Signal-Amplifying Genetic Circuit Enables In Vivo Observation of Weak Promoter Activation in the Rhl Quorum Sensing System

David Karig,¹ Ron Weiss¹,²

¹Department of Electrical Engineering, Princeton University, J-319, E-Quad, Princeton, New Jersey 08544; e-mail: rweiss@princeton.edu
²Department of Molecular Biology, Princeton University, Washington Rd., Princeton, New Jersey 08544

Received 28 July 2004; accepted 14 October 2004

DOI: 10.1002/bit.20371

Abstract: Small changes in transcriptional activity often significantly affect phenotype but are not detectable in vivo by conventional means. To address this problem, we present a technique for detecting weak transcriptional responses using signal-amplifying genetic circuits. We apply this technique to reveal previously undetectable log phase responses of several Rhl quorum sensing controlled (qsc) promoters from Pseudomonas aeruginosa. Genetic circuits with Rhl promoters and transcriptional amplification components were built and tested in Escherichia coli. This enabled us to isolate the behavior of the promoters under study from Las and quinolone interactions. To amplify qsc promoter responses to acyl-homoserine lactones (AHL), the highly efficient λ repressor gene was placed downstream of several Rhl promoters and coupled to a fluorescent reporter under the control of the λ P(R) promoter. With amplification, up to ~100-fold differences in fluorescence levels between AHL induced and noninduced cultures were observed for promoters whose responses were otherwise not detectable. In addition, the combination of using signal amplification and performing experiments in E. coli simplified the analysis of AHL signal crosstalk. For example, we discovered that while a C4HSL/RhlR complex activates both qsc rhlA and qsc phzA1, a 3OC12HSL/RhlR complex activates qsc phzA1 but not qsc rhlA in our system. This crosstalk information is particularly important since one of the potential uses of amplification constructs is for the detection of specific quorum sensing signals in the opportunistic human pathogen Pseudomonas aeruginosa.

Quorum sensing enables many bacteria to measure population density and coordinate various cellular behaviors in a population (Miller and Bassler, 2001; Taga and Bassler, 2003). In P. aeruginosa, the Las and Rhl quorum sensing systems control expression of hundreds of genes (Whiteley et al., 1999; Schuster et al., 2003; Wagner et al., 2003; Hentzer et al., 2003; Arevalo-Ferro et al., 2003). Specifically, LasI catalyses synthesis of the diffusible acyl-homoserine lactone (AHL) molecule 3OC12HSL, which forms a complex with LasR (Pearson et al., 1994). The LasR/3OC12HSL complex then regulates a set of genes including lasI and rhlR (Pesci et al., 1997). In the Rhl system, RhlI catalyzes synthesis of another diffusible molecule, C4HSL. This AHL molecule binds RhlR and regulates another set of genes including rhlI (Winson et al., 1995). The expression of many genes has been found to be con-
trolled by these systems as well as the coordination of processes including virulence factor production (Brint and Ohman, 1995; Winzer et al., 2000), biofilm formation (Davies et al., 1998), and antimicrobial resistance (Hassett et al., 1999). However, the task of determining which promoters are regulated by quorum sensing is complicated by the fact that the strength of transcriptional response to AHL depends on various conditions such as growth phase and media (Vasil, 2003; Wagner et al., 2003; Medina et al., 2003a). Interactions between the Las and Rhl systems (Van Delden and Iglewski, 1998) and the quinolone signaling system (McGrath et al., 2004) add further complexity to the challenge of identifying the specific roles of each signal. In this article, we introduce a method of transcriptional amplification for the purpose of detecting weak responses to signals that cannot be observed directly in vivo and use this method to study several Rhl system promoters in isolation from Las and quinolone interactions.

To establish baseline detection levels, we first constructed a set of “direct detection” circuits that express rhlR constitutively and express enhanced yellow fluorescent protein (eyfp) under control of the qsc promoters shown in Table I. The fact that only one of these promoters exhibited a significant log phase response to C4HSL motived the construction of the signal amplification circuits. Rather than placing the eyfp reporter gene directly under control of the qsc promoter, our signal amplification technique consists of inserting a destabilized version (Andersen et al., 1998) of the λ repressor gene cI(LVA) (Ptashne, 1986) downstream of the qsc promoter and coupling it to a λ P(R-O12) promoter (Weiss, 2001) that regulates eyfp expression (Fig. 1). Since CI is a highly efficient repressor, even a low concentration of CI can completely repress λ P(R-O12) and dramatically change the reporter concentration. We developed a computational model to explore the fundamental issues in engineering transcriptional amplifiers that work well over a wide range of promoter strengths. The model guided the development of different constructs (through mutations in λ P(R-O12)) that successfully amplified the different qsc promoters in the experiments.

Based on these experimental results, we classify qsc promoter responses to a particular AHL for a given growth phase as directly observable, observable through amplification, or nonresponsive (Table I). Without amplification, several qsc promoters appear to be nonresponsive to various AHLs in E. coli during log phase. Here we demonstrate that the response of three of these promoters (qscrhLA, qspchZA1, and qscLasB) to C4HSL should rather be classified as observable through amplification. Since transcriptional amplification can be useful for detecting specific quorum sensing signals in environmental and clinical isolates, we characterized qsc promoter responses to different AHLs using our amplification constructs. These crosstalk properties, which should ultimately be investigated in P. aeruginosa, also have implications for understanding the intricate regulation of qsc genes and for interspecies communication.

Table I. Quorum Sensing Controlled Promoters Studied.

<table>
<thead>
<tr>
<th>Promoter Region from PAO-1 used in plasmids</th>
<th>Downstream gene functions</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(R-O12)</td>
<td>C4HSL synthesis</td>
<td>Direct</td>
</tr>
<tr>
<td>P(R-O12)</td>
<td>biofilm development and maintenance adaptation, protection, microbial competitiveness virulence/microbial competitiveness</td>
<td>Amplified</td>
</tr>
<tr>
<td>P(R-O12)</td>
<td>C8C8</td>
<td>Not responsive</td>
</tr>
<tr>
<td>P(R-O12)</td>
<td>T9</td>
<td>Not responsive</td>
</tr>
<tr>
<td>P(R-O12)</td>
<td>G6G7C4</td>
<td>Not responsive</td>
</tr>
<tr>
<td>P(R-O12)</td>
<td>A8G8</td>
<td>Not responsive</td>
</tr>
<tr>
<td>P(R-O12)</td>
<td>G3T5</td>
<td>Not responsive</td>
</tr>
</tbody>
</table>

The promoter name is shown in the first column. These names are based on the first gene found upstream of the promoter, and the corresponding numbers assigned by the Pseudomonas genome project (Stover et al., 2000) are shown in parentheses. Rhl box sequence regions are underlined, and conserved sites in these regions are shown in bold. The Rhl box consensus sequence is 5’-A[n]C[4-8]T[8-10]G6G7C4A8G8G3T5-3’. Promoters are classified as ‘direct’ if they respond only when amplified, or as ‘amplified’ if they respond only when amplified, or as ‘not responsive’.
MATERIALS AND METHODS

Bacterial Strains and Culture Conditions

Escherichia coli JM2.300 (F' lacZ22 λ e14 rpsL135(StrR) thi-1) from the E. coli Genetic Stock Center (strain 5002) was used in all phenotype experiments; E. coli DH5α (F' θ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17(ri, mK) phoA supE44 thi-1 gyrA96 relA1 λ) was used for plasmid building and propagation. LB broth (Difco, Detroit, MI) with the appropriate antibiotic(s) was used as a growth medium in all experiments. For direct detection experiments, 50 μg/mL kanamycin (Shelton Scientific, Shelton, CT) was used. In amplifier experiments, 50 μg/mL kanamycin (Shelton Scientific) and 100 μg/mL ampicillin (Sigma, St. Louis, MO) were used. AHL was added at the specified concentration. The AHLS butanoyl-homoserine lactone (C4HSL), hexanoyl-homoserine lactone (C6HSL), and 3-oxohexanoyl-homoserine lactone (3OC6HSL) were acquired from Sigma-Aldrich, while 3-oxo-dodecanoyl-homoserine lactone (3OC12HSL) was the gift of L. Passador (Passador et al., 1996; Pearson et al., Figure 1.

![Amplifier genetic circuit and plasmid maps](image)

(a) Direct detection constructs

(b) Amplification constructs

Figure 1. Amplifier genetic circuit and plasmid maps for (a) direct detection and (b) amplification. Exogenous C4HSL diffuses into the cell and binds the RhlR receptor protein. The C4HSL/RhlR complex activates the qsc promoter, resulting in EYFP production with the direct detection constructs and CI production with the amplification constructs. In the amplification constructs, CI then represses λ \(P_{(R-O12)} \) and lowers the level of the fluorescent reporter EYFP.
For all growth experiments, cultures were incubated at 37°C in a shaker at 250 rpm.

Plasmids

Table II and Figure 1 describe the plasmids used in this study. Constructs designed for direct detection contain *eyfp* under control of the specified qsc promoter, kanamycin resistance, and *rhlR* constitutively expressed from the P lacIq promoter. The P lacIq promoter is the lacI promoter with a 1 bp mutation in the –35 region to enhance transcriptional efficiency (Calos, 1978). The direct detection plasmids by name are pFNK-202-eyfp-qsc118, -qsc119, -qsc126, -qsc128, -qsc131, -qsc132, -qscelasB, and -qsclecA. The signal amplifiers are two-plasmid systems. The first plasmid is one of the direct detection plasmids with eyfp replaced by cI (LVA). These are pMUX-204-qsc119, -qsc126, -qsc128, -qsc131, -qsc132, -qscelasB, and -qsclecA. The second plasmid (either pINV-107-mut0, -mut5, or -mut6) contains ampicillin resistance along with eyfp regulated by a variant of the Bacteriophage λ promoter. Specifically, the Oq1 sequence of the mut0 plasmid is TACCTCTGGCGGTGATA, while the mut5 and mut6 Oq1 sequences are TACATATGG CCGTGATA and TACAGATGGCCGTGATA, respectively (Weiss, 2001). The qsc promoter sequences for the pMUX and pFNK plasmids are shown in Table I. Although the lasB promoter has two R-protein binding boxes (OP1 and OP2) in *P. aeruginosa* (Rust et al., 1996; Anderson et al., 1999), only OP1 was included in the qscelasB constructs. A strong synthetic ribosome binding site, RBSII, was placed upstream of all eyfp genes (Weiss and Basu, 2002).

The plasmid pTKU-105 is similar to pINV-110 (Yokobayashi et al., 2002) with the P lacI promoter replaced by qscphzA1. This plasmid was created by ligating annealed oligos containing the qscphzA1 promoter to a PCR-amplified pINV-110 fragment. The lacI gene was then replaced with rhlR from pECP61.5 (Pearson et al., 1997) to form pTKU-106. Next, pFNK-202 was created by replacing the region of pTKU-106 containing cI and eyfp with gfp(LVA) from pRCV-3 (Weiss, 2001). The eyfp gene from pINV-107 was added in place of the gfp(LVA) in pFNK-202 to form pFNK-202-eyfp-qsc131. Annealed oligos containing the seven other qsc promoters shown in Table I were then inserted into pFNK-202-eyfp-qsc131 in place of qscphzA1 to create the remaining pFNK-202-eyfp variants. The pTKU-106 plasmid also served as a parent for pMUX-204-qsc131, which was formed by removing the eyfp gene from pTKU-106 and adding an LVA tail to cI. Finally, the same annealed oligos used to create the pFNK-202-eyfp variants were used to make pMUX-204-qsc119, -qsc126, -qsc128, -qsc132, -qscelasB, and -qsclecA from pMUX-204-qsc131.

PCR reactions were carried out using Invitrogen (La Jolla, CA) Hi Fidelity PCR supermix. Qiagen’s (Chatsworth, CA) QIAquick Gel Extraction Kit was used for gel extraction of PCR products. Digestions were performed as instructed by the manufacturer (NEB and Fermentas). PCR purification was done with Qiagen’s PCR purification kit. T4 DNA ligase from NEB was used for ligations, and either Bio-Rad (Hercules, CA) or Eppendorf (Hamburg, Germany) MiniPrep kits were used. The primer 5’ AAGGGATATCG TGTGGGCGACGC 3’, which binds the N-terminal region

<table>
<thead>
<tr>
<th>Table II</th>
<th>Plasmids used in this work.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasmid</td>
<td>Relevant properties</td>
</tr>
<tr>
<td>pINV-107</td>
<td>ori colE1 AP*; xP_{R-012}-RBSII-eyfp</td>
</tr>
<tr>
<td>pINV-107-mut5</td>
<td>ori colE1 AP*; xP_{R-012mut5}-RBSII-eyfp</td>
</tr>
<tr>
<td>pINV-107-mut6</td>
<td>ori colE1 AP*; xP_{R-012mut6}-RBSII-eyfp</td>
</tr>
<tr>
<td>pINV-110</td>
<td>ori p15A Km; P_{R-BSII}-cI-RBSII-ecfp P_{lasB}-lacI</td>
</tr>
<tr>
<td>pRCV-3</td>
<td>ori colE1 AP*; luxP(L)-luxR luxP(R)-RBSII-gfp(LVA)</td>
</tr>
<tr>
<td>pECP61.5</td>
<td>ori colE1 AP*; rhlR-lacZ tacp-hrlR</td>
</tr>
<tr>
<td>pTKU-105</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-lacI</td>
</tr>
<tr>
<td>pTKU-106</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
<tr>
<td>pFNK-202-qsc131</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
<tr>
<td>pFNK-202-eyfp-qsc118</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
<tr>
<td>pFNK-202-eyfp-qsc119</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
<tr>
<td>pFNK-202-eyfp-qsc126</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
<tr>
<td>pFNK-202-eyfp-qsc128</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
<tr>
<td>pFNK-202-eyfp-qsc131</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
<tr>
<td>pFNK-202-eyfp-qsc132</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
<tr>
<td>pFNK-202-eyfp-qscelasB</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
<tr>
<td>pFNK-202-eyfp-qsclecA</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
<tr>
<td>pMUX-204-qsc119</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
<tr>
<td>pMUX-204-qsc126</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
<tr>
<td>pMUX-204-qsc128</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
<tr>
<td>pMUX-204-qsc131</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
<tr>
<td>pMUX-204-qsc132</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
<tr>
<td>pMUX-204-qscelasB</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
<tr>
<td>pMUX-204-qsclecA</td>
<td>ori p15A Km; qscphzA1-RBSII-cI-RBSII-ecfp P_{lasB}-rhlR</td>
</tr>
</tbody>
</table>
of rhlR was used to sequence the qsc promoter regions of all pFNK and pMUX plasmids. The sequencing primer 5’TGCAGGGCTTCCCCAACCCT ACC 3’ was used to verify the C-terminal region of rhlR in pFNK-202-eyfp-qsc131 and pTKU-106. In addition, the primer 5’TACACCCAC TAAACCCACAG 3’ was used to verify the LVA region of cI(LVA). Sequencing was performed with an Applied Biosystems (Foster City, CA) 3100 PRISM 16-array capillary automated fluorescent DNA sequencer. Stratagene’s (La Jolla, CA) site-directed mutagenesis kit was used to fix a single basepair mutation in the -35 region of pFNK-202-qsc131 and pMUX-204-qsc131.

Data Acquisition and Analysis

For all experiments, overnight cultures were diluted to an effective OD600 of ~10−5 in 14-mL culture tubes containing 2 mL of the appropriate media. Cells were then grown to an OD600 of ~0.3 for log phase measurements. For stationary phase experiments, 1 mL of the appropriate fresh media was added to 1 mL of culture at OD600 0.3, and the culture was grown to stationary phase by additional incubation for 14 ± 2 h. All experiments were performed in triplicate. Prior to flow cytometry (FACS) measurements, cells were washed twice in 0.2 μm filtered phosphate-buffered saline to minimize media background fluorescence. All FACS measurements were performed on a Beckman Coulter (Palo Alto, CA) Altra flow cytometer equipped with a 488 nm argon excitation laser and a 515–545 nm emission filter. Median fluorescence values were converted to equivalent fluorescein molecule counts using SPHERO Rainbow Calibration Particles (Spherotech, Libertyville, IL, RCP-30-5A) that were measured before each session.

RESULTS

Direct Detection of Rhl qsc Promoters

Figure 2a shows that the responses of the qscrhI, qscrhI A, qscphzA1, qscLasB, and qscpa1L promoters to C4HSL are directly detectable in stationary phase E. coli cells, confirming that these constructs are operational. However, of these promoters only qscrhI exhibits a reasonably strong, directly detectable response to C4HSL in log phase (Fig. 2b). In addition to the above promoters, the responses of qscnrps, qscchenA, and qscphzS were measured, but these promoters exhibited no response in either stationary or log phase (data not shown). Our qscrhIA results agree with previous findings that this promoter responds in stationary but not log phase E. coli cells grown in LB media (Medina et al., 2003a). Also, the qscpa1L promoter has been shown to respond to C4HSL in E. coli and has a −10 sequence

Figure 2. a: Directly detected response of qsc promoters in stationary phase. b: Directly detected response of qsc promoters in log phase. c: Amplified response in log phase with and without 17.5 μM C4HSL. Bar heights represent the average of fluorescence intensities from triplicate experiments, while error bars show the lowest and highest fluorescence levels.
homologous to the ω^5 consensus (Winzer et al., 2000; Espinosa-Urgel et al., 1996).

Weak Responses Are Detectable Using Transcriptional Amplification Circuits

The inability to directly detect log phase activation of seven of the eight promoters in this study motivated the use of transcriptional amplification, whereby the ci gene is inserted downstream of the qsc promoter and is coupled to a construct expressing eyfp under control of the $\lambda P_{(R-O12)}$ promoter (Fig. 1). The results shown in Figure 2c indicate that weak log phase activation of qsc promoters can be detected using amplification. For all amplifiers shown, high C4HSL concentrations result in elevated CI levels, and thus lower EYFP fluorescence. Figure 2c also demonstrates the effect of using the three different variations of $\lambda P_{(R-O12)}$ (mut0, mut5, mut6) for each qsc promoter. The

mut0 version has the original O_{R1} and O_{R2} sequences of $\lambda P_{(R-O12)}$, while mut5 and mut6 contain mutations of O_{R1} that decrease the binding efficiency of CI (Weiss and Basu, 2002). As shown by Figure 2c, for a given qsc promoter the mut5 and mut6 versions of the amplification detection circuit result in higher fluorescence values than the original mut0 construct. To ascertain that decreases in fluorescence in the amplifier cells are due to repression rather than a toxic effect of C4HSL, cells containing pNV-107 were grown in similar C4HSL concentrations and showed no noticeable change in fluorescence (data not shown).

The dosage responses of the strongly amplified promoters qscrhLA and qscpzhA1 (Fig. 3) provide important signal sensitivity information. The results further demonstrate the effect of different $\lambda P_{(R-O12)}$ promoters on amplification of different qsc promoters. For example, cells with the qscrhLA/mut5 amplifier exhibit higher fluorescence than cells with the qscrhLA/mut0 amplifier due to the weaker CI-O_{R1} binding efficiency of the mutant promoter. While mut0 provides the best amplification for qscrhLA, we did not use mut0 for qscpzhA1 dosage response experiments, since Figure 2c indicates that mut5 and mut6 work better for this promoter. Inspection of Figure 2c and Figure 3 reveals that amplifiers qscrhLA/mut0, qscpzhA1/mut5, qscpzhA1/mut6, and qsclasB/mut0 exhibit a greater difference in fluorescence levels between induced and non-induced conditions than even the stationary phase direct detection measurements of the corresponding qsc promoters shown in Figure 2a. This enhanced sensitivity provides a means of detecting crosstalk responses with greater resolution than with direct detection circuits, and we utilize this advantage in the following section.

Crosstalk

Using signal amplification, we examine the ability of AHL molecules other than C4HSL to bind RhlR and activate

![Figure 3](image-url)
Figure 3. C4HSL dosage response of signal amplifier constructs qscrhLA/mut0 (squares), qscrhLA/mut5 (triangles), qscpzhA1/mut5 (diamonds), and qscpzhA1/mut6 (circles) in log phase. Symbol markers represent the average of fluorescence intensities from triplicate experiments, while error bars show the lowest and highest fluorescence levels.

![Figure 4](image-url)
Figure 4. Crosstalk results of signal amplifiers (a) qscrhLA/mut0 and (b) qscpzhA1/mut5 grown to log phase in a range of C4HSL (squares), C6HSL (triangles), 3OC12HSL (circles), and 3OC6HSL (diamonds) concentrations. Symbol markers represent the average of fluorescence intensities from triplicate experiments, and error bars show the lowest and highest fluorescence levels.
qscrhlA and qscphzA1. Figure 4 shows the dosage response of the qscrhlA/mut0 and qscphzA1/mut5 signal amplifiers to C6HSL, 3OC12HSL, 3OC6HSL, and C4HSL. Small amounts of C6HSL are produced by RhlI (Winson et al., 1995), and very small amounts of 3OC6HSL are generated by LasI (Pearson et al., 1994). In addition, several organisms found in the same environments as P. aeruginosa produce significant amounts of 3OC6HSL and C6HSL, and we discuss below the possibility of interspecies communication. In accord with previous findings (Ochsner and Reiser, 1995), qscrhlA/mut0 responds almost as well to C6HSL and 3OC6HSL as it does to C4HSL, but it does not respond to 3OC12HSL. On the other hand, qscphzA1/mut5 exhibits distinct responses to all of the AHLs shown. Since these experiments were carried out in E. coli in isolation from Las and quinolone interactions, the different responses are due only to specific promoter activation by the RhlR-AHL complex.

Simulation Results

We created a model to examine the fundamental aspects of transcriptional amplification and to assist in the forward engineering of amplifier circuits that work well with the different qsc promoters. In this model, ordinary differential equations were used to simulate transcription, translation, repression through cooperative binding, AHL complex formation, and degradation. Each qsc promoter exhibits a particular range of transcriptional activity, from basal expression when no AHL is present to fully induced expression under saturating AHL concentrations. These ranges differ for the various promoters, and Figure 5a depicts the simulated direct responses of two hypothetical qsc promoters. One obstacle to the actual detection of such responses is that the background fluorescence of the cell and the detection capabilities of the instrumentation impose a detection threshold that EYFP expression levels must cross.
Even if this threshold is crossed, small differences between the fully induced and noninduced EYFP concentrations may be difficult to observe. Figure 5b, which shows the relationship between CI and EYFP for two variations of P_{R-O12}, delineates the mechanism of amplification. AmpA models the original P_{R-O12}, while AmpB represents a variation of P_{R-O12} with a weaker CI-OR1 binding efficiency. Notice that low levels of CI correspond to high levels of EYFP that are likely above the previously discussed EYFP detection limit. Furthermore, each amplifier has a particular range of CI values for which small increases in CI concentration result in dramatic decreases in EYFP concentration. This is considered the dynamic operating range of the amplifier.

Since ranges of CI expression vary among the different qsc promoters, it is imperative to match these promoters with corresponding P_{R-O12} variations so that any particular range of CI levels will map correctly to the operating range of at least one P_{R-O12} variation. Figure 5c, which depicts the responses of AmpA and AmpB to qsc1 and qsc2, demonstrates this need for different variations of P_{R-O12}. Specifically, AmpA strongly amplifies qsc1, but exhibits a weak, low level response to qsc2. On the other hand, AmpB properly amplifies qsc2 but responds weakly to qsc1. Also note that when the qsc promoters are matched with the appropriate amplifiers, the resulting difference between the fully induced and noninduced EYFP concentrations is improved. For example, there is less than a 10-fold difference between the high and low EYFP concentrations for qsc1 in Figure 5a. However, matching qsc1 with AmpA results in 100-fold difference between the high and low EYFP concentrations in Figure 5c.

Figure 5d depicts the difference between the log of the maximum and the log of the minimum EYFP concentrations as a function of qsc promoter strength and CI-OR1 binding efficiency. Points Q, R, S, and T in the contour correspond to curves Q, R, S, and T in Figure 5c. One important trend is that lower CI-OR1 binding efficiencies accommodate stronger promoters. However, as binding efficiencies are lowered, the maximum possible difference between high and low EYFP values is reduced. This is due to the fact that lowering the CI-OR1 binding efficiency decreases the maximum slope in the EYFP vs. CI characteristic (Fig. 5b). By modifying CI-OR1 binding efficiency, a library of amplifiers can be made to accommodate a wide range of qsc promoter strengths. This correlates well with our experimental results, since the mut0 amplifier works best for qscrlhA, while mut5 and mut6 work best for qscphzA1.

DISCUSSION

We present a method to detect small transcriptional changes that enabled us to characterize the log phase behavior of several *P. aeruginosa* qsc promoters in *E. coli*. Our amplification system is based on strong repression. Because EYFP is a stable protein with a half-life of around 24 h (CLONTECHniques XII, Oct. 1997, 4–15; CLONTECHniques XIV, July 1999, 1–2), its effective rate of decay is determined by dilution through cell growth. Thus, with the signal amplifiers, expression of CI that sufficiently represses P_{R-O12} will cause exponential decay of EYFP as long as the cultures are growing (i.e., in log phase). Hence, activation of the weak qsc promoter can decrease reporter concentration significantly, resulting in inverted amplification. Previously, noninverted methods have been used to amplify weak promoters. For example, the strong activator GAL4-VP16 has been used to amplify tissue-specific promoters for imaging and gene therapy applications (Iyer et al., 2001; Segawa et al., 1998; Nettelbeck et al., 1998, 2000). However, reporter expression from noninverted amplifiers may still be below the detection limit, since activation of an amplified weak promoter raises reporter levels from initially low levels. This detection problem will not occur with an inverted amplifier, since similar activation of the amplified promoter instead results in a decrease in reporter expression from an initially high concentration that is well above background levels.

Since a log phase response to C4HSL was directly detected for qscrhI alone, we applied our amplification technique to the seven other promoters in our study. Amplification successfully revealed the responses of qscrhI, qscphzA1, and qsclasB. Note the high concentration of C4HSL required for half maximal induction of qscrhI (Fig. 3), a promoter that controls rhamnolipid synthesis (Ochsner and Reiser, 1995; Pearson et al., 1997). Rhamnolipids are synthesized during later stages of biofilm development and are required to maintain biofilm architecture (Davey et al., 2003). The highly populated, diffusion-limited environment of the biofilm allows AHLs to readily accumulate within cells. Thus, the requirement of high C4HSL concentrations for qscrhI activation may prevent premature rhamnolipid synthesis during early stages of biofilm formation. The fact that RhIR acts as a transcriptional repressor of qscrhI when not bound to C4HSL (Medina et al., 2003b) likely contributes to the high concentration of C4HSL needed for activation. However, it should be considered that our constructs constitutively express rhIR with a strong ribosome binding site, potentially resulting in higher levels of free RhIR than found naturally in *P. aeruginosa*. In agreement with the simulation results, the amplifier responses shown in Figures 2 and 3 support the need for a library of amplifiers with different CI-OR1 binding efficiencies.

Although findings should ultimately be verified in *P. aeruginosa*, the use of an *E. coli* host provides the benefit of isolating the qsc promoters from the Las and quinolone signaling systems, as well as other relevant regulatory mechanisms present in *P. aeruginosa*. Thus, observed responses to C4HSL in Figures 1, 2, and 3 can be attributed to direct activation of the qsc promoters by the C4HSL/RhIR complex. However, the promoters in this study that do not exhibit distinct responses to C4HSL in *E. coli* may
respond to C4HSL in \(P. \) \(\text{aeruginosa} \) either through distal promoter regulation, additional regulatory mechanisms, or other indirect means. Specifically, in contrast to previous findings in \(P. \) \(\text{aeruginosa} \) (Whiteley et al., 1999; Schuster et al., 2003; Wagner et al., 2003; Hentzer et al., 2003), qscnrps, qscenA, and qscphzS do not respond to C4HSL in \(E. \) \(\text{coli} \). Care must be taken when comparing growth phase regulation in \(E. \) \(\text{coli} \) to growth phase regulation in \(P. \) \(\text{aeruginosa} \), since mechanisms of regulation, e.g., RpoS (Venturi, 2003), may differ.

The crosstalk results shown in Figure 4 have a number of potential implications. We see that qscphzA1 but not qscrhlA responds to 3OC12HSL-RhlR. One important conclusion is that the AHL/R-protein binding domains of qsc promoters are important in determining specificity. This is supported by the fact that certain point mutations in the LasR-specific PA1896 promoter (qsc102) enable this promoter to additionally respond to RhlR (Whiteley and Greenberg, 2001). Furthermore, crosstalk can enable inter-species communication, allowing for more advantageous regulation of processes such as biofilm formation, anti-biotic secretion, and virulence. For example, \(\text{Burkholderia cepacia} \), which forms biofilms with \(\text{P. aeruginosa} \), responds to 3OC12HSL (Riedel et al., 2001). Also, in addition to its presence in animals, \(\text{P. aeruginosa} \) is found in soil and water and is known to infect plants. Many other soil bacteria and plant pathogens are known to produce 3OC6HSL and/or C6HSL, including \(\text{Chromobacterium violaceum} \) (Chernin et al., 1998), \(\text{Erwinia carotovora} \), \(\text{Pantoea stewartii} \), and various other pseudomonads (von Bodman et al., 2003). Furthermore, a number of bacterial strains that degrade specific types of AHL molecules have been isolated (Uroz et al., 2003). Thus, the ability of a promoter to respond to multiple different AHLs would enhance robustness of quorum sensing responses in the presence of such organisms. This said, it must again be considered that in \(\text{P. aeruginosa} \), crosstalk responses to 3OC6HSL and C6HSL may be less significant due to lower RhlR levels.

The signal-amplifying genetic circuits described here have a number of potential applications. Amplification may resolve debates such as whether or not quorum sensing regulates RpoS (Latifi et al., 1996; Whiteley et al., 2000; van Delden et al., 2001) and which genes are truly quorum-sensing repressed in \(\text{P. aeruginosa} \) (Schuster et al., 2003; Wagner et al., 2003; Vasil, 2003). Also, since transcriptional responses can be detected with greater sensitivity through amplification, this technique has a number of biomedical and biosensing applications. For example, amplification enables the engineering of highly sensitive bioassays that can detect trace amounts of toxins, pollutants, or molecules indicating the presence of a particular pathogen.

In the future, more sophisticated synthetic genetic circuits (Berber, 2004) could be developed to improve our understanding of weak, transient, or multielement responses in complex genetic networks.

We thank S. Basu, I. Netravali, J. Leadbetter, R. Mehreja, Y. Gerchman, C. Collins, and members of the Weiss group for helpful discussions. We also thank I. Netravali and S. Basu for constructing pMUX-204-qsc131. J. Leadbetter for providing useful strains and plasmids, and L. Passador for the gift of 3OC12HSL.

References

