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Abstract
Representing motions as linear sums of principal components has become a widely accepted animation technique.
While powerful, the simplest version of this approach is not particularly well suited to modeling the specific style of
an individual whose motion had not yet been recorded when building the database: it would take an expert to adjust
the PCA weights to obtain a motion style that is indistinguishable from his. Consequently, when realism is required,
the current practice is to perform a full motion capture session each time a new person must be considered. In this
paper, we extend the PCA approach so that this requirement can be drastically reduced: for whole classes of cyclic
and noncyclic motions such as walking, running or jumping, it is enough to observe the newcomer moving only
once at a particular speed or jumping a particular distance using either an optical motion capture system or a
simple pair of synchronized video cameras. This one observation is used to compute a set of principal component
weights that best approximates the motion and to extrapolate in real-time realistic animations of the same person
walking or running at different speeds, and jumping a different distance.
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1. Introduction

Representing motions as linear sums of principal components
has become a widely accepted animation technique [1–4].
These principal components are computed by motion captur-
ing as many people as possible performing a specific activity,
representing each motion as a temporally quantized vector of
joint angles, and performing a Principal Component Anal-
ysis (PCA) [5] on the resulting database of motion vectors.
Linear combinations of these vectors can then be considered
as valid motions and used to produce new animations.

While powerful, the simplest version of this approach is
not particularly well suited to modeling the specific style of
an individual whose motion had not yet been recorded when
building the database: it would take an expert to adjust the
PCA weights to obtain a motion style that is indistinguishable
from his. Consequently, when realism is required, the current
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practice is to perform a full motion capture session each time
a new person must be considered.

In this paper, we show that the PCA approach can be ex-
tended so that this requirement can be drastically reduced:
For whole classes of cyclic and noncyclic motions such as
walking, running or jumping, it is enough to observe the new-
comer walking or running only once at a particular speed or
jumping a particular distance using either an optical motion
capture system or a simple pair of synchronized video cam-
eras. This one observation is used to compute a set of principal
component weights that best approximates the motion and
to extrapolate in real-time realistic animations of the same
person moving at different speeds or jumping at different
distances. This has an important advantage over traditional
blending approaches that simply rely on a linear combination
of the captured data to create new styles [4,6,7]: extrapola-
tion allows us to reach a comparatively larger subspace of
physically correct motions. Furthermore, unlike techniques
such as the one described in [8], our approach does not
need fine parameter settings for initialization purposes. Our
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animations are produced in real-time, with potential changes
of physical motion properties such as walking speed or jump-
ing distance.

We first validated our approach for both cyclical and
noncyclical motions by exclusively using reliable optical mo-
tion capture data: we built a walking database by capturing
nine people walking at speeds ranging from 3 to 7 km/h, a
running database by capturing five people running at speeds
ranging from to 6 to 12 km/h, and a jumping database by
capturing jumps ranging from 40 to 120 cm in length for
four different people. Given a PCA decomposition and a
new captured motion that had not been used to perform this
decomposition, we project it into PCA space and compute
Mahalanobis distances to database motions corresponding to
the same speed or jump length. These can then be used to
synthesize new motions corresponding to different speeds or
jumping lengths and we have verified that these synthesized
motions and the actual ones that we have also recorded are
both statistically and visually close.

We then replaced the optical motion capture data for the
new person by stereo imagery acquired with a cheap and
commercially available device [9]. To this end, we take ad-
vantage of a technique that we developed in previous work
[10] and that lets us track the motion by minimizing a differ-
entiable objective function whose state variables are the PCA
weights. This step replaces the projection into PCA space dis-
cussed above and allows us again to speed-up or slow-down
the motion while preserving the style.

Note that, even though the database we used for validation
purposes is specific to three kinds of motions, the approach
itself is completely generic. Transposed onto a production
set, it has great labor-saving potential: the actors’ motion
need only be captured once to generate a whole range of re-
alistic and personalized animations, thus sparing the need for
time-consuming motion capture sessions and expensive gear.

In the remainder of this paper, we will first discuss related
work, introduce our motion models and show how they can
be used to capture the motion from synchronized videos. We
will then introduce our approach to computing PCA weights
for observed motions that are not part of the initial motion
database and using them to extrapolate new ones. Finally, we
will validate it using both optical motion capture and video
data.

2. Related Work

The literature on walking and running animation is so rich
that a full article would be necessary to discuss the advances
for walking alone since the last major review of the field
[11]. Three main classes of approach can nevertheless be
distinguished.

Inverse kinematics. This involves specifying at each key
time the corresponding key positions of some joints and ob-

taining the joint angles according to biomechanical data in-
formation. This can be done efficiently [12,13] but there is no
guarantee of physical realism and this often leads to overly
mechanical movements.

Inverse dynamics. These techniques look for the correct
forces and torques to apply to joints to reach a given posi-
tion. This produces smooth results but may involve postures
that are not humanly feasible. It therefore becomes necessary
to check and potentially correct these postures by applying
appropriate constraints [14–16].

Motion capture and editing. New motions are typically
created by blending and interpolation. Composite motions
can then be obtained by combining several captured ones.
Comparable methods presented in [17–20] do this by con-
necting them into a directed graph. Its edges represent mo-
tion clips and nodes are potential connecting points between
clips. The user can generate new motions by moving along
an optimized path in the graph.

To synthesize a motion that closely resembles that of a
specific person, as opposed to a generic virtual human, using
motion capture data is clearly the favored approach because
there is no easy way to set the parameters for either Inverse
Kinematics or Inverse Dynamics to achieve the desired goal.
The latter class of techniques is therefore the most widely
used. However, they are not usually designed to allow the
modification of intrinsic properties of the database motions,
which is the issue we address in this paper and discuss in
more details below.

2.1. Motion Editing

Constraint-based techniques, discussed and classified in [21],
alter an original motion while preserving some specific geo-
metric features. Between them, space-time constraint [22,23]
or physically based approaches [14,24] provide effective
tools to interactively manipulate a motion clip by changing
some important properties of the movement. While perform-
ing almost in real-time, these methods are appropriate for
slight modifications of the motion but not to introduce stylis-
tic variations, mainly because they are difficult to formulate
as mathematical constraints.

A motion can be treated as a time-varying signal. Signal
processing techniques have therefore been developed both
to edit the complete motion by varying the frequency bands
of the signal [25], or the Fourier coefficients [20], and to
randomize the original motion [26]. However, controlling
the randomization is far from straightforward and may yield
unpredictable results that can be physically impossible.

Blending or interpolation are the typical approaches to gen-
erating new motions. For example, Ashraf and Wong [27]
interpolate walking and running motions in 3D space where
the axes correspond to significant parameters of a locomotion
cycle. The method uses bilinear interpolation to synthesize
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a new motion given four motions having different values for
each of the three dimensions. This approach, however, is lim-
ited to a small number of input motions and parameters.

Multivariate interpolation can be used to solve this prob-
lem. In [6], multivariate interpolation is performed on a
wide range of motion capture data. Motions are defined by
B-Spline coefficients and manually classified according to
their characteristics, which yields a parameter vector for
each motion. Similar motions are time-normalized using a
time warping process that structurally aligns them. New ones
are then generated by applying polynomial and Radial Ba-
sis Function interpolation between the B-Spline coefficients.
Kovar and Gleicher [7] present a general method allowing
motions generation from a various input motions. They intro-
duce registration curves that ensure a consistent time-warping
and root alignment and apply physical constraints to produce
blended motions.

While powerful, these methods are highly dependent on
the weights values the animators assign to a set of input mo-
tions. Thus, determining a good combination of these weights
becomes difficult for the creation of a very specific motion.
To enhance this control, a possible alternative is presented
in [28]. A motion is modified interactively by an animator
manipulating a refletive device whose motions are captured
by an optical system and transferred to a virtual character.

The approaches presented above have the disadvantages
that the newly generated motion cannot be retargeted to sub-
jects of different sizes. Park et al. [29] propose a locomotion
generation, adaptable to any target character, based on the
motion interpolation of [6,30]. A motion retargeting based
on the approach introduced by Shin et al. [31] provides a
real-time animation framework. However, even if stylistic
variations were incorporated into this approach, generating
the motions corresponding to a specific person will involve
the same problems as before.

2.2. Principal Component Analysis

The methods discussed above suffer from a number of lim-
itations: First, there is no intuitive way to create a motion
with specific characteristics. Second, they do not provide for
extrapolation. As a result, to create a whole range of mo-
tions such as those of a specific athlete running at varying
speeds, one must perform a full motion capture session of
that athlete actually running at a number of different speeds.
This can prove cumbersome and the technique we advocate
in this paper takes advantage of Principal Components Anal-
ysis (PCA) to alleviate this problem by giving our system an
extrapolation capability.

PCA [2,3,32] has recently been extensively used in mo-
tion synthesis. It has also been used to compress keyframed
animation data [1] and to emphasize similarities between in-
stances of objects such as heads [33,34] to deform them for
example by changing their apparent age or gender. Unfortu-

nately for walking, running and jumping motions, the PCA
weights have no obvious direct interpretation. More sophis-
ticated blending techniques are required. In earlier work [4],
we have used hierarchical structures to isolate specific motion
parameters. It can be used to extrapolate new motions but is
not designed to reproduce the specific style of an individual
whose motions are not in the motion database. In theory, it
could be modeled as a weighted sum of database motions,
which would require finding the right weights. However, in
practice, finding the weights by hand is very difficult and that
is precisely what the technique proposed in this paper let’s us
do from a single example for each new style. Therefore, our
earlier approach and the one presented here address different
problems and are essentially complementary.

While our intention is quite similar to [8], by automatically
extrapolating stylistic animations, we enhance the motion
creation process by offering a separate control of its physical
parameters (speed for walking, length for jumping) and the
ability to retarget the motion to virtual humans of different
sizes. Moreover, we provide a mathematical framework that
does not depend on a specific parameterization and fullfils
real-time constraints.

3. Models for Motion Synthesis and Analysis

In this section, we introduce the motion models we use both
to synthesize walking, running and jumping animations and
to capture such motions from video sequences.

3.1. Walking and Running

To build walking models, we used a Vicon optical motion
capture system [35] to capture nine people walking at speeds
ranging from 3 to 7 km/h by increments of 0.5 km/h on a
treadmill. Similarly, to build a running model, we captured
five people running at speeds ranging from 6 to 12 km/h by
increments of 1 km/h. The data were segmented into cycles
and sampled at regular time intervals using quaternion spher-
ical interpolation [36] so that each example can be treated as
N = 100 samples of a motion starting at normalized time 0
and ending at normalized time 1.

As different subjects may be shorter or taller, size normal-
ization is required. Murray [37] has shown that, for adults,
relative angles for the hip, knee and ankle in the sagittal plane
have very similar trajectories for the same value of normal-
ized speed V , obtained by dividing the walking velocity v by
the hip joint height H that represents the leg length. In our
previous work [4] we have generalized this approach to run-
ning and jumping. The input motions of our database have
been normalized by dividing the translation values of the hu-
manoid root by the leg length of the captured subject.

An example is then represented by an angular motion
vector � of dimension N ∗ NDofs, where NDofs = 78 is the
number of angular degrees of freedom in the body model.
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� is a line vector of the form

� = [ψµ1 , . . . , ψµN ], 0 ≤ µi < 1, (1)

where ψµi represent the joint angles at normalized time µi.
The posture at a given time 0 ≤ µt ≤ 1 is estimated by
interpolating the values of the ψµi corresponding to postures
immediately before and after µt.

This process produces M = 324 (9 subjects, 9 speeds, 4 cy-
cles) angular motion vectors for walking and 140 (5 subjects,
7 speeds, 4 cycles) for running. We form their covariance ma-
trix and compute its eigenvectors �1≤i≤M by Singular Value
Decomposition. Assuming our set of examples to be repre-
sentative, any other motion vector � can be approximated as
a weighted sum of the mean motion �0 and the �i:

� ≈ �0 +
m∑

i=1

αi�i , (2)

where α i are scalar coefficients that characterize the motion
and m ≤ M. m controls the percentage of the database that
can be represented in this manner. This percentage is defined
as

σ =
∑m

i=1 λi∑M
i=1 λi

, (3)

where λi are the eigenvalues corresponding to the �i eigen-
vectors. It is depicted by Figure 1(a) as a function of m for the
runnning database. It is taken to be 0.9 for the walking and
0.95 for the running databases, given m � 10. The posture at
time µt is computed by interpolating the components of the
� vector of Equation (2) as discussed above.

The top row of Figure 1 depicts the first three α i compo-
nents of the original running motion vectors when expressed
in terms of the �i eigenvectors. Note that the vectors cor-
responding to specific subjects tend to cluster. The walking
database exhibits the same clustering behavior but in higher
dimension as depicted in Figure 2. This is due to the fact
that the inter-variability between subjects is smaller than for
a running motion.

3.2. Jumping

To build the jumping database, we also used a Vicon optical
motion capture system to capture four people jumping dis-
tances ranging from 40 to 120 cm by increments of 40 cm.
The data were segmented into key-events, such as start and
end of the jump, and sampled at regular time intervals using
spherical interpolation, so that each example has N = 100
samples. The same procedure as in the case of the walking
and running motions can then be applied with M = 48 (4 sub-
jects, 3 jumps, 4 trials). The vectors of the jumping database
corresponding to specific subjects tend also to cluster, vali-
dating the proposed approach, as depicted in the bottom row
of Figure 1.

4. Motion Generation

In this section, we show how to extrapolate from a motion
that is captured after the motion database of Section 3 has
been built. This is a two-step process: First, we project the
new motion into the PCA space and measure its Mahalanobis
distance to each recorded motion corresponding to the same
speed or jump length. The generated motion is then taken to
be a weighted average of motions at the target speed with the
weights being inversely proportional to those distances.

More precisely, let �p,s be the motion vector of Equation 1
corresponding to database person p, where s represents either
the speed or the jump length. In the remainder of the paper
we will refer to s as the motion parameter. Each one of these
vectors can be approximated by its projection in PCA space
�̂ p,s computed as

�̂ p,s = �0 +
∑

i

α
p,s
i �i , (4)

α
p,s
i =

(
� p,s − �0

)
· �i , (5)

where�i are the principal component vectors of Equation (2),
and α

p,s
i are the scalar coefficients that characterize each mo-

tion.

Let Yx,s1 be a vector characterized by motion parameter s,
corresponding to a motion performed by person x who has
not been captured before. The length is arbitrary and we wish
to extrapolate motion Yx,s2 of the same person moving with
motion parameter s 2 �= s 1 from it. As before, if the motion
is cyclic we break Yx,s1 into cycles and perform quaternion
spherical interpolation [36] to produce a set of �x,s1 motion
vectors of the same dimension as the principal component
vectors. If the motion is noncyclic, we identify the start and
end of the key-events of the motion and use the resulting
vector of taking the frames in between such key-events in the
same way as a cycle in a cyclic motion. By projecting one of
these cycles into PCA space, we can compute a set of α

x,s1
i

weights analogous to those of Equation (5).

Because the influence of each �i principal component vec-
tor is proportional to the corresponding λi eigenvalue, we use
the normalized Mahalanobis instead of the Euclidean dis-
tance to compare motion vectors. For each p in the database,
we therefore take the distance between �x,s1 and �p,s1 to be

dm(�x,s1 , � p,s1 ) =

√√√√√
∑

i λ2
i

(
α

x,s1
i − α

p,s1
i

)2

∑
i λ2

i

. (6)

Kovar [17] defined a more realistic distance function in terms
of the distances between meshes. However the cost of using
such distance is prohibitive in our context since we would
need to evaluate P ∗ N distances between meshes, where P is
the total number of subjects and N the number of frames.
The distance proposed in this paper requires only m ∗ P
norm evaluations, where m is the number of eigenvalues, al-
lowing a real-time animation of multiple subjects. The only
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Figure 1: The motion database. (a) Percentage of the database that can be generated with a given number of eigenvalues for the
running database. (b) Clustering behavior of the first three α i coefficients of Equation (2) for the 140 motion vectors measured
for five subjects running at speeds ranging from 6 to 12 km/h. They form relatively compact clusters in 3D space that can be
used for recognition purposes. (c) Percentage of the database that can be generated with a given number of eigenvalues for
the jumping database. (d) Clustering behavior of the first three components for 48 motions vectors measured for four subjects
jumping distances ranging from 40 to 120 cm. They cluster in 3D.

preprocessing needed is the generation of the PCA database,
which takes a few seconds.

The weights are then taken to be the normalized inverse of
these distances:

wx,p =
[
dm(�x,s1 , � p,s1 )

]−1

∑
q [dm(�x,s1 , �q,s1 )]−1

. (7)

This completes the interpolation step of our motion synthesis
scheme and we are now ready to generate a new motion. If s2

is one of the motion parameters recorded in the database, we
can simply take the new motion �̃x,s2

s1
to be an extrapolation

of �x,s1 :

�̃x,s2
s1

= �0 +
∑

i

α̃
x,s2
i �i ,

α̃
x,s2
i =

∑
p

wx,pα
p,s2
i . (8)

Otherwise, to produce smooth transitions between motion
parameters, we take the α̃

x,s2
i coefficients to be Cubic Spline

Interpolations of those computed as described above.
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Figure 2: Clustering behavior of the first four PCA components for the walking database. Coefficients corresponding to different
subjects are depicted with different colors and symbols. The black circle represents the tracking results for the woman of Figure
10, while the man of Figure 11 is shown as a black triangle. Note that the female subject coefficients are inside her cluster, while
the male ones do not belong to any given cluster since his motion is not part of the database.

5. Validation

In this section we use a cross-validation framework to vali-
date statistically and visually our approach. For each database
subject p in turn, we remove all the �p,s motion vectors that
correspond to him or her and perform a new PCA. For any
two motion parameters s1 and s2, we can then use the proce-
dure of Section 4 to synthesize �̃ p,s2

s1
from �p,s1 and compare

it to �̂ p,s2 , the actual projection of the recorded motion. Ide-
ally, the Mahalanobis distances of these two motions should
be zero for all p, s1 and s2.

In practice, this can of course never be exactly true.
As discussed in Section 3, recall that the database con-
tains, for each subject, several motion cycles at the same
speed and that they are never exactly similar to one
another.

5.1. Animation Results

We now show running and walking animation results ob-
tained by synthetically varying the speed of a motion captured
at one single speed. These animations are visualized using
the time and space normalization described in [4], which al-
lows smooth transitions between motions and adaptation to
different human sizes.

To perform size normalization, the root node translation
is simply multiplied by the hip joint height Hi of the subject
to animate. Recall from Section 3.1 that all input motions
have been resampled to a fixed number of frames, N. A time
normalization stage establishes a correspondence between
the elapsed time � t and the normalized time µt , 0 ≤ µt ≤ 1
of Equation (1). Given F, the cycle frequency, defined as an

adapted version of the Inman law [4], the current normalized
time µt is used to defined the frame f to display as:

µt = µt−1 + �t F, (9)

f = µt N . (10)

Figure 3 depicts running at speeds increasing from 6 to
12 km/h. For comparison purposes, we superpose the re-
sults with an animation obtained by interpolating the ac-
tual motion capture data at all the relevant speeds. Note
that the two synthetic characters are superposed almost
perfectly. To highlight the quality of the results, in the
bottom of Figure 3, we superpose two animations cor-
responding to two different women. There the differ-
ences are obvious. The same phenomenon can be seen in
Figure 4 where we plot the alpha coefficients as a function of
speed.

Figure 5 depicts a similar behavior for walking at speeds
ranging from 3 to 7 km/h. Again, as can be seen in the top
row, the motions generated from a single example and those
interpolated using a whole set of examples match very well,
except for small discrepancies of the arm motion. As will be
discussed below, this can be ascribed to the fact that people
do not perform a motion twice in exactly the same fashion.

The same principle can then be applied to jumping motion,
but instead of parametrizing as a function of the speed,
we parametrize as a function of the jump length. Figure 6
depicts two jumps of 40 and 120 cm generated from a single
example of 80 cm. Note that the interpolated results and the
original sequence again superpose very well. Once more
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Figure 3: Running at speeds increasing from 6 to 12 km/h. Top row: Superposition of the synthesized motion generated from
a single optical motion capture at 6 km/h, in yellow, to an animation observed in the actual motion capture data at all the
relevant speeds, in blue. Note that the two synthesized characters are superposed almost perfectly. Bottom row: Superposition
of the animations corresponding to two different women. Note the big differences compared to the results in the top row.
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Figure 4: Cubic spline interpolations of the first two components as a function of the speed for the running database. The
synthesized motion depicted in Figure 3 is generated from a single optical motion at 6 km/h and is shown in solid black. The
original captured motion is depicted in dashed black while the database subjects are shown in different dotted colors.
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Figure 5: Walking at speeds ranging from 3 to 7 km/h. Top row: Superposition of the motions generated from a single example,
in yellow, to those observed in the optical motion capture, in blue. They matched very well except from small discrepancies of
the arm motion, that can be ascribed to the fact that people do not perform a motion twice exactly in the same fashion. Bottom
row: Superposition of the animation corresponding to two different subjects. Note the big differences compared to the results in
the top row. Note that the motion captured has not been corrected. This is the reason why the left leg is penetrating into the floor.

Figure 6: Motion generation from a jump of length 80 cm. Top row: 40 cm jump. Bottom row: 120 cm jump. We superpose
motions generated from a single example (80 cm), in yellow, to those observed by the optical motion capture, in blue. They match
very well except for small discrepancies in the arms.

small discrepancies appear at the arm level. Figure 7 depicts
the entire sequence of a 120 cm jump extrapolated from an
original 80 cm one. Note that both superpose well during the
whole sequence.

The physical correctness of the results could be further im-
proved by correcting the output animations by using standard
inverse kinematic techniques to avoid the foot penetration
into the floor or sliding effects.
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Figure 7: Superposition of the 120 cm jumping motion generated from a single example of length 80 cm, in yellow, to those
observed by the optical motion capture, in blue. Top row: Frames 1–40. Bottom row: Frames 41–80.

5.2. Statistical Validation

We now introduce the statistical cross-validation framework
we use to validate the results shown above. To this end, we
define the following quantitative measures:

• Interpolation error: The average over all subjects and
pairs of speeds of the normalized Mahalanobis distance
between the recorded and synthesized motion vectors dis-
cussed above.

• Intra-variability: The dispersion between different re-
alization by the same subject of the same motion at the
same speed. It is taken to be the mean over all subjects and
all speeds of the normalized Mahalanobis distance of the
�̂ p,s motion vectors corresponding to different cycles.

• Inter-variability: The dispersion between different clus-
ters belonging to different subjects. It is calculated as the
mean over all subjects of the distance between motion
vectors corresponding to different cycles and speeds.

In Figure 8, we give the Interpolation Errors, Intra-
variability and Inter-variability values for our walking, run-
ning and jumping databases. Because we perform cross-
validation, we take each person out of the databases in turn
and therefore list as many values as there are subjects in each
one. Note that the interpolation error is consistently larger
than the intra-variability but much smaller than the inter-
variability. In other words, our motion generation scheme,
while not perfect, nevertheless yields motions that are close
enough to those of their rightful owner to be associated with
him or her rather to anybody else.

The inter-variablity of jumping is bigger than the one of the
walking or running because it is more difficult for a subject to
perform a jump twice in the same fashion, and to control the
jump length while behaving normaly. The interpolation error
of the walking database is smaller than the others because the
number of subjects in larger. This is also the reason why the
inter-variability is smaller: The larger the number of subjects
the smaller the distance between clusters.

5.3. Stylistic Extrapolation

The motion generation technique presented in Section 4 can
now be used to generate walking styles completely different
from the standard ones that form the walking database. The
principle is the same as before: The new stylized motion is
projected into the motion database. Weights are then com-
puted based on the Mahalanobis distance and used to create
the same style at a different speed. Figure 9 depicts a sneak-
ing motion at 7 km/h generated by using a single example
at 4.5 km/h and the standard walking database. Note that the
subject bends her back and increases the step size when the
speed increases, which is very realistic since that is what hu-
mans do while accelerating the motion in order to keep their
balance.

6. From Video to Animation

In this section, we show that we can replace the optical
motion capture data we have used so far by synchronized
video-sequences acquired using an inexpensive commercial
product [9]. In the remainder of this section, we first outline
briefly the Computer-Vision algorithm [10] we use to extract
the PCA coefficients of Equation (2) from the images. We
then show that they are accurate enough to produce valid
and realistic motions used as input by our motion generation
scheme.

6.1. Inferring the PCA Coefficients From Video

Most recent tracking techniques presented in the Computer
Vision literature rely on probabilistic methods to increase
robustness [38–42]. While effective, such approaches re-
quire large amount of computation. In previous work [10],
we developed an approach that relies on the motion models
of Section 3 to formulate the tracking problem as the one
of minimizing differentiable objective functions. The body
model is composed of implicit surfaces attached to an artic-
ulated skeleton. Each primitive defines a field function and
the skin is taken to be a level set of the sum of these fields.
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Figure 8: Interpolation Errors, Intra-variability and Inter-variability values. Top row: Running. Second row: Walking. Third
row: Jumping. Bottom row: Graphic depiction of the above tables. Note that the interpolation error is consistently larger than
the intra-variability but much smaller than the inter-variability in the three databases.

Figure 9: Generation of stylized motion. Top row: Original sneaking walking at 4.5 km/h. Bottom row: Walking with a sneaking
style at 7km/h generated using only one example of such style at 4.5 km/h. Note that the database used is composed only of
normal walking styles.
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Figure 10: 3D motion recovered from a video-sequence of a woman whose motion was also recorded in the database. It is
displayed as a stick figure projected into the original low-resolution video-sequence. Corresponding animation results are shown
in Figure 12.

Figure 11: Tracking the walking motion of a man whose motion was not recorded in the database. Animation results for this
subject are shown in Figure 13.

Defining surfaces in this manner let’s us define a distance
function of data points to the model that is easy to evaluate
and differentiable. The structure of these objective functions
is rich enough to take advantage of standard deterministic
optimization methods and, thus, reduce the computational
costs.

Given a T frames video sequence in which the motion of a
subject remains relatively steady such as those of Figures 10
and 11, the entire motion can be completely described by the
angular motion vector of Equation (2) and, for each frame, a
six-dimensional vector Gt that defines the position and orien-
tation of the root body model node with respect to an absolute
referential. We therefore take the state vector φ to be

φ = [G1, . . . , GT , µ1, . . . , µT , α1, . . . , αm], (11)

where µt are the normalized times assigned to each frame
and which must also be treated as optimization variables.

In the sequences of Figures 10 and 11, the images we show
were acquired using one of the three synchronized cameras
used to compute clouds of 3D points via correlation-based
stereo. The φ state vector, and thus the motion, were recov-

ered by minimizing in the least-squares sense the distance of
the body model to those clouds in all frames simultaneously
[10]. Note the good performance of the tracking even though
the images are of low resolution. Figure 2 shows the first four
components recovered by tracking the motion of Figure 10
in the walking database. Note that the recovered coefficients
fall squarely in the cluster corresponding to the subject.

6.2. Synthesized Animation

The set of coefficients recovered by the computer vision algo-
rithm is used in the same manner as in Section 4 to generate
animations of the subjects shown in Figure 10 and 11 walking
at different speeds.

Figure 12 depicts a side view of the optical motions cap-
tured from 3 to 7 km/h (yellow) superposed on the syn-
thesized motion extrapolated from the video-sequence of
Figure 10 where the person was walking at a speed of 5 km/h.
For the legs the correspondance is almost perfect. The small
differences in the arms stem from three different reasons: the
intra-variability of the walking motion, the low resolution of
the images in which the arms contain less than 10 pixels, and
the fact that the optically captured motions were performed
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Figure 12: Walking at speeds from 3 to 7 km/h. Superposition of the video of Figure 10, in blue, on a whole set of optical motion
capture examples, in yellow. The leg motion matches almost perfectly, which results in the lower body of the two figures being
almost perfectly superposed. Small discrepancies in the arms are due to the intra-variability of the motion, the low resolution
of the video, and the fact that the optical motions were performed using a treadmill. Note that the motion capture data has not
been cleaned-up, which is why the left leg is penetrating the floor.

Figure 13: Side view of the original and synthesized motion from 3 to 7 km/h for the subject of the video sequence of Figure 11.
The subject is compared to its closest neighbor in the database according to the Mahalanobis distance. The original motion
capture data is represented in blue, and the synthesized one in yellow. They are quite different, which goes to show that our
approach can generate a wide range of realistic styles.

using a treadmill which is not the case for the video-sequence.
Note that the motion capture data has not been corrected,
which is why the left leg is penetrating into the floor.

Finally, we show how our synthetization framework can
generate movements from a large space by tracking a subject
that is not part of the database depicted in Figure 11 at 3 km/h
and by synthesizing his movement from 3 to 7 km/h. The
motion remains natural and physically possible even though
it is different from all the recorded motions. In Figure 13, we
highlight this difference by superposing the generated motion
to the closest one in the database, which is clearly dissimilar.
This was to be expected because, as shown in Figure 2, the
corresponding alpha coefficients do not match any of the
clusters that correspond to specific individuals.

7. Conclusion

We have presented a real-time motion generation technique
that allows us to generate the motion of a particular individ-
ual performing parameterized displacement activities. More
specifically, we have investigated the case of walking, running

and jumping. The first two are cyclical and parametrized by
speed. The third one is noncyclical and parametrized in terms
of jump length. Given one single example, we can modify the
speed, length or body size while preserving the individual’s
specific style. The required example can be obtained using ei-
ther a sophisticated optical motion capture system or a much
simpler set of synchronized cameras. While we have only
validated our approach in the case of three specific cyclic
and noncyclic motions, we believe it to be fully generic and
applicable to a whole range of activities.

Currently, the crucial limitation of the method comes from
the fact that we have not investigated the curvilinear mo-
tion patterns that would be required by a complete system
to blend the straight line motion sequences we synthesize.
We did not include such motions into our database because
they cannot be captured on a treadmill and therefore require
a more complex experimental setup than the one we have.
However, since they are also controlled by a well-identified
parameter, namely the radius of curvature, we believe them
to be amenable to our approach. Of course, increasing our
repertoire of motions could result in nonlinearities, which
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may require us to replace PCA by more sophisticated statis-
tical tools such as Isomap [43] or Gaussian Processes [44],
that allow the same kind of treatment for nonlinear models.

Another area that requires further investigation is the com-
bination of our method with inverse kinematics technique to
clean up the artifacts, such as foot sliding, which can be ob-
served in some of our results. The simplest approach would be
to use Inverse Kinematics in a post-processing step. A more
ambitious approach would be to detect foot support phases
in real-time and enforce them with an IK solver [13].
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