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Chest radiographs are commonly performed to assess 
pulmonary edema (1). The signs of pulmonary edema 

on chest radiographs have been known for over 50 years 
(2,3). The grading of pulmonary edema is based on well-
known radiologic findings on chest radiographs (4–7). 
The symptom of dyspnea caused by pulmonary edema 
is the most common reason a patient with acute decom-
pensated congestive heart failure (CHF) seeks care in the 
emergency department and is ultimately admitted to the 
hospital (89% of patients) (8–10). Clinical management 
decisions for patients with acutely decompensated CHF 
are often based on grades of pulmonary edema severity, 
rather than its mere absence or presence. Clinicians often 
monitor changes in pulmonary edema severity to assess 
the efficacy of therapy. Accurate monitoring of pulmo-
nary edema is essential when competing clinical priorities 
complicate clinical management (additional information 
in Appendix E1 [supplement]).

While we focused on patients with CHF within this 
study, the quantification of pulmonary edema on chest 
radiographs is useful throughout clinical medicine. 

Pulmonary edema is a manifestation of volume status in 
sepsis and renal failure, just as in CHF. Managing volume 
status is critical in the treatment of sepsis, but large-scale 
research has been limited because of longitudinal data on 
volume status. Quantification of pulmonary edema on a 
chest radiograph could be used as a surrogate for volume 
status, which would rapidly advance research in sepsis and 
other disease processes in which volume status is critical.

Large-scale and common datasets have been the 
catalyst for the rise of machine learning today (11). In 
2019, investigators released MIMIC-CXR, a large-scale 
publicly available chest radiograph dataset (12–15). This 
investigation builds on that prior work by developing a 
common, clinically meaningful machine learning task 
and evaluation framework with baseline performance 
metrics to benchmark future algorithmic developments 
in grading pulmonary edema severity from chest radio-
graphs. We developed image models using two common 
machine learning approaches: a semisupervised learning 
model and a supervised learning model pretrained on a 
large common image dataset.
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Purpose:  To develop a machine learning model to classify the severity grades of pulmonary edema on chest radiographs.

Materials and Methods:  In this retrospective study, 369 071 chest radiographs and associated radiology reports from 64 581 patients (mean 
age, 51.71 years; 54.51% women) from the MIMIC-CXR chest radiograph dataset were included. This dataset was split into patients 
with and without congestive heart failure (CHF). Pulmonary edema severity labels from the associated radiology reports were extracted 
from patients with CHF as four different ordinal levels: 0, no edema; 1, vascular congestion; 2, interstitial edema; and 3, alveolar 
edema. Deep learning models were developed using two approaches: a semisupervised model using a variational autoencoder and a 
pretrained supervised learning model using a dense neural network. Receiver operating characteristic curve analysis was performed on 
both models.

Results:  The area under the receiver operating characteristic curve (AUC) for differentiating alveolar edema from no edema was 0.99 
for the semisupervised model and 0.87 for the pretrained models. Performance of the algorithm was inversely related to the difficulty in 
categorizing milder states of pulmonary edema (shown as AUCs for semisupervised model and pretrained model, respectively): 2 versus 
0, 0.88 and 0.81; 1 versus 0, 0.79 and 0.66; 3 versus 1, 0.93 and 0.82; 2 versus 1, 0.69 and 0.73; and 3 versus 2, 0.88 and 0.63.

Conclusion:  Deep learning models were trained on a large chest radiograph dataset and could grade the severity of pulmonary edema on 
chest radiographs with high performance.
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labeled the 200 reports, blinded from our label extraction results. 
We reported the precision (positive predictive value) of the regu-
lar expression results for each category and each keyword, and 
sensitivity and specificity of each keyword.

We had three senior radiology residents and one attending 
radiologist (S.J.B.) manually label a set of 141 frontal view 
radiographs from 123 patients (from the unlabeled dataset of 
650 patients with CHF), which had no patient overlap with 
the report-labeled set (Fig E2 [supplement]). These images 
were set aside as our test set. Each radiologist assessed the im-
ages independently, and we reported their interrater agreement 
(Fleiss k). We used a modified Delphi consensus process, fur-
ther described in Appendix E1 (supplement), to develop a con-
sensus reference standard label.

Model Development
To establish a baseline performance benchmark for this clinical 
machine learning task and to address the challenge of limited 
pulmonary edema labels, we developed models using two com-
mon computer vision approaches: a semisupervised model us-
ing a variational autoencoder (17) and a pretrained supervised 
learning model using a dense neural network (18,19). Both 
approaches aim to address the challenge of limited pulmonary 
edema labels. The first approach (semisupervised model) takes 
advantage of the chest radiographs without pulmonary edema 
severity labels, which includes approximately 220 000 images 
(from individuals with and without CHF) and is domain spe-
cific. The second approach (pretrained supervised model) uses 
a large-scale common image dataset with common object la-
bels (such as cats and dogs), which includes approximately 14 
million images and leverages the image recognition capability 
from other domains.

To mitigate the imbalanced dataset size of each severity level, 
we employed weighted cross-entropy as the loss term for training 
both models. Data augmentation (including random translation 
and rotation) was performed during training to accommodate 
the variable patient positionings.

Semisupervised learning model development.—To take ad-
vantage of the large number of unlabeled chest radiographs, 
we developed a Bayesian model that included a variational 
autoencoder for learning a latent representation from the en-
tire radiograph set (exclusive of the test set) trained jointly 
with a classifier that employs this representation for estimat-
ing edema severity. We first trained the variational autoen-
coder on both unlabeled and labeled images (exclusive of the 
test set), although the labels were not involved at this stage. 
The variational autoencoder learned to encode the chest ra-
diographs into compact (low-dimensional) image feature 
representations by an encoder and learned to reconstruct the 
images from the feature representation by a decoder. We then 
took the trained encoder and concatenated it with an image 
classifier that estimates pulmonary edema severity. Finally, we 
trained this encoder with the classifier on labeled images in a 
supervised learning fashion. The use of this variational auto-
encoder architecture allowed us to leverage a large number of 
unlabeled images to train a model that learns the underlying 

Materials and Methods

Study Design
This was a retrospective cohort study. This study was approved 
by the Beth Israel Deaconess Medical Center Committee on 
Clinical Investigation with a waiver of informed consent. We 
collected 369 071 chest radiographs and their associated radiol-
ogy reports from 64 581 patients from the MIMIC-CXR chest 
radiograph dataset (12–14). Each imaging study is associated 
with one or more images. We aimed to identify patients with 
CHF within the dataset to limit confounding labels from other 
disease processes. First, we limited our study to only frontal ra-
diographs, excluding a total of 121 646 images. Of these fron-
tal radiographs (n = 247 425), there were 17 857 images which 
were acquired during visits with an emergency department 
discharge diagnosis code consistent with CHF. In total, this 
resulted in 16 108 radiology reports and 1916 patients who 
were included who had CHF. As part of a prior study (16), we 
manually reviewed patient charts and found this method of 
cohorting patients with CHF had 100% sensitivity and speci-
ficity. The other 62 665 patients were classified as non-CHF, 
and data were used in the semisupervised training model. An 
enrollment diagram is shown in Figure 1.

Label Extraction and Validation
We extracted the pulmonary edema severity labels (“none,” 
“vascular congestion,” “interstitial edema,” and “alveolar 
edema”) from the reports using regular expressions with nega-
tion detection. The extracted labels were numerically coded as 
follows: 0, none; 1, vascular congestion; 2, interstitial edema; 
and 3, alveolar edema (Table 1). Examples of the grades are 
shown in Figure E1 (supplement). We were able to label 3028 
radiology reports and thus 3354 frontal view radiographs from 
1266 patients (Fig 1). Among the 1266 patients, 1180 patients 
still have some of their reports unlabeled. The other 650 pa-
tients with CHF had no labeled reports.

To validate our label extraction in radiology reports, we ran-
domly selected 200 labeled reports (50 for each severity category 
from patients with CHF). A board-certified radiologist (S.J.B., 
5 years of experience, interventional radiology) then manually 

Abbreviations
AUC = area under the ROC curve, CHF = congestive heart failure, 
ROC = receiver operating characteristic 

Summary
Deep learning models were developed to quantify the extent of 
pulmonary edema on chest radiographs; the dataset and code used in 
this study are publicly available.

Key Points
	n The area under the receiver operating characteristic curve for dif-

ferentiating alveolar edema from no edema was 0.99 for a semisu-
pervised model using a variational autoencoder and 0.87 for a 
model developed by using a pretrained supervised learning model.

	n Performance of the algorithm was inversely related to the difficulty 
in categorizing milder states of pulmonary edema.

http://radiology-ai.rsna.org


Radiology: Artificial Intelligence Volume 3: Number 2—2021  n  radiology-ai.rsna.org� 3

Horng et al

Figure 1:  Cohort selection flowchart. A total of 369  071 chest radiographs and their associated radiology reports from 62 665 patients were 
collected. Images for this study were limited to frontal view radiographs (247 425). Of the 247 425 frontal view radiographs, 17 857 images were 
acquired during visits with a diagnosis consistent with congestive heart failure (CHF). In the CHF cohort, we were able to label 3028 radiology reports 
and thus 3354 frontal view radiographs from 1266 patients, using regular expressions (regex) on the reports. We also curated a test set of 141 ra-
diographs that were manually labeled by radiologists (from the 650 unlabeled radiographs from patients with CHF). BIDMC = Beth Israel Deaconess 
Medical Center.

Table 1: Validation of Keyword Terms

Edema Severity Keyword No. of Reports Precision (%) Sensitivity (%) Specificity (%)

“Overall” N/A 200 92 N/A N/A
None No pulmonary edema 24 95.83 40.35 99.41

No vascular congestion 18 94.44 29.82 99.41
No fluid overload 2 100 3.51 100
No acute cardiopulmonary process 13 92.31 21.05 99.41

Vascular conges-
tion

Cephalization 24 75 33.96 96.55
Mild pulmonary vascular congestion 24 91.67 41.51 98.85
Mild hilar engorgement 2 100 3.77 100
Mild vascular plethora 8 100 15.09 100

Interstitial edema Interstitial opacities 15 93.33 20.90 99.38
Kerley 19 100 28.36 100
Interstitial edema 20 100 29.85 100
Interstitial thickening 8 75 8.96 98.75

Alveolar edema Alveolar infiltrates 16 100 32.00 100
Severe pulmonary edema 33 90.91 60.00 98.87
Perihilar infiltrates 1 100 2.00 100
Hilar infiltrates 1 100 2.00 100

Note.—The total number of reports from all the keywords is more than 200 because some reports have more than one keyword. The low 
sensitivity and high specificity of each keyword indicate that no single keyword can represent the entire severity level but every keyword is 
specific to the severity level that it is supposed to belong to.
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ensuring that images from the same patients were allocated to 
the same fold. For each round, fourfolds were used for train-
ing and the remaining fold was held out for evaluation. Each 
model was trained five times independently to evaluate all five-
folds. During training, the validation fold was never seen by the 
model. We selected the best trained model among the five and 
tested it on the manually labeled image test set. The distribution 
of severity labels across folds and the test set is summarized in 
Table 3. The cross-validation results are summarized in Appen-
dix E1 (supplement).

We plotted receiver operating characteristic (ROC) curves 
and reported the AUC for each pairwise comparison between 
severity labels on the test set. We then dichotomized the sever-
ity and reported three comparisons: (a) 0 versus 1,2,3; (b) 0,1 
versus 2,3; and (c) 0,1,2 versus 3. We used the DeLong method 
to test for significance between AUCs between the semisuper-
vised model and the pretrained model. To account for multiple 
comparisons, a Bonferroni correction was used with a = .05 4 
9 = .005. 

Last, we show the confusion matrices for each of the mod-
els. To interpret the model predictions, we used Grad-CAM 
(gradient-weighted class activation mapping) to produce heat-
maps to visualize the areas of the radiographs that were most 
informative for grading pulmonary edema severity. Grad-CAM 
computes the gradients of the model prediction with respect to 
the feature maps of the last convolutional layer in the model. 
The gradients are used to calculate the weighted average of the 
feature maps, and the weighted average map is displayed as a 
heatmap to visualize image regions that are important for the 
model prediction (20). 

Data Availability
All underlying data, labels, and code are available at https://
github.com/RayRuizhiLiao/mimic_cxr_edema.

features of chest radiograph images. By training 
the variational autoencoder jointly with a classifier 
on the labeled images, we ensured it captured com-
pact feature representations for scoring pulmonary 
edema severity. We also used data augmentation 
by random image translation, rotation, and crop-
ping to a size of 2048 3 2048 during training to 
improve the robustness of the model. We used 
deep convolutional neural networks to implement 
the variational autoencoder and the classifier. The 
encoder of the variational autoencoder has eight 
residual blocks (5), the decoder has five deconvo-
lution layers, and the classifier has four residual 
blocks followed by two fully connected layers.

We also varied the number of unlabeled chest ra-
diographs used to train this semisupervised model to 
assess how the model performance changed with the 
amount of unlabeled data. We reported the average 
of the nine area under the receiver operating charac-
teristic curve (AUC) values (as in Table 2) in Table 
E1 (supplement).

Pretrained model development.—In the second approach, 
we started with a neural network that had been pretrained to 
recognize common images (eg, cats and dogs) and then fur-
ther tuned it to recognize the specific image features of chest 
radiographs for assessing pulmonary edema. Specifically, we 
used the densely connected convolutional neural networks 
(DenseNet) (6), and the model was pretrained on ImageNet 
(7). The DenseNet has four dense blocks (6), which consist of 
6, 12, 24, and 16 convolutional layers, respectively. The four 
dense blocks are concatenated with a 2-by-2 averaging pool-
ing layer between each two consecutive dense blocks. We kept 
the first three pretrained dense blocks for low-level image fea-
ture extraction, followed by one global average pooling layer, 
one dropout layer, and two fully connected layers. We then 
retrained this model on our labeled chest radiographs. We also 
used data augmentation by random image translation, rota-
tion, and cropping to a size of 512 3 512 (for adjusting the 
image size in the ImageNet) during training to improve the 
robustness of the model.

Statistical Analysis
Study population means and 95% CIs were reported for age, 
and percentages were reported for sex and disposition. A Stu-
dent t test was used to test for significance for age, and a Pear-
son x2 test was used for sex and disposition.

To understand how many and how frequently chest radio-
graphs have been taken on our CHF cohort and non-CHF co-
hort, we calculated the number of images from each patient in 
our dataset and plotted the histograms of the numbers for the 
CHF cohort and for the non-CHF cohort. We also showed the 
distributions of time intervals between two consecutive chest ra-
diographs obtained in a patient with CHF.

To evaluate the model, we performed fivefold cross-valida-
tion and randomly split the 3354 labeled images into fivefolds, 

Table 2: AUC from the Semisupervised Model and the Pretrained 
Supervised Learning Model on the Test Set

Comparison Semisupervised Pretrained Supervised P Value*

0 vs 1 0.79 0.66 .02
0 vs 2 0.88 0.81 .29
0 vs 3 0.99 0.87 .003
1 vs 2 0.69 0.73 .58
1 vs 3 0.93 0.82 .07
2 vs 3 0.88 0.63 .01
0 vs 1, 2, 3 0.85 0.74 .008
0, 1 vs 2, 3 0.88 0.81 .15
0, 1, 2 vs 3 0.96 0.82 .002

*Significance testing between the semisupervised model and the pretrained su-
pervised model area under the curve (AUC) using DeLong method (P value of 
the hypothesis that they have the same performance). To account for multiple 
comparisons, a Bonferroni correction was used where a P value below .005 
indicates a significant difference (a = .05/9 = .005). All the results are based on 
the predictions of the test set.

http://radiology-ai.rsna.org
https://github.com/RayRuizhiLiao/mimic_cxr_edema
https://github.com/RayRuizhiLiao/mimic_cxr_edema
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els, respectively. Performance of the algorithm was inversely 
related to the difficulty in categorizing milder states of pul-
monary edema (shown as the AUC for the semisupervised and 
pretrained model, respectively, for differentiating the following 
categories): 2 versus 0, 0.88 and 0.81; 1 versus 0, 0.79 and 
0.66; 3 versus 1, 0.93 and 0.82; 2 versus 1, 0.69 and 0.73; and 
3 versus 2, 0.88 and 0.63. The ROC curves from the cross-
validation are shown in Figure E4 (supplement).

The AUCs of the two models on the test set are reported in 
Table 2. Seven out of the nine Delong test significance values 
were higher than .005, which means that the two models did 
not have significantly different AUCs. The AUCs of the cross-
validation results are reported in Table E2 (supplement).

Confusion Matrix Analysis
We computed a confusion matrix for each of the models on the 
test set (Fig 3). Each image was placed in a cell by the true sever-
ity level from consensus score and the predicted severity level 
from the image model. In each cell, we reported the fraction of 
the predicted severity level in the actual severity level. Both mod-
els performed better in predicting level 0 and level 3 compared 
with predicting level 1 and level 2. The confusion matrices from 
the cross-validation are summarized in Figure E5 (supplement).

Predicted Edema Severity in Bar Charts
We plotted bar charts of predicted edema severity versus true 
edema severity on the test set (Fig 4). Both plots show the lin-
ear trend of predicted edema severity with ground truth edema 
severity. Overlap of error bars graphically depicts the challenges 
in discriminating less severe stages of pulmonary edema. Pul-
monary edema severity exists on a continuous spectrum and 
future work on this will be discussed in the following section. 
Similar bar charts from the cross-validation are reported in Fig-
ure E6 (supplement).

Model Interpretation
We used Grad-CAM to visualize the regions in a radiograph 
that are important for the model prediction. Figure 5 dem-

Results

Patient and Chest Radiograph Characteristics
We analyzed the chest radiograph distributions in our CHF co-
hort (1916 patients) and non-CHF cohort (62 665 patients). 
The histograms for number of chest radiographs and interval 
time are shown in Figure E3 (supplement). The mean num-
ber of chest radiographs taken per patient with CHF was 14 
(median, nine; range, 1–153) and per patient with no CHF 
was five (median, three; range, 1–174). For patients with CHF, 
the mean interval time between each two consecutive chest ra-
diograph orders from the same patient was 71 days (median, 
7 days; range 0.13–1545 days). A total of 21.53% of patients 
had interval times within 1 day, while 66.08% had interval 
times within 30 days. Additional information on radiographs 
and patients is shown in Table 4.

Validation of Outcome Measures
The precision values (positive predictive value) of the regular 
expression results (ie, extracting pulmonary edema severity la-
bels from the radiology reports within the dataset) for “none,” 
“vascular congestion,” “interstitial edema,” and “alveolar 
edema” based on the manual review results were 96%, 84%, 
94%, and 94%, respectively. The overall precision was 92%. 
The precision, sensitivity, and specificity for each keyword are 
summarized in Table 1.

After independent labeling, discussion, and voting, the inter-
rater agreement (Fleiss k) among the three radiology residents 
was 0.97 (more details in Figure E2 [supplement]). Our modi-
fied Delphi process yielded consensus labels for all 141 images.

ROC Curve Analysis
The ROC curves of the two models on the test set are shown in 
Figure 2. As expected, both models performed well on the task 
of distinguishing images between level 0 and level 3 and on the 
task of classifying between level 3 and the rest. The AUC for 
differentiating alveolar edema (score 3) from no edema (score 
0) was 0.99 and 0.87 for semisupervised and pretrained mod-

Table 3: Distribution of Severity Labels across Folds and Test Set

Test Set/Fold 0, None
1, Vascular Con-
gestion 2, Interstitial Edema

3, Alveolar 
Edema Total Images

Unlabeled (n = 63 149) … … … … 229 519
Labeled-regular expressions (cross 

validation)
  Fold 1 (n = 254) 260 130 189 27 606
  Fold 2 (n = 253) 296 150 215 31 692
  Fold 3 (n = 253) 269 130 236 26 661
  Fold 4 (n = 253) 292 153 194 38 677
  Fold 5 (n = 253) 302 153 237 26 718
  Subtotal (n = 1266) 1419 (42.13%) 716 (21.35%) 1071 (31.93%) 148 (4.41%) 3354 (100%)
Labeled-manual (test) (n = 123) 61 (43.26%) 44 (31.21%) 20 (14.18%) 16 (11.35%) 141 (100%)

Note.—Regular expressions indicate the retrieval of text from the original radiology reports within the database.
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onstrates two sample images from the two models. We also 
manually reviewed the test data set in an attempt to classify 
the failure modes of both the semisupervised and pretrained 
models (Table E3 [supplement]).

Discussion
We employed two different machine learning techniques to 
quantify pulmonary edema. The semisupervised approach 
learned from all the radiographs in the training set. The pre-
trained image model learned from a large common image set 
and the labeled radiographs. Both approaches aimed to address 
the challenge of limited labels extracted from the radiology 
reports. Both approaches had similar performance statistically 
in terms of AUC on most pairwise classification comparisons 
(seven of nine). On the other two comparisons (two of nine), 
the semisupervised approach outperformed the pretrained ap-
proach. The semisupervised approach may have given better 
results because it learned from approximately 220 000 chest ra-
diographs and was thus tailored to the image feature extraction 
of chest radiographs.

The semisupervised model was rarely off by two levels of 
pulmonary edema and never disagreed by three levels from the 
consensus label. However, there were examples in which the pre-
trained model predicted alveolar edema or no pulmonary edema 
when the consensus label was on the opposite end of the spec-
trum. More work is needed to improve the explainability of the 
model to understand these failure modes which are clearly criti-
cal before such a model could be deployed in clinical practice. 

Importantly, however, the manual review showed several exam-
ples where the models were able to correctly assess the absence 
of pulmonary edema despite the presence of severe cardiomegaly 
and pleural effusions.

The results of these algorithms provided a performance 
benchmark for future work. We have shown that it is feasible to 
automatically classify four levels of pulmonary edema on chest 
radiographs. Understandably, the performance of the algorithm 
mirrors the challenge of distinguishing these disease states for 
radiologists. The differentiation of alveolar edema from no pul-
monary edema (level 3 vs 0) is an easier task than distinguishing 
interstitial edema from pulmonary vascular congestion (level 2 
vs 1). Even among radiologists, there is substantial variability in 
the assessment of pulmonary edema. More machine learning ap-
proaches should be explored for this clinical task in future work.

Our work expanded on prior studies by employing machine 
learning algorithms to automatically and quantitatively assess 
the severity of pulmonary edema from chest radiographs. Prior 
work has shown the ability of convolutional neural networks to 
detect pulmonary edema among several other pathologic condi-
tions that may be visualized on chest radiographs (21–23). Neural 
networks have been validated in large datasets to achieve expert 
level identification of findings in chest radiographs (24). Their 
AUCs in detecting the presence of pulmonary edema range from 
0.83 to 0.88. By treating pulmonary edema as a single pathologic 
condition, it is difficult to draw direct comparison to our work 
which considered pulmonary edema as a spectrum of findings. A 
conservative comparison would be to compare prior work to our 

Table 4: Patient Demographics and Characteristics

Parameter

CHF (n = 1916)

Non-CHF (n = 62 665) P ValueLabeled (n = 1266) Unlabeled (n = 650) Total (n = 1916)

Age (y)* 73 (72.0, 74.1) 75.8 (75.2, 76.4) 75.1 (74.5, 75.6) 51.0 (50.9, 51.1) , .001
Women (%) 51.8 51.3 51.4 54.6 .001
Disposition (%) , .001
  Admit 91.5 93.6 92.8 35.6
  Discharge 8.2 5.9 6.5 59.6
  AMA 0.0 0.2 0.2 0.3
  Cardiac catheteriza-

tion
0.0 0.1 0.0 0.1

  Eloped 0.0 0.0 0.0 1.1
  Died 0.0 0.2 0.1 0.1
  Labor & Delivery 0.0 0.0 0.0 0.0
  LWBS 0.2 0.0 0.0 1.1
  OR 0.2 0.1 0.1 0.7
  Transfer 0.0 0.0 0.2 1.4
No. of chest radio-

graphs†
9 (1–153) 3 (1–174)

Interval (d)† 7.09 (0.13–1545)

Note.—Data are percentages. Interval indicates the interval between two consecutive chest radiographs from the same patient. 
AMA = against medical advice, CHF = congestive heart failure, LWBS = leave without being seen, OR = operating room. 
* Age is mean, with 95% CIs in parentheses. 
† Number of chest radiographs per patient and the interval time between two chest radiographs are shown as median with 
range in parentheses.

http://radiology-ai.rsna.org
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Figure 2:  Receiver operating characteristic (ROC) curves of the semisupervised learning model and the pretrained supervised learning model. All the curves 
are based on the predictions of the test set. (a, b) ROC curves for six pairwise comparisons. (c, d) ROC curves for three dichotomized severity comparisons. 
All the curves are based on the predictions of the test set.

Figure 3:  Confusion matrices from the (a) semisupervised learning model and the (b) pretrained supervised learning model. The denomi-
nator of each fraction number is the number of images that the algorithm predicts of the corresponding row, and the numerator is the number of 
images that belongs to the corresponding column. The quadratic-weighted k values of the semisupervised learning model and the pretrained 
supervised learning model are 0.70 and 0.41. All the results are based on the predictions of the test set.
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model’s ability to distinguish no edema and pulmonary vascular 
congestion from interstitial and alveolar edema (levels 0,1 vs 2,3) 
which have AUCs of 0.81 (pretrained) and 0.88 (semisupervised). 
Although their test sets are based on labels extracted from radiol-
ogy reports, our test set labels were annotated and had consensus 
reached by four radiologists. Others have trained neural networks 
on B-type natriuretic peptide values to produce a quantitative as-
sessment of CHF (25). However, B-type natriuretic peptide in-
creases nonlinearly with worsening CHF and exhibits marked 
interpatient variability. A B-type natriuretic peptide of 1000 in 
one patient could represent an acute exacerbation, while being the 
baseline for another patient, making B-type natriuretic peptide 
a poor surrogate outcome measure for acute pulmonary edema. 
The grading of pulmonary edema severity relies on much more 
subtle radiologic findings (image features). The clinical manage-
ment of patients with pulmonary edema requires comparisons 
of serial examinations and understanding serial trends. Accurate, 
reproducible, and rapid quantification of pulmonary edema is of 
paramount value to clinicians caring for these patients.

There were limitations in our study. Extracting labels from 
clinical radiology reports allowed us to quickly obtain a reason-
able amount of labeled data, but is inferior to data labeled for a 
specific purpose. Not only is there poor interreader agreement 
among radiologists for pulmonary edema detection (26), but ra-
diologists may use different languages to describe a similar patho-
physiologic state. In future work, we will explore joint modeling 
of chest radiographs and radiology reports and aim to mitigate 
the bias introduced by simply employing regular expressions.

Pulmonary edema exists on a continuous spectrum of sever-
ity. By discretizing our data into four classes, we have potentially 
lost valuable information and contaminated the categories. The 
category of severe edema in our dataset contained all images con-
taining alveolar edema, even though this varies wildly in clini-
cal practice. In practice, it is challenging to quantify pulmonary 
edema at a more granular level. Comparisons between images 
are easier and more reproducible. Future work could leverage 
pairs of images to quantify edema on a continuous scale.

The diagnosis of pulmonary edema is often challenging 
because of the possibility of other competing diagnoses that 
have overlapping radiographic findings. For example, multi-
focal pneumonia can be confused with alveolar pulmonary 
edema, and chronic interstitial edema can be misinterpreted 
as interstitial pulmonary edema. To minimize this bias, we 
restricted our labeled data to a cohort of patients diagnosed 
with CHF. In this work, we purposely ignored image findings 
such as cardiomegaly and pleural effusions that are correlated 
with pulmonary edema and often used by radiologists when 
making the diagnosis. In future work, we plan to leverage 
multitask training to jointly learn these associated features. 
By incorporating multiple image observations in the model 
training, an algorithm would approximate the clinical gestalt 
that a radiologist has when considering the etiology of pul-
monary opacities. By separating the features of pulmonary 
edema from features that are associated with CHF, however, 
our model was not biased against detecting noncardiogenic 
pulmonary edema.

Last, we compared our results only to the chest radiograph 
rather than some other reference standard of pulmonary edema. 
In clinical practice, the chest radiograph is usually considered 
the reference standard to measure pulmonary edema. Pulmo-
nary capillary wedge pressure might be more accurate, but is 
extremely invasive, and performed only on a small fraction of 
patients; therefore, it would be impractical to be used as a refer-
ence standard.

Accurate grading of pulmonary edema on chest radiographs 
is a clinically important task. The models developed in this study 
were capable of classifying edema grades on chest radiographs.
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