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The Burden of Learning Control

Reinforcement learning has the potential to generate
high-performance nonlinear, adaptive control policies for
complicated systems...

but our techniques must be validated vs. more traditional
control techniques.

There are many problems in robotics where traditional
nonlinear control offers relatively few solutions

Underactuated systems, many stochastic systems, ...
Learning control can quickly become the state-of-the-art

Control in complicated fluid dynamics
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Example: Landing on a perch
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The State-of-the-Art in Perching

Approach 1: Morphing plane Approach 2: Over-powered hover

Both sacrifice performance to use linear control on modified
vehicles (can’t compete w/ birds!)

Can learning nonlinear control produce superior performance
on existing vehicles?
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Technical challenges for control

Dynamics quickly get too complicated for conventional
control design

Fluid dynamics are time-varying and very nonlinear
CFD simulations in these regimes can take days to compute
Severe lack of compact (design accessible) models

Limited control authority

Flow is only partially observable
Stalls result in intermittent losses of control authority
“Underactuated control” - control actions have long-term
consequences
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Learning Control for Perching

Accurate Navier-Stokes simulations takes days to compute,
but...

Model-based Reinforcement Learning:
1 Learn approximate model of unsteady dynamics from real flight

data
2 Formulate the goal of control as the long-term optimization of

a scalar cost
3 Offline model-based numerical optimal control
4 Online model-free optimal control (“learning”)
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Experiment Design

Glider (no propellor)

Dihedral (passive roll
stability)

Offboard sensing and
control
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System Identification

Nonlinear rigid-body vehicle model

Linear (w/ delay) actuator model
Real flight data

Very high angle-of-attack regimes
Surprisingly good match to theory
Vortex shedding

Lift Coefficient
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A dynamic model
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Planar dynamics

Aerodynamics from model

State: x = [x , y , θ, φ, ẋ , ẏ , θ̇]

Only actuator is the elevator
angle, u = φ̇
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Feedback Control Design

Optimal feedback control formulation:

Jπ(x) = min
[
(x− xd)T Q(x− xd), Jπ(x′)

]
,

x′ = f (x, π(x)))

x is the estimated state (from motion capture)
π is the feedback policy, commanding elevator angle as a
function of state
f is the identified system model
Q is a positive definite cost matrix

Discretize dynamics on a mesh over state space

Optimized Dynamic Programming algorithm approximates the
optimal policy, π∗(x), from model
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Glider Perching

Enters motion capture @ 6 m/s.

Perch is < 3.5 m away.

Entire trajectory @ 1 second.

Requires
Separation!
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Flow visualization (very preliminary)
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Transition to Outdoors: Gust Response

Current experiments are in “still air”

Outdoor flights require robustness to

ambient wind conditions
persistent flow structures (e.g., around the perch)
short-term “gust” disturbances

Capture statistical environment model

Instrument motion capture arena with known aerodynamic
disturbances, obstacles, and wind

Already performed detailed LTV controllability analysis with
different actuator configurations
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The Intermediate Reynolds Number regime

Reynolds number (Re) - dimensionless quantity that correlates
with the resulting kinematics of the fluid

Low Re - viscousity dominates, flow is laminar
High Re - turbulence
Intermediate Re - complicated, but structured flow (eg, vortex
shedding). Glider perching example is Re 50,000 down to Re
15,000.

At Intermediate Re:

Lots of interesting control problems
Almost no good control solutions
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Bird-scale flapping flight
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Autonomous Flapping-Winged Flight
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Motivation

Bird-scale flapping vehicles will not surpass the speed or
efficiency of fixed-wing aircraft for steady-level flight in still air

Propellors produce thrust very efficiently
Aircraft airfoils can be highly optimized (for speed or
efficiency)

But looking more closely...
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Efficient flying machines

An albatross can fly for hours (or even days) without flapping,
even migrating upwind (exploiting gradients in the shear layer)

Butterflies migrate thousands of kilometers, carried by the
wind
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Super-maneuverability

Peregrine falcons have been clocked at 240+ mph in dives,
and have the agility to snatch moving prey

Bats have been documented...

Catching prey on their wings
Manuevering through thick rain forests at high speeds
Making high speed 180 degree turns
...
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Manipulating the Air

Birds far surpass the performance of our best engineered
systems (especially UAVs) in metrics of efficiency,
acceleration, and maneuverability.

The secret:

Birds (and fish, ...) exploit unsteady aerodynamics at
intermediate Re

A manipulation problem

Requires unconventional mechanical and control designs
Once you start thinking of bird flight as manipulating the air,
it becomes harder to appreciate fixed-wing flight
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Example: Efficient swimming upstream

from George Lauder’s Lab at Harvard
(Liao et al, 2003)
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Prospects for machine learning

Key observations about fluid-body interactions at intermediate
Re

Considerable previous work in system identification permits the
use of approximate models
Won’t always be able to discretize the state space
Relatively compact policies (few parameters) can generate a
large repetoire of behaviors

Formal analysis of the policy gradient algorithms reveals:

Performance (via SNR) degrades with the number of control
parameters
Performance is (locally) invariant to the complexity of the
plant dynamics
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The Heaving Foil

work with Jun Zhang (NYU Courant)
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The Heaving Foil

[Vandenberghe et al., 2006]

Rigid, symmetric wing

Driven vertically

Free to rotate
horizontally
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Symmetry breaking leads to forward flight
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Flow visualization
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Effect of flapping frequency
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The control problem

Previous work only used sinusoidal trajectories

Optimize stroke form to maximize the “efficiency” of forward
flight

Add vertical load cell (measures Fz(t))
Dimensionless cost of transport:

cmt =

∫
T
|Fz(t)ż(t)|dt

mg
∫
T

ẋ(t)dt

Fortunately

min cmt = min

∫
T
|Fz(t)ż(t)|dt∫

T
ẋ(t)dt
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Prospects for optimization

CFD model[Alben and Shelley, 2005]

Takes approximately 36 hours to simulate 30 flaps
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Experimental Optimization

Can we perform the optimization directly in the fluid?

Direct policy search

Needs to be robust to noisy evaluations
Minimize number of trials required
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Optimized policy gradient

The basic algorithm (weight perturbation):

Perturb the control parameters, p by some amount z from
N(0, σ)
Perform the update:

∆p = −η(cmt(p + z)− cmt(p))z

Strong performance guarantees

E [∆p] ∝ −∂cmt

∂p
.

Poor performance (requires many trials)

SNR optimized policy gradient [Roberts and Tedrake, 2009]
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Learning results
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Learning results (cont.)
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A dynamic explanation

Forward speed is linear in flapping frequency

from experiments
statement about average speed

Drag forces quadratic in speed (F ∝ ρSV 2)

Triangle wave obtains highest average speed w/ minimal drag
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Implications

Enabling tool for experimental fluid dynamicists

Suggests that motor learning algorithms could produce
efficient control solutions in fluids

Suggests that we can use this to control robotic birds

Exciting prospects for online learning in changing
environments
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Summary

Nonlinear, underactuated control w/ imperfect models via
machine learning control (birds don’t solve Navier-Stokes)

Allows our machines to exploit unsteady flow effects

Soon, robotic birds will:

Fly efficiently and autonomously
Outperform fixed-wing vehicles in maneuverability
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