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Abstract

Supervised learning is difficult with high dimen-
sional input spaces and very small training sets,
but accurate classification may be possible if the
data lie on a low-dimensional manifold. Gaus-
sian Process Latent Variable Models can discover
low dimensional manifolds given only a small
number of examples, but learn a latent space
without regard for class labels. Existing meth-
ods for discriminative manifold learning (e.g.,
LDA, GDA) do constrain the class distribution in
the latent space, but are generally deterministic
and may not generalize well with limited train-
ing data. We introduce a method for Gaussian
Process Classification using latent variable mod-
els trained with discriminative priors over the la-
tent space, which can learn a discriminative la-
tent space from a small training set.

1. Introduction
Conventional classification methods suffer when applied to
problems with high dimensional input spaces, very small
training sets, and no relevant unlabeled data. If, however,
the high dimensional data in fact lie on a low-dimensional
manifold, accurate classification may be possible with a
small amount of training data if that manifold is discovered
by the classification method. Existing techniques for dis-
covering such manifolds for discriminative classification
are generally deterministic and/or require a large amount of
labeled data. We introduce here a new method that learns a
discriminative probabilistic low dimensional latent space.

We exploit Gaussian Processes Latent Variable Models,
which can discover low dimensional manifolds in high di-
mensional data given only a small number of examples
(Lawrence, 2004). Such methods have been developed to
date in a generative setting for visualization and regression
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applications, and learn a latent space without regard for
class labels1. These models are not “discriminative”; noth-
ing in the GPLVM encourages points of different classes
to be far in latent space, especially if they are close in data
space, or discourages points of the same class from being
far in latent space if they are far in input space. As a result,
the latent space is not optimal for classification.

In contrast, discriminative latent variable methods, such
as Linear Discriminant Analysis (LDA), and its kernelized
version Generalized Discriminant Analysis (GDA), try to
explicitly minimize the spread of the patterns around their
individual class means, and maximize the distance between
the mean of the different classes. However, these methods
are generally not probabilistic and may not generalize well
with limited training data.

In this paper, we develop a discriminative form of GPLVM
by employing a prior distribution over the latent space that
is derived from a discriminative criterion. We specifically
adopt GDA constraints but the proposed model is general
and other criteria could also be used. Our model has the
desirable generalization properties of generative models,
while being able to better discriminate between classes in
the latent space.

Gaussian Process Classification (GPC) methods have seen
increasing recent interest as they can accurately and effi-
ciently model class probabilities in many recognition tasks.
Since generalization to test cases inherently involves some
level of uncertainty, it is desirable to make predictions
in a way that reflects these uncertainties (Rasmussen &
Williams, 2006). In general, GPC is defined by a covari-
ance function, and one must optimize this function (i.e.
hyper-parameters) with respect to the best classification
rates or class probabilities (i.e. confidence). In the stan-
dard GPC formulation, the only freedom for the covariance
to become discriminative is in the choice of the value of
its hyper-parameters. Here, we will show that the covari-
ance matrix estimated by a discriminative GPLVM dramat-
ically improves GPC classification when the training data

1GPLVMs can be considered as a generalization of Probabilis-
tic PCA to the non-linear case.
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is small, even when the number of examples is smaller than
the dimensionality of the data space.

Several authors have proposed methods to take advantage
of the low dimensional intrinsic nature of class labeled data.
(Iwata et al., 2005) proposed Parametric Embedding (PE), a
technique based on Stochastic Neighbor Embedding (SNE)
(Hinton & Roweis, 2002), to simultaneously embed objects
and their classes. This was extended to the semi-supervised
case by modeling the pairwise relationships between the
objects and the embedding (Zien & Quiñonero-Candela,
2005). But these methods do not work in practice when the
training set is small. Probably the closest work to ours is
the covariance kernels proposed by Seeger (Seeger, 2001),
where a Bayesian mixture of factor analyzers is used for
semi-supervised classification. The formalism we propose
is different and works well with no unlabeled data and rel-
atively few training examples.

In following sections we review GPC and GPLVM, in-
troduce discriminative GPLVM, and present the use of
discriminative GPLVM in the context of GPC. We then
show comparative results on a variety of datasets which
demonstrate significantly improved performance when the
amount of training data is limited. We finally discuss ex-
tensions of our method to semi-supervised tasks, and to dif-
ferent discriminative criteria.

2. Gaussian Process for Classification
In this section we review the basics of Gaussian Processes
for Binary Classification. Since the classification problem
(i.e. the probability of a label given an input) cannot be di-
rectly modeled as a Gaussian Process, in GPC a latent func-
tion is introduced. A Gaussian Process (GP) prior is placed
over the latent functions, and their results are “squashed”
through a logistic function to obtain a prior on the class
probabilities (given the inputs).

More formally, let Y = [y1, ...,yN ]
T be a matrix repre-

senting the input data and Z = [z1, ..., zN ]
T denote the

vector representing the labels associated with the training
data, where zi ∈ {−1, 1} denotes the class label of input
yi. Gaussian process classification (GPC) discriminately
models p(z|y) as a Bernouilli distribution. The probabil-
ity of success is related to an unconstrained intermediate2

function, fi = f(yi), which is mapped to the unit interval
by a sigmoid function (e.g. logit, probit) to yield a probabil-
ity. Let f = [f1, ..., fN ]

T be the values of the intermediate

2We are using the term intermediate function rather than latent
function here, to avoid confusion with the latent variable space in
GPLVM.

function. The joint likelihood factorizes to

p(Z|f) =
N
∏

i=1

p(zi|fi) =
N
∏

i=1

Φ(zifi) , (1)

where Φ is the sigmoid function. Following (Rasmussen
& Williams, 2006) we use a zero-mean Gaussian Process
prior over the intermediate functions f with covariance
k(yi,yj). The posterior distribution over latent functions
becomes

p(f |Z,Y, θ) =
N (f |0,K)

p(Z,Y|θ)
p(Z|f) (2)

with

p(Z,Y|θ) =

∫

p(Z|f)p(f |Y, θ)df , (3)

where Kij = k(yi,yj), and θ are the hyper-parameters of
the covariance function k. Unlike the regression case, nei-
ther the posterior, the marginal likelihood p(Z|f), nor the
predictions can be computed analytically. A discriminative
GPC either approximates the posterior with a Gaussian, or
employs Markov chain Monte Carlo sampling. In this pa-
per we take the former approach, and use the Laplace and
Expectation Propagation (EP) methods. For a detailed de-
scription of such methods, and a comparison between them,
we refer the reader to (Rasmussen & Williams, 2006; Kuss
& Rasmussen, 2006).

The functional form of the covariance function k encodes
assumptions about the intermediate function. For example,
one might use a Radial Basis Function (RBF) if we expect
the latent function to be smooth. When doing inference,
the hyper-parameters of the covariance function have to be
estimated, choosing them so that the covariance matrix is
as “discriminative” as possible. But not many degrees of
freedom are typically left for the covariance to be discrimi-
native. For example, in the case of an RBF, only two hyper-
parameters are estimated: the support width and the output
variance.

In theory, one could optimize the whole covariance, but this
is unfeasible in practice as it requires N 2 parameters to be
estimated, subject to the constraint that the covariance ma-
trix has to be positive definite. In the following section we
review GPLVM models, which provide a covariance func-
tion with a significantly richer parameterization than typi-
cal hyper-parameters, yet which is sufficiently constrained
to allow estimation.

3. Gaussian Process Latent Variable Model
(GPLVM)

Let Y = [y1, ...,yN ]
T be a matrix representing the train-

ing data, with yi ∈ <
D. Similarly, let X = [x1, ...,xN ]

T
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denote the matrix whose rows represent corresponding po-
sitions in latent space, xi ∈ <d. The Gaussian Process
Latent Variable Model relates a high-dimensional data set,
Y, and a low dimensional latent space, X, using a Gaus-
sian process mapping from the latent space to the data
space. Given a covariance function for the Gaussian pro-
cess, kY (x,x

′), the likelihood of the data given the latent
positions is,
p(Y |X, β̄) =

1
√

(2π)ND|KY |D
exp

(

−
1

2
tr
(

K−1
Y YYT

)

)

, (4)

where elements of the kernel matrix KY are defined by
the covariance function, (KY )i,j = kY (xi,xj). We use a
kernel that is the sum of an RBF, a bias or constant term,
and a noise term.

kY (x,x
′) = θ1 exp

(

−
θ2
2
||x− x′||2

)

+θ3+
δx,x′

θ4
, (5)

where θ = {θ1, θ2, ...} comprises the kernel hyper-
parameters that govern the output variance, the RBF sup-
port width, the bias, and the variance of the additive noise,
respectively. The posterior can be written as

p(X, β̄ |Y) ∝ p(Y |X, β̄) p(X) p(θ) . (6)

Learning in the GPLVM consists of minimizing the log
posterior with respect to the latent space configuration, X,
and the hyper parameters, θ,

L = Lr +
∑

i

ln θi +
∑

i

1

2
||xi||

2, (7)

where we have introduced uninformative priors over the
kernel hyper-parameters, and simple priors over the latent
positions. These priors prevent the GPLVM from placing
latent points infinitely far apart, i.e. latent positions close
to the origin are preferred. The log likelihood associated
with (4) is,

Lr =
D

2
ln |KY | +

1

2
tr
(

K−1
Y YYT

)

(8)

A key property of the model is its use of (closed form)
Bayesian model averaging (Lawrence, 2004), both to miti-
gate problems due to over-fitting with small data sets, and
to remove the need to select parameters of the function ap-
proximators.

To preserve topological structure, the back-constrained
GPLVM (Lawrence & Quiñonero-Candela, 2006) con-
strains the latent positions to be a smooth function of the
data space. As a result, points that are close in data space
will be close in latent space.

However, the GPLVM (back-constrained or not) is purely
generative: nothing in the model encourages latent posi-
tions of different classes to be far, nor latent positions of the

same class to be close. In the following section we propose
the discriminative GPLVM to address this limitation. The
discriminative GPLVM explicitly models the intrinsic low-
dimensional representation of the data, resulting in good
classification rates, even when the number of training ex-
amples is smaller than the input space dimensionality.

4. Discriminative GPLVM
The GPLVM is a generative model of the data, where a
simple spherical Gaussian prior is placed over the latent
positions (7). In this section we develop a Discriminative
Gaussian Process Latent Variable Model, using an informa-
tive prior that encourages latent positions of the same class
to be close and those of different classes to be far. While
several discriminative criterion are possible, we have used a
prior based on Generalized Discriminant Analysis (GDA).

4.1. LDA-GDA Revisited

LDA and GDA are discriminative methods which find a
transformation that maximizes between-class separability
and minimizes within-class variability. This transforma-
tion is linear in the LDA and non-linear (kernelized) in
the GDA. The transformation projects to a space of dimen-
sion at most L − 1, where L is the number of classes, and
is distribution-free, i.e. no assumption is made regarding
the distribution of the data. These techniques are generally
combined with a classifier in the low dimensional space.

More formally, let X = [x1, ...,xN ]
T be the desired

low dimensional representation of the input data Y =
[y1, ...,yN ]

T . LDA and GDA try to maximize between-
class separability and minimize within-class variability by
maximizing

J(X) = tr
(

S−1
w Sb

)

, (9)

where Sw and Sb are the within- and between- class matri-
ces:

Sw =
L
∑

i=1

Ni

N
(Mi −M0)(Mi −M0)

T (10)

Sb =

L
∑

i=1

Ni

N

[

1

Ni

Ni
∑

k=1

(x
(i)
k −Mi)(x

(i)
k −Mi)

T

]

(11)

where X(i) = [x
(i)
1 , · · · ,x

(i)
Ni
] are the Ni training points of

class i, Mi is the mean of the elements of class i, and M0

is the mean of all the training points of all classes. In the
linear case (LDA) the maximization problem can be solved
in closed form. In the non-linear case the kernel “trick” is
typically used to obtain a closed form solution.
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4.2. Discriminative GPLVM (D-GPLVM)

The LDA-GDA energy function in (9) is a function of the
latent positions, X, and can be interpreted as a prior over
latent configurations that forces the latent points of the
same class to be close together and far from those of other
classes.

p(X) =
1

Zd

exp

{

−
1

σ2
d

J−1

}

, (12)

where Zd is a normalization constant, and σ2
d represents a

global scaling of the prior.

Learning the D-GPLVM is then equivalent to minimizing

LS = Lr +
∑

i

ln θi +
1

σ2
d

tr
(

S−1
b Sw

)

, (13)

with Lr defined in (8). This is minimized using Scaled
Conjugate Gradient (SCG) technique. We have replaced
the spherical Gaussian prior over the latent positions in
(7) with a discriminative prior based on GDA3. As the
GPLVM, discriminative GPLVM relies on MAP estimates
of the kernel hyperparameters and the latent locations.

Note that (13) can be interpreted as a regularized GPLVM,
where the regularizer is a discriminative GDA-based crite-
rion, or as a regularized GDA, where the regularizer is a
GP. In the limit (σd → 0), Equation (13) has a closed form
solution and is equivalent to GDA. If we use a linear kernel
instead of (5) then our method is equivalent to LDA.

The choice of the σd reflects a tradeoff between our
method’s ability to discriminate (small σd) and its ability
to generalize (large σd). Fig. 1 shows models learned with
different values of σd for the oil database. Fig. 1(i) shows
the classification error as a function of 1/σ2

d in logaritmic
scale. The leftmost point corresponds to classic GPLVM
(i.e. σ2

d = ∞) and the rightmost point to σ2
d = 10−6.

The latter produces results similar to GDA. In this exam-
ple as σd increases the model becomes less discriminative
and has increasing classification error; to achieve minimum
error σd cannot be ∞, confirming GPLVM is not optimal
for classification. When the number of examples is smaller
than the dimensionality of the data space the minimum oc-
curs in the middle of the curve, as is shown in Fig. 3 for
the USPS database. In general, the optimal value σd is
a function of the amount of training data and the input
space dimensionality. Larger input space dimensionality
and smaller amounts of training examples both imply larger
values of σd should be used, since generalization becomes
more important.

3Note that since (9) is a maximization criterion and we are
minimizing the log likelihood, we use the inverse of J .

5. Discriminative GPLVM for Gaussian
Process Classification

Recall that in GPC the intermediate function is modeled
with a zero-mean Gaussian Process prior. The discrim-
inative GPLVM learns a covariance that is a function of
the low dimensional representation of the training data, X,
and the kernel hyper-parameters, θ. The covariance, KY ,
can directly be used for the Gaussian Process prior over
the intermediate functions, K in (2). The kernel matri-
ces obtained by our method are discriminative and more
flexible than the ones used in classical GPC, since they are
learned based on a discriminative criterion, and more de-
grees of freedom are estimated than classic kernel hyper-
parameters4.

5.1. Inference with New Test Points

When given a new test point y′ we need to estimate its low
dimensional representation x′. This can be done by maxi-
mizing p(y′,x′|X,Y, θ), or equivalently by minimizing its
negative log likelihood. This is (up to an additive constant)
equal to

Linf =
‖y′ − µY (x

′)‖2

2σ2(x′)
+
D

2
lnσ2(x′) +

1

2
‖x′‖2 (14)

where the mean and variance are given by

µY (x
′) = µ+YTK−1

Y kY (x
′) , (15)

σ2(x′) = kY (x
′,x′)− kY (x

′)TK−1
Y kY (x

′) ,(16)

and kY (x) is the vector with elements kY (x,xj) for all
other latent positions xj in the model, with kY as in (5).
For inference we use an isotropic spherical prior over the
new latent positions, since the class labels of the test data
are unknown.

Fast inference To speed up this process, we can ex-
ploit GPLVM backconstraints (Lawrence & Quiñonero-
Candela, 2006), minimizing (13) subject to

xij = gj(yi;a) =

N
∑

m=1

ajmkbc(yi − ym) , (17)

where xij is the j-th dimension of xi. This allows for dif-
ferent backconstraints, gj , to be used for the different di-
mensions. In particular, since we want the inverse mapping
to be smooth, we use an RBF kernel for the backconstraint
in each dimension

kbc(yi − ym) = exp(−
γ

2
||yi − ym||

2) . (18)

4The number of degrees of freedom is the number of hyper-
parameters Nθ for GPC and Nθ + N ∗ d for discriminative
GPLVM, with d the dimensionality of the latent space, and N
the total number of training points.
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Figure 1. 2D latent spaces learned by D-GPLVM on the oil dataset are shown, with 100 training examples and different values of σd. The
grayscale plots (a,b,c,g) show the low dimensional representation of the training examples, and the grayscale represents−D

2
lnσ2(x′)+

1

2
‖x′‖2. (d,e,f,h) depict the latent coordinates of the test examples computed using backconstraints. In particular, (a,d) σ2

d = 10−7, (b,e)
σ2

d = 10−5, (c,f) σ2

d = 10−4 and (g,h) is equivalent to GPLVM (σ2

d = ∞). (i) depicts the classification error for the Laplace and EP
methods as a function of 1/σ2

d in logarithmic scale. Note that as 1/σ2

d increases the model becomes more discriminative but has worse
generalization.
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The low dimensional representation of a test point is then
obtained by evaluating the inverse mapping learned by the
backconstraint at the test point x′j = gj(y

′;a). No mini-
mization is required, and x′ can be computed directly for
the new test point.

6. Experimental Results
For all databases, we test the performance of our algorithm
across varying training set sizes. Each test trial was re-
peated with varying model parameters σd = 103, 104, 105

and γ = 0.1, 0.01, 0.001. The setting which resulted in
minimum mean error performance over 10 random trials
was used. For multi-class problems we used a one-vs-all
GPC formulation. The D-GPLVM is used in a supervised
setting, and the low dimensional representation is learned
based only on the small training set. The baseline GPCs in
the original space and in the low dimensional representa-
tions are also trained using only the labeled examples.

In the first experiment we compare the performance of our
algorithm to GPC5 in the original space, using both the
Laplace and EP methods. Results on the oil database6

are shown in Fig. 2. This database has three classes, in-
put dimensionality 12 and 1000 examples; results from a
two dimensional D-GPLVM are also shown in the figure,
where 10 to 100 examples were used for training. For small
amounts of training data, the performance of our method is
much higher than GPC in the original space.

In the second experiment we consider the case where the
dimensionality of the input is higher than the number of ex-
amples, and evaluate on the task of discriminating between
3’s and 5’s in the USPS database. The dimensionality of
the input space is 256, and 1540 examples are available.
In our experiments between 10 to 100 examples were used
for training. As shown in Fig. 3, GPC in the original space
performs at chance levels as it can not learn from so few
examples. In contrast the D-GPLVM takes advantage of
the fact that the data lies on a low dimensional manifold
and produces low classification error rates; with 100 exam-
ples the error rates are less than 5%. The dimensionality
of the latent space is 1. In Table 1, we compare our algo-
rithm to GPC and SVMs both in the input space and in the
spaces learned by LDA and GDA. As expected, GDA over-
fits and performs at chance levels. LDA discovers some of
the structure of the manifold, but has more classification
errors than D-GPLVM. Note that all classifiers in the input
space perform no better than chance, and GPC performs
approximately as well as SVMs.

The last example (Fig. 4) shows mean error rates for the

5We use the GPC implementation available on the GPML
website http://www.GaussianProcess.org/gpml/code

6http://www.ncrg.aston.ac.uk/GTM/3PhaseData.html

UCI wine database. The dimensionality of the input space
is 13, and 178 examples of three different classes are avail-
able. A D-GPLVM of dimension 2 outperforms GPC in the
original space by 2 or 3%, slightly increasing with the num-
ber of training points. This is not an expected behavior, as
we expect that the difference in performance will decrease
with the number of training points.

7. Future Work and Extensions
In this section we discuss possible extensions of the D-
GPLVM.

Semi-supervised D-GPLVM The D-GPLVM can be ex-
tended to the semi-supervised case by simply applying the
prior only over the labeled training data. In this case, the
use of the backconstraints is critical, since they will place
each unlabeled data in latent space close to the labeled
points that are similar in input space. The inverse map-
ping will be learned using all the labeled and unlabeled
data, resulting in a better approximation for the fast infer-
ence. If no backconstraints are used, then we need to use
a prior over the unlabeled data to preserve at least their lo-
cal topological structure. For example one can use for the
unlabeled data a prior based on LLE technique (Roweis &
Saul, 2000).

Using other discriminative criteria In this paper we
have presented a general framework to learn the covari-
ance matrix for GPC in a discriminative way, by means of
augmenting the GPLVM with an informative prior distri-
bution over the latent space. In particular, we have used a
prior that is based on GDA. The proposed framework can
be used with other discriminative criterions such as Local
Fisher discriminant analysis (Sugiyama, 2006), or the the
discriminative distance functions of (Globerson & Roweis,
2005; Xing et al., 2003).

Classifying dynamical sequences When dealing with
dynamical sequences, the difference between classes might
not be in terms of distances in the input space but in their
dynamics. It is well known, for example in gait analysis,
that it is easier to discriminate between sets of poses than
individual poses (Urtasun et al., 2006). The D-GPLVM can
be easily extended to take into account dynamics, by learn-
ing a GPDM (Wang et al., 2005) instead of a GPLVM. The
GPDM is a latent variable model with a nonlinear proba-
bilistic mapping from latent positions to input space, and a
nonlinear dynamical mapping on the latent space. Learning
the D-GPDM is equivalent to minimize

LS = L +
1

σ2
d

tr
(

S−1
b Sw

)

+ Ld , (19)
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Figure 2. Mean error rate as a function of the number of training points for the “oil” database, using GPC in the original input-space and
with a D-GPLVM. The Laplace (left) and EP (right) results are depicted. Our method outperforms GPC, specially when the amount of
training data is small.
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Figure 3. Mean error rate as a function of the number of training points for the “usps” database, where we are trying to discriminate
between 3’s and 5’s. Results using GPC with Laplace (left) and EP (center) in the original input-space and with a D-GPLVM of
dimension 2 are shown. (right) Classification error as a function of the number of 1/σ2

d. The dimensionality of the D-GPLVM latent
space is 1.

with

Ld =
d

2
ln |KX | +

1

2
tr
(

K−1
X XoutX

T
out

)

(20)

where Xout = [x2, ...,xN ]
T , KX is the (N−1)× (N−1)

kernel matrix constructed from Xin = [x1, ...,xN−1] to
model the dynamics. The inference in (14) might also be
modified to include the dynamics term.

Optimizing parameters As described above, the hyper-
parameters of the covariance matrix learned using a D-
GPLVM are optimized during GPC. The latent coordinates
can also be estimated during this process, resulting in latent
positions which optimize the GPC criterion. This might in-
crease the classification performance.

8. Conclusion
In this paper, we have developed a discriminative GPLVM
by employing a prior distribution over the latent space de-
rived from a discriminative criterion. This has the desirable
generalization properties of generative models, while being

able to better discriminate between classes. In contrast to
previous Gaussian Process Classification techniques, our
method provides a richer parameterization of the covari-
ance function based on the low dimensional structure of
the data. Our method empirically outperforms other clas-
sification techniques, especially in cases when the dimen-
sionality of the input space is high and the training set is
small.
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Figure 4. Mean error rate as a function of the number of training points for the UCI wine database. A D-GPLVM of dimension 2
outperforms GPC in the original space by 2 or 3%.

mation Processing Systems (NIPS). Cambridge, MA:
MIT Press.

Kuss, M., & Rasmussen, C. E. (2006). Assessing approxi-
mations for gaussian process classification. Advances in
Neural Information Processing Systems (NIPS) (pp. 699
– 706). MIT Press.

Lawrence, N. D. (2004). Gaussian process models for vi-
sualisation of high dimensional data. Advances in Neu-
ral Information Processing Systems (NIPS). Cambridge,
MA: MIT Press.
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