Learning Control at Intermediate Reynolds Numbers

Experiments with perching UAVs and flapping-winged flight

Russ Tedrake

Assistant Professor MIT Computer Science and Artificial Intelligence Lab

IROS 2008 Learning Workshop September 22, 2008

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

• Reinforcement learning has the potential to generate high-performance <u>nonlinear</u>, adaptive control policies for complicated systems...

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

(ロ) (同) (E) (E) (E)

Sar

- Reinforcement learning has the potential to generate high-performance <u>nonlinear</u>, adaptive control policies for complicated systems...
 - but our techniques *must* be validated vs. more traditional control techniques.

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

(ロ) (同) (E) (E) (E)

• Reinforcement learning has the potential to generate high-performance <u>nonlinear</u>, adaptive control policies for complicated systems...

but our techniques *must* be validated vs. more traditional control techniques.

• There are many problems in robotics where traditional nonlinear control offers relatively few solutions

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

• Reinforcement learning has the potential to generate high-performance <u>nonlinear</u>, adaptive control policies for complicated systems...

but our techniques *must* be validated vs. more traditional control techniques.

- There are many problems in robotics where traditional nonlinear control offers relatively few solutions
 - Underactuated systems, many stochastic systems, ...

• Reinforcement learning has the potential to generate high-performance <u>nonlinear</u>, adaptive control policies for complicated systems...

but our techniques *must* be validated vs. more traditional control techniques.

- There are many problems in robotics where traditional nonlinear control offers relatively few solutions
 - Underactuated systems, many stochastic systems, ...
 - Learning control can quickly become the state-of-the-art

SQ C

• Reinforcement learning has the potential to generate high-performance <u>nonlinear</u>, adaptive control policies for complicated systems...

but our techniques *must* be validated vs. more traditional control techniques.

- There are many problems in robotics where traditional nonlinear control offers relatively few solutions
 - Underactuated systems, many stochastic systems, ...
 - Learning control can quickly become the state-of-the-art

Control in complicated fluid dynamics

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

SQ C

Example: Landing on a perch

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

(ロ) (回) (E) (E) (E)

The State-of-the-Art in Perching

Approach 1: Morphing plane

January 28th, 2007

A D A A B A A B A A B A

- Both sacrifice performance to use linear control on modified vehicles (can't compete w/ birds!)
- Can learning nonlinear control produce superior performance on existing vehicles?

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

Technical challenges for control

- Dynamics quickly get too complicated for conventional control design
 - Fluid dynamics are time-varying and very nonlinear
 - CFD simulations in these regimes can take days to compute
 - Severe lack of compact (design accessible) models
- Limited control authority
 - Flow is only partially observable
 - Stalls result in intermittent losses of control authority
 - "Underactuated control" control actions have long-term consequences

Sac

Learning Control for Perching

- Accurate Navier-Stokes simulations takes days to compute, but...
- Model-based Reinforcement Learning:
 - Learn approximate model of unsteady dynamics from real flight data
 - Formulate the goal of control as the long-term optimization of a scalar cost
 - **3** Offline model-based numerical optimal control
 - Online model-free optimal control ("learning")

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

SQ C

Experiment Design

- Glider (no propellor)
- Dihedral (passive roll stability)
- Offboard sensing and control

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

イロン イヨン イヨン イヨン

System Identification

- Nonlinear rigid-body vehicle model
- Linear (w/ delay) actuator model
- Real flight data
 - Very high angle-of-attack regimes
 - Surprisingly good match to theory
 - Vortex shedding

Lift Coefficient

Russ Tedrake, MIT CSAIL

Drag Coefficient

Learning Control at Intermediate Reynolds Numbers

A dynamic model

- Planar dynamics
- Aerodynamics from model
- State: $\mathbf{x} = [x, y, \theta, \phi, \dot{x}, \dot{y}, \dot{\theta}]$
- Only actuator is the elevator angle, $\mathbf{u}=\dot{\boldsymbol{\phi}}$

() < </p>

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

Feedback Control Design

• Optimal feedback control formulation:

$$\begin{aligned} J^{\pi}(\mathbf{x}) &= \min \left[(\mathbf{x} - \mathbf{x}^d)^T \mathbf{Q} (\mathbf{x} - \mathbf{x}^d), \quad J^{\pi}(\mathbf{x}') \right], \\ \mathbf{x}' &= f(\mathbf{x}, \pi(\mathbf{x}))) \end{aligned}$$

- x is the estimated state (from motion capture)
- π is the feedback policy, commanding elevator angle as a function of state
- f is the identified system model
- **Q** is a positive definite cost matrix
- Discretize dynamics on a mesh over state space
- Optimized Dynamic Programming algorithm approximates the optimal policy, π^{*}(x), from model

イロト イポト イヨト イヨト 二日

Sac

Glider Perching

- Enters motion capture @ 6 m/s.
- Perch is < 3.5 m away.
- Entire trajectory @ 1 second.

Requires Separation!

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

・ロン ・団 と ・ ヨ と ・ ヨ と

Flow visualization (very preliminary)

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

(日) (四) (E) (E) (E)

Flow visualization (very preliminary)

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

イロト イロト イヨト イヨト 三日

Transition to Outdoors: Gust Response

- Current experiments are in "still air"
- Outdoor flights require robustness to
 - ambient wind conditions
 - persistent flow structures (e.g., around the perch)
 - short-term "gust" disturbances
- Capture statistical environment model
- Instrument motion capture arena with known aerodynamic disturbances, obstacles, and wind
- Already performed detailed LTV controllability analysis with different actuator configurations

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

SQ C

The Intermediate Reynolds Number regime

- Reynolds number (Re) dimensionless quantity that correlates with the resulting kinematics of the fluid
 - Low Re viscousity dominates, flow is laminar
 - High Re turbulence
 - Intermediate Re complicated, but structured flow (eg, vortex shedding). Glider perching example is Re 50,000 down to Re 15,000.
- At Intermediate Re:
 - Lots of interesting control problems
 - Almost no good control solutions

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

SQ C

Bird-scale flapping flight

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

< ロ > < 回 > < 回 > < 回 > < 三 > < 三 > 三 三

Autonomous Flapping-Winged Flight

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

(ロ) (回) (E) (E) (E)

DAG

Motivation

- Bird-scale flapping vehicles will not surpass the speed or efficiency of fixed-wing aircraft for steady-level flight in still air
 - Propellors produce thrust very efficiently
 - Aircraft airfoils can be highly optimized (for speed or efficiency)

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

(ロ) (同) (E) (E) (E)

Motivation

- Bird-scale flapping vehicles will not surpass the speed or efficiency of fixed-wing aircraft for steady-level flight in still air
 - Propellors produce thrust very efficiently
 - Aircraft airfoils can be highly optimized (for speed or efficiency)
- But looking more closely...

Efficient flying machines

 An albatross can fly for hours (or even days) without flapping, even migrating upwind (exploiting gradients in the shear layer)

• Butterflies migrate thousands of kilometers, carried by the wind

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

Super-maneuverability

• Peregrine falcons have been clocked at 240+ mph in dives, and have the agility to snatch moving prey

- Bats have been documented...
 - Catching prey on their wings
 - Manuevering through thick rain forests at high speeds
 - Making high speed 180 degree turns
 - ...

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

・ロン ・回 と ・ ヨン ・ ヨン

• Birds far surpass the performance of our best engineered systems (especially UAVs) in metrics of efficiency, acceleration, and maneuverability.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

SQ C

• Birds far surpass the performance of our best engineered systems (especially UAVs) in metrics of efficiency, acceleration, and maneuverability.

• The secret:

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

SQ C

• Birds far surpass the performance of our best engineered systems (especially UAVs) in metrics of efficiency, acceleration, and maneuverability.

• The secret:

Birds (and fish, ...) exploit unsteady aerodynamics at intermediate Re

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

• Birds far surpass the performance of our best engineered systems (especially UAVs) in metrics of efficiency, acceleration, and maneuverability.

• The secret:

Birds (and fish, ...) exploit unsteady aerodynamics at intermediate Re

- A manipulation problem
 - Requires unconventional mechanical and control designs
 - Once you start thinking of bird flight as manipulating the air, it becomes harder to appreciate fixed-wing flight

(ロ) (同) (E) (E) (E) (O)(O)

Example: Efficient swimming upstream

from George Lauder's Lab at Harvard (Liao et al, 2003)

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

(a)

Prospects for machine learning

- Key observations about fluid-body interactions at intermediate Re
 - Considerable previous work in system identification permits the use of approximate models
 - Won't always be able to discretize the state space
 - Relatively compact policies (few parameters) can generate a large repetoire of behaviors

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

Prospects for machine learning

- Key observations about fluid-body interactions at intermediate Re
 - Considerable previous work in system identification permits the use of approximate models
 - Won't always be able to discretize the state space
 - Relatively compact policies (few parameters) can generate a large repetoire of behaviors
- Formal analysis of the policy gradient algorithms reveals:
 - Performance (via SNR) degrades with the number of control parameters
 - Performance is (locally) invariant to the complexity of the plant dynamics

The Heaving Foil

work with Jun Zhang (NYU Courant)

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

The Heaving Foil

- Rigid, symmetric wing
- Driven vertically
- Free to rotate horizontally

[Vandenberghe et al., 2006]

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

イロト イヨト イヨト イヨト

Symmetry breaking leads to forward flight

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

(ロ) (回) (E) (E) (E)

Flow visualization

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

Effect of flapping frequency

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

() < </p>

The control problem

- Previous work only used sinusoidal trajectories
- Optimize stroke form to maximize the "efficiency" of forward flight
 - Add vertical load cell (measures $F_z(t)$)
 - Dimensionless cost of transport:

$$c_{mt} = \frac{\int_{T} |F_z(t)\dot{z}(t)|dt}{mg \int_{T} \dot{x}(t)dt}$$

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

Sac

The control problem

- Previous work only used sinusoidal trajectories
- Optimize stroke form to maximize the "efficiency" of forward flight
 - Add vertical load cell (measures $F_z(t)$)
 - Dimensionless cost of transport:

$$c_{mt} = \frac{\int_{T} |F_z(t)\dot{z}(t)|dt}{mg \int_{T} \dot{x}(t)dt}$$

• Fortunately

$$\min c_{mt} = \min \frac{\int_{T} |F_z(t)\dot{z}(t)|dt}{\int_{T} \dot{x}(t)dt}$$

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

(ロ) (同) (E) (E) (E)

Sac

Prospects for optimization

• CFD model[Alben and Shelley, 2005]

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

() < </p>

э

Prospects for optimization

• CFD model[Alben and Shelley, 2005]

• Takes approximately 36 hours to simulate 30 flaps

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

э.

Experimental Optimization

- Can we perform the optimization directly in the fluid?
- Direct policy search
 - Needs to be robust to noisy evaluations
 - Minimize number of trials required

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

・ロト ・ 同ト ・ ヨト ・ ヨト

Optimized policy gradient

• The basic algorithm (weight perturbation):

- Perturb the control parameters, **p** by some amount **z** from $N(0, \sigma)$
- Perform the update:

$$\Delta \mathbf{p} = -\eta (c_{mt}(\mathbf{p} + \mathbf{z}) - c_{mt}(\mathbf{p}))\mathbf{z}$$

Strong performance guarantees

$$E[\Delta \mathbf{p}] \propto -\frac{\partial c_{mt}}{\partial \mathbf{p}}$$

- Poor performance (requires many trials)
- SNR optimized policy gradient [Roberts and Tedrake, 2009]

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

Learning results

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

Learning results (cont.)

Russ Tedrake, MIT CSAIL

Learning Control at Intermediate Reynolds Numbers

・ロト ・回ト ・ヨト ・ヨト

æ

A dynamic explanation

- Forward speed is linear in flapping frequency
 - from experiments
 - statement about average speed
- Drag forces quadratic in speed ($F \propto
 ho SV^2$)
- Triangle wave obtains highest average speed w/ minimal drag

Sac

Implications

- Enabling tool for experimental fluid dynamicists
- Suggests that motor learning algorithms could produce efficient control solutions in fluids
- Suggests that we can use this to control robotic birds
- Exciting prospects for online learning in changing environments

イロト 不得 とうき とうとう ほう

SQ C

Summary

- Nonlinear, underactuated control w/ imperfect models via machine learning control (birds don't solve Navier-Stokes)
- Allows our machines to exploit unsteady flow effects
- Soon, robotic birds will:
 - Fly efficiently and autonomously
 - Outperform fixed-wing vehicles in maneuverability

Acknowledgements

- Students:
 - John Roberts
 - Rick Cory
 - Zack Jackowski
 - Steve Proulx
- Funding:
 - MIT, MIT CSAIL
 - NEC corporation
 - Lincoln Labs ACC
 - Microsoft

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

・ロト ・回ト ・ヨト ・ヨト

References

Alben, S. and Shelley, M. (2005).

Coherent locomotion as an attracting state for a free flapping body.

Proceedings of the National Academy of Sciences, 102(32):11163–11166.

- Roberts, J. W. and Tedrake, R. (2009).
 Signal-to-noise ratio analysis of policy gradient algorithms.
 In *To appear in Advances of Neural Information Processing Systems (NIPS) 21*, page 8.
- Vandenberghe, N., Childress, S., and Zhang, J. (2006).
 On unidirectional flight of a free flapping wing.
 Physics of Fluids, 18.

Russ Tedrake, MIT CSAIL Learning Control at Intermediate Reynolds Numbers

SQ C