Robot Learning from Multivalued Demonstration

Chad Jenkins Assistant Professor

Brown University Computer Science

IROS 2008 Workshop on Robotics Challenges for Machine Learning Sep 22, 2008 Nice, France

My Goal for Robotics

- Robot collaborators in human endeavors
 - Tools to enhance users' productivity
 - Become the path of least resistance
 - Critical path tasks?
 - Learning can broaden societal involvement

Jenkins Multivalued Robot Learning

Challenges for the Personal Robotics Revolution

- Programming Autonomous Robots?
 - developing policies that accord with user's intended behavior
- Manipulation?
 - achieving desired physical effects, uncertainty
- Communication?
 - coordination between many humans and robots
- Integration
 - reproducible evaluation, feedback loop w/usability

Jenkins Multivalued Robot Learning

Programming Autonomous Robots?

 learn policies from demonstration (LfD) [Jenkins,Mataric 00-04] [Grollman,Jenkins 07-08]

Manipulation?

• manifold learning to form subspace priors [Jenkins,Peters 05-06] [Tsoli,Jenkins 07-08]

Communication?

- Multi-robot MRFs; [Butterfield, Jenkins, et al. 07-08]
- Peer-to-peer HRI [Loper, Jenkins, et al. 07-08]
- Integration

Jenkins Multivalued Robot Learning

Focus of this talk: Multivalued functions in robot LfD

- Programming Autonomous Robots?
 - learn policies from demonstration (LfD) [Jenkins,Mataric 00-04] [Grollman,Jenkins 07-08]
- Manipulation?
 - manifold learning to form subspace priors [Jenkins,Peters 05-06] [Tsoli,Jenkins 07-08]
- Communication?
 - Multi-robot MRFs; [Butterfield, Jenkins, et al. 07-08]
 - Peer-to-peer HRI [Loper, Jenkins, et al. 07-08]
- Integration

Jenkins Multivalued Robot Learning

Focus of this talk: Multivalued functions in robot LfD

- Programming Autonomous Robots?
 - learn policies from demonstration (LfD) [Jenkins,Mataric 00-04] [Grollman,Jenkins 07-08]
- Manipulation?
 - manifold learning to form subspace priors [Jenkins,Peters 05-06] [Tsoli,Jenkins 07-08]
- Communication?

Thursday at 13:30:"Neighborhood Denoising for Learning High-Dimensional Grasping Manifolds"

- Multi-robot MRFs; [Butterfield, Jenkins, et al. 07-08]
- Peer-to-peer HRI [Loper, Jenkins, et al. 07-08]
- Integration

Jenkins Multivalued Robot Learning

Focus of this talk: Multivalued functions in robot LfD

- Programming Autonomous Robots?
 - learn policies from demonstration (LfD) [Jenkins,Mataric 00-04] [Grollman,Jenkins 07-08]
- Manipulation?
 - manifold learning to form subspace priors [Jenkins,Peters 05-06] [Tsoli,Jenkins 07-08]
- Communication?
 - Learning High-Dimensional Grasping Manifolds"
 Multi-robot MRFs; [Butterfield, Jenkins, et al. 07-08]
 - Peer-to-peer HRI [Loper, Jenkins, et al. 07-08]
- Integration

Wednesday during CPS session "MRFs for Cyber-Physical Systems"

Jenkins Multivalued Robot Learning

Thursday at 13:30: "Neighborhood Denoising for

Focus of this talk: Multivalued functions in robot LfD

- Programming Autonomous Robots?
 - learn policies from demonstration (LfD) [Jenkins,Mataric 00-04] [Grollman,Jenkins 07-08]
- Manipulation?
 - manifold learning to form subspace priors [Jenkins,Peters 05-06] [Tsoli,Jenkins 07-08]
- Communication?
 - Learning High-Dimensional Grasping Manifolds"
 Multi-robot MRFs; [Butterfield, Jenkins, et al. 07-08]
 - Peer-to-peer HRI [Loper, Jenkins, et al. 07-08]
- Integration

IJCAI 09 Robotics Challenges

Multivalued Robot Learning

Wednesday during CPS session

"MRFs for Cyber-Physical Systems"

Thursday at 13:30: "Neighborhood Denoising for

Learning from Demonstration

- Assume: true policy is a function π (S)→ A
 maps states S to actions A, plus noise
- Training: dataset of state-action pairs (si,ai)
 instances of user policy π (si)→ ai
 - latent task objective G (known to user)
- Estimate: policy π̂ to perform task, meet G:
 bootstrapped reinforcement learning
 function approximation (regression)

Jenkins Multivalued Robot Learning

13

[Mackay 98; Csato, Opper 02]

Input similarity kernel

GP Regression Basics

$$C_{ij} = q(\mathbf{x}_i, \mathbf{x}_j) + \delta_{ij}\sigma_{\nu}^2$$

Compute similarity matrix C

$$k_i = q(\mathbf{x}', \mathbf{x}_i)$$

 $\mathbf{\hat{t}} = \mathbf{k}^\top \mathbf{C}^{-1} \mathbf{T}$

Predict output *t* from similarity matrix

$$\sigma_{\hat{\mathbf{t}}}^2 = (1 + \sigma_{\nu}^2) - \mathbf{k}^\top \mathbf{C}^{-1} \mathbf{k}$$

Compute confidence variance

Jenkins Multivalued Robot Learning

 $q(\mathbf{x}_i, \mathbf{x}_j) = \exp \frac{||\mathbf{x}_i = \mathbf{x}_j||^2}{2\sigma_k^2}$

Object Tracking Example UsingGaussian Process Regression[Grollman, Jenkins 07]

Conjecture

- Desired controllers #> math. functions
 - demonstrated control can be multivalued
 - single perceived state \rightarrow multiple actions
- When would this occur?
 - training has multiple underlying policies
 - learn a FSM? or robot soccer?
 - ambiguous state spaces
 - "state space race"

Jenkins Multivalued Robot Learning

Open Area? Multivalued LfD

"Multivaluedness" partitions LfD work: skill-level: learn policy for single objective

• [Schaal, Atkeson 98; Abbeel, Ng 04; Smart, Kaelbling 02]

Open Area? Multivalued LfD

- "Multivaluedness" partitions LfD work:
 skill-level: learn policy for single objective
 - [Schaal, Atkeson 98; Abbeel, Ng 04; Smart, Kaelbling 02]
 - task-level: given skills, learn transitions

18

• [Nicolescu, Mataric 03; Bentivegna et al 01; Lockerd, Breazeal 06]

Multivalued Demonstration

- Partition true world state S = {So,Su}
 - So: robot observable state variables
 - Su: unobservable by robot, maybe human
 objectives, task context, other features
- Demonstration data: (soi,ai) ; π (soi,sui) \rightarrow A

Multivalued Demonstration

- Partition true world state S = {So,Su}
 - So: robot observable state variables
 - Su: unobservable by robot, maybe human
 objectives, task context, other features
- Demonstration data: (soi,ai) ; π (soi,sui) \rightarrow A
- If S₀ ≈ S, then p(a|s₀') is unimodal distribution
- Otherwise, p(a|so') potentially multimodal

Jenkins Multivalued Robot Learning

20

Can Robot Soccer Be Learned from Demonstration?

Internal Context

- Ball Acquire needs a context bit
 - during trap, ball goes out of view
 - similar states produce different actions
 - based on unobserved context
 - chest sensor?

(a) Walk

(b) Approach

ball out of view:

seek or trap?

(c) Transition

(d) Trap

Rob^{action} in trap context Autonomy at Brown

Jenkins action in seek context Multivalued Robot Learning

Internal Context

Ζ3

(b) Approach

(c) Transition

(d) Trap

action in seek context **Jenkins Multivalued Robot Learning**

(a) Walk

Rob action in trap context nd Autonomy at Brown

Multivalued LfD

- Our approach: extract multiple policies
 - Cause of multivalued data is unimportant
 - Only distinguishing modes of actions|state

Research roadmap

- Uncover multiple policies as "experts"
 - Infinite "multimap" regression [Grollman poster]
- Estimate FSMs over experts [Nicolescu, Mataric 03]
- Optimize individual experts [Abbeel, Ng 04]

Jenkins Multivalued Robot Learning

24

[Wood, Grollman et al. 08]

Multimap Regression

- Learn data gating function partition
 based on inputoutput likelihood
 Expert learns policy for each gate
 Sparse Online
 - **Gaussian Processes**

[Csato,Opper 02]

Jenkins Multivalued Robot Learning

25

Hierarchical Mixtures of Experts [Jordan, Jacobs 94]: Experts learn pieces of function Gates blend these pieces together

Square Root Example

- Consider y = sqrt(x)
 - averaging outputs will be incorrect
 - 2 regressors needed for pos. and neg.

Preliminary Results

- Multimap regression on Ball Acquire data
 - (+) Data partitions into "seek" & "trap"
 - (-) Both experts do both seek and trap
 - (+) Experts perform correctly from initialized partition

Jenkins Multivalued Robot Learning

27

Summary

- Learning from demonstration as a means to program autonomous robots
- Multivalued demonstration data
 perceived state maps to multiple actions
- Infinite mixtures of experts regression
 promising results for learning robot soccer

Jenkins Multivalued Robot Learning

28

Acknowledgments

Funding: ONR YIP ONR PECASE NSF IIS Brown Salomon

> Dan Grollman Brendan Dickinson Micah Lapping-Carr Mark Moseley Dan Byers Jessica Chermayeff Frank Wood Katherine Heller

Jenkins Multivalued Robot Learning

29

Robotics Learning and Autonomy at Brown

