
A Framework for RL Learning Controllers

Martin Riedmiller
Arbeitsgruppe Neuroinformatik

Universität Osnabrück

Martin.Riedmiller@uos.de

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 1

Motivation

• driven by the idea to have a self-learning control system that completely
learns from scratch. Only actions/ sensor inputs/ goals & constraints are
specified ⇒ Reinforcement Learning, Neuro Dynamic Programming

• no prior policy, no prior model ⇒ Q-learning.

• continuos sensor values ⇒ Neural network (here: MLP) (reason:
continuous, generalisation. other models might exist ;-))

• fast learning: data-efficient directly applicable to real systems: ⇒ Neural
Fitted Q Iteration (NFQ), (Riedmiller, 2005)

• standard software module: robust, easy to use (e.g. parameters),
’off-the-shelf’-method

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 2

Talk outline

• short intro to NDP and NFQ

• current developments

• examples

• open questions

Idea: Sharpen the core RL method by doing a wide range of (real-world)
applications

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 3

Neuro Dynamic Programming in a Nutshell

• MDP: states, actions, (probabilistic) transition model, costs for transitions

• learning goal: find a policy (controller) π to minimize the expected summed
trajectory costs:

J∗(s) = minπE(
∑

t

c(st, pi(st))|s0 = s) for all s

• choice of transition costs c(s, u) specifies control goal, very flexible (LQR is
a special case);

• Value Iteration: approximate J∗ iteratively (’learning’); optimal policy can
be derived thereof

• Q-learning: model free learning

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 4

Neural Value Functions (MLP)

• multilayer perceptron stores value function
J : X → ℜ (or Q : X, U → ℜ respectively)

• works for continuous or very large state spaces

• only few parameters determine function over
complete state space: generalisation

...

...

Q(s,u)

wij

u

s

but: if used with classical online RL methods, learning is very slow!
Reason: non-local approximation: unlearning the function

Idea NFQ: Explicit memorisation of all observations of ’state - action -
successor state’ tuples:
⇒ set of memorized system transitions (s, a, s′)

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 5

Neural Fitted Q Iteration (NFQ) (Riedmiller 2005, Ernst 2005)

(s1, a1, s
′
1), . . . , (sN , aN , s′N) are sampled transitions (state-action-successor

state).

Qk ∈ F : approximation of Q-value function at state k

For each transition sample 1...N do

Q̂(si, ai) := ci(si, ai) + γminaQk(s
′
i, a)

Compute next iterate Qk+1 by

Qk+1 = arg minf∈F

N
∑

i=1

|f(si, ai) − Q̂(si, ai)|
2

⇒Q- Value Iteration becomes a series of batch supervised learning problems

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 6

Some aspects of using NFQ as a core RL module

remember goal: efficient, robust, simple to use, no hidden prior knowlege

• Rprop for batch supervised learning: very fast, practically parameter free
(Riedmiller, 1992)

• standard cost fomulation for set point regulation problems

• forced output values

• sampling the data

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 7

Set Point Regulation

set point regulation: bring one or more sensor values to a desired target value.

notation: s ∈ X+ ⇔ all sensor values are at their target values (± tolerance)

Proposed standard cost function (optimizes time to goal region):

c(s, u) =

{

0 , if s ∈ X+

0.01 , else

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

"tmp.dat" u 2:6
-0.001
+0.001

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

"tmp.dat" u 2:6
-0.001
+0.001

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

"tmp.dat" u 2:6
-0.001
+0.001

bad improved good

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 8

Set Point Regulation continued

Proposed standard cost function (optimizes time to goal region):

c(s, u) =

{

0 , if s ∈ X+

0.01 , else

• A succesful policy must learn to actively bring and keep state to X+ (no
explicitly fixed terminal state)

• good: no prior knowledge: the controller must find out by itself how to
control the system so that it not only reaches X+ but also can be kept
there!

• problem: danger of MLP output continuosly increasing due to generalisation
effects (since with the above costs rule, for all the state-action pairs, the
Q-value is at least as high as its successor state).

• idea: for some states within terminal area we know that J∗(s)
!
= 0. Idea:

Explicitly force NN output to target values 0 at some of those states.

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 9

Forced Output Values

Idea: introduce artificial training patterns with forced target value J∗(s) = 0.

candidates: use states in the center of target area. Alternatively: do tests.

Example Cart-Pole Balancing. No Forced Output Values:

 0.22
 0.23
 0.24
 0.25
 0.26
 0.27
 0.28
 0.29
 0.3
 0.31
 0.32

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-1
-0.8

-0.6
-0.4

-0.2
 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

S1

S2

 0.65
 0.7
 0.75
 0.8
 0.85
 0.9
 0.95
 1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-1
-0.8

-0.6
-0.4

-0.2
 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

S1

S2

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-1
-0.8

-0.6
-0.4

-0.2
 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

S1

S2

 0.985

 0.99

 0.995

 1

 1.005

 1.01

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-1
-0.8

-0.6
-0.4

-0.2
 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

S1

S2

With forcing:

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-1
-0.8

-0.6
-0.4

-0.2
 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

S1

S2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-1
-0.8

-0.6
-0.4

-0.2
 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

S1

S2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-1
-0.8

-0.6
-0.4

-0.2
 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

S1

S2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-1
-0.8

-0.6
-0.4

-0.2
 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

S1

S2

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 10

Sampling transitions

Learning the Q-funtion by NFQ happens offline. The online information
required from the controlled system are transition triples state-action-successor
state. These are valid indpendend of the used policy ⇒ High flexiblity in
transition sampling.

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 11

Sampling transitions

Learning the Q-funtion by NFQ happens offline. The online information
required from the controlled system are transition triples state-action-successor
state. These are valid indpendend of the used policy ⇒ High flexiblity in
transition sampling.

Methods:

• interleaved mode (sample, learn, sample, learn,...)

• sample then learn (e.g. if sampling requires human interaction)

• using prior knowledge, e.g. an existing controller to sample

• ’task shaping’: learn a different (maybe simpler) task first. Example:
cart-pole balancing/ suspension

• sampling on multi-time scales

• policy screening: keep succesful policy active for some time to test and/or
collect particularly interesting transitions

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 11

Further aspects of using NFQ as a core RL module

• input representation, e.g. dealing with delays

• learning modules and methods, e.g. advantage updating, residual gradient
methods

• policy representation, e.g. continuous outputs (Hafner, 2008)

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25

-30
-25
-20
-15
-10
-5
 0
 5
 10
 15
 20
 25
 30

u
x’ soll

x’

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 12

Real Cart Pole

task: real cart pole, starting downwards, setpoint
regulation (position, pole angle)
state dim: 4 (cart and pole position, cart and
pole delta position)
actions: 3 (negative voltage, positive voltage, 0)
△t : 30 ms, 5 - 10 - 10 - 1 MLP

• standard set-point cost function

c(s, u) =

{

0 , if |θ| < 3o, |pos| < 0.05m (’setpoint area’)
0.01 , else

Q(s, a) = 1, if |pos| > 0.25m (constraint)

• forced output value ’0’ at (0,0,0,0)

• interleaved learning sampling

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 13

Real Cart Pole - Results

• learns directly with the real system, completely from scratch

• one single NN controls both swingup and balancing

• no human interaction during learning process required

• pure interaction time is much less than 1 hour (300 trials of max. 12s)

• overall learning time is less than 10 hours

• sampled data can be reused to learn completely different task, e.g.
suspension

Video

-3

-2

-1

 0

 1

 2

 3

 0 100 200 300 400 500 600 700

"xux.2.dat" u :1
"xux.2.dat" u :3

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 14

Real Cart Pole Suspension - Results

Reuse of the transition data of the previous trial. < 50 NFQ iterations.

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300 350 400

"output.net17.dat" u : 5
"output.0only.dat" u : 5

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 15

Neuro Dribbling for a soccer robot
Task: ’Dribbling:’ Moving to a target direction
without loosing the ball.

state dim: 5 (rel. robot speed (x,y),
rotation speed, delta angle to target direction,
ballposession)
actions: 4 (pairs of target speeds in forward and
sideward direction)
△t : 33 ms

• offline sampling: random sampling (100 episodes) - NFQ (100 iterations) -
greedy sampling (100 episodes) - NFQ (100 iterations)

• standard set-point cost function

c(s, u) =

{

0 , if |θ − target| < 5o (’setpoint area’)
0.01 , else

Q(s, a) = 1, if ball is lost (failure)

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 16

Neuro Dribbling Results

• decent human interaction in two phases of data sampling of about 15
minutes each.

• two offline NFQ learning phases of about 3 hours each

• used for dribbling in Brainstormer’s World Champion Team RoboCup 2007

• won Technical Challenge Award RoboCup 2007

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 17

Some current applications

• Real Cart Pole, real Cart Double Pole

• Neuro Dribbling Soccer Robot (2007)

• Neural steering of autonomous car (Riedmiller et.al, Fbit 2007)

• Active Damping of a convertible car (accurate FEM Simulation, Industrial
Project 2006-2007)

• Real slot car racing (industrial project for Hannover Fair 2008)

• Pneumatic positioning (since 2008)

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 18

Summary

• already considerable robustness w.r.t network structure, learning parameters,
...

• efficiency: can be applied to real systems directly

• standardized framework helps to quick start (e.g. pneumatic positioning
project needed only one afternoon to obtain first good controllers)

• still (moderate) experience required to determine time interval, tolerance
band, action set, ... ⇒ further research

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 19

Ongoing and future work

• extending the framework: continuos actions, policy representation

• active learning/ data selection

• incorporating prior knowledge

• cooperative Multi-agent systems: scheduling (Gabel 2008)

Open challenges:

• convergence issues

• proof of stability of learned controllers

• other regression methods, e.g. Gaussian Processes

• combination with other methods, e.g. policy gradient,...

Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de NFQ and Real World RL 20

