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Abstract

Discriminative approaches to human pose inference in-
volve mapping visual observations to articulated body con-
figurations. Current probabilistic approaches to learn this
mapping have been limited in their ability to handle do-
mains with a large number of activities that require very
large training sets. We propose an online probabilistic re-
gression scheme for efficient inference of complex, high-
dimensional, and multimodal mappings. Our technique is
based on a local mixture of Gaussian Processes, where lo-
cality is defined based on both appearance and pose, and
where the mapping hyperparameters can vary across lo-
cal neighborhoods to better adapt to specific regions in the
pose space. The mixture components are defined online in
very small neighborhoods, so learning and inference is ex-
tremely efficient. When the mapping is one-to-one, we de-
rive a bound on the approximation error of local regression
(vs. global regression) for monotonically decreasing co-
variance functions. Our method can determine when train-
ing examples are redundant given the rest of the database,
and use this criteria for pruning. We report results on syn-
thetic (Poser) and real (Humaneva) pose databases, obtain-
ing fast and accurate pose estimates using training set sizes
up to 10°.

1. Introduction

Learning a mapping from visual observation to articu-
lated body configuration is the foundation of discriminative
approaches to pose estimation; such methods have recently
become popular due to their ability to estimate pose from
a single image without initialization. We are interested in
the discriminative inference of arbitrary poses without re-
striction to a relatively limited set of predefined activities,
e.g., running or walking, and wish to have a method which
can perform inference efficiently enough to provide pose
estimates at interactive rates (i.e. near-real time). Learn-
ing such a transformation is extremely challenging, due to
the multimodality of the mapping, the high dimensionality
of the input and output spaces, and the fact that activity-
independent pose mappings have considerable variability
and therefore require very large training sets to be accu-
rately defined.

In this paper we develop a method to learn a complex
appearance-to-pose mapping for arbitrary motions using

probabilistic regression. We take advantage of Gaussian
Process (GP) models, which offer a general framework for
probabilistic regression and have been shown to general-
ize well when the training data are few in number [16, 23].
However, current GP models are limited in their ability to
handle large training sets, allowing at most a few thousand
training examples [8, 14, 20]. Also, in their standard form,
GP models do not directly handle multimodality, and as-
sume a single set of hyperparameters is sufficient to model
the distribution of the data. Adapting the models locally is
critical for human pose estimation since the training data
density, noise levels and/or smoothness may vary consider-
ably across the pose space.

We propose a new sparsification technique for Gaus-
sian Processes, where local regressors are defined online
for each test point. Local neighborhoods are very small, so
training and inference are efficient. The use of a GP frame-
work offers accurate probabilistic pose estimates from small
neighborhoods, and naturally defines a redundancy criteria
for pruning. Our method’s computational complexity and
memory requirements are dramatically reduced when com-
pared to classic GP inference: inference is very fast with
large databases of hundreds of thousands of examples. By
using an online strategy our technique adapts to local re-
gions of the space and does not suffer from the boundary
problems that can affect static sparsification techniques or
offline mixture models. Our method handles multimodality
by forming online mixture components which are local both
in terms of appearance and pose.

We next review related work, and then present our online
local probabilistic regression framework. We demonstrate
how redundancy detection and pruning is possible within
our approach, and derive a bound on the error induced by
our approximation when the mapping is a function. Finally,
we show accurate pose estimation results on both synthetic
and real images of hands and whole body poses, using a
variety of input feature types, with databases ranging from
102 to 10° examples.

2. Related Work

Discriminative learning-based approaches to pose esti-
mation avoid the use of expensive likelihood functions and
the need for initialization by directly learning a mapping
from image observations to pose. Discriminative Condi-
tional Models [19] represent multimodal mappings with



a mixture of experts (e.g., Gaussian kernel regressors).
Sparse regression approaches (e.g., RVM-based [1]) have
been shown to infer pose using a restricted subset of infor-
mative examples. However, the latter can not handle multi-
modality when inferring pose from a single image. In addi-
tion, both methods and related techniques have been limited
to mappings that could be accurately learned from a few
thousand examples, and therefore domains with a relatively
small set of activities. Ramanan et al. [15] propose methods
for “parsing” and dynamic bootstrapping of human body
models based in part on the efficient inference technique in
[4]; their method is one of the few that are not restricted to
specific classes of activity, but has been evaluated generally
only on 2-D tasks.

GP-based Latent Variable Models (GP-LVM) have been
shown to allow compact and effective description of
activity-specific human pose [23, 21, 12] and dynamics pri-
ors [22, 13]. However, modeling an activity-independent
appearance-to-pose mapping with a GP-LVM is computa-
tionally intractable due to the size of the training set re-
quired. In contrast with GP-LVM based methods, the GP
approach we propose does not enforce a low dimensional
representation and can handle general pose.

Gaussian Process training is well known to require
O(N?3) time complexity, where N is the size of the train-
ing set. Existing GP sparsification techniques approximate
the covariance matrix with an active set [8] or a set of in-
ducing variables [14, 20], but they still have been limited to
a few thousand training examples. In contrast, our online
sparsification can handle efficiently very large training sets.

Our method draws inspiration from locally weighted
regression Nearest-Neighbor techniques [3]. Local ap-
proaches to learning the appearance-to-pose mapping are
generally appealing as the individual mappings are less
complex, can be individually learned from fewer examples,
and can be adapted to local regions that might have very
different behaviors. When accurate estimates can be ob-
tained from compact support neighborhoods, learning and
inference can be both fast and accurate. In our experience
online local models can accommodate orders of magnitude
more examples than would be possible with a global model.
Previous Nearest-Neighbor approaches [18, 2] had no pro-
vision to determine whether a certain number of examples
was sufficient, no direct probabilistic interpretation, and did
not provide a pruning algorithm to determine whether ex-
amples are redundant.

Existing local approaches employ mixture of experts
[19, 17] that are learned offline. Offline partitioning can
be computationally expensive with very large training sets,
and can suffer from accuracy problems at the boundary of
the experts unless there are many overlapping local models.
At the limit one might need a local model for each training
point, which is what our online approach computes.

In the remainder of the paper we review Gaussian Pro-
cesses, present our local online approach, and show the ef-
fectiveness of the method in synthetic and real-world sce-
narios.

3. Gaussian Processes Review

Gaussian Processes have become popular because they
are simple to implement, flexible (i.e. they can capture
complex behaviors through a simple parameterization), and
fully probabilistic. The latter enables them to be easily in-
corporated in more complex systems, and provides an easy
way of expressing and evaluating prediction uncertainty.

A Gaussian Process is a collection of random variables,
any finite number of which have consistent joint Gaussian
distributions [14]. Given a training set D = {(x;,¥y:),? =
1,---, N}, composed of inputs x; and noisy outputs y;, we
assume that the noise is additive, independent and Gaussian,
such that the relationship between the function, f(x), and
the observed noisy targets, y, are given by

vi = f(xi) + e, (D

where ¢; ~ N(0,02 ,..) and o2 ,__ is the noise variance.
GP regression is a Bayesian approach that assumes a GP

prior over functions,

p(f|X) = N(0,K) , )
where f = [f1,---, fn]? is the vector of function values,
fi = f(xi), X = [x1,---,xn]7, and K is a covariance

matrix whose entries are given by a covariance function,
K; ; = k(x;,x;). GPs are non-parametric models and are
entirely defined by their covariance function (and training
data); the set of possible covariance functions is defined by
the set of Mercer kernels. In practice, we use a covariance
function which is the sum of an RBF, a bias term, and a
noise term, all with hyperparameters 3. During training,

the model parameters, /3, are learned by minimizing

_ D 1
—Inp(X, 3| Y)="7 In|K|+ ;tr (K'YY")+C, 3

where Y = [y1,---,yn]T, C is a constant, and D is the
dimension of the output.

GP inference and each iteration of training classically
requires inverting a (N x N) matrix. With O(N?) matrix
inversion cost, this becomes computationally prohibitive for
large training sets.

Different techniques have been proposed to statically
sparsify Gaussian Processes and reduce their computational
complexity. Several approaches simply select a subset of
the data; this is similar in spirit to the selection of support
vectors in SVM. Selection criteria are typically based on
mutual information and sparsification proceeds by selecting
points that are not well predicted by the reduced Gaussian
Process [8]. The computational complexity is then reduced



to O(m?), where m is the cardinality of the subset. But
when dealing with large training sets, to reduce the compu-
tational complexity to an affordable value, these techniques
are usually not accurate since the subset is sparse. More so-
phisticated techniques introduce a set of inducing variables
and under some independence assumptions, one can reduce
the computational complexity to O(Nm?), where m is the
number of inducing variables and m << N. Although
these techniques are more accurate than using only a subset
of the data, when the amount of training data is very large
and the input dimensionality is very high, the computational
cost still remains prohibitive, since the number of inducing
variables required to represent the GP might still be very
high (m large). Moreover, this might introduce overfitting,
since now one has to estimate not only the kernel hyperpa-
rameters but also the inducing variables. We now introduce
a new sparsification technique that reduces considerably the
computational complexity of GPs, making possible to do
learning and inference with very large datasets.

4. Online Local Learning of Appearance-to-
Pose Mappings

In this paper we present a local probabilistic regres-
sion approach to learn multimodal appearance-to-pose map-
pings. Our model is online, and forms local models at run-
time for each new test point (§4.1). We combine appearance
and pose information to deal with multimodal mappings:
we define multiple GP-based experts, each expert focusing
on a mode of the pose distribution (§4.2). Inference in our
framework is computationally inexpensive since the local
experts are defined in very small neighborhoods, typically
at most 50 neighbors (§4.3).

4.1. Online Local Gaussian Processes

In this section we propose a new sparsification technique
that reduces the computational complexity and memory re-
quirements of Gaussian Processes.

When using monotonically decreasing covariance func-
tions (e.g. RBF), the covariance matrix is sparse; k; ; is very
small for all the entries where ||x; — x;|| is large. A full GP
can then be approximated locally online by a much smaller
GP centered at the given test point, reducing considerably
the computational cost and allowing learning and inference
with extremely large datasets. Note the difference in phi-
losophy of the static and online sparsification techniques:
static sparsification reduces the amount of training data use
to do inference globally, while online sparsification approx-
imates the covariance matrix locally but retains all the data
for future inference. When the mapping is multimodal, the
local mapping is more accurate than the global one (see Fig.
1). By centering the neighborhoods that define each local
expert at the test point, we can avoid the boundary prob-
lems that static sparsification based on clustering can suffer

from. In Appendix A we provide a bound of the approxi-
mation of a local mapping vs a global mapping in the case
where the mapping is unimodal, a single set of hyperpa-
rameters is enough to accurately represent the mapping and
the covariance function is monotonically decreasing with
respect to the input distance.

To speed up inference we do not learn kernel hyperpa-
rameters at test time, and instead precompute a set of lo-
cal models from which to determine run-time hyperparame-
ters. Given the observation that local neighborhoods behave
similarly, one can estimate the hyperparameters for only a
subset R of all the possible sets of local GPs; the hyperpa-
rameters for each local expert are simply set to the hyper-
parameters of the learned local GP closest in pose space.
The R local experts were selected at random in our experi-
ments. Similar results were obtained by selecting them us-
ing a clustering algorithm.

Inference in the new sparse GP model is straightforward.
Assuming a joint GP prior over training, f, and testing, f.,
variables, marginalizing the training variables can be done
in closed form and yields a Gaussian predictive distribution,
p(£]Y) = N(p, 0), with

M(X*) = K*7§(KC,C + U?Loisel)ich (4)
(%) = ki — K ¢(Keo + 0250 D) T K 6)

notse

where x, is the input test data, ( are the indices of the
local neighbors of f,, K¢ ¢ is the covariance of the local
neighborhood, k. ., the covariance of the test data, and
K. = K*T_’C is the cross-covariance of the local neigh-
borhood and test data. To avoid clutter in the notation we
have dropped the dependency on the training data.

4.2. Handling Multimodality

A Gaussian Process can only model functions. As a con-
sequence, when dealing with multimodal outputs classical
GP prediction would average the modes, resulting in an ex-
tremely inaccurate mapping. This problem is illustrated in
Fig. 1 where we generate data from a multimodal distri-
bution with two modes. The global GP Fig. 1(f) predicts
none of the modes, but provides a mean estimate that aver-
ages the true modes. To solve this problem we ensure that
the local neighbors of each expert only contain examples
of one mode by defining each GP to be consistent in pose
space: each local GP is composed of examples that are local
in pose as well as appearance yielding accurate multimodal
regression (Fig. 1(h)) .

We combine different local experts to produce estimates
of different modes, where each expert is centered on a
neighbor in appearance of the test point. (Note that one
cannot choose the neighbors based on pose for the test data
since that is unknown at test time!) If the mapping is mul-
timodal in this region, each expert will provide an estimate
of the mode to which the neighbor in appearance belongs.
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Figure 1. Advantages of online local regression: (a—f) An underlying function is obtained by sampling (N = 100) a Gaussian Process
with covariance matrix obtained from an RBF with hyperparameters [0.1, 0.1], and additive noise with variance 02pise = 0.1. Test data
(Nt = 200) are uniformly sampled on the interval [—7.5, 7.5]. The prediction variance is depicted in pink. (a) Results with a full GP with
the hyperparameters used to generate the data. As expected, this GP perfectly fits the test data. (c) Results using a local offline GP, where
the data is clustered in input space to produce 10 local GPs each with 10 training examples. Results with a local online GP (e), where we
learn hyperparameters from 5 randomly selected points and use local GPs of size 10. Note how accurately the local online GPs represent
the mean and variance of the original GP. The offline local GP overestimates the variance in points close to boundaries, and the prediction
is noisier. (b,d,f) Shows the mappings of (a,c,e) in more detail. (g-h) For data from a multimodal distribution a global GP (g) averages the
two modes with high variance, while the local GP (h) gives a good estimate of both modes (variance is accurately estimated but so low as

to not be visible in (h)).

The number of experts, 7', and the size, .S, of each local
GP, are parameters of our model. In practice, as shown in
Section 6, small values of both parameters are sufficient to
produce accurate estimates. The predictive distribution is

Zm (4ira7),  (6)

where Y are the neighbors in pose of y,,, X, are the
neighbors in appearance of x., 77 = {n;}, m; is the proba-
bility of a given expert, and 1;, o2, are the predictive mean
and variance of the i-th expert, deﬁned in Egs. 4 and 5.
Each 7; is set to be a function of the inverse variance of the
prediction of that expert. The final algorithm is summarized
in Algorithm 1, where the function find NN (X, x’, S) se-
lects the .S nearest neighbors of x’ in X.

p(£.]Y) =~ Zﬂ'zp (£ Y i)

4.3. Computational Complexity

Table 1 compares the complexity of our technique with
respect to the complexity of estimating a full GP. In our
approach the only factor that grows with the size of the
database is finding the nearest neighbors. The complexity
of inverting the local GPs is not a function of the number
of examples, since the local GPs are of fixed size.! When
dealing with very large databases, the computational time of

'One can precompute and/or cache these inverses to gain efficiency.
But since the local experts are computed with very small neighborhoods,
they can be directly computed without much decrease in performance.

Algorithm 1 Learning and inference with a mixture of On-
line local GPs
OFFLINE: Learning hyperparameters
R: number of local GP to learn
forn=1...Rdo
i = rand(N)
k = findNN (X, x;,5)
{8’} — max p(Xy,B'Yx)
Yr=[Yr,yi
end for
ONLINE: Inference of test point X,
T': number of experts, S: size of each expert
n = findNN(X,x.,T)
forj=1...7Tdo
¢ = findNN(Y,yy,,5)
t = findNN(YR,yn;,1)
B=p
pi = K o(Keg + onoised) 1Y
0j = kex — Ku g (K¢ + 000 D) 7 K
end for

p(Ely) ~ S0, miN (1, 07)

computing the exact nearest neighbors might be prohibitive
(i.e. linear time). Using tree-based [10] or random hash
function-based [ 18] approximate nearest neighbor methods
can reduce this cost to be sublinear time.

In particular, the computational complexity of learning



Learning Inference
Our approach | O(RS® + RN) | O(TS® +TN)
Global GP O(N?) O(N?)

Table 1. Computational complexity: our method is linear in N for
both learning and inference. Note that in all the examples shown
in the paper S < 50, 7' < 10 and R < 500, while N > 1000.

in our approach is the time of learning the R local experts
of size S, O(RS?), plus the time of estimating its neigh-
bors, O(RN), where N is the total number of examples
(see Table 1). In contrast, the cost of learning a full GP is
O(N 3). In our experiments R < 500, and as a result even
with a few thousand examples the complexity of our model
is much smaller than that of a full GP.

For inference the computational savings are also impor-
tant, resulting in an algorithm that can perform inference in
near real time. For all experiments reported in this paper,
the framerate with un-optimized Matlab code was at least
two frames per second, not including the time to compute
features.

5. Detecting Outliers and Pruning

When learning from examples, certain questions need to
be addressed. Should I trust the predictor? Is my training
data sufficient? Do I need more examples? If yes, where do
I need to populate my training data? Are all the examples
necessary? In this section we show how the uncertainty in
the prediction can be used to answer these questions.

The probabilistic nature of GPs allows us to determine
whether to trust the prediction.We detect outliers of the pre-
diction by detecting high variances of the local experts. Fig.
2 depicts the test mean error as a function of the rank vari-
ance (i.e., percentage of the test data with variance smaller
than a threshold). The variance is a good indicator of the
uncertainty since the curves are monotonically increasing;
the detected outliers are those test points where the local
GPs have the biggest error. Moreover, this uncertainty can
also be used to identify where the database is undersam-
pled, and therefore where we want to acquire more data, or
where it is oversampled, and where we want to prune; these
are respectively the regions of the space with high and low
variance.

The probabilistic nature of GPs can be utilized to deter-
mine how many examples are necessary. If a training point
can be accurately predicted in terms of mean and variance
by its neighbors, it is no longer necessary and can be re-
moved. Our method looks iteratively at each training point
{x;,y:}, and sees whether it is redundant by computing the
KL divergence of the predictive distributions with or with-
out that point, K L(p(f,|Y;,)||p(f«|Y3)). Since p(£,]Y;,) and
p(f.|Y5) are both Gaussian, the KL divergence can be com-
puted in closed form. Our pruning scheme is summarized
in Algorithm 2.

Detection error 70 % Karate Poser Database

' i:];@. 50% Gb% 76% Bb‘/u 90% 10L7%
% of detection

Figure 2. Detection of outliers: for a database composed of
15,000 Poser examples of 30 different activities, where 70% of
the dataset is used for training. Mean errors (degrees) as a function
of the number of inliers (detection percentage) for different sizes
of the local experts are depicted. As the curves monotonically in-
crease, the variance becomes a good measure of uncertainty.

Algorithm 2 Pruning scheme
fori=1...Ndo
forj=1...Tdo
n= findNN(Y,y;,S)
n=mnus—1Ji
t = findNN(Yr,yj;,1)
B=p
KLi; = KL(p(f.[Y2) || p(f1Y 1)
end for
if min(KL;) < Thr then
prune {x;,yi}
end if
end for

6. Experimental Evaluation

We validate our approach using synthetic hand and
whole body figures rendered from motion capture data [11]
using Poser and with real-images from the benchmark Hu-
maneva [6] database composed of sequences of different
subjects performing various activities.

In the first experiment we demonstrate our method across
a wide range of training set sizes, from a very restrictive set
of activities (small training set) to a very broad general mo-
tion database (large training set), as summarized in Table
2. 3D Pose was represented as a vector of 47 joint angles
and was estimated from Chamfer distances to silhouettes.
The 15,000 example database is composed of 30 different
activities of combat sports. The activities are comprised of
fast motions, and vary from kicking, punching, to receiving
kicks. The 50,000 example dataset from [11] consisted of
60 different activities of combat sports, soccer and dancing
(see Fig. 3), including ballet, techno and twist dancing. In
the soccer examples, we have motions of the referee, the
goal-keeper, regular player and the coach. We compare the
results of our method for different sizes of the local experts
in two different scenarios as depicted by Table 2 and Fig.
4. In the first scenario we take the expert that produces the
minimum variance (solid blue) and compare it to the first



DB size I-NN Best of-10-NN | GP (5 = 10) | GP (S = 20) | GP (S = 30) | GP (S = 40)
1,500 | 0.88+£1.77 | 0.71+£138 | 083+£153 | 098+1.70 | 0.56+ 1.40 | 0.70 = 1.45
15000 | 1.92+£276 | 149+181 | 132+207 | 1.I0£1.88 | 1.03+1.81 | 099+ 1.77
50,000 | 1.83£262 | 134+147 | 1.I0£185 | 091 +£1.64 | 090+ 1.66 | 0.87 & 1.58

Table 2. Inference in a wide range of training set sizes: our method produces accurate results (less than 1 degree) in a wide range of

training data sizes.

e NEEIR

Figure 3. Samples from large database with 50, 000 examples
of Poser generated silhouettes. The difficulty of the data is due
to ambiguities inherent to silhouettes, occlusions, and the large
variation in poses and viewpoints.

Mean Error 90 Poser karate soccer dance Mean Eror 70 % st Poser Dtabase

Number of training points in each local GP k ™ umbe ot vaniogps imcachocal GP

Figure 4. Inference in very large datasets (left) 15,000 and
(right) 50, 000 example Poser database composed of multiple ac-
tivities. The mean errors were smaller than 1 degree.

Nearest-Neighbor (NN) (dashed gray). In the second sce-
nario, we assume that we have a process that can choose
the expert with the minimum error (e.g. from dynamics in
a tracking framework). We then compare the mean error
made by the best local GP among 10 experts vs. the best NN
of 10 neighbors. Note that in both scenarios the GP signif-
icantly outperforms the NN approach. The large difference
between 1-NN and the best among 10-NN is an indicator of
the ambiguities inherent in estimating 3D pose from single
images for the set of activities present in the database. The
local experts require very few training points (< 50) and
are very accurate, with approximately 1 degree of mean test
erTor.

Our method is general and can work with varying image
features and pose representations. In addition to the previ-
ous experiments using Chamfer distance, we have obtained
accurate results with similarity measures based on Hier-
archical features [7] and with the Pyramid Match Kernel
(PMK) [5] defined with SIFT, Steerable Filters, and Shape
Context base features. Fig. 5 depicts the results for these
measures: with Hierarchical features, results with position
error as low as 0.35 mm were obtained. We also trained a
global GP and evaluated the best-of-ten-nearest-neighbors
method on this dataset to compare local vs. global perfor-
mance; this was feasible in this case, since there were only
1,000 training points, but in general was impossible for our
larger datasets. A global GP trained with all examples us-

Hand database: 3D position errors (cm) with 10 expert

©o—GP SIFT PMK
—o—GP Shape Context PMK
©-GP Steerable Filter PMK
—0—GP | ical Features|

3D position errors (cm)

“size of each local GP
Figure 5. Generalization to Different kernels: our mixture of lo-
cal online GPs provides accurate results with kernels based on dif-
ferent features. Mean prediction errors for a hand database when
using Pyramid Match kernels [5] based on SIFT, Shape Context,
Steerable filters, or Hierarchical features [7] are shown.

Figure 6. Hand Database: The 3D pose is estimated and repro-
jected in the original image for comparison. Note that we estimate
the joint locations, and thus there is no joint at the tip of the fingers.

Prune examples Karate Poser Database
f

---best NN
N first NN
—best GP

Mean Error test

’ ﬁércgatage o“fsﬁhe“ }rainrringn:iat;susgd M
Figure 7. Pruning: a Poser database composed of 1, 500 training

points. 50% of the database can be pruned with almost no test
error increase. 1-NN and best among 10 NN baselines are shown.

ing Hierarchical features on this task yielded errors of 0.40
mm, and the best-of-ten-NN method yielded error of 0.60
mm indicating that local models both offer increased effi-
ciency and the ability to handle multimodality, potentially
improving performance over a global mapping.

We demonstrate our pruning algorithm in the database
of karate motions. Fig. 7 depicts the mean error as a func-
tion of the amount of training data pruned, showing that
with constant test error, one can prune up to 50% of the
database. The fluctuations in the curve might be due to the
iterative scheme, where the pruning order might be relevant.
To avoid this problem, one can randomly choose the train-



Figure 8. Humaneva Database: Our pose estimation is depicted
in red.

22
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Figure 9. Influence of the number of local experts: Only a small
number of online experts is necessary per test point for accurate
prediction. The 3D mean error in (cm) is depicted for the three
subjects we use in our experiments.

ing points to evaluate whether they can be pruned or not.

Experiments were also run on the Humaneva benchmark
database, using the hierarchical features of [7]; these fea-
tures do not require the computation of a precise bound-
ing box around the object of interest. In the first experi-
ment, different percentages of the database where used for
training on a per-frame basis, and both 2D and 3D pose
were inferred from the remaining examples. Table 3 de-
picts the errors for the different subjects and percentages of
the database. In these experiments the errors are smaller
than 1.5 cm in 3D and 2 pixels in 2D. In this database the
size of human bodies ranges from 200 to 300 pixels. Fig. 9
shows the error as a function of the number of local experts,
T'. Note that only a small number of experts per test point
is required to accurately infer the pose.

In the second Humaneva experiment, we divided the
training data per sequence such that one sequence was use
for training and a different sequence was used for testing.
Note that even though the poses and appearances in the
training and testing data might have been relatively differ-
ent, our method accurately infers the 2D and 3D poses (see
Table 4 and Fig. 8). For comparison, Table 5 shows errors
reported in Humaneva-I [6]; all in the range of 3.1 to 12 cm,
the best result being reported by [9] for walking sequences.
Note that even though those errors are not directly compara-
ble since they have been reported in different sequences and
with different error metrics, our technique performs com-
paratively well.

7. Conclusions

In this paper we presented an online sparse probabilistic
regression scheme for efficient inference of complex, high-
dimensional, and multimodal mappings defined from very

walk | jog box | mono. | discrim. | dyn.

Leeetal. I 34 - - yes no no

Lee et al. II 3.1 - - yes no yes
Pope 453 | 438 | 943 yes yes no
Muendermann et al. | 5.31 - 4.54 no no yes
Liet al. - - 20.0 yes no yes
Brubaker et al. 10.4 - - yes no yes
Our approach 327 | 3.12 | 3.85 yes yes no

Table 5. Humaneva I comparative results: reported 3D errors in
cm in the EHUM-I and EHUM-II workshops [6]. Note that this
results are not directly comparable since different methods have
different error measures and they are test in different sequences.
The best error performance was reported by Lee et al. [9] using a
generative model with dynamics, however the error measure was
normalized, the global orientation error was removed.

large training sets such as the activity-independent appear-
ance of human pose. Previous approaches to learning such
mappings were limited in their ability to provide a prob-
abilistic estimate of pose given appearance and to work
in domains that require very large training sets. We de-
velop an online approach to GP sparsification that centers
local regressors at each test point, avoiding the boundary
problems inherent in offline (clustering) approaches. Our
method works efficiently across a wide range of training set
sizes, can handle multimodal mappings, can learn hyperpa-
rameters specific to local regions of the space, and can prune
database examples based on probabilistic criteria. We pre-
sented results showing accurate pose estimation from sin-
gle frames on synthetic (Poser) and real-world (Humaneva)
pose inference tasks with thousands to tens of thousands of
examples. In future work, we plan to build an ever larger
database and learn a distance metric providing invariance to
clothing.
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Appendix A: Approximation Bound

Assuming that the mapping can be well represented with
a single set of hyperparameters, and that they are known,
the change in the uncertainty of the prediction at any given
point x,. by removing a training point X g1 is

(ksKg'm — k(xs41,%4))?
Ac*(x.) = 0% — 0%y = N S +

@)

Xs+1,X5+1) — mTKg'm
where Ks = [Ks + 02,0, Kg is the covari-
ance function formed from Xg =[x, --,xg]7,
ks = [k(x1,%X4), -+, k(xs,%s)]T, 02 is the uncertainty
when using a GP with ¢ training points, and m =
[k(xla XS41)s7 0 s k(X57 XS+1)]T

Let xs4+1,--+,xy be a set of points ordered by their
minimum distance to {x;},7 = 1,---,S5. Assuming that



2D Error (pixels) 3D Error (cm)
% database 50 % 80 % 90 % 50 % 80 % 90 %
S1 201 +£1.80 | 1.44+£1.46 | 1.28 +1.35 1.37 £1.06 | 0.94 +0.90 | 0.91 4+ 0.97
S2 1.22+1.05 | 0.87 £0.85 | 0.80 £0.86 || 0.93 £0.65 | 0.68 +0.55 | 0.60 &+ 0.51
S3 1.67+1.69 | 1.33+157 | 1.24+1.76 || 1.16 2091 | 0.94 £0.81 | 0.88 £+ 0.89

Table 3. Humaneva dataset: Mean errors in (cm) and (pixels) when using different percentages of the database for training and testing.
Our approach accurately estimates the pose, with maximum errors of 1 cm and 2 pixels. In this database the size of human figures ranged

from 200 to 300 pixels.
2D Error (pixels) 3D Error (cm)
Walking Jog Box Walking Jog Box
S1 | 489+£247 | 6.05+£3.00 | 643 £3.87 || 314 £1.36 | 3.71 £1.41 | 3.75£1.93
S2 | 276+ 1.31 | 588 £2.54 | 553 £2.66 || 1.93£0.71 | 3.76 £1.14 | 3.31 £ 1.44
S3 | 790 £3.21 | 2.63£0.97 | 8.09+£744 || 474 £1.69 | 1.89 £0.75 | 451 £3.55

Table 4. Generalizing to different sequences: with the Humaneva benchmark, our method is trained with one sequence and tested in
another sequence of the same subject. Note that those sequences can be quite different, and thus the training data can thus be relatively
sparse. Errors in pixels for 3 different subjects and 3 activities are depicted.

k(x,x’) is a monotonically decreasing funtion of ||x — x’||
(e.g., RBF), the uncertainty can be bounded by

N-1 A
Ac?(x.) < Z (kSKslm_k/’(Xi-ﬁ-l,X*))Q (8)
o k(xixg) — mTKglm

where we have used the fact that the uncertainty decrement,
—Aoc?(x.), has a minimum when considering the closest
point (i.e., xs+1) to the query x..

The contribution of each point is a function of the RBF
width and its distance to {x;},7 = 1,---,S. In practice,
the contribution of most of the points is negligible. In the
worst case scenario, all the excluded points are at a fixed
radius Q = ||Xs4+1 — X«||, i.e./ at the boundary. Then

ksKglm — k}(XS+1, X5+1))2

Ac?(x.) < (N — §) ©)

1
k(xs41,x54+1) —mTKg'm
This bound can be used to set the size of the local experts.

References

[1] A. Agarwal and B. Triggs. Recovering 3D human pose from
monocular images. PAMI 28(1):44-58, January 2006.

[2] V. Athitsos and S. Sclaroff. Database indexing methods for 3d
hand pose estimation. In Gesture Workshop, 2003.

[3] C.G. Atkeson, A. W. Moore and S. Schaal. Locally weighted
learning. Artif. Intell. Rev., 11:11-73, 1997.

[4] P.F. Felzenszwalb and D. P.Huttenlocher Efficient matching
of pictorial structures . CVPR 2000.

[5]1 K. Grauman and T. Darrell. The Pyramid Match Kernel: Dis-
criminative Classification with Sets of Image Features. /CCV
Beijing, China, October 2005.

[6] Humaneva. http://vision.cs.brown.edu/humaneva/.

[71 A. Kanaujia, C. Sminchisescu, and D. Metaxas. Semi-
supervised Hierarchical Models for 3D Human Pose Recon-
struction. CVPR 2007.

[8] N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse
Gaussian process methods: The informative vector machine.
NIPS pages 609-616. 2003.

[9] C.S. Lee and A. Elgammal. Body Pose Tracking From Un-
calibrated Camera Using Supervised Manifold Learning. In
NIPS EHUM Workshop, 2006.

[10] T.Liu, A. Moore, A. Gray. Efficient exact k-nn and nonpara-
metric classification in high dimensions. NIPS 2003.

[11] Mocap data. http://www.mocapdata.com.

[12] R. Navaratnam, A. Fitzgibbon and R. Cipolla. The Joint
Manifold Model for Semi-supervised Multi-valued Regres-
sion. ICCV Rio de Janeiro, Brazil, October 2007.

[13] K. Moon and V. Pavlovic. Impact of Dynamics on Subspace
Embedding and Tracking of Sequences. CVPR 2006.

[14] J. Quifionero-Candela and C. E. Rasmussen. A unifying view
of sparse approximate gaussian process regression. Journal of
Machine Learning Research, 2005.

[15] D. Ramanan, D.A.Forsyth and A. Zisserman. Tracking peo-
ple by learning their appearance. PAMI 2007.

[16] C.E. Rasmussen and C. K. Williams. Gaussian Process for
Machine Learning. MIT Press, 2006.

[17] R. Rosales and S. Sclaroff. Infering Body Pose without
Tracking Body Parts. CVPR pages 506-511, 2000.

[18] G. Shakhnarovich, P. Viola, T. Darrell. Fast pose estimation
with parameter-sensitive hashing. /CCV 2003.

[19] C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas. Dis-
criminative Density Propagation for 3D Human Motion Esti-
mation. CVPR 2005.

[20] E. Snelson and Z. Ghahramani. Sparse gaussian processes
using pseudo-inputs. NIPS, 2006.

[21] T. Tian, R. Li, and S. Sclaroff. Articulated Pose Estimation
in a Learned Smooth Space of Feasible Solutions. In CVPR
Learning Workshop, volume 3, San Diego, CA, 2005.

[22] R. Urtasun, D. J. Fleet, and P. Fua. 3D people tracking with
gaussian process dynamical models. CVPR 2006.

[23] R. Urtasun, D. J. Fleet, A. Hertzman, and P. Fua. Priors for
people tracking from small training sets. ICCV pages 403—
410, Beijing, China, October 2005.



