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Reinforcement LearningReinforcement Learning

Reinforcement learning
• is probably the most general framework in 

which such learning problems of 
computational motor control can be phrased
[Peters and Schaal. 2008]

Challenges
• Policy representation

• Efficient algorithm

• Learning for assist other agents such as 
humans
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Related StudiesRelated Studies

Mitsunaga, et al. (2005)
• Smooth robot-human interaction
• Parameters

• Interaction distance, the extent to which the robot meets a human 
gaze, waiting time between utterance and action, and motion 
speed

• Reward
• Amount of movements and the period for gazing at the robot 

Tapus, et al. (2007)
• Hands-off therapist robot
• Parameters

• interaction distance/proxemics, speed and vocal content
• Reward

• number of exercises performed by the patient
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Working Task:Working Task:
Holding Assist TaskHolding Assist Task

The user and the robot move a load 
cooperatively without actual force sensors  
Hands-on kinetic Interaction

[ Tamei, et al. 2007; 2008 ] 10

OverviewOverview
of the Holding Assist Taskof the Holding Assist Task

Reading the user’s motor intention
by means of virtual force sensing

Force feedback control in which the 
target force is 
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Virtual Force/Tactile SensingVirtual Force/Tactile Sensing

Tamei, et al. 2007; 2008

Virtual realization of force/tactile 
sensors in robots without real sensors 
using user’s biological signals

Direct Interaction Indirect Interaction
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Virtual Force/Tactile SensingVirtual Force/Tactile Sensing

Tamei, et al. 2007; 2008

Virtual realization of force/tactile 
sensors in robots without real sensors 
using user’s biological signals

Direct Interaction
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Measured Biological SignalsMeasured Biological Signals

Motion
• Upper extremity

EMG
• Flexor carpi radialis

(FCR)： flexor of the 
wrist

• Extensor carpi radialis
longus (ECRL) ：
extensor of the wrist
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Function Approximation Function Approximation 
of the Applied Force of the Applied Force 

In general
• Muscle tension is a 

non-linear function of 
the muscle length, 
shortening velocity, 
and the motor 
command

In this study
• Linear approximation 

has been sufficient
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First step

Second step

Control LawControl Law
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Simple Extension Simple Extension 
to the 3to the 3--Dimensional TaskDimensional Task

[ Tamei, et al. Submitted]
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General Difficulties General Difficulties 
in EMG Signalsin EMG Signals

Muscle-force 
relationship is 
nonlinear
Muscle coordination 
can vary
Force sensor output 
during calibration 
phase does not 
necessarily reflect the 
user’s motor intention
Recalibration on the 
fly is not possible
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Application Application 
of Reinforcement Learningof Reinforcement Learning

Learning Control of the user-coupled 
system [Tamei, et al. In prep]
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Summary and Future Work Summary and Future Work 

Summary 
• Reinforcement learning for assisting 

humans
• User-coupled system

• Learning holding assist using the user’s 
biological signals

• Hands-on kinetic interaction

Future work
• Feature selection
• Different tasks
• Use in computational neuroscience
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Trainee
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My DreamMy Dream
-- Learning Trainer Learning Trainer --
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