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My Goal for Robotics
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e Robot collaborators in
human endeavors

e Tools to enhance
users’ productivity

e Become the path of
least resistance

¢ Critical path tasks?

e Learning can broaden
societal involvement
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Challenges for the Personal
Robotics Revolution

e Programming Autonomous Robots?

e developing policies that accord with user’s intended
behavior

e Manipulation?
¢ achieving desired physical effects, uncertainty
e Communication?
e coordination between many humans and robots
¢ Integration
e reproducible evaluation, feedback loop w/usability
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Where Learning Plays A Role

e Programming Autonomous Robots?

e |earn policies from demonstration (LfD)
[Jenkins,Mataric 00-04] [Grollman,Jenkins 07-08]

e Manipulation?
¢ manifold learning to form subspace priors
[Jenkins,Peters 05-06] [Tsoli,Jenkins 07-08]
e Communication?

e Multi-robot MRFs; [Butterfield, Jenkins, et al. 07-08]
* Peer-to-peer HRI [Loper, Jenkins, et al. 07-08]

e |[ntegration
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Where Learning Plais A Role
Focus of this talk:
Multivalued functions in robot LfD
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Where Learning Plays A Role

Focus of this talk:

Multivalued functions in robot LfD
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Learning from Demonstration

e Assume: true policy is a function 7 (S)— A
e maps states S to actions A, plus noise

e Training: dataset of state-action pairs (si,a)
e instances of user policy 7 (si)— ai
¢ [atent task objective G (known to user)

e Estimate: policy 77 to perform task, meet G:
e bootstrapped reinforcement learning
e function approximation (regression)
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.
GP Regression Basics

[1xi = x5

Cz'j = q(Xz', Xj) + 57;]'0'3 q(xi,X;) = exp

20} ——
Input similarity kernel
Compute similarity matrix C

outputs (T)

ki = q(x',x;)
t=kx'c™'T

Predict output t from similarity matrix

oi =(1+40,)-k'C 'k

Compute confidence variance Sine Wave Example

blue: training data
red: predicted outputs
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Object Tracking Example Using

Gau33|an Process Regressmn
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Conjecture

e Desired controllers == math. functions

e demonstrated control can be multivalued
¢ single perceived state — multiple actions

e When would this occur?
e training has multiple underlying policies
e [learn a FSM? or robot soccer?

e ambiguous state spaces
¢ “state space race”
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Open Area? Multivalued LfD

e “Multivaluedness” partitions LfD work:

e skill-level: learn policy for single objective
* [Schaal,Atkeson 98; Abbeel,Ng 04; Smart,Kaelbling 02]
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Open Area? Multivalued LfD

e “Multivaluedness” partitions LfD work:
e skill-level: learn policy for single objective

* [Schaal,Atkeson 98; Abbeel,Ng 04; Smart,Kaelbling 02]
e task-level: given skills, learn transitions

* [Nicolescu,Mataric 03; Bentivegna et al O1; Lockerd,Breazeal 06]
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Multivalued Demonstration

e Partition true world state S = {So,Su}
e So: robot observable state variables
e Su: unobservable by robot, maybe human
e objectives, task context, other features

e Demonstration data: (soi,ai) ; 7 (soi,sui)— A
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Multivalued Demonstration

e Partition true world state S = {So,Su}
e So: robot observable state variables
e Su: unobservable by robot, maybe human
e objectives, task context, other features

e Demonstration data: (soi,ai) ; 7 (soi,sui)— A

e [f So = S, then p(also’) is unimodal distribution
e Otherwise, p(a|so’) potentially multimodal
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Can Robot Soccer Be
Learned from Demonstration?

Ball -

Segmentation % — input state (S):
Acquire !

N\ ' blobbing color blobs

find mapping from S to A:
T(s) = a

action outputs (A):
movement (speed, direction)
moves (trap, kick, block)




Internal Context

e Ball Acquire needs a context bit

e during trap, ball goes out of view

e similar states produce different actions
e based on unobserved context
e chest sensor?

ball out of view:
seek or trap!?
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(b) Approacﬁ il (c) Transition (d) Trap i
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Internal Context

\A

Different Outputs

Similar Inputs

V/

\/

Inputs Outputs Subtask Indicator

Action

State Estimate

ball out of view:
seek or trap!?
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(b) Approach
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Multivalued LD

e Qur approach: extract multiple policies
e Cause of multivalued data is unimportant
e Only distinguishing modes of actions|state

e Research roadmap
e Uncover multiple policies as “experts”
¢ Infinite “multimap” regression [Groliman poster]
e Estimate FSMs over experts [Nicolescu,Mataric 03]
e Optimize individual experts [Abbeel, Ng 04]

e
” 2l
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,
Multimap Regression

e | earn data gating C!
function partition Gamg 1/ \

e based on input- !

output likelihood
- NG::tingk &L' | Iﬁ NGetltingk
* Expert learns policy ===/~ | /&
for' eaCh gate N(-;(twork N;&%rk Network Ngtwork
e Sparse Online
P : Hierarchical Mixtures of Experts
Gaussian Processes [Jordan, Jacobs 94]:
Experts learn pieces of function
(eSS Snpaibl] Gates blend these pieces together
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Square Root Example

e Consider y = sqrt(x)
e averaging outputs will be incorrect
o2 regressors needed for pos. and neg.
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Preliminary Results
* Multimap regression

on Ball Acquire data «

200

e (+) Data partitions
into “seek” & “trap” : ™
e (-) Both experts do :..
both seek and trap

e (+) Experts perform «

Time Inde

1000

C O rre Ct I y f ro m True subtask indicator Discovered Expert Assignments
Multimap Partition

V-

initialized partition

Jenkins 27 Ao Robotics, Learning, and
Multivalued Robot Learning @ Autonomy at Brown




Summary

e | earning from demonstration as a means
to program autonomous robots

e Multivalued demonstration data
e perceived state maps to multiple actions

e Infinite mixtures of experts regression
e promising results for learning robot soccer
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