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My Goal for Robotics
•Robot collaborators in 
human endeavors•Tools to enhance 

users’ productivity•Become the path of 
least resistance•Critical path tasks?•Learning can broaden 
societal involvement
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Challenges for the Personal 
Robotics Revolution

•Programming Autonomous Robots?
• developing policies that accord with user’s intended 

behavior•Manipulation?
•  achieving desired physical effects, uncertainty•Communication?
• coordination between many humans and robots•Integration• reproducible evaluation, feedback loop w/usability
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Where Learning Plays A Role

•Programming Autonomous Robots?
• learn policies from demonstration (LfD) 

[Jenkins,Mataric 00-04] [Grollman,Jenkins 07-08]•Manipulation?
•manifold learning to form subspace priors  

[Jenkins,Peters 05-06] [Tsoli,Jenkins 07-08]•Communication?
•Multi-robot MRFs; [Butterfield, Jenkins, et al. 07-08]• Peer-to-peer HRI  [Loper, Jenkins, et al. 07-08]•Integration
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Where Learning Plays A Role
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Learning from Demonstration
•Assume: true policy is a function π(S)→ A•maps states S to actions A, plus noise

•Training: dataset of state-action pairs (si,ai)•instances of user policy π(si)→ ai•latent task objective G (known to user)
•Estimate: policy π to perform task, meet G:•bootstrapped reinforcement learning•function approximation (regression)
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GP Regression Basics
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Fig. 2. The robot used in our experiments. Feedback to the user was given
via LEDs on the robot’s surface. The robot’s ears change color based on which
box’s output the arbitrator is currently running on the robot (red for teacher,
blue for student, green for default). The robot’s back indicates the confidence
value associated with the current output.

1) SOGP: Gaussian Process Regression (GPR) consists of
learning a mapping from a set of N inputs X = {xi}N

1 to a set
of targets T = {ti}N

1 . We use a radial basis kernel function
(q) to compare pairs of inputs:

q(xi,xj) = exp
||xi = xj ||2

2σ2
k

(1)

where the kernel width (σ2
k) is a hyperparameter and com-

pute the covariance matrix:

Cij = q(xi,xj) + δijσ
2
ν (2)

δij = 1 iff i = j and σ2
ν is another hyperparameter represent-

ing the observation noise.
Prediction of t̂ from a new datapoint x′ is straightforward:

ki = q(x′,xi) (3)

t̂ = k
"
C

−1
T (4)

with variance:

σ2

t̂
= (1 + σ2

ν) − k
"
C

−1
k (5)

New data pairs (xN+1 and tN+1) can be incorporated into
the model by extending C and T. Efficiency is achieved by
storing and extending C−1 directly, through application of the
partitioned inverse equations:

C
−1
N+1 =

[

M m

m" µ

]

(6)

µ = ((1 + σ2
ν) − k"C

−1
N k)−1 (7)

m = −µC
−1
N k (8)

M = C
−1
N + 1

µmm" (9)

Prediction and update in this model both grow as N3, severely
limiting the size of the data set that can be used in a real-
time scenario. Speedups can be obtained by using a sparse
approximation to GPR and only storing a subset of the
datapoints of size P , leading to a runtime of order NP 2.

Ref. [17] introduces such an approximation, and we use
a simplified version to achieve real-time operation. We first

include a new datapoint in the usual way using Eqns. 6-9 and
then compute the variance bounds around all stored points:

σ2
p = C(p, p) (10)

The point corresponding to the lowest variance (which may be
the point just added) is selected for removal. Deletion consists
of removing the point from the stored data set (X and T), and
running the partitioned inverse equations in reverse to remove
the corresponding row and column from C−1.

B. The Demonstration Box

We use a hand-coded controller to perform the desired
input-output mapping and let a human user modulate its
activity. That is, while the content of the teacher’s output is
controlled by a hand-coded program, but the presence of the
instruction is controlled by a human, meaning that the target
control policy can only be queried if the human allows it.
This human-gated control policy enforces the mathematical
functionality of the teacher’s input-output mapping while still
maintaining a human in the loop. By toggling the controller,
the user dictates when teaching occurs, and therefore what
portions of the task are taught. The user may enable teaching
for an arbitrarily short amount of time, to teach the student
specific sub-portions of the task, or to correct errant behavior.

C. The Arbitration Box

We have chosen to use a simple confidence-based arbitra-
tion scheme where the most confident output gets passed to
the platform. We set our teacher’s confidence to 100% and
introduce a self-protecting default box with a confidence of
10%. This default box prevents an nonconfident student from
causing damage to the robot by always returning a null output.
That is, if the learner is less than 10% confident, the robot does
nothing and awaits instruction or a change in the environment.

Thus, if active, the teacher’s output will always be executed.
Otherwise, the student or default controller will be in charge.
Table I shows the arbitration matrix, and Fig. 2 shows how
feedback is given to the user. By observing the robot the
user can easily determine if the student is acting and how
confident it is in its actions. If the student’s confidence is low,
the human may decide to teach it more, or they may let the
student continue uneducated.

IV. EXPERIMENTS

We focus on the learning of 4-legged Robocup style behav-
ior from demonstration. Our University’s team successfully
competed in this competition using a basic attacker behavior

TABLE I

OUR ARBITRATION MATRIX.

Confidence Demonstrator Demonstrator
Present (100%) Absent (0%)

Learner Demonstrator Learner
High controls controls

Learner Demonstrator Default controls/
Low (<10%) controls Demonstration requested
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inputs (X)
Sine Wave Example
blue: training data
red: predicted outputs
black: confidence bounds

outputs (T)

Input similarity kernel

[Mackay 98; Csato,Opper 02]
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Conjecture
•Desired controllers ! math. functions
•demonstrated control can be multivalued•single perceived state → multiple actions

•When would this occur?•training has multiple underlying policies•learn a FSM? or robot soccer?•ambiguous state spaces•“state space race”
16
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Open Area? Multivalued LfD
•“Multivaluedness” partitions LfD work:•skill-level: learn policy for single objective

•[Schaal,Atkeson 98; Abbeel,Ng 04; Smart,Kaelbling 02]
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Open Area? Multivalued LfD
•“Multivaluedness” partitions LfD work:•skill-level: learn policy for single objective

•[Schaal,Atkeson 98; Abbeel,Ng 04; Smart,Kaelbling 02]•task-level: given skills, learn transitions
•[Nicolescu,Mataric 03; Bentivegna et al 01; Lockerd,Breazeal 06]
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Multivalued Demonstration
•Partition true world state S = {SO,SU}•SO : robot observable state variables•SU : unobservable by robot, maybe human•objectives, task context, other features
•Demonstration data: (sOi,ai) ; π(sOi,sUi)→ A
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Multivalued Demonstration
•Partition true world state S = {SO,SU}•SO : robot observable state variables•SU : unobservable by robot, maybe human•objectives, task context, other features
•Demonstration data: (sOi,ai) ; π(sOi,sUi)→ A

•If SO ≈ S, then p(a|sO’) is unimodal distribution•Otherwise, p(a|sO’) potentially multimodal
20
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Can Robot Soccer Be 
Learned from Demonstration?
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Figure 5: Our robot platform, a Sony Aibo equipped
with rudimentary vision (color segmentation and
blobbing) and walk-gait generation.

we have an indicator variable that provides knowledge of
which of the FSM’s states (seek or trap) is active at each
datapoint.

3. ANALYSIS
We know that of the 22 input dimensions, only 6 of them
are used for decision making, and can discard the others.
Further, only 5 of the output dimensions are ever non-zero.
We use the latent subtask indicator to isolate areas in the
data around the transitions between subtasks for further
analysis. The resulting raw data (inputs, outputs, and sub-
task indicator) are shown in Figure 6.

3.1 Functional Regression
Previous attempts to learn this task used two popular re-
gression techniques, Locally Weighted Projection Regression
(LWPR) and Sparse Online Gaussian Processes (SOGP)
[7]. Both of these techniques perform functional regression.
That is, they assume that given an input, the outputs are
distributed unimodally. Said another way, the mapping to
be learned is of the formπ(ŝ) = a, where for a given state
estimate there is one correct action output. Estimation of
this function assumes that D has noisy pairs of the form
(ŝ, a + ε), where ε ∼ N (0, σ2

0).

These algorithms calculate the similarity between inputs, or
state estimates, using a kernel function. In particular, we
use the Radial Basis Function (RBF), where the distance
between two points, x and x′ is:

k(x, x′) = A exp

 
− 1

2d

dX

1

(xd − x′
d)

2

w2
d

!

where d is the dimensionality of the points and w is a d-

Figure 6: The data around the sub-task transition
points. Shown are the inputs, outputs and sub-task
indicator. Two datapoints around the first transi-
tion are highlighted.

dimensional kernel width. We will use the RBF function to
compare points in both input and output space. Note that
RBF is a similarity measure, so k(x, x′) = 1 signifies that
x = x′.

Experiments into learning this task directly from demon-
stration data with these algorithms were unsuccessful. In
order to learn it, the authors of [6] had to extend the state
space of the platform to include the indicator variable. This
indicator provided one bit of information: Was the robot
currently in the seek subtask, or the trap? Using this ex-
tended, 23D state space, functional regression was able to
learn the ball-acquire task from demonstration.

This solution is, unfortunately, a stop-gap measure. In gen-
eral, we are interested in learning various, unknown tasks
from demonstration. Because we do not know the tasks or
their structure beforehand, we cannot a priori determine the
number and type of sub-tasks. In addition, indicator vari-
ables indicating the current subtask being performed are not
available from naive human demonstration.

3.2 Violating Functionality
We further examine two datapoints on either side of the first
transition, i n order to see how multimaps occur, and how
inclusion of the subtask indicator can transform a multimap
into a unimap. These two points are shown highlighted in
figure 6 and graphically in figure 7. As is visible, the inputs
are very similar, with an RBF of 0.9978. Under a func-
tionality assumption, which states that similar inputs lead
to similar outputs, we would then expect the outputs to be
quite similar as well, with a high RBF measure. However,
here that assumption is violated, as the two corresponding
outputs have an RBF measure of 0.1295.

Functional regression learners are ill-equipped to deal with
two inputs who are so similar, and lead to such dissimilar
outputs. They will, in effect, treat both outputs as noise-

input state (S): 
color blobs

action outputs (A): 
movement (speed, direction)

moves (trap, kick, block)

find mapping from S to A:
!(s) = a

Basic robot soccer attack move

Sony AIBO

(a) Rotate (b) Align (c) Approach (d) Kick

Figure 2: Unimap soccer scorer policy. The robot maintains sight of the ball and goal.

(a) Approach (b) Trap (c) Aim (d) Kick

Figure 3: Multimap soccer scorer policy. The robot ‘remembers’ the ball and goal locations when not visible.

4 and shown in figure 1. It consists of the robot acquir-
ing control of the ball (very important for soccer) and can
logically be decomposed into two subtasks: First, the robot
must locate and walk towards the ball, dropping the head
to keep the ball in view (seek). Second, when the robot
is close enough, it should stop walking and execute a trap
maneuver, to bring the ball securely under its chin (trap).

2.1 Data Generation
Our platform, pictured in figure 5, is a commercially avail-
able robot platform, the Sony Aibo robot dog. We have
equipped it with a rudimentary vision system, consisting of
color segmentation and blobbing. That is, all perceived col-
ors are binned into one of six categories (black, orange, blue,
yellow, green, white) and each color is treated as a blob. The
x and y locations (in image coordinates) and blob size (pixel
count) of each color serve as input to our learning system.

Algorithm 1 Unimap Goal Scorer

Require: Perceptual variables BALL and GOAL
Ensure: Action output ACTION

loop
Update BALL and GOAL
if isLinedUp(BALL,GOAL) then

if isKickable(BALL) then
ACTION ← “kick”

else
ACTION ← “approach ball”

else if isVisible(BALL) AND isVisible(GOAL) then
ACTION ← “sidestep”

else if isVisible(BALL) then
ACTION ← “circle”

else
ACTION ← “spin”

In addition we take as input the motor pose of the four mo-
tors in the head (tilt, pan, neck and mouth), for a total of
22 inputs.

Our platform also has a basic walk gait generation system.
Taking in a desired walk speed in the lateral and perpen-
dicular directions, as well as a turning rate, it generates leg
motor positions for the robot. These 3 parameters, along
with new pose information for the head motors, plus a kick
potential, form the 8 dimensional output space. When the
kick potential rises above 0.5, a prerecorded kicking motion
is performed. All inputs and outputs are normalized to lie
in the range [-1,1], although each dimension may not use the
entire range.

We have written a hand-coded controller to perform the AQ
task and used it to collect 1000 datapoints (∼30 seconds)
worth of autonomous behavior for analysis here. In addition,

Figure 4: The multimodal goal-scoring task as a fi-
nite state machine. We examine further the ball-
acquire subtask.

Attacker FSM
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Figure 1: The Ball-Acquire (AQ) task. The input state in 1(c) is ambiguous, as the ball is not visible.

where. Unfortunately, the time involved to develop, test,
and deploy a robot control program is often an insurmount-
able obstacle to the typical user of consumer technology.

The ‘write local, run global’ paradigm of software develop-
ment may appear to hold the answer, as it would allow a
small subset of skilled programmers to develop autonomous
robot control policies that could then be used by other users.
However, unlike software which operates in a fairly restricted
environment (windows, *nix, mac), robots must deal with
much uncertainty across environments, as well as in users
and tasks. Further, users may want to customize a robot to
perform a task in a certain way.

Learning seeks to enable typical users to realize intended
behavior on a robot without requiring either their undivided
attention or a large time investment. In particular, LfD
aims to allow users to transfer policies simply by providing
demonstrations of the task being performed. The main idea
being that while typical users may not be able to program a
robot to perform a task, they are often able to perform the
task themselves.

LfD, sometimes called apprenticeship learning or imitative
learning [8], can be performed in many ways, each of which
place certain restrictions on how tasks are demonstrated,
and what tasks can be learned. Tasks can be learned offline
from prerecorded demonstration data, as in [1], or inter-
actively as in [5]. During interactive learning, the nature
of the robot’s feedback can help guide the user into being
a better demonstrator, as in [14, 15]. The demonstration
method itself can be varied, encompassing passive observa-
tion, kinesthetic guiding [4], and direct teleoperation.

The actual approach used to learn the control policy can be
varied as well. Inverse reinforcement learning (IRL) [2] seeks
to estimate the underlying reward signal that the demonstra-
tor is trying to maximize. By doing so, IRL can learn robot
controllers that outperform the demonstrator. Policy iter-
ation techniques [10] take the policy’s form as known, and
optimize parameters. In contrast, we are focused on DPA,
which attempts to learn the mapping from states to actions
(or inputs to outputs) directly.

The above works focus on learning a single-policy task, or
skill. Learning a task composed of multiple skills can be
seen as a three-step process:
1) Learn the skills
2) Learn to transition between skills
3) Optimize performance

Previous work in skill chaining [11] has looked to decom-
pose an overall task into subtasks in the realm of reinforce-
ment learning. Likewise, [3], learn tasks composed of sub-
tasks from observation, and then improve performance of
that task overtime. However, they take the skills as given.
As mentioned before, [13] also take skills as given, and learn
conditions for transitioning between them.

We seek to learn both skills and how to sequence them to
perform tasks from demonstration using DPA. We present
here experiments with a new algorithm designed to directly
approximate multi-map policies. This algorithm, ROGER
(realtime overlapping gaussian expert regression) [16], may
enable typical human users to teach their consumer robots
more varied tasks.

2. CONTROL POLICIES
To illustrate multimap control policies, we examine a fun-
damental robot soccer task, that of goal-scoring. We have
formulated two control policies for performing this task. The
first, which is a unimap (i.e. functional) method is shown in
Figure 2 and corresponding pseudo-code is in Algorithm 1.
In this policy, the robot circles the ball until it is lined up
with the goal, and then approaches and kicks.

A second approach to the same problem is depicted in figure
3, and as a finite state machine (FSM) in figure 4. Here, the
robot first approaches the ball and then traps it under the
chin. Once it has control of the ball, it turns to the goal
and kicks. This approach is the preferred method for robot
soccer, as it is scores goals faster. However, it is a multimap
policy as all states of the FSM operate in the same state and
action space.

In the unimap version, the current action output depends
only upon information contained in the sensor inputs. Specif-
ically, given the perceived location of the ball and the goal,
the action (walking, spinning, kicking) is uniquely deter-
mined. In contrast, in the multimap formulation, in addition
to the sensor inputs, the decision making policy must know
which of the FSM’s states the system is currently in. As
this information is not in the state space of the platform, it
represents unseen context in which the control policy must
estimate. It is this context, or subtask formulation, that
creates a multimap scenario.

To simplify discussion, we will focus on the transition be-
tween the seek and trapping states in the following. This
task, termed the Ball-Acquire (AQ) task, is boxed in figure

action in seek context action in trap context

ball out of view:
seek or trap?
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Figure 1: The Ball-Acquire (AQ) task. The input state in 1(c) is ambiguous, as the ball is not visible.

where. Unfortunately, the time involved to develop, test,
and deploy a robot control program is often an insurmount-
able obstacle to the typical user of consumer technology.

The ‘write local, run global’ paradigm of software develop-
ment may appear to hold the answer, as it would allow a
small subset of skilled programmers to develop autonomous
robot control policies that could then be used by other users.
However, unlike software which operates in a fairly restricted
environment (windows, *nix, mac), robots must deal with
much uncertainty across environments, as well as in users
and tasks. Further, users may want to customize a robot to
perform a task in a certain way.

Learning seeks to enable typical users to realize intended
behavior on a robot without requiring either their undivided
attention or a large time investment. In particular, LfD
aims to allow users to transfer policies simply by providing
demonstrations of the task being performed. The main idea
being that while typical users may not be able to program a
robot to perform a task, they are often able to perform the
task themselves.

LfD, sometimes called apprenticeship learning or imitative
learning [8], can be performed in many ways, each of which
place certain restrictions on how tasks are demonstrated,
and what tasks can be learned. Tasks can be learned offline
from prerecorded demonstration data, as in [1], or inter-
actively as in [5]. During interactive learning, the nature
of the robot’s feedback can help guide the user into being
a better demonstrator, as in [14, 15]. The demonstration
method itself can be varied, encompassing passive observa-
tion, kinesthetic guiding [4], and direct teleoperation.

The actual approach used to learn the control policy can be
varied as well. Inverse reinforcement learning (IRL) [2] seeks
to estimate the underlying reward signal that the demonstra-
tor is trying to maximize. By doing so, IRL can learn robot
controllers that outperform the demonstrator. Policy iter-
ation techniques [10] take the policy’s form as known, and
optimize parameters. In contrast, we are focused on DPA,
which attempts to learn the mapping from states to actions
(or inputs to outputs) directly.

The above works focus on learning a single-policy task, or
skill. Learning a task composed of multiple skills can be
seen as a three-step process:
1) Learn the skills
2) Learn to transition between skills
3) Optimize performance

Previous work in skill chaining [11] has looked to decom-
pose an overall task into subtasks in the realm of reinforce-
ment learning. Likewise, [3], learn tasks composed of sub-
tasks from observation, and then improve performance of
that task overtime. However, they take the skills as given.
As mentioned before, [13] also take skills as given, and learn
conditions for transitioning between them.

We seek to learn both skills and how to sequence them to
perform tasks from demonstration using DPA. We present
here experiments with a new algorithm designed to directly
approximate multi-map policies. This algorithm, ROGER
(realtime overlapping gaussian expert regression) [16], may
enable typical human users to teach their consumer robots
more varied tasks.

2. CONTROL POLICIES
To illustrate multimap control policies, we examine a fun-
damental robot soccer task, that of goal-scoring. We have
formulated two control policies for performing this task. The
first, which is a unimap (i.e. functional) method is shown in
Figure 2 and corresponding pseudo-code is in Algorithm 1.
In this policy, the robot circles the ball until it is lined up
with the goal, and then approaches and kicks.

A second approach to the same problem is depicted in figure
3, and as a finite state machine (FSM) in figure 4. Here, the
robot first approaches the ball and then traps it under the
chin. Once it has control of the ball, it turns to the goal
and kicks. This approach is the preferred method for robot
soccer, as it is scores goals faster. However, it is a multimap
policy as all states of the FSM operate in the same state and
action space.

In the unimap version, the current action output depends
only upon information contained in the sensor inputs. Specif-
ically, given the perceived location of the ball and the goal,
the action (walking, spinning, kicking) is uniquely deter-
mined. In contrast, in the multimap formulation, in addition
to the sensor inputs, the decision making policy must know
which of the FSM’s states the system is currently in. As
this information is not in the state space of the platform, it
represents unseen context in which the control policy must
estimate. It is this context, or subtask formulation, that
creates a multimap scenario.

To simplify discussion, we will focus on the transition be-
tween the seek and trapping states in the following. This
task, termed the Ball-Acquire (AQ) task, is boxed in figure

action in seek context action in trap context

ball out of view:
seek or trap?
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Figure 6: Data from the seek/trap transitions of the AQ task. Raw inputs and outputs, with extraneous dimensions removed,
are shown in the middle, as is the true subtask indicator (light is seek, dark is trap). Six subtask transitions are shown. One
datapoint on either side of the first transition is highlighted and shown graphically. Inputs, or state estimate (head pose and
perceived ball location) are on the left, and outputs, or actions (commanded head pose [walk velocities are zero]), on the right.

the action (walking, spinning, kicking) is uniquely deter-
mined. In contrast, in the multimap formulation, in addition
to the sensor inputs, the decision making policy must know
which of the FSM’s states the system is currently in. As
this information is not in the state space of the platform, it
represents unseen context in which the control policy must
estimate. It is this context, or subtask formulation, that
creates a multimap scenario.

To simplify discussion, we will focus on the transition be-
tween the seek and trapping states in the following. This
task, termed the Ball-Acquire (AQ) task, is boxed in Figure
5 and shown in Figure 2. It consists of the robot acquir-
ing control of the ball (very important for soccer) and can
logically be decomposed into two subtasks: First, the robot
must locate and walk towards the ball, dropping the head
to keep the ball in view (seek). Second, when the robot
is close enough, it should stop walking and execute a trap
maneuver, to bring the ball securely under its chin (trap).

2.1 Data Generation
Our platform, pictured in Figure 1, is a commercially avail-
able robot platform, the Sony Aibo robot dog. We have
equipped it with a rudimentary vision system, consisting of
color segmentation and blobbing. That is, all perceived col-
ors are binned into one of six categories (black, orange, blue,
yellow, green, white) and each color is treated as a blob. The
x and y locations (in image coordinates) and blob size (pixel
count) of each color serve as input to our learning system.
In addition we take as input the motor pose of the four mo-
tors in the head (tilt, pan, neck and mouth), for a total of 22
inputs. Note that we do not use any of the touch or distance
sensors on the robot as inputs.

Our platform also has a basic walk gait generation system.
Taking in a desired walk speed in the lateral and perpen-
dicular directions, as well as a turning rate, it generates leg
motor positions for the robot. These 3 parameters, along

with new pose information for the head motors, plus a kick
potential, form the 8 dimensional output space. When the
kick potential rises above 0.5, a prerecorded kicking motion
is performed. All inputs and outputs are normalized to lie
in the range [-1,1], although each dimension may not use the
entire range.

We have written a hand-coded controller to perform the AQ
task and used it to collect 1000 datapoints (∼30 seconds)
worth of autonomous behavior for analysis here. In addition,
we have an indicator variable that provides knowledge of
which of the FSM’s states (seek or trap) is active at each
datapoint.

3. ANALYSIS
We know that of the 22 input dimensions, only 6 of them are
used for decision making, and can discard the others. Now,
it is possible that inputs that are unused in our implemen-
tation of the task may still be useful for a learned policy.
That is, the policy learner may discover a relationship be-
tween some of the inputs and outputs that we did not make
use of in our hand-coded controller. Thus, it is not usu-
ally permissable to discard data as we are doing, without
an understanding of what the data represents. Here, the
discarded information is the size and location of the other
5 color blobs, which are irrelevant for the task, and the pan
angle of the head (which never changes). 1

In addition to the 16 extraneous input dimensions, there are
3 of the output dimensions which are always zero, so we re-
move them as well. We use the latent subtask indicator to

1There are other possible inputs, such as the distance sen-
sors, which may ease learning of the particular task discussed
here. In effect, useful inputs act to disambiguate a multimap
scenario, and turn a multimap policy into a unimap one, as
discussed in section 3.2. However, multimap policies still
need to be addressed, as the robot may still need to disam-
biguate cases that appear similar, no matter what its sensor
capabilities are.
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Learning multi-objective robot control policies from demonstration
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Figure 1:
√

x learned with a functional regression algo-
rithm (LWPR). The multiple outputs are averaged.

When demonstrating unknown robot tasks via teleop-
eration, human users may leverage information, latent in
their mind, that is not observable to the robot. Such in-
formation may include user preferences as to how a task
should be performed, state information observable to the
human but not the robot, or task structure information
such as subtask objectives. Such a user may perform a
different action in what the robot perceives to be the same
state. Thus, the resulting mapping from perceived state
to actions π : ŝ → a, as seen by the robot may be a
one-to-many multimap, instead of a one-to-one function.

Our interactive learning from demonstration architec-
ture [1] performs learning from teleoperative demonstra-
tion via direct policy approximation (regression). How-
ever, functional regression algorithms are not appropriate
for learning multimap policies (see Fig. 1). Instead, we
have developed ROGER (Realtime Overlapping Gaussian
Regression Experts), a multimap regression algorithm for
interactive learning from demonstration (Fig 2).

ROGER is based on the Infinite Mixture of Gaussian
Processes model [2]. Interactivity with a human user is
achieved by reformulating it as a particle filter and using
the Sparse Online Gaussian Process formulation [3]. Cur-
rent work focuses on improving the algorithm’s sparse and
realtime properties and applying it to real robot tasks.

Whilst learning a multimap in this manner, the overall
task is decomposed into a collection of overlapping, func-
tional, experts. In a multi-objective setting these experts
correspond to the subtask decomposition. Properly se-
lecting an expert, or subtask, at run time can be seen as
learning a finite-state machine describing the transitions
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Figure 2:
√

x learned with ROGER, a multimap learning
algorithm. Learned experts shown by color.

between the subtasks.
Each datapoint in the human demonstration can be

labeled with the expert (or possible experts) that gener-
ated it. From the resulting expert trace, we can learn
pre- and post-conditions for each expert, as in [4]. These
conditions can be used when the robot is behaving au-
tonomously to switch experts appropriately, and perform
the task correctly.

Further, as each expert is a single-objective functional
mapping from states to actions, they can be improved to
perform better than the human demonstrator. Specif-
ically, using techniques such as inverse reinforcement
learning [5], the underlying objective for each expert can
be deduced. The function for that expert can then be
optimized with respect to its objective, resulting in im-
proved performance.
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gating network.

Each expert in a ROGER model is an SOGP regressor, with
kernel parameters θ and size cap. Theta consists of the rbf
parameters A and w, as well as a noise parameter n. While
the model allows for each expert to have its own parameters,
we currently assume they are the same for all experts.

The generative model underlying ROGER can be summa-
rized in the following equations:

zi ∼ CRP(α)
Σ′

k ∼ Inverse-Wishartν0(Λ0)
µ′

k ∼ Multivariate-normal(µ0, Σk/κ0)
xi|zi ∼ Multivariate-normal(µ′

zi
, Σ′

zi
)

yk|Xk, θ ∼ Multivariate-normal(0,Qk)

Inference in a ROGER model is performed using a particle
filter, where each of the P particle contains an assignment
of points to experts (z(p)

i ) and a set of K experts.

4.1 Toy data
We illustrate ROGER initially on synthetic data, shown in
Figure 7. The multimap to be learned is the square root,
where

√
4 → {2,−2} as discussed before. Using standard

functional regression, the two possible outputs are averaged
together. ROGER, instead, learns that for a given input,
there are two possible outputs. Each output is associated
with a separate, functional expert, whose domains overlap
in input space.

4.2 Robot data
Applying ROGER to the collected robot data (P = 10, cap =
333, α = 0.5, µ0 = 0.0, κ0 = 0.1, Λ0 = 1, ν0 = 23, θ =
{1, 0.1, 0.1}) , we would expect that the number of experts
and the assignment of inputs to experts to closely mirror the
true subtask indicator variable. The discovered assignments
of the most likely particle is shown in Figure 8, alongside
the true indicator variable. Quantitatively, the correlation
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Figure 8: The discovered expert assignments, compared
with the true subtask indicator variable. Correlation =
0.6957, and the estimate is correct 88.6% of the time.

between the two is 0.6957, with the assignment matching
the ground truth 88.6% of the time. Note that 3 experts are
discovered (as the correct number is not known a priori),
but that one of the experts has very few points assigned to
it. We leave this expert out of further analysis.

Running each expert in isolation, we would like to see that
one expert produces outputs corresponding to the trap sub-
task, and another produces outputs corresponding to the
seek subtask. The next step would be to determine a method
for intelligently switching between experts. Unfortunately,
this behavior is not observed. Instead, each expert behaves
similarly. They both exhibit ball-seeking behavior while oc-
casionally trapping inappropriately (when the ball is not
there). We believe that these issues result from the remain-
ing difference between the discovered expert assignments
and the true indicator variable. Specifically, as each expert
contains data from both of the subtasks, it performs both of
them, much as using regular functional regression would.

As a “sanity check,” we trained a ROGER model using the
true subtask indicator as the expert assignments. Note that
this is equivalent to training two SOGP models, one on the
data from the seek subtask, and the other on data from the
trap subtask. Testing these learned policies on the robot
in realtime, we observed that the one trained on seek data
performs only the seek subtask, and the one trained on trap
data performs the only trap. These results indicate that if
ROGER is able to correctly assign points to experts, the
experts will learn their portions of the task. Learning the
correct assignments may just be a matter of parameter set-
tings, which we discuss in Section 5.1.

5. DISCUSSION AND FUTURE WORK
We present multimap regression as a potential enabling tech-
nology for learning robot control policies representative of
multi-skill tasks from human teleoperative demonstration.
However, before it can be used as such, several challenges
must be met

5.1 Parameter Estimation
There are numerous parameters that control the behavior
of ROGER. Some of these, such as P and cap, are directly
related to realtime behavior of the learning system. Methods
for automatically adapting them during runtime to ensure
continued realtime behavior must be developed.

Other parameters, such as the input space gating parame-
ters (µ0, κ0, λ0, ν0), CRP concentration parameter (α) and
SOGP kernel parameters (θ) control the number, distribu-
tion, and prediction of the multiple experts. We have al-
leviated some issues by requiring that the inputs and out-
puts be normalized. However, we are particularly concerned
that, currently, each expert uses the same kernel parame-
ters. Hyperparameter estimation for this model is possible,
and including it is the focus of ongoing work.

5.2 Expert selection
Once subtasks are detected and experts assigned correctly,
there is still an issue as to how to select an expert at runtime.
Currently, our system can choose experts in one of three
ways: The most likely one, stochastically based on their

Gate Partitioning of Ball 
Acquire Training Data
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Summary
•Learning from demonstration as a means 
to program autonomous robots

•Multivalued demonstration data •perceived state maps to multiple actions

•Infinite mixtures of experts regression•promising results for learning robot soccer
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