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A B S T R A C T

Diffusion MRI tractography is increasingly used in pre-operative neurosurgical planning to visualize critical fiber
tracts. However, a major challenge for conventional tractography, especially in patients with brain tumors, is
tracing fiber tracts that are affected by vasogenic edema, which increases water content in the tissue and lowers
diffusion anisotropy. One strategy for improving fiber tracking is to use a tractography method that is more
sensitive than the traditional single-tensor streamline tractography.

We performed experiments to assess the performance of two-tensor unscented Kalman filter (UKF) tracto-
graphy in edema. UKF tractography fits a diffusion model to the data during fiber tracking, taking advantage of
prior information from the previous step along the fiber. We studied UKF performance in a synthetic diffusion
MRI digital phantom with simulated edema and in retrospective data from two neurosurgical patients with
edema affecting the arcuate fasciculus and corticospinal tracts. We compared the performance of several trac-
tography methods including traditional streamline, UKF single-tensor, and UKF two-tensor. To provide practical
guidance on how the UKF method could be employed, we evaluated the impact of using various seed regions
both inside and outside the edematous regions, as well as the impact of parameter settings on the tractography
sensitivity. We quantified the sensitivity of different methods by measuring the percentage of the patient-specific
fMRI activation that was reached by the tractography.

We expected that diffusion anisotropy threshold parameters, as well as the inclusion of a free water model,
would significantly influence the reconstruction of edematous WM fiber tracts, because edema increases water
content in the tissue and lowers anisotropy. Contrary to our initial expectations, varying the fractional aniso-
tropy threshold and including a free water model did not affect the UKF two-tensor tractography output ap-
preciably in these two patient datasets. The most effective parameter for increasing tracking sensitivity was the
generalized anisotropy (GA) threshold, which increased the length of tracked fibers when reduced to 0.075. In
addition, the most effective seeding strategy was seeding in the whole brain or in a large region outside of the
edema.

Overall, the main contribution of this study is to provide insight into how UKF tractography can work, using a
two-tensor model, to begin to address the challenge of fiber tract reconstruction in edematous regions near brain
tumors.

1. Introduction

A principal goal of modern surgical treatment for brain tumors is to
maximize tumor removal while minimizing damage to critical areas of
functioning brain (Sanai and Berger, 2008; McGirt et al., 2009). Dif-
fusion magnetic resonance imaging (MRI) is currently the only way to
illustrate brain white matter (WM) pathways in-vivo and non-invasively

(Le Bihan, 2003). Diffusion MRI is able to capture the local micro-
structure of white matter by measuring the diffusion of particles,
usually water molecules. Based on diffusion MRI data, the brain's WM
fiber tracts can be virtually reconstructed or traced throughout the
brain using computational methods called tractography (e.g. Conturo
et al., 1999; Jones et al., 1999; Mori et al., 1999; Weinstein et al., 1999;
Basser et al., 2000a; Westin et al., 2002; Lazar et al., 2003; Behrens
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et al., 2003), a process where fiber trajectories are traced in a stepwise
fashion according to local WM models. Diffusion MRI tractography is
increasingly used in pre-operative surgical planning to provide precise
information about the spatial relationship of tumors to surrounding
critical WM tracts, such as the corticospinal tract supporting motor
function and the arcuate fasciculus supporting language function (Talos
et al., 2003; Nimsky et al., 2005).

Diffusion tensor imaging (DTI), generated by fitting a single-tensor
model to the diffusion-weighted MRI (DW-MRI) signals (Basser et al.,
1994), is the most commonly used method to model the microstructure
of white matter and the current clinical standard. However, the single-
tensor model is not able to represent complex WM configurations, such
as fiber crossings or partial volume effects (Alexander et al., 2001; Tuch
et al., 2002). Due primarily to this limitation, tractography analyses
based on DTI underestimate the full anatomical extent of fiber tracts
(Kinoshita et al., 2005; Le Bihan et al., 2006; Duffau, 2014; Feigl et al.,
2014). Some improvement can be achieved by DTI tractography ap-
proaches that employ information from the previous step (Weinstein
et al., 1999; Lazar et al., 2003; Westin et al., 2002) during fiber
tracking. These approaches improve anatomical accuracy of tracto-
graphy for neurosurgical planning (Feigl et al., 2014), though they still
suffer from the basic limitations of the DTI model.

An additional challenge for tractography for neurosurgical planning
is peritumoral edema, where water and protein cross the blood-brain
barrier in the region near brain tumors (Jellison et al., 2004;
Papadopoulos et al., 2004). The increase in extracellular water changes
the diffusion profile, though fiber tracts may still be intact. Tracto-
graphy methods based on the single tensor DTI model are known to fail
in clinically important regions of peritumoral edema (Berman et al.,
2004; Pasternak et al., 2009; Nimsky et al., 2016). This is particularly
troublesome since the area around the tumor is the most relevant to
surgical decision-making.

There is a growing awareness in the neurosurgery community that
diffusion models must move beyond the current clinical standard of the
diffusion tensor model in order to handle fiber crossings for better
anatomical accuracy of fiber tracts (Nimsky, 2014; Farquharson et al.,
2013; Fernandez-Miranda, 2013; Kuhnt et al., 2013). While many
groups have shown that sophisticated imaging and better mathematical
modeling can improve tracing of fiber tracts in the brain (Tuch et al.,
2003; Qazi et al., 2009; Descoteaux et al., 2009; Malcolm et al., 2010 Le
Bihan and Johansen-Berg, 2012; Rathi et al., 2013), this extensive body
of work has been developed for application to neuroscientific studies or
in patients without overt brain lesions, where edema is generally not a
consideration.

A multi-compartment modeling method provides an alternative to
theoretically address the challenges of fiber crossings and edema, but it
is faced with the problem of how to get a “best” estimation for the
increased number of model parameters. By using a two-compartment
tensor model, the effect of edema was reduced on measurements of the
tensor trace (Pierpaoli and Jones, 2004), but it is an ill-posed problem
to fit the two-tensor model to DW-MRI data. The estimation can be
improved by increasing the number of measurements and diffusion
weightings, which, however, requires increased acquisition time
(Pierpaoli and Jones, 2004). The estimation of a multi-tensor model can
also be stabilized by performing it during fiber tracking, and this is the
approach that we test here.

In this paper, we show that the challenge of edematous WM fiber
reconstruction in clinical data can be addressed to some extent by un-
scented Kalman filter (UKF) tractography with a two-tensor model
(Malcolm et al., 2010), and we analyze the performance of the method.
We have recently performed an empirical study demonstrating that
two-tensor UKF tractography can trace a higher volume of the arcuate
fasciculus (AF) and the corticospinal tract (CST) affected by edema,
when compared to single-tensor streamline in neurosurgical patients
(Chen et al., 2015, 2016). Here, we investigate the more technical de-
tails of the performance of the UKF method in edema, and we assess its

performance quantitatively by making reference to individual subject
fMRI. The rest of this paper is organized as follows. First, we describe
the theory and the model applied, the relevant model parameters, and
the synthetic and patient datasets used in this study. Then, we perform
experiments to evaluate the performance of UKF tractography in
edema, and we investigate its strengths and limitations. Finally, we
make recommendations for the use of the presented technique.

2. Materials and methods

2.1. Theory

2.1.1. Background theory: two-tensor model
A single full diffusion tensor model is commonly used for relating

the DW-MRI signals to the structure of white matter (Basser et al.
(1994)). For this single-tensor model, the amount of signal loss Sq,
caused by water diffusion, is modeled by the following equation:

= −S S e/ g Dg
q

b
0 q q

T
(1)

where S0 is the original signal without diffusion weighting (Basser,
1995); gq is the unit direction of a diffusion gradient; D is the diffusion
tensor to be fit; and the factor b is used to describe the gradient timing
and strength (Le Bihan et al., 1986).

However, fitting a single tensor to the DW-MRI signals may lead to
error, especially when the structure of white matter in a voxel is
complicated. Two-tensor models have been proposed for addressing
fiber crossing (Tuch et al., 2002; Peled et al., 2006; Pasternak et al.,
2008; Qazi et al., 2009) and for removing cerebrospinal fluid (CSF)
contamination (Pierpaoli and Jones, 2004; Pasternak et al., 2009).

For the two-tensor model, the signal loss Sq compared to the original
signal S0 can be described by:

= − +− −S S f e fe/ (1 ) g D g g D g
q

b b
0 q q q q

T T1 2 (2)

where f, (1 − f) are the relative volume fractions of the two compart-
ments, and D1, D2 represent the two tensors. In most cases, the two-
tensor model has some additional and physically reasonable con-
straints. Some authors have set the three eigenvalues (λ1, λ2, λ2) to
constants (Tuch et al., 2002). The approach followed by many groups
(Parker and Alexander, 2005; Peled et al., 2006; Kaden et al., 2007;
Friman et al., 2006; Pasternak et al., 2008), including the current im-
plementation of UKF tractography (Malcolm et al., 2010), is to model
the smaller two eigenvalues λ2 and λ3 as equal, i.e. each tensor is cy-
lindrical.

2.1.2. Background theory: UKF tractography
Streamline tractography starts from an initial seed point and re-

peatedly propagates the fibers (Conturo et al., 1999; Jones et al., 1999;
Mori et al., 1999; Weinstein et al., 1999; Basser et al., 2000a; Westin
et al., 2002; Lazar et al., 2003). The propagation follows the equation:

=
r td s
ds

s( ) ( ) (3)

where r(s) is a 3D space curve to represent the fiber tract trajectory, and
t(s) is the local tangent orientation of the curve at s (Basser et al.
(2000b)). In the fiber propagation, one of the problems is how to fit the
model to the DW-MRI signals consistently in each step. In most trac-
tography methods, the model estimations in each voxel are independent
and are performed prior to tractography.

In the UKF tractography framework (Malcolm et al., 2010), si-
multaneous model parameter estimation and tractography are per-
formed using an unscented Kalman filter (Wan and Van Der Merwe,
2000). The model parameters, a ten-component vector representing the
two cylindrical tensors, comprise the system state vector xs at location
s, calculated as:

= + −− −x x K y y( )s s s s s s s1 1| | (4)
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where −xs s 1| and −ys s 1| are the mean of the sampled states and mea-
surements at s predicted from the previously estimated distributions at
s − 1, ys is the DW-MRI signal (current measurement), and Ks is called
Kalman gain, to tune the certainty of the current estimate xs and the
measurement ys.

At each point along the traced fiber, the model parameters with
their mean and covariance are estimated by the unscented Kalman
filter. Then the fiber is propagated forward in the direction of the first
tensor's principal eigenvector. This approach offers a causal estimation
of the local structure at each step.

The UKF tractography method initializes tracking with two equal
tensors at the seedpoint location. As tracking moves away from the
initial seedpoint, in the course of fitting the data, the model tends to
separate into two different tensors that can represent the tract being
traced, plus any other crossing fibers.

2.2. Parameters of UKF tractography

The default parameters of UKF were intended for healthy or rela-
tively structurally sound subject data for use in neuroscientific studies.
In such studies, false positive connections are avoided when possible. In
contrast, in neurosurgical planning it can be useful to increase the
number of fibers that can be traced in order to track through difficult
regions such as peritumoral edema. We note that the default parameters
of UKF tractography work reasonably well in edema, and we have
shown that the model performs significantly better than the single-
tensor model in a small study of our patient data (Chen et al., 2015,
2016). However, we would like to better understand the behavior of the
method in a neurosurgical context. Several parameters of the UKF
model are relevant for the application of tracking through edema
(Table 1). These parameters were expected to significantly influence the
reconstruction of edematous WM fiber tracts, because edema increases
water content in the tissue and lowers diffusion anisotropy.

2.2.1. Fractional Anisotropy (FA)
The FA is a normalized variance of the diffusion tensor's eigenvalues

(Pierpaoli et al., 1996) and is the traditional stopping threshold for
standard single-tensor tractography, and it is frequently lowered to
allow tracking to continue farther into edematous regions (Akai et al.,
2005). In UKF, the FA that is used as a stopping criterion (min FA) is the
FA of the tensor that is being tracked (tensor one):
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where λ1, λ2 and λ3 are the three eigenvalues of tensor one, and λ2, λ3
are constrained to be equal in the UKF model.

2.2.2. Generalized Anisotropy (GA)
The GA is a normalized variance of the diffusivities computed from

all of the DW-MRIs. This measure does not use any model, tensor or
otherwise. GA is computed as:
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where Si is the signal measured after the application of diffusion-sen-
sitizing gradient i, n is the number of the gradients and S is the average
of the sensitized signals.

2.2.3. free water
The free water parameter controls the inclusion of a free-water

model as part of the model used for fitting the DW-MRI signals. The
free-water model is a single-tensor model whose three eigenvalues are
all equal to 0.003 mm2/s (Pasternak et al., 2009). With the inclusion of
the free water term, the multi-tensor model becomes:

= − − + +− − −S S ω f e fe ωe/ (1 )((1 ) )g D g g D g
q

b b bd
0 q q q q

T T1 2 (7)

where ω is the relative volume fraction of the free-water compartment,
d is the diffusivity value of the free-water model which is 0.003 mm2/s
and the other parameters are the same as those in Eq. (2).

2.2.4. qL
qL is the expected rate of change of the eigenvalues (system noise).

We studied qL as edema is expected to change the eigenvalues instead of
the eigenvectors, which represent the orientation of the fibers. (We note
that in the original work (Malcolm et al., 2010), qL was called qλ.) In
UKF tractography, qL forms part of the injected covariance matrix Q
containing noise bias to eigenvalues and eigenvectors (Malcolm et al.,
2010). The measurement noise denoted by R, which relates to the ex-
pected noise in the data, was held constant in our experiments
(Malcolm et al., 2010).

In UKF tractography, the Kalman gain Ks is obtained by Px yPy y
−1,

where Px y is the estimated cross correlation matrix between the state
vector xs and the DW-MRIs ys, and Py y

−1 is the estimated covariance
matrix of ys (Malcolm et al., 2010). Therefore, the increase of qL will
lead to increase of the Kalman gain Ks, which means that the eigen-
values can change more quickly as the fiber tracking encounters
changes in the data.

2.2.5. seeds per voxel
The number of seeds per voxel is the number of times tractography

is initiated within each voxel in a seeding region. If it satisfies the
starting thresholds, each seed will trace out a fiber. Therefore, using
more seeds usually generates more fibers. The choice of a value for this
parameter depends on the voxel size of the data (if voxels are larger,
more seeds will be needed within each) and on the machine used to run
the UKF tractography, because a larger number of seeds will consume
more computational time. In our experiments, the two patient datasets
have voxel sizes of 2 × 2 × 3 mm3 and 2 × 2×2.6 mm3 (in-plane
voxel sizes interpolated to 1 × 1 mm2 on the scanner), and one seed per
voxel produced a number of traced fibers that was adequate to de-
monstrate the performance of UKF tractography.

2.3. Phantom data generation

In order to have a preliminary understanding of UKF tractography
performance in edematous brain tissue in a relatively simplified situa-
tion, we started our experiments with synthetic (digital) phantom
consisting of parallel fibers with added edema. The phantom was gen-
erated as synthetic DW-MRI data, using fractional anisotropy (FA) va-
lues and mean diffusivity (MD) values to characterize normal white
matter and edema. Outside the simulated edema, the FA and MD values
were in the range of normal white matter (Pierpaoli et al., 1996), while

Table 1
Parameters of UKF tractography that are relevant to tracking through edema, as well as
the values we tested in the patient data. We note that this is not an exhaustive list of all
possible parameters, but rather indicates those on which we focused our experiments due
to their potential effects on the output. While we did not vary the number of seeds in-
itiated per voxel, the parameter is relevant for increasing the output number of fibers,
especially in datasets with larger voxel sizes.

UKF
parameter

Measured from Description Default Tested

min FA tensor 1 Stopping anisotropy
threshold

0.15 0.1, 0.15

min GA DWI data Stopping anisotropy
threshold

0.1 0.05, 0.075,
0.1

free water multitensor
model

Isotropic free water
component

Off On/Off

qL (input value) Eigenvalue rate of
change

50 100, 200

seeds per
voxel

(input value) Fibers initiated per
voxel

1 1

R. Liao et al. NeuroImage: Clinical 15 (2017) 819–831

821



inside the simulated edema, the FA and MD values were in the range of
peritumoral edematous brain (Sinha et al., 2002; Holodny and
Ollenschlager, 2002; Lu et al., 2003).

The phantom data model combined a full diffusion tensor (to model
normal white matter) and a spherical compartment (to model edema).
Parallel tracts ran the length of each phantom, whose size was
150 mm× 110 mm×110 mm with voxel dimensions of
2 mm× 2 mm×2 mm. In the center of each phantom, a region of
edema was simulated. Synthetic DW-MRI data was generated using 81
gradient directions uniformly spread on the hemisphere. The form of
the signal model was:

= − +− −S S ω e ωe/ (1 ) u D u u Iu
i

b b d
0 i i i iT Twm fw (8)

where Si is the signal measured after the application of diffusion-sen-
sitizing gradient in the unit direction of ui, S0 is the signal in the absence
of diffusion sensitization, ω is the proportion of unweighted signal from
the isotropic compartment, Dw m is the diffusion tensor to delineate the
local microstructure of white matter and dfw is the apparent diffusion
coefficient (ADC) of the isotropic compartment. The free-water model is
used to approximate the additional liquid (containing protein, water,
etc.) in edema. In our model, b= 1000 s/mm2, Dw

m = λ1nxnxT+λ2nynyT + λ3nznzT where λ1 = 1100 × 10−6 mm2/
s,λ2 = λ3 = 450×10−6 mm2/s, and dfw = 3000×10−6 mm2/s. The
isotropic signal weight ω varied along the long axis of the phantom,
from 0 in the two ends to 0.65 in the middle, simulating edematous
brain tissue in the phantom's center. The diffusion MRI signal is influ-
enced by Rician distributed noise (Gudbjartsson and Patz, 1995; Aja-
Fernández et al., 2008; Rodrigues et al., 2010). To make the phantom
more realistic, noise was applied to each diffusion signal Si such that the
noisy signal Si′ complied with Rician distribution f(Si′|Si,σ= Si/15),
which suggests that the signal-to-noise ratio (SNR) was around 15.

One phantom was generated, where the synthetic edematous fibers
had minimum FA values of 0.2 and maximum MD values of
1560 × 10−6 mm2/s, respectively (Fig. 1). Tractography processing
was performed in the phantom dataset using 3D Slicer (http://www.
slicer.org, version 4) (Fedorov et al., 2012) via the SlicerDMRI project
(http://dmri.slicer.org) and using UKF tractography as described
below.

2.4. Patient data acquisition and processing

To illustrate and test clinically relevant parameters of UKF tracto-
graphy, we retrospectively selected two brain tumor patients with
peritumoral edema affecting different structures: the arcuate fasciculus
(AF) in one patient (Patient 1) and the corticospinal tract (CST) in the
other (Patient 2). The two patients were selected for inclusion in this
study from a data repository of neurosurgical patients who have un-
dergone diffusion imaging at Brigham and Women's Hospital. The study
was approved by the Partners Healthcare Institutional Review Board,
and informed consent had been obtained from all participants prior to
scanning. Patient 1 had a glioblastoma multiforme tumor with a peri-
tumoral edematous zone in the vicinity of the language cortex, affecting

the AF. Patient 2 had two metastatic lesions of unclassified pleomorphic
sarcoma in the left frontal lobe, affecting the CST, and presented with
right upper extremity weakness. Their axial T1-weighted image slices
are illustrated in Fig. 2. MR images were obtained using a 3-Tesla
scanner (EXCITE Signa scanner, GE Medical System, Milwaukee, WI,
USA) with Excite 14.0, using an 8-channel head coil and array spatial
sensitivity encoding technique (ASSET). Diffusion weighted images
were acquired using EPI with 8 channel head coil and ASSET
(TR = 14000 ms, TE = 75.4 ms, 31 gradient directions with a b-value
of 1000 s/mm2, 1 baseline (b=0) image, FOV = 25.6 cm, ma-
trix = 128 × 128, 44 and 52 slices, voxel size = 2 × 2× 3 mm3 and
2 × 2 × 2.6 mm3 for the two datasets). The in-plane voxel sizes were
interpolated to 1 × 1 mm2 on the scanner. fMRI images (used for
quantifying the sensitivity of the tractography) were acquired using T2-
weighted EPI with a birdcage coil (TR = 2000 ms, TE = 75.4 ms,
FOV = 24 cm, matrix = 80 × 80, 27 axial slices, voxel si-
ze = 2 × 2 × 4 mm3). For Patient 1, task-based fMRI was obtained
using an antonym task, and for Patient 2, three motor tasks were em-
ployed: lip pursing, foot tapping, and hand clenching.

3D Slicer was used to convert the raw data from DICOM format into
NRRD format using DWIConvert (Matsui, 2014). DTIPrep (http://www.
nitrc.org/projects/dtiprep) was used to perform quality control (Liu
et al., 2010), which included artifact correction/removal as well as
eddy-current and head motion artifacts correction by registration to the
baseline image. A binary brain mask for each patient dataset was
computed in 3D Slicer. Tractography processing was performed in
several experiments as described below.

3. Results

We performed several experiments in phantom and patient data,
both to evaluate the performance of UKF tractography in edema, and to
investigate its strengths and limitations.

3.1. Phantom experiments

3.1.1. UKF tractography versus streamline tractography in the phantom
First, we compared the performance of standard single-tensor

streamline tractography (in 3D Slicer), single-tensor UKF tractography
with and without the inclusion of free water model on our phantom
(Fig. 3), using default parameters. The FA stopping criterion for the
three methods was set the same as the lowest FA in our phantom: 0.2.
The GA stopping criterion, which is specific to UKF tractography, was
left at the default value of 0.1. The three tractography methods were all
seeded at the same location, one end of the phantom.

In this simple experiment, the single-tensor UKF tractography with
the inclusion of free water model performed more successfully than the
other methods. The single-tensor streamline tractography cannot trace
through the synthetic edema, and the single-tensor UKF tractography
can only trace through the edema partly. Under the same stopping
criteria, the single-tensor UKF tractography with free water model can
fully trace through the edema reaching the other end of the phantom,

Fig. 1. Synthetic data phantom. Left: grayscale FA images in 3D show the location of the simulated edema (the dark region in the phantom center). The simulated fiber tracts run
anterior-posterior, in the orientation of the pink line. Center: FA values are plotted along the central axis of the phantom (this axis is shown as a pink line in the leftmost image). Right: The
MD values are plotted along the central axis of the phantom.
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which implies that the orientation of the fibers can be better retained in
the tensor estimation when the additional free water model is included.
It is clear that the edematous fibers need to be modeled by a more
sophisticated model than the single-tensor model. The following ex-
periments investigate the two-tensor UKF tractography and the effects
of seeding regions and parameters on the output.

3.1.2. Different seeding regions in the phantom
Next we evaluated the performance of two-tensor UKF tractography

when seeded from different regions. Two representative regions were
chosen as seeding regions in the phantom, one at the end of the
phantom and outside of the central edema as above, and the other at
the center of the phantom and inside of the edema (Fig. 4). These were
chosen to mimic two possible clinical seeding scenarios for tracking
through edema in patients with brain tumors. Two-tensor UKF tracto-
graphy with the FA stopping criterion of 0.16 was applied to each of
these seed regions, and the other parameters were set as the default
(Table 1). We lowered the FA stopping criterion here to get more fibers
traced through the synthetic edema.

The tractography results show that the tract orientation was better
established when tracking started outside of the synthetic edema,
where the anisotropy was high. We also found that when seeded outside
of the edema, in the fibers that were traced through the edema, the two
tensors started diverging: one tensor retained its orientation and the
other tensor became more round.

3.2. Patient data experiments

Next, we assessed the performance of UKF tractography in retro-
spective neurosurgical patient data. We performed experiments to
compare one-tensor and two-tensor UKF tractography results, to

investigate the effect of different seeding regions and to assess the effect
of tractography parameters in clinical patient datasets.

3.2.1. Comparison of one-tensor and two-tensor UKF
In the phantom results, fibers can be traced through edema when

using single-tensor UKF, whereas more typical single-tensor streamline
tractography cannot. We have recently shown that two-tensor UKF
tractography can trace a higher volume of the AF and the CST affected
by edema, when compared to single-tensor streamline (Chen et al.,
2015, 2016). However, this leaves open the question of if the differ-
ences in tractography are due to the UKF method or to the two-tensor
model. For this reason, we began the experiments in patient data by
comparing the performance of single-tensor UKF to two-tensor UKF
tractography in patient datasets 1 and 2 (Figs. 5, 6). In these experi-
ments, tractography was seeded throughout the entire brain using all
default parameters of the algorithm (note that parameters will be tested
below). Regions of interest (ROIs) were drawn to select the AF in Pa-
tient 1 and the CST in Patient 2. The results in AF and CST, where
crossing fibers are known to affect the ability to trace the full structure,
clearly demonstrate that the combination of the two-tensor model and
the UKF tractography provides more fibers that can be traced through
the edema, as shown in Figs. 5, 6. For this reason, in the rest of the
experiments we focused solely on the two-tensor UKF method.

3.2.2. Different seeding regions in patient data
Unlike our synthetic phantoms that had only one fiber tract or-

ientation everywhere, the fiber tract anatomy of the brain varies with
location. UKF tractography offers a causal estimation of the local
structure along the fiber, which suggests that the initial seeding points
may have a great influence on the output fibers. Therefore, different
seeding regions for UKF tractography were tested to demonstrate the

Fig. 2. (a) Axial image from Patient 1 with a left fronto-parietal
glioblastoma multiforme tumor and peritumoral edematous
zone. (b) Axial image from Patient 2, with two metastatic lesions
of unclassified pleomorphic sarcoma in the left frontal lobe and
peritumoral edema. Gadolinium was given before the MRI
scans.

Fig. 3. Recovery of simulated edematous
fiber tracts. Three tractography methods
were seeded in the synthetic edema
phantom with minimum FA of 0.2. (a) A
phantom containing parallel fibers run-
ning anterior-posterior (indicated by
green color) with a region of synthetic
edema in the phantom center. Simulated
edematous tracts were recovered (yellow
fibers) using default parameters for trac-
tography. (b) The single-tensor streamline

tractography that used independent single-tensor estimation at each voxel (least-squares) followed by Runge-Kutta order two integration for fiber tracking in 3D Slicer. (c) and (d) The
two UKF methods (single tensor with and without free water model) that performed model estimation during tracking, using a Kalman filter.
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different influences. Several seeding regions were tested in each pa-
tient's data, using the two-tensor UKF tractography with default para-
meters. Seeding regions were defined along the AF and CST fiber tracts:
we used patient-specific results from whole-brain tractography and
fiber tract selection (above) as guidance while defining these regions, to
ensure that the structure was expected to pass through them. Like in the
phantom experiments, we chose seed regions that were both relatively
affected and unaffected by edema for comparison, and we recorded the

single-tensor FA value range within the seed regions.
For Patient 1, seed region 1 was outside of the edematous brain

tissue (FA 0.3–0.5), while regions 2 and 3 (FA 0.2–0.35) were inside the
edema (Fig. 7). This edema had higher FA than our simulated edema
phantom, so successful tracking could be expected even with default
parameters. But though all three seed regions were located within the
expected trajectory of the AF, the seeding results differed highly across
seed regions, and results from only two regions traced a C-shaped AF

Fig. 4. Tractography seeding scenarios for tracking through
edema. Left column: two-tensor UKF tractography was seeded
inside synthetic edema (pink seed region). Right column: two-
tensor UKF tractography was seeded within simulated healthy
white matter (blue seed region). (c) and (d): Traced fibers
shown in yellow. (e) and (f): Tensor one that is the tensor fol-
lowed during fiber tracking. The calculated tensor model is
displayed along the fibers as ellipsoids colored by FA. Higher
FA is green and blue, while lower FA (such as that in the
edema) is orange.

Fig. 5. Comparison of single-tensor (a) and two-
tensor (b) UKF tractography in the arcuate fas-
ciculus of Patient 1. Two ROIs were applied to
select the AF anatomy from the whole brain
tractography. However, no fibers were found
connecting the two ROIs using the single-tensor
UKF tractography. To assess if the AF could be
partially traced, we employed each ROI sepa-
rately (left and center images), in conjunction
with expert removal of fibers that appeared not
to form part of the AF such as short U fibers.
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structure. Crucially, the apparent distance of the AF from the tumor
differed across seed regions. Seeding from region 3, the method showed
the AF closest to the tumor margin. Note that the tensor 1 is oriented
parallel to the tract (its major eigenvector was followed) while tensor 2
has a more arbitrary orientation, and it may model fiber crossings and/
or be more in influenced by edema. It is apparent that the two-tensor
model produced similar FA in the two tensors in some locations along
the tracts, and in other locations the tensor 1 FA is higher (more blue).
The variability in seeding results indicates that more robust seeding is
necessary to assess the relationship of AF and tumor. The distance to the
tumor border is important for surgical planning, so we recommend that
a more stable seeding method (such as seeding in the whole brain or a
large region) should be employed to find the AF for clinical research or
clinical use.

For Patient 2, seed regions 1 (FA 0.4–0.6) and 2 (FA 0.3–0.6)
were near the boundary but outside of the edema, while seed region 3
(FA 0.05–0.2) was inside the edema (Fig. 8). All seed regions were
within the expected trajectory of the CST, but again the results were
sensitive to the choice of seedpoint. Seeding in the region with the most
severe edema was less successful at depicting the CST, though some
tracts crossing through this region were able to be traced. Note that the
tensor 1 is oriented parallel to the tract (its major eigenvector was
followed) while tensor 2 has a more arbitrary orientation, and may
model fiber crossings and/or be more influenced by edema. Similar to
the result in AF, in several locations the FA of tensor 1 was higher (more
blue) than the FA of tensor 2 along the tracts. This indicates that in

these regions, the second tensor was representing the edema to a
greater extent than the first tensor. When seeded in region 3, the two
tensors in the edema were almost round (relatively low orange/yellow
FA), which made the tractography uncertain initially.

In all seeding experiments, tracts could be traced through edema.
Overall, the results in these two patients indicate that the second tensor
was somewhat more likely to represent edema (have lower FA) than the
first tensor, which is the one followed during fiber tracking.
Furthermore, the results indicate that small or single-slice seed regions
can lead to variable depiction of anatomy with two-tensor UKF trac-
tography. Thus for robust depiction of anatomy, clinical users of UKF
should employ large or multiple seed regions. The following experi-
ments, therefore, focus on whole-brain tractography seeding, followed
by anatomical selection of tracts of interest.

3.2.3. Whole brain seeding with different parameter settings in patient data
We performed final experiments to verify that whole brain seeding

can more completely depict brain white matter anatomy and to in-
vestigate how the parameters influence output tractography in patient
datasets. Parameters tested included default values as well as values
expected to increase the number and length of fibers: FA stopping cri-
teria of 0.1 and 0.15, GA stopping criteria of 0.05, 0.075 and 0.1, qL
values of 50, 100 and 200 (where higher values than default are used to
test performance in edema), and the use of a free water model were
tested. Also, their combinations were tested. For each parameter setting
experiment, two-tensor UKF tractography was seeded within the whole

Fig. 6. Comparison of single-tensor (a) and two-
tensor (b) UKF tractography in the corticospinal
tract of Patient 2. Two ROIs were applied to select
the CST anatomy from the whole brain tracto-
graphy. The two-tensor method (right image) can
track more fibers for depiction of lateral connec-
tions.

Fig. 7. Two-tensor UKF tractography
traverses edema but is affected by initial
seeding location in Patient 1. In all views,
the background anatomical images are the
diffusion baseline images from Patient 1.
Tensors are colored by FA, where blue
represents a higher FA and orange/yellow
is a lower FA. (a)-(d): Tractography
(yellow fibers) is seeded from three dif-
ferent regions (cyan) within the arcuate
fasciculus (AF). Seed region 1 is outside of
the edema, while regions 2 and 3 are in-
side the edema. The translucent model
represents the edematous region deli-
neated by a clinical expert. (e) and (f):
Zoomed-in views that show the two-tensor
model when seeded in region 1. (g) and
(h): Zoomed-in views that show the two-
tensor model when seeded in region 3.
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brain of each patient dataset, using the binary brain mask as a seed
region. As above, the ROIs (Figs. 5, 6) were used to select the AF in
Patient 1 and the CST in Patient 2.

For Patient 1, traced fibers from 22 different parameter settings are
shown in Fig. 9. First note that reconstruction of the AF from whole
brain seeding was apparently more complete and corresponded better

to the usual anatomical descriptions of the AF than the previous results
from the three seed regions (Fig. 7). Also note that the most crucial
parameter to increase tracking through edema is the GA threshold. The
FA threshold was not so crucial as in the phantom experiments, because
the edematous brain tissue in Patient 1 was observed to have FA values
above the FA stopping criteria of 0.15. Additionally, the FA stopping

Fig. 8. Two-tensor UKF tractography traverses edema but is affected by initial seeding location in Patient 2. In all views, the background anatomical images are the diffusion baseline
images, shown at a location behind the fibers. Tensors are colored by FA, where blue represents a higher FA and orange/yellow is a lower FA. (a)–(d): Tractography (yellow fibers) is
seeded from three different regions (cyan) within the corticospinal tract (CST). Regions 1 and 2 are outside of the edema, while region 3 is inside the edema. The translucent model
represents the edematous region delineated by a clinical expert. (e) and (f): Zoomed-in views that show the two-tensor model when seeded in region 2. (g) and (h): Zoomed-in views that
show the two-tensor model when seeded in region 3.

Fig. 9. Two-tensor UKF tractography re-
constructions of the AF from 22 different
parameter settings in Patient 1. The back-
ground image is a diffusion b0 image, medial
to the AF. Six FA and GA threshold settings are
demonstrated in columns. Four qL settings are
shown in rows. The top row displays the re-
sults without including the free-water model
and the three bottom rows include it.
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threshold applies only to tensor one, the tensor being tracked, which we
saw may have higher FA than tensor two. Inclusion of the free-water
model did not have a large effect on the reconstruction in these two
patient datasets. A higher qL removed the outlier fibers whose or-
ientations had changed rapidly.

For Patient 2, traced fibers from 22 different parameter settings are
shown in Fig. 10. Similar to the results from Patient 1, the tractography
seeded from the whole brain reconstructed a larger volume of CST than
the tractography seeded from local seed regions. In this reconstruction,
FA and GA thresholds were both crucial for tracing the edematous fi-
bers, as the FA values in the edematous region were observed to be
lower than those in Patient 1. Therefore, a lower FA stopping criteria
was necessary. A higher qL also removed many outlier fibers which had
unreasonably crossed between hemispheres.

3.2.4. Evaluation of parameter settings with respect to fMRI
We quantitatively assessed the tractography results from different

parameter settings using a so-called coverage measure (Baumgartner
et al., 2012), which allowed us to quantify the sensitivity of the trac-
tography for connecting to a patient-specific fMRI activation. For a fiber
tract bundle fiberi, this measure Cfiberi is defined by the ratio of the
voxels V fiberi passed by fiberi in its corresponding target region V targeti

to the total number of voxels in V targeti, which is =C
V
Vfiberi

i

i

fiber

target
. AF is

known to connect the Broca's area (for speech production) with the
Wernicke's area (for speech comprehension) and CST is known to
connect the area of motor cortex with the spinal cord. Additionally, the
corticobulbar tract connects the face motor area to the brainstem, and
we consider it as part of CST for the purposes of this experiment. fMRI
datasets from Patients 1 and 2 (from language and motor tasks, re-
spectively) were processed clinically and thresholded by an expert, then
registered to the baseline volumes of their corresponding diffusion MRI
datasets. The resulting activation regions were used to locate the pu-
tative Broca's area of Patient 1 and the face/hand/foot areas of motor
cortex of Patient 2, which were respectively the target regions of AF and

CST.
As is usual in surgical planning, the fMRI regions were not anato-

mically constrained to the gray matter, but were rather determined
using expert thresholding, which is considered to be the gold standard
method for single-subject presurgical fMRI (Norton et al., 2014). We
note that in tractography for surgical planning, fMRI activation regions
are often enlarged for tract selection (Golby et al., 2011; Schonberg
et al., 2006; Kleiser et al., 2010) because especially in the presence of
edema, white matter tractography may not fully reach the cortex.

The coverage measure results (Fig. 11) indicated that two-tensor
UKF tractography was more sensitive to the GA stopping threshold than
to the FA threshold. But when the GA threshold was set lower than
0.075, the results were no longer so sensitive to the GA threshold. In
addition, the inclusion of the free water model did not have a clear
effect on the tractography sensitivity as quantified by the coverage
measure in these two patient datasets, though in some cases it increased
the sensitivity. Increasing the qL value did slightly decrease the sensi-
tivity of the tractography results. Also, the UKF tractography was ap-
parently most sensitive in the foot region, followed by the hand then the
face regions.

It is important to note that the fMRI activation region cannot be
perfectly regarded as the ground truth of tractography. Activation re-
gion thresholding of fMRI and registration between fMRI and diffusion
MRI can all affect the coverage measure. It is also expected that the co-
location of AF and language activations will not be perfect (Diehl et al.,
2010) as the activation areas are known to be anatomically variable.
Therefore, the coverage measure is used here for assessing the tracto-
graphy sensitivity under different parameter settings for this small
study of two patients, and should not be interpreted as a validation of
the tractography results.

4. Discussion and conclusions

Our overall findings from applying UKF tractography in retro-
spective neurosurgical patient data were as follows. When seeded from

Fig. 10. Two-tensor UKF tractography re-
constructions of the CST from 22 different
parameter settings in Patient 2. The back-
ground image is a diffusion b0 image, posterior
to the CST to avoid occluding fibers. Six FA
and GA threshold settings are demonstrated in
columns. Four qL settings are shown in rows.
The top row displays the results without in-
cluding the free-water model and the three
bottom rows include it.
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the whole brain, the two-tensor UKF tractography could reconstruct a
more complete WM anatomy in the edema, in comparison with seeding
from small regions. We note that it has been demonstrated in healthy
subjects that the “brute-force” whole-brain seeding approach, in com-
bination with multiple selection ROIs, improves DTI-based tracto-
graphy when compared with local single-ROI seeding (Huang et al.,
2004). Seeding approaches have also been studied in patients with
brain tumors, where whole-brain seeding or large area seeding was
found to be more stable (Radmanesh et al., 2015; Niu et al., 2016;
Golby et al., 2011).

For the parameter settings, FA and GA thresholds determined where
the fiber tracking stopped, so they were usually crucial parameters for
the reconstruction of edematous fibers. However, no fixed FA and GA
thresholds could be perfectly applied to every patient (see following
discussion). Inclusion of the free-water model did not have a clear effect
on the tractography in these two patient datasets, while increasing the
qL value could avoid some rapid changes of the orientations of the fi-
bers, reducing outlier (false positive) fibers.

Most studies of tractography in surgical planning so far have fo-
cused on increasing sensitivity to trace the anatomically expected full
extent of tracts of interest (Chen et al., 2015, 2016; Mandelli et al.,
2014). We believe it would be ideal to consider false positives in a
future investigation; however, defining the regions in the cortex that
should not receive language or motor connections is currently some-
what challenging. This has recently inspired the design of synthetic
brain phantoms where ground truth is known, such as the phantom

used in the ISMRM Tractography Challenge1 (Neher et al., 2014). De-
fining false positive connections in the human brain is challenging,
especially in the case of language connections, because recent work has
demonstrated the possibility of widespread language activity over the
entire cortex (Huth et al., 2016). False positive motor connections are
also not simply defined, as corticospinal motor connections were re-
cently demonstrated to multiple regions including primary motor, pri-
mary somatosensory, and dorsal premotor cortices, plus the supple-
mentary motor area (Seo and Jang, 2013). However, we did employ one
well-established method for rejecting known false positives that cross
the midline, which are much easier to identify (Behrens et al., 2007).

We partially addressed the lack of ground truth by building a syn-
thetic digital phantom with simulated edema. Though our phantom was
intended to provide insight for two-tensor UKF tractography, and was
not realistic in terms of crossing fibers or any other feature of neuroa-
natomy, the results in the phantom were qualitatively similar to those
in patient data. Therefore, our phantom can be considered to be a
simplified test dataset for tractography through edematous brain. It is of
future interest to more realistically model anatomical fiber tracts af-
fected by edema. At the present time, however, the problem of how to
design realistic phantoms for diffusion MRI and for tractography is
currently under active study (Côté et al., 2013; Neher et al., 2014; 2015;
Esteban et al., 2016), but is not yet solved, even for neuroanatomical

Fig. 11. Quantitative measures of tractography
sensitivity based on patient-specific fMRI demon-
strate the effect of varying UKF tractography
parameters. The coverage ratio is measured as the
percentage of the target fMRI activation that is
reached by the fiber tracts. (a) Reconstructed AF
coverage ratio of Broca's area from all parameter
settings experiments in the data of Patient 1. (b)
Reconstructed CST coverage ratio of the face/
foot/hand motor areas from all parameter settings
experiments in the data of Patient 2.

1 http://www.tractometer.org/ismrm_2015_challenge/data
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modeling of healthy subjects' data.
Fitting the two-tensor model to the diffusion signals is an ill-posed

problem; UKF tractography is a causal tractography method, so each
step's model fitting is partly determined by the signal configuration of
previous steps. Likely for this reason, we have observed that UKF
tractography is relatively sensitive to to the region chosen for seeding
(Figs. 7, 8). In contrast, single-tensor streamline tractography generally
will produce more or less the same structure when seeded at different
locations along the tract, since the model fitting at each location is
independent. Regarding the performance of the two-tensor model when
tracking through edema, we have seen that the fitted two tensors may
diverge into a spherical one and an elliptical one when tracking through
edematous brain or simulated edema (Figs. 4, 7, 8). But this does not
always happen; what we can say is that the two tensors together will
model the data and that this provides increased flexibility for tracking
through edema relative to a single-tensor model with fewer parameters.

Based on our experimental results, we provide suggested procedures
for employing UKF tractography to reconstruct edematous WM. First,
UKF tractography should be seeded from the whole brain. We have
previously empirically determined across multiple datasets (O’Donnell
et al., 2017) that if the voxels are 2 × 2 × 2 mm3 or larger, multiple
seed points should be used per voxel. Our datasets (which had been
interpolated to higher resolution on the scanner) had voxel sizes of
1 × 1 × 2.6 mm3 and 1 × 1 × 3 mm3. Secondly, for parameter set-
tings, our results show that reducing the GA and FA stopping thresholds
(below the default settings of GA of 0.1 and FA of 0.15) will increase the
tractography sensitivity, producing apparently larger fiber tracts. In
general, UKF tractography is more affected by the GA threshold than
the FA threshold. The default qL of 50 can provide good results. After
whole brain seeding of tractography, clinically relevant fiber tract(s) of
interest may be identified by an expert or an automated method. We
note that this initial evaluation focused on two patients. In the future,
UKF, and especially the free water model, will benefit from more testing
in multiple patients with different tumor types, levels of edema, and
relationships between tract and tumor.

These results are based on our dataset, and they provide intuition
into the parameters for any reader interested in trying this method in
his or her own dataset. The proposed parameters should be broadly
useful for data acquired around b= 1000 s/mm2 with 30 or more
gradient directions, similar to our dataset. We note that the UKF trac-
tography method expects a certain level of noise in the data depending
on the settings of the q parameters, so “good” settings for these para-
meters for different data (such as that with a higher b-value) can be
determined by experiments similar to those we have performed here.

Although this work demonstrates that two-tensor UKF tractography
with appropriate seeding/parameter settings can somewhat reconstruct
more edematous WM structures, we have not totally addressed the
challenge of tracking through edema. Increasing sensitivity may lead to
increased false positive tracts. The particular two-tensor model, while it
fits the data well, was not biophysically designed in any way to re-
present edema. The biophysical free water model can represent CSF,
but the diffusivity of edema is not necessarily expected to equal that of
CSF. Some groups also attempted to address this challenge in the
imaging/scanner level with other fiber orientation estimation/mod-
eling methods. Zhang et al. (2013) compared generalized q-sampling
based tractography with DTI-based WM mapping in edematous regions.
They demonstrated that DTI-based tractography missed several fiber
tracts in 5 cases in comparison with those from generalized q-sampling
imaging (GQI) data. Another study by Kuhnt et al. (2013) demonstrated
that high angular resolution diffusion imaging (HARDI)-compressed
sensing (CS) technique was able to visualize some peritumoral WM
fiber bundles that DTI could not achieve. McDonald et al. (2013) have
shown that by applying restricted spectrum imaging (RSI), using mul-
tiple diffusion weightings to remove volume fraction associated with
edema, the quantification and visualization of white matter tracts in
peritumoral regions could be improved. A recent study by Abhinav

et al. (2015) illustrated a more accurate depiction of peritumoral tracts
in their preliminary experiments, employing a so-called high-definition
fiber tractography (HDFT). The pathology of brain tumors is patient-
specific. Therefore, UKF, and especially the free water model, will
benefit from additional future investigation in multiple patients with
different tumor types, levels of edema, and relationships between tract
and tumor.

In conclusion, the main contribution of this study is providing an
insight into how UKF tractography works, with a two-tensor model, to
somewhat address the challenge of edematous WM reconstruction. We
built a synthetic digital edema phantom to simplify the anatomy of
edematous brain tissues, such that we could have a preliminary un-
derstanding of the performance of UKF tractography in the setting of
edema. We showed in retrospective neurosurgical patient data how
different choices of seeding regions and parameter settings affected UKF
tractography results. Furthermore, we have provided some guidance of
how to use UKF tractography in neurosurgical planning research to
increase sensitivity for fiber tracking through edema.
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