent
space of di�eomorphisms V = TDiff(Ω). Here L : V → V ∗ is a symmetric,
positive-de�nite di�erential operator, e.g., discrete Laplacian, with its inverse
K : V ∗ → V , and mt ∈ V ∗ is a momentum vector that lies in the dual space V ∗

such that mt = Lvt and vt = Kmt.



Frequency Di�eomorphisms for E�cient Image Registration 3

The path of deformation �elds φt parametrized by t ∈ [0, 1] is generated by

dφt
dt

= vt ◦ φt, (2)

where ◦ is a composition operator. The inverse mapping of φt is de�ned via

dφ−1t
dt

= −Dφ−1t · vt, (3)

where D is the d × d Jacobian matrix at each voxel and · is an element-wise
multiplication.

The geodesic shooting algorithm estimates the initial velocity at t = 0 and
relies on the fact that a geodesic path of transformations φt and its inverse φ−1t
with a given initial condition v0 can be uniquely determined through integrating
the Euler-Poincaré di�erential equation (EPDi�) [1, 12] as

∂vt
∂t

= −K
[
(Dvt)

Tmt +Dmt vt +mt div(vt)
]
, (4)

where div is the divergence operator and K is a smoothing operator that guar-
antees the smoothness of the velocity �elds.

2.1 Fourier Representation of Velocity Fields

Let f : Rd → R be a real-valued function. The Fourier transform F of f is given
by

F [f ](ξ1, . . . , ξd) =

∫
Rd

f(x1, . . . , xd)e
−2πi(x1ξ1+...+xdξd) dx1, . . . , dxd, (5)

where (ξ1, . . . , ξd) is a d-dimensional frequency vector. The inverse Fourier trans-
form F−1 of a discretized Fourier signal f̃

F−1[f̃ ](x1, . . . , xd) =
∑

ξ1,...,ξd

f̃(ξ1, . . . , ξd)e
2πi(ξ1x1+...+ξdxd) (6)

is an approximation of the original signal f . To ensure that f̃ represents a real-
valued vector �eld in the spatial domain, we require f̃(ξ1, . . . , ξd) = f̃∗(−ξ1, . . . ,−ξd),
where ∗ denotes the complex conjugate. When working with vector-valued func-
tions of di�eomorphisms φ and velocity �elds v, we apply the Fourier transform
to each vector component separately.

Since K is a smoothing operator that suppresses high frequencies in the
Fourier domain, the geodesic evolution equation (4) suggests that the velocity
�eld vt can be represented e�ciently as a bandlimited signal in Fourier space.
Let Ṽ denote the discrete Fourier space of velocity �elds. As shown in [23], for
any two elements ṽ, w̃ ∈ Ṽ , the distance metric at identity ẽ is de�ned as

〈ũ, ṽ〉Ṽ =

∫
(L̃ṽ(ξ), w̃(ξ))dξ,
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where L̃ : Ṽ 7→ Ṽ ∗ is the Fourier transform of a commonly used Laplacian
operator (−α∆ + e)c, with a positive weight parameter α and a smoothness
parameter c, i.e.,

L̃(ξ1, . . . , ξd) =

−2α

d∑
j=1

(cos(2πξj)− 1) + 1

c .
The Fourier representation of the inverse operator K : Ṽ ∗ 7→ Ṽ is equal to
K̃(ξ1, . . . , ξd) = L̃−1(ξ1, . . . , ξd).

Therefore, the geodesic shooting equation (4) can be e�ciently computed in
a low dimensional bandlimited velocity space:

∂ṽt
∂t

= −K̃
[
(D̃ṽt)

T ? m̃t + ∇̃ · (m̃t ⊗ ṽt)
]
, (7)

where ? is the truncated matrix-vector �eld auto-correlation and D̃ṽt is a tensor
product D̃ ⊗ ṽt with D̃(ξ1, . . . , ξd) = (i sin(2πξ1), . . . , i sin(2πξd)) representing
the Fourier frequencies of a central di�erence Jacobian matrix D. Operator ∇̃· is
the discrete divergence of a vector �eld ṽ, which is computed as the sum of the
Fourier coe�cients of the central di�erence operator D̃ along each dimension,

i.e., ∇̃ · (ξ1, . . . , ξd) =
d∑
j=1

i sin(2πξj).

3 Frequency Di�eomorphisms and Signal Decomposition

While geodesic shooting in the Fourier space (7) is e�cient, integrating the
ordinary di�erential equation (2) to compute the corresponding di�eomorphism
from a velocity �eld remains computationally intensive. To address this problem,
we introduce a Fourier representation of di�eomorphisms that is simple and easy
to manipulate in the bandlimited space. The proposed representation promises
improved computational e�ciency of any algorithm that requires generation of
di�eomorphisms from velocity �elds.

Analogous to the continuous inverse �ow in (3), we de�ne a sequence of time-
dependent inverse di�eomorphisms φ−1t in the Fourier domain that consequently
generates a path of geodesic �ow. Because that the pointwise multiplication of
two vector �elds in the spatial domain corresponds to convolution in the Fourier
domain, we can easily compute the multiplication of a square matrix and a vector
�eld in the Fourier domain as a single convolution for each row of the matrix.

Let D̃iff(Ω) denote the space of Fourier representations of di�eomorphisms.
To simplify the notation, we use ψ , φ−1 in the remainder of this section. Given

time-dependent velocity �eld ṽt ∈ Ṽ , the di�eomorphism ψ̃t ∈ D̃iff(Ω) in the
�nite-dimensional Fourier domain can be computed as

dψ̃t
dt

= −D̃ψ̃t ∗ ṽt, (8)
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where ∗ is a circular convolution with zero padding to avoid aliasing. To prevent
the domain from growing in�nity, we truncate the output of the convolution in
each dimension to a suitable �nite set.

Representing di�eomorphisms entirely in the Fourier space eliminates the
e�ort of converting their associated velocity �elds back and forth from the Fourier
domain to the spatial domain. While current implementations of computing a
di�eomorphism in (3) have complexity O(Nd) on a full image grid of linear size
N , the complexity of naively integrating (8) is O(Nd logN) if the convolution
operator is implemented via fast Fourier transform (FFT) [18]. Here we show how
to reduce the complexity of (8) via frequency decomposition of the deformations.

In particular, we consider a representation ψ̃ = ẽ+ ũ, where ẽ is the Fourier
transform of the identity transformation, and ũ is the Fourier transform of the
displacement �eld. We can now isolate the frequency response of the identity
transformation in (8) as follows:

dψ̃t
dt

= −D̃(ẽ+ ũt) ∗ ṽt = −D̃ẽ ∗ ṽt − D̃ũt ∗ ṽt. (9)

Since De · vt = vt in the spatial domain, we have

D̃ẽ ∗ ṽt = F(De · vt) = F(vt) = ṽt. (10)

Substituting (10) into (9), we arrive at

dψ̃t
dt

= −ṽt − D̃ũt ∗ ṽt with ψ̃0 = ẽ, or

ũt = −
∫ t

0

ṽτ + D̃ũτ ∗ ṽτ dτ with ũ0 = 0. (11)

Importantly, we observe that the high frequency components of the di�eo-
morphisms that come from the initial condition ψ̃0 = ẽ remain unchanged, and
only low frequency components vary throughout the integration. Moreover, the
evolution scheme for geodesic shooting in the Fourier domain (7) indeed main-
tains ṽt as a bandlimited signal. The truncated convolution operation does not
introduce high frequencies if the displacement ũt is also bandlimited. Fig. 1
illustrates a 1D example of the integration (11).

The initial condition ψ̃0 = ẽ corresponds to ũ0 = 0. We �rst integrate (11)
for bandlimited low frequency components of the signal and then add the high
frequency components back. Therefore we have

for ξ 6 η, ũt(ξ) = −
∫ t

0

ṽτ (ξ) + D̃ũτ (ξ) ∗ ṽτ (ξ) dτ,

for ξ > η, ũt(ξ) = 0, (12)

where ξ = (ξ1, . . . , ξd) and η = (η1, . . . , ηd) is the vector of upper bounds on the
frequency in the bandlimited representation of ψ.
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Fig. 1: A 1D example of an initial velocity v0 as a sinusoid function and the
resulting displacement �eld ut and di�eomorphism ψt at t = 0.1 and t = 1. Both
Fourier (red) and spatial (blue) representations are shown.

3.1 Frequency Di�eomorphisms for Image Registration

In this section, we present a di�eomorphic image registration algorithm based
on geodesic shooting that is carried out entirely in the Fourier space.

Let S be the source image and T be the target image de�ned on a torus
domain Γ = Rd/Zd (S(x), T (x) : Γ → R). The problem of di�eomorphic image
registration is to �nd the shortest path of di�eomorphisms ψt ∈ Diff(Γ ) : Γ →
Γ, t ∈ [0, 1] such that S◦ψ1 is similar to T , where ◦ is a composition operator that
resamples S by the smooth mapping ψ1. LDDMM with geodesic shooting [20]
leads to a gradient decent optimization of an explicit energy function

E(v0) =
λ

2
dist(S ◦ ψ1, T ) +

1

2
‖v0‖2V (13)

under the constraints (2) and (4). The distance function dist(·, ·) measures the
dissimilarity between images. Commonly used distance metrics include sum-
of-squared di�erence (L2-norm) of image intensities, normalized cross correla-
tion (NCC), and mutual information (MI). Here λ > 0 is a weight parameter.

The energy function in the �nite-dimensional Fourier space can be equiva-
lently formulated as

E(ṽ0) =
λ

2
dist(S ◦ ψ1, T ) +

1

2
‖ṽ0‖2Ṽ (14)

with the new constraints (7) and (8).
We use a gradient decent algorithm on the initial velocity ṽ0 to estimate the

path of di�eomorphic �ow {ψ̃t} entirely in the bandlimited space. Beginning
with the initialization ṽ0 = 0, the gradient of the energy (14) is computed via
two steps below:



Frequency Di�eomorphisms for E�cient Image Registration 7

1. Compute the gradient ∇ṽ1E of the energy (14) at t = 1. This requires
integrating both the di�eomorphism ψ̃t and the velocity �eld ṽt forward in
time, and then mapping ψ̃1 to the spatial domain to obtain ψ1. Formally,

∇ṽ1E = KF
(
∂ dist(S ◦ ψ1, T )

∂ (S ◦ ψ1)
· ∇(S ◦ ψ1)

)
. (15)

2. Bring the gradient ∇ṽ1E in (15) back to t = 0 by reduced adjoint Jacobi
�eld equations [8, 23]. Integrate the reduced adjoint Jacobi �eld equations

dv̂

dt
= −ad†ṽĥ,

dĥ

dt
= −v̂ − adṽĥ+ ad†

ĥ
ṽ (16)

in Ṽ to get the gradient update ∇ṽ0E, where ad† is an adjoint operator and

v̂, ĥ ∈ Ṽ are introduced adjoint variables.

The algorithm is summarized below.

Algorithm 1: Frequency Di�eomorphisms for Image Registration

Input: source image S, target image T .
Initialize ṽ0 = 0.
repeat

(a) Integrate (7) to compute ṽt at discrete time points t = [0, . . . , 1].
(b) Integrate (8) to generate ψ̃t.
(ci) Convert ψ̃1 back to the spatial domain to transport the source image S.
(cii) Compute the gradient ∇ṽ1E (15) at time point t = 1.
(d) Integrate ∇ṽ1E backward in time via (16) to obtain ∇ṽ0E.
(e) Update ṽ0 ← ṽ0 − δ∇ṽ0E, where δ is the step size.

until convergence
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Fig. 2: Exact run-time of FFT
(blue) and linear interpolation
(yellow).

Computational Complexity It has pre-
viously been shown that the complexity of
steps (a) and (d) is O(Tnd), where T is the
number of time steps in the integration and
n is the truncated dimension in the bandlim-
ited space. The complexity of the current
methods for computing di�eomorphisms in
the high-dimensional image space via (2) is
O(TNd). In contrast, our algorithm reduces
the complexity of this step to O(Tnd) (step
(b)). To transport the images and measure
the image dissimilarity at t = 1, we con-
vert the transformation ψ̃1 into the spatial
domain via FFT (O(Nd logN))(step (ci)).
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While the theoretical complexity of FFT is higher than the complexity of com-
puting S ◦ ψ−11 , which is O(Nd), its empirical runtime for N a power of 2 is
quite low by comparison. Fig. 2 reports the empirical runtime of FFT and of
linear interpolation for di�erent image grid sizes (N = 27, 28, 29) as used by the
current methods and ours to transport S. We note that the linear interpolation
requires more than twice the amount of time than that of FFT.

4 Experimental Evaluation

To evaluate the proposed approach, we perform registration-based segmentation
and examine the resulting segmentation accuracy, runtime and memory con-
sumption of the algorithm. We compare the proposed method with the di�eomor-
phic demons implementation in ANTS software package [5] and the state-of-the-
art fast geodesic shooting for LDDMM method FLASH [23] (downloaded from:
https://bitbucket.org/FlashC/�ashc). In all experiments, we set α = 1.5, c =
3.0, λ = 1.0e4 and T = 10 for the time integration. A normalized cross corre-
lation (NCC) metric for image dissimilarity and a multi-resolution optimization
scheme with three levels are used in all three methods. To evaluate volume over-
lap between the propagated segmentation A and the manual segmentation B
for each structure, we compute the Dice Similarity Coe�cient DSC(A,B) =
2(|A| ∩ |B|)/(|A|+ |B|) where ∩ denotes an intersection of two regions.

4.1 Data

We evaluate the method on 3D brain MRI scans [9] and 4D in-utero MRI time
series [11].

3D brain MRI Thirty six brain MRI scans (T1-weighted MP-RAGE) were
acquired in normal subjects and patients with Alzhimer's disease across a broad
age range. The MRI images are of dimension 2563, 1mm isotropic voxels and
were computed by averaging three or four scans. All scans underwent skull strip-
ping, intensity normalization, bias �eld correction, and co-registration with a�ne
transformation. An atlas was built from 20 images as a reference. Manual seg-
mentations are available for all scans in the set. We perform image registration
of the 3D brain atlas to the remaining 16 subjects. We evaluate registration
by examining the accuracy of atlas-based delineations for white matter (WM),
cortex (Cor), ventricles (Vent), hippocampus (Hipp), and caudate (Caud).

4D in-utero time-series volumetric MRI Ten pregnant women (three
singleton pregnancies, six twin pregnancies, and one triplet pregnancy) were
recruited and consented. Single-shot GRE-EPI image series were acquired for
each woman on a 3T MR scanner (Skyra Siemens, 18-channel body and 12-
channel spine receive arrays, 3× 3mm2 in-plane resolution, 3mm slice thickness,
interleaved slice acquisition, TR= 5.8 − 8s, TE= 32 − 36ms, FA= 90o). Odd
and even slices of each volume were resampled onto an isotropic 3mm3 image
grid to reduce the e�ects of interleaved acquisition. Each series includes around
300 3D volumes. The placentae (total of 10) and fetal brains (total of 18) were
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Fig. 3: Left: average �nal energy for di�erent values of the truncated dimension
n = 8, 16, . . . , 128. Right: example propagated segmentation with 35 structures
obtained by our method. 2D slices are shown for visualization only, all compu-
tations are carried out fully in 3D.

manually delineated in the reference template and in �ve additional volumes in
each series. When applying our method to in-utero MRI, we use it as part of
sequential registration of the consecutive frames in the scan series. Each series
requires about 300 consecutive image registration steps over time.

4.2 Results

3D brain MRI Fig. 3 reports the total energy (14) averaged over 16 test im-
ages for di�erent values of truncated dimension n = 8, 16, · · · , 128. Our method
arrives at the same solution at n = 32 and higher. For the remainder of this sec-
tion, we use n = 32 to illustrate the results. An example segmentation obtained
by our algorithm is also illustrated in Fig. 3. Fig. 4 reports the volume over-
lap of segmentations for our method and the two baseline algorithms. All three
algorithms produce comparable segmentation accuracy. The di�erence is not sta-
tistically signi�cant in a paired t-test for each labelled structure (p = 0.369). Our
algorithm has substantially lower computational cost than ANTS and FLASH.
Fig. 4 also provides runtime and memory consumption across all methods.

4D in-utero time-series volumetric MRI Similar to the previous exper-
iment, we cross-validated the optimal truncated dimension n at di�erent scales
and set n = 16 for the 4D in-utero time series. Once all the volumes in the series
are aligned, we transform the manual segmentations in the �rst volume to other
volumes in each series by using the estimated deformations. Fig. 5 illustrates
results for an example case from the study. We observe that the delineations
achieved by transferring manual segmentations from the reference frame to the
coordinate system of the target frame 25 align fairly well with the manual seg-
mentations. Fig. 6 reports segmentation volume overlap for the fetal brains and
placenta, as well as the time and memory consumption for our method and
the two baseline algorithms. Again, our algorithm achieves comparable results
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FLASH 0.5 3375
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Fig. 4: Left: volume overlap between atlas-based and manual segmentations for
�ve important regions (white matter, cortex, ventricles, hippocampus, and cau-
date) estimated via ANTS (black), FLASH (blue), and our method (red). Right:
Runtime and memory consumption per image for all three methods.

(paired t-test p = 0.4671) while o�ering signi�cant improvements in computa-
tional e�ciency.

Fig. 5: An example case from the in-utero MRI study. Left to right: source with
manual segmentation, deformed source, target with manual segmentation, and
target with propagated segmentations for the fetal brains (green) and placenta
(pink). 2D slices of axial view are shown for visualization only, all computations
are carried out fully in 3D.

5 Conclusion

We presented an e�cient way to compute di�eomorphisms in the setting of LD-
DMM with geodesic shooting for image registration. Our method is the �rst to
represent di�eomorphisms in the Fourier space, which provides a way to com-
pute transformations from the associated velocity �elds entirely in the low di-
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Fig. 6: Left: volume overlap between transferred and manual segmentations of
fetal brains and placenta averaged over all subjects. Statistics are reported for
ANTS (black), FLASH (blue), and our method (red). Right: Runtime and mem-
ory consumption of 300 registrations for all three algorithms.

mensional bandlimited space. This approach reduces the computational cost of
the algorithms without loss in accuracy. The theoretical tools employed in this
work are not only broadly applicable to other representations of di�eomorphic
transformations such as stationary velocity �elds, but also to the standard path
optimization strategy in the original LDDMM. Our method can be naturally
interpreted as operating with the left-invariant metric on the space of di�eomor-
phisms [15], which accepts spatially-varying smoothing kernels in special image
registration scenarios where di�erent regularizations are required at di�erent lo-
cations. Future research will explore more of numerical analysis, as well as its
theoretical connection and implications for di�eomorphic image registration.
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