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Reinforcement leaning for assisting
Humans

Holding assist task

* Virtual force sensing with the measurement
of motion and EMG signals

Learning for the holding assist task

Reinforcement Learning

Reinforcement learning

* is probably the most general framework in
which such learning problems of
computational motor control can be phrased
[Peters and Schaal. 2008]

Challenges
» Policy representation
« Efficient algorithm

* Learning for assist other agents such as
humans

Reinforcement Learning
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Goal Sharing

Related Studies

Mitsunaga, et al. (2005)
* Smooth robot-human interaction
* Parameters
» Interaction distance, the extent to which the robot meets a human
gaze, waiting time between utterance and action, and motion
speed
* Reward
* Amount of movements and the period for gazing at the robot

Tapus, et al. (2007)
* Hands-off therapist robot
* Parameters
* interaction distance/proxemics, speed and vocal content
* Reward
* number of exercises performed by the patient
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Working Task:
Holding Assist Task

The user and the robot move a load
cooperatively without actual force sensors
Hands-on kinetic Interaction

Overview
of the Holding Assist Task

Reading the user’s motor intention
by means of virtual force sensing

Force feedback control in which the
target force is —¥m(g+2)
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Virtual Force/Tactile Sensing

Tamel, et al. 2007; 2008

Virtual realization of force/tactile
sensors in robots without real sensors
using user’s biological signals

’ Direct Interaction ‘ ’ Indirect Interaction
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Virtual Force/Tactile Sensing

Tamei, et al. 2007; 2008

Virtual realization of force/tactile
sensors in robots without real sensors
using user’s biological signals

’ Direct Interaction ‘
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Measured Biological Signals

Motion
* Upper extremity

EMG

* Flexor carpi radialis
(FCR): flexor of the
wrist

* Extensor carpi radialis
longus (ECRL) :
extensor of the wrist

Function Approximation

of the Applied Force
In general g o0 __[ectled
* Muscle tensionisa 3 | :
500 fll -

non-linear function of
the muscle length,

shortening velocity, 0 '
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and the motor e
command 10 : : : —— approximated

In this study

* Linear approximation
has been sufficient
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Control Law

First step
mZ+cz+kz=C(f,—f,)
X=0
f1 : force applied to the user’s hand
f, : desired force for the user
C :constant

Second step

pislall

0, =6, -6, 15

Simple Extension
to the 3-Dimensional Task

[ Tamei, et al. Submitted] 1q




General Difficulties
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in EMG Signals
S woice Reinforcement leaning for assisting
relationship is 5
nonlinear o Humans
Muscle coordination £ , : Holding assist task
can var.y 50 2000 4000 6000 8000 100060
Force sensor output » Virtual force sensing with the measurement
during calibration e’ of motion and EMG signals
phase does n0t -BD 2000 4000 6000 8000 10000 > 2 -4
necessarily reflect the 4 Learning for the holding assist task
user’s motor intention 4
Recalibrationonthe £ =
ﬂ'y’ is not possible % 2000 4000.-.-..".*- €000 0000 10000
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Application
. PP . Summary and Future Work
of Reinforcement Learning
: Summar
Learning Control of the user-coupled ) Y , il
_ » Reinforcement learning for assisting
system [Tamei, et al. In prep] T
----------------- * User-coupled system
oA * Learning holding assist using the user’s
A~ - Force f, biological signals
f2 = fl +a Estlm:ator 7 * Hands-on kinetic interaction
Future work

a~N(ajp,X) ........ ,f .

» Feature selection

a  Different tasks
n w o » Use in computational neuroscience
. 19 20
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