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Figure 1: We describe a system that can reconstruct the pose of theftana single image of the hand wearing a multi-colored glave
demonstrate our system as a user-input device for desktiyaMeality applications.

Abstract

Articulated hand-tracking systems have been widely usedttinal
reality but are rarely deployed in consumer applicatiorestditheir
price and complexity. In this paper, we propose an easystoand
inexpensive system that facilitates 3-D articulated liisput using
the hands. Our approach uses a single camera to track a hand we
ing an ordinary cloth glove that is imprinted with a custonttgan.
The pattern is designed to simplify the pose estimation Iprob
allowing us to employ a nearest-neighbor approach to trackdé
at interactive rates. We describe several proof-of-conapplica-
tions enabled by our system that we hope will provide a fotinda
for new interactions in modeling, animation control andraegted
reality.
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1 Introduction

Recent trends in user-interfaces have brought on a wavewef ne
consumer devices that can capture the motion of our handsseTh
include multi-touch interfaces such as the iPhone and ttoeddoft
Surface as well as camera-based systems such as the SorgyEyeT

and the Wii Remote. These devices have enabled new intemacti
in applications as diverse as shopping, gaming, and aroamatn-
trol [Shiratori and Hodgins 2008]. In this paper, we introda new
user-input device that captures the freeform, unresttictetion
of the hands for desktop virtual reality applications. Owation-
capture system tracks both the individual articulatiorhef ingers
and the 3-D global hand motion. Interactive 3-D hand-tragkias
been employed effectively in virtual reality applicationsluding
collaborative virtual workspaces, 3-D modeling, and objedec-
tion [Agrawala et al. 1997; Grossman et al. 2004; Wesche &nd S
del 2001; Sheng et al. 2006; Olwal et al. 2003]. We draw with ou
hands [Keefe et al. 2005]. We are accustomed to physicakgth
interactions with our hands [Kry et al. 2008; Wilson et al0gp
Hand-tracking can even be combined with multi-touch to tea
combination of 2-D and 3-D input [Benko et al. 2005].

While a large body of research incorporates hand-trackystems

for user-input, their deployment has been limited due topthee

and setup cost of these systems. We introduce a consumer hand
tracking technique requiring only inexpensive, commoditynpo-
nents. Our prototype system provides useful hand pose dlaig: t
plications at interactive rates.

We achieve these results by proposing a novel variationedtfiéimd-
tracking problem: we require the user to wear a glove withlarco
pattern. We contribute a data-driven technique that rdpuwt-
termines the con guration of a hand wearing such a glove feom
single camera. In addition, we employ a Hamming-distareset
acceleration data structure to achieve interactive spaedsise in-
verse kinematics for added accuracy. Despite the depthgaiityi
that is inherent to our monocular setup, we demonstrateemin- t
nigue on tasks in animation, virtual assembly and gestuegr-
tion.

2 Related work

Several types of optical motion capture systems are capable
tracking the 3-D position and con guration of the hand. Tineler-
lying technical difference between our approach and otpécal
approaches lies in how we correspond parts of the hand toageim
Traditional marker-based systems identify retro-re eetmarkers



attached to the hand using an array of overlapping camerm®- B
hand tracking techniques employ multiple-hypothesisretiee to
overcome the lack of strong correspondences. Our appraseh u
the color pattern of the glove to infer the approximate pdsine
hand, and thus the correspondence of each of its parts.

Marker-based motion-capture. Marker-based motion-capture
has been demonstrated in several interactive systems amat pr
types. However, these systems require obtrusive retreeteve
markers or LEDs [Park and Yoon 2006] and expensive many-

facilitates faster and more robust pose estimation. Whileap-
proach is not as accurate as traditional optical mocapgitires
only a single camera. The result is an unrestrictive andieegive
hand-tracking device suitable for desktop virtual reality

3 Overview

Our work is built around the idea that a distinctive glove giines
pose inference to the extent that we can largely determmedke
of a hand from a single frame. Moreover, our pose estimaigu a

camera setups. They focus on accuracy at the cost of ease of derithm amounts to looking up the nearest neighbor in a databés

ployment and con guration. While our system cannot provide
same accuracy as high-end optical mocap, our solution iglsitn
less expensive, and requires only a single camera.

Bare-hand tracking.  Bare-hand tracking continues to be an ac-
tive area of research. Edge detection and silhouettes anmtist
common features used to identify the pose of the hand. Wnilest
cues are general and robust to different lighting conditjara-
soning from them requires computationally expensive atiee al-
gorithms that search the high-dimensional pose space dfahe
[Sudderth et al. 2004; Stenger et al. 2006; Dewaele et a6]200
Such algorithms are still far from real-time, which pre@sdheir
use for control applications.

Several bare-hand tracking systems achieve interacteedsmat the
cost of resolution and scope. They may track the approxipade
tion and orientation of the hand and two or three additioegirdes
of freedom for pose. Successful gesture recognition agipdics
[Schlattman and Klein 2007; Dhawale et al. 2006; Lee et #8]9

hand-poses. We describe the construction of such a datahdse
means of robustly indexing it in Section 4.

To move from our pose estimation algorithm to a real-time- sys
tem, we incorporate several improvements. We acceleraabatse
queries by approximating the nearest-neighbor lookup. ¥dein-
verse kinematics (IK) to improve accuracy by deriving a $giro-
jection constraints between the nearest-neighbor posthargliery
image. We also add a temporal smoothness term to our IK agimi
tion to reduce jitter along the optical axis—the axis of aguity in

a single camera setup. These improvements to the speedaagcu
and precision of our system are described in Section 5.

We evaluate our resulting system with several test seqgeexce
ploring different types of hand motion and three interactppli-
cations of hand-tracking as an input device (Section 6). &veah-
strate stacking of a set of physically-simulated rigid lesdinto a
pyramid. We directly map two ngers to the feet of an animated
character to make him walk. We perform American Sign Languag

have been demonstrated on these systems. We propose a systerR9€r spelling transcription with 3-D hand-pose recoguiiti These

that can capture more degrees-of-freedom, enabling direntpu-
lation tasks and recognition of a richer set of gestures.

Data-driven pose estimation. Our work builds upon the tech-
niques of data-driven pose estimation. Shakhnarovich ad ¢
leagues [2003] introduced an upper body pose estimaticersys
that searches a database of synthetic, computer-gengrased.
Athitsos and colleagues [2003; 2004] developed fast, aqupiate
nearest-neighbor techniques in the context of hand poseatiin.
Ren and colleagues [2005] built a database of silhouetteirfes
for controlling swing dancing. Our system imposes a pattarn
the glove designed to simplify the database lookup probl&tre
distinctive pattern unambiguously gives the pose of thedhan-
proving retrieval accuracy and speed.

Hand-tracking with instrumented gloves. Instrumented gloves
systems such as the P5 Data Glove and the Immersion Cyberglov
have demonstrated precise capture of 3-D input for read-tion-

trol. However, these systems are expensive and unwieldsy fiety

on exoskeletons or embed more than a dozen sensors intog glov
which can be restrictive to movement.

Color markers.  Previous work in color-based hand-tracking have
demonstrated applications in limited domains or for shootiom
sequences. Theobalt and colleagues track a baseballfstobad
motion with color markers placed on the back of a glove using f
cameras and a stroboscope [2004]. Dorner uses a glove viith co
coded rings to recognize (6 to 10 frame) sequences of thdaign
guage alphabet [1994]. The rings correspond to the joinesaoh
nger. Once the joint positions are identi ed, the hand piseb-
tained with inverse kinematics. We use a data-driven agbréa
directly search for the hand pose that best matches the image

Our design strikes a compromise between wearable motipiuea

applications are a proof of concept of the capabilities ofsystem,
and we hope to provide a foundation for new interactions ideho
ing, animation control and augmented reality.

4 Pose estimation with a colored glove

The core of our approach is to infer pose from an image of the ha
wearing a color glove. We design our glove so that this infeee
task amounts to looking up the image in a database. We generat
this database by sampling recordings of natural hand poskma

dex it by rasterizing images of the glove in these poses. Asyho
input image from the camera is rst transformed into a noiigeal
query. It is then compared to each entry in the database dingor

to a robust distance metric. We conclude with an evaluatfamuo
data-driven pose estimation algorithm showing a steady@se in
retrieval accuracy with the size of the database.

4.1 Glove design

Our use of a color glove is inspired by advances in cloth mpcap
where dense patterns of colored markers have enabled @dsis
formation capture [White et al. 2007; Scholz et al. 2005; Ksus

et al. 2003]. A variety of color patterns may be appropriate f
tracking. Our particular design is motivated by the limiat of
consumer-grade cameras, the signi cant amount of selfusan

in natural hand motion, and the speed requirements of teedn€e
algorithm.

We describe a glove with twenty patches colored at randorh wit
a set of ten distinct colors (See Figure 2). Our color senmitéid

by our computer vision system, which looks for fully satexhtol-

ors to segment the hand from the background. Our camera could
reliably distinguish only ten of these colors due to shadewd

systems and bare-hand approaches. We require the use of an inshading. We chose to use a few large patches rather than numer

expensive cloth glove, but no sensors are embedded in adeuts
the glove to restrict movement. The custom pattern on theeglo

ous small patches because smaller features are less rolmestu-
sion and require more complex patch identi cation algarithfor



Figure 2: Our glove design consisting of large color patches ac-
counts for camera limitations, self-occlusion, and al¢fum per-
formance. The length of our glove is 24 cm.

pose inference [White et al. 2007; Scholz et al. 2005; Guska@l.
2003].

Our particular glove design is constructed as follows. Wecte
twenty seed triangles on a 3-D hand model that are maximalty d
tant from each other. We then assign the remaining triarigtes
patches based on their distance to each of these seeds. &abh p
is assigned one of the ten colors at random. The jagged bdaada
between the patches is an artifact of the low triangle coéioiuo
hand model.

Our glove design is suf ciently distinctive that we can edly in-

fer the pose of the hand from a single frame. This compares fa-
vorably to hand-tracking approaches that rely on an aceypase
from the previous frame to constrain the search for the otipese.
When these approaches lose track of the hand, they have nemea
of recovery [de La Gorce et al. 2008]. Our pose estimatiom-(ve
sus tracking) approach effectively “recovers” at each faifradi-
tional tracking techniques can still be used to enhancectigoral
smoothness of our results.

In bare-hand pose estimation, two very different poses cap m
to very similar images. This is a dif cult challenge that teees
slower and more complex inference algorithms to addressh ®Vi
gloved hand, very different poses always map to very diffeia-
ages (See Figure 3). This allows us to use a simple image pooku
approach.

—bare hand— r—gloved hand—

palm down palm up palm down palm up
Figure 3: The palm down and palm up poses map to similarimages
for a bare hand. These same poses map to very different infiages

a gloved hand.

We construct a database of hand pose®nsisting of a large set of
hand con gurations g' , indexing each entry by a tinglQ0  40)
rasterized image of the posk (See Figure 4). Given a normalized
query image from the camera, pose estimation amounts tolsear
ing a database of tiny images [Torralba et al. 2007]. The pose
responding to the nearest neighbor is likely to be closedattual
pose of the hand (See Figure 5). To complete this processewe d
scribe a means of constructing a database, normalizing agem
from the camera to query our database, and judging distagce b
tween two tiny images.

4.2 Database sampling

Ideally, we would like a small database that uniformly saesmll
natural hand con gurations. An overcomplete databaseisting
of many redundant samples would be inef cient. Alterndgye
database that does not cover all natural hand con guratiemdd

—
Rasterization

Sampled poses
qi

Figure 4: Pose database. We sample a large set of hand poses
which are indexed by their rasterized tiny images.

Tiny images
r |

result in poor retrieval accuracy. Our approach uses l@patsion
sampling to select a sparse database of samples from a dalnse c
lection of natural hand poses.

We collected a set of 18,000 nger con gurations using a Qybe
glove Il motion capture system. These con gurations sparstgn
language alphabet, common hand gestures, and randorm@gfli
the ngers. We de ne a distance metric between two con gura-
tions using the root mean square (RMS) error between thewert
positions of the corresponding skinned hand models.

Given a distance metrid(q'; g' ), we can use low-dispersion sam-
pling to draw a uniform set of samples from our overcomplete
collection of nger con gurations . The dispersion of a set of
samples is de ned to be the largest empty sphere that candkega
into the range space (of natural hand poses) after the samale
been chosen. We use an iterative and greedy sampling &lgorit
to ef ciently minimize dispersion at each iteration. That given
samples - at iteration”, the next samplé-.; is selected to be
furthest from any of the previous samples.

i~»1 =argmax min d(q';q')
i2 iz -

The selected con gurations are rendered at various 3-Dhat®ns
using a (synthetic) hand model at a xed position from thet(al)
camera. The rendered images are cropped and scaled, foonming
database of tiny images. The result is a database that eflgie
covers the space of natural hand poses.

4.3 Image normalization

classified tiny

Figure 6: We denoise the input image before using a mixture-of-
Gaussians color classi er to segment the hand. Our norraditin
step consists of cropping and rescaling the hand regionaro
40tiny image.

To query the database, we convert the camera input imageinto
tiny image (See Figure 6). First we smooth sensor noise atarée
from the image using a bilateral Iter. Next, we classify bauixel
either as background or as one of the ten glove colors using-Ga
sian mixture models trained from a set of hand-labeled imagée
train one three-component Gaussian mixture model per giolze,
operating in the Chong color space [Chong et al. 2008].

After color classi cation, we are left with an image with gie
pixels and non-glove-pixels. In practice, we use mearnt-siith a



Camera input image Tiny image

Database nearest neighbors

Nearest neighbor pose

Figure 5: Our pose estimation process. The camera input image isfoemgd into a normalized tiny image. We use the tiny imagaes t
query for a nearest neighbor search of our pose databasepdse corresponding to the nearest database match is rettiev

uniform kernel of variable-bandwidth to crop the glove mgiWe
start at the center of the image with a bandwidth that spansritire
image. After each iteration of mean-shift, we set the badtwi
for the next iteration based on a multiple of the standardadiew
of the glove pixels within the current bandwidth. We iteratil
convergence, using the nal mean and bandwidth to crop theegl
region.

4.4 Tiny image distance

To look up the nearest neighbor, we de ne a distance metric be
tween two tiny images. We chose a Hausdorff-like distancar. F
each non-background pixel in one image, we penalize thartist

to the closest pixel of the same color in the other image (Spe €

7):

d(ri-ri)—si T min W x2e(v oy
n 1G) (xy )2C; (U128 xy
whereS,y = (U;V)jriy = iy
n ) o]
G = (Xy)irxy 6 background
CGHOEN GO (G
query database = db->query query->db distance
candidate  divergence divergence

Figure 7: Hausdorff-like image distance. A database image and a
query image are compared by computing the divergence frem th
database to the query and from the query to the database. &ve th
take the average of the two divergences to generate a symmetr
distance.

We found that our Hausdorff-like image distance metric wasem
robust to alignment problems or minor distortions of thegm¢han

theL , distance. Our distance is also more robust to color misclas-

si cation than a Hausdorff distance that takes the maximurore
across all pixels rather than an average.

The nearest neighbor tiny image can provide an approximage p
of the hand, but cannot account for global position (e.dadise to
the camera) since each query is resized to a tiny image. Tessld
this, we associate 2-D projection constraints with each itimge
for the centroids of every color patch. Thus we can obtaimgtbleal
hand position by transforming these projection constsaimto the
coordinate space of the original query image and using se/ine-
matics.

Given the database construction and lookup algorithmsrithest
above, we can quantitatively evaluate the effect of databi® on
the accuracy of retrieval. For each database size, we neettsair
average performance of ve hundred test poses sampled magdo
from our collection of recorded natural hand con gurationd/e
observe the distance to the nearest neighbor in the databesel-
ing to the pose distance metric and the image distance n{Siie
Figure 8).

Distance to nearest neighbor (NN) versus
database size

RMS Pose Distance (mm)

=&=Mean distance from query to pose NN
== Mean distance from query to image NN

100 1000 10000

Database Size (log scale)

100000 1000000

Figure 8: Database coverage evaluation (log scale). As the
database size increases, pose estimation becomes momigccu

The consistent decrease of the pose nearest-neighbanatistath

database size validates the ef ciency and coverage of cabdae
sampling. The consistent decrease of the image nearegthuei
distance validates our tiny images distance metric andates that
retrieval becomes more accurate with database size.

4.5 Blending nearest neighbors

In addition to selecting the nearest neighbor in our da@bas
can also use a blend of thkenearest-neighbors. This provides a
smoother and more accurate result. We blend a neighborkoofi
the ten nearest tiny ilgnages with a Gaussian radial basigkern

o dexp d(ri;r)’= 2
[»]

%)= oy exp o d(ri;r)?= 2 (1)

where is chosen to be the average distance to the neighbors.

5 Real-time hand-tracking system

In this section, we describe our experimental setup andys®pev-
eral enhancements to our basic pose estimation algorithenrfal-
time system. Querying a database of images is well-studi¢ioei
computational photography and computer vision literatangl we
adapt an acceleration data structure for faster databasehge our



pose estimation task. Given an approximate pose from tiabdse,

we use gradient descent (via inverse kinematics) to greedih-
verge to an even more accurate pose. Lastly, we add a smesthne
prior to the motion of our hands to reduce jitter. Togethbese
components improve the speed, accuracy and precision afysur
tem for user-interface applications.

5.1 Experimental setup

We use a single Point Grey Research Dragony camera with a 4
mm lens that capture840 480 video at 30 Hz. The camera is
supported by a small tripod placed on a desk and providesea ef
tive capture volume of approximate®@ 50 30cm (See Figure

1).

We use the Camera Calibration Toolbox for Matlab geometri-
cally calibrate the camera with respect to the desk to dstabl
ground plane for our applications. Color calibration isfpemed
by capturing a set of eight images and hand-labeling eacheof t
color regions of the glove. While our current prototype fieggi
manual camera calibration, we intend to provide an instetas
and automatic calibration tool in the future [White and Fytins
2005].

We use a 26 degree of freedom (DOF) 3-D hand model: six DOFs
for the global transformation and four DOFs per nger. Wei-cal
brate the global scale of the hand model to match the lengtieof
user's hand. While this approach has been suf cient on theesub-
jects who have used our system, calibrating the preciseesiag
size of the hand would improve the accuracy of our results.

5.2 Faster nearest-neighbor search

To achieve satisfactory accuracy, we use a database sig® @fQD
entries. However, querying a database of this size is ccatipat
ally expensive. While our simple Hausdorff-like image digte is
robust, it isn't fast enough to be evaluated millions of tarer
second. Instead, we follow Torralba and colleagues, cossprg
each database entry into a short (e.g. 192-bit) binary cod@ster
retrieval [Torralba et al. 2008; Athitsos et al. 2004]. Tleles are
designed so that nearby poses are encoded as bit strings svithll
Hamming distance. Since these codes are short and the Hgmmin
distance is fast, we can signi cantly accelerate databeasch with
this approach.

For our database of imagesr' and distance metric
d(r';r'), we seek a bitvector representation for each image
bl = [hl(r‘)rB(ri):::hB (r')] such that the hamming distance
dg (r';r!) = E=1 jhn (r')  hn(r!)j preserves the neighbor-
hood relationships of our original distance metric. Ouktesto
learn the function$,. Once the function,,n =1 :::B, have
been selected, we can encode any query as a bitviecamd use
the faster Hamming distance to determine its nearest neighb

the database.

In the learning phase, we construct a training set compokes-o
ample pairgr';r'). Positive examples are pairs that are nearest-
neighbors. Negative examples are pairs that are not. Wewfoll
the similarity sensitive codingShakhnarovich et al. 2003] formu-
lation of Torralba and colleagues [2008], de nihg to be of the
formhn (r') = el vedD(r')) > T, wheree, andT, are learned
parameters and (r') is the feature matrix representing the tiny im-

ager'. We use the GentleBoost algorithm to select the parameters

of hp: e is a unit vector, so thae[x selects thekth component
of a feature vectok; and T, is a scalar threshold. Our choice of

http://www.vision.caltech.edu/bouguetj/calitnc

features resembles the Hausdorff-like image distanceieniiat
we seek to approximate. Each component of the feature matrix
D(r) 2 R* % 10 p,., (r), expresses the shortest distance to a
pixel with colorz from the location(x;y):

min
(u;v )2S 2

Dyyz (1) = (U x)*+(v y)°

whereS; = f(u;Vv)jrxy = zg

We sampled 10,000 pairs of training examples from our damba
and experimented with bitvectors of various lengths. Wesue=d
the retrieval accuracy of our codes by computing the rankef t
true nearest neighbor according to the learned Hammingruist
approximation. We found that the rank decreases quickliz thie
length of the code (See Figure 9).

Rank of true nearest neighbor versus binary
code length
10000

1000 4

1]
T

1 T T T T T T T T T J

19 38 58 77 96 115 134 154 173 192
binary code length (bits)

Rank (log scale)

Figure 9: The rank of the true nearest neighbor (log scale) accord-
ing to the Hamming distance approximation decreases quigkh
longer (more descriptive) codes.

For our real-time system, we used 192-bit codes, yielding\ean-
age rank of 16 for the true nearest neighbor and a standaiatidev
of 78. To robustly obtain the true nearest neighbor, we né-the
top 300 approximate nearest-neighbors with the originalendis-
tance. Overall, we achieve results approximatglytimes faster
than the brute-force nearest-neighbor search descriltbé jorevi-
ous section.

5.3 Inverse kinematics for accuracy

We improve upon our nearest-neighbor pose estimate by using
verse kinematics to penalize differences between therizatien
of the pose estimate and the original image. However, liaatem
is too slow to perform at every iteration of inverse kinerostiand
the image Jacobian is dif cult to evaluate [de La Gorce e@08].
Instead, we establish correspondences between pointg oadter-
ized pose and the original image. We compute the centroidaaf
of the visible colored patches in the rasterized pose andifgehe
closest vertex to each centroid. We then constrain thesieegito
project to the centroids of the corresponding patches iotiggnal
image (see Figure 10). Note that our correspondences hrabtl
for poses with self-occlusion because the nearest-neigiebalt is
usually self-occluded in the same way as the image query.

We use inverse kinematics to minimize the difference betwee
each projected vertex from our hand model and its correspgnd
centroid point in the original image. We regularize by usthg
blended nearest neighbgy (See Equation 1) as a prior:

@
wheref is a nonlinear function that projects the corresponded

points of our hand model into image spaée;andQ are the co-
variances of the constraingsand the blended nearest neighlogr

q = argl;nin kf(q) ckp + kg dpk



Query centroids  Nearest neighbor Constraints IK result

centroids

Figure 10: Correspondences for inverse kinematics. We compute
centroids of each patch in the query image and the neareghber
pose. We establish correspondences between the two seiatsf p
and use IK to penalize differences between the two.

respectively; anet kx is the Mahalanobis distance with respect to
covariancex .

We learn the covariance paramet&sand Q on a training se-
quence asF;‘ollows We de ne a local average of the estimabed p
Op = 125 Ap I over each consecutive ve-frame window
S ; 29, and compute covariances ofand g, about
these Iocal averages

1 i i i iy T
R= N c f(gp) ¢ f(ap
i=1
X i
= N Gp dp Jp Op

i=1
We use Gauss-Newton iteration to solve Equation 2, with alatg

of

q :JTR1J+Q1 1JTR1C+Q1qp

where qp= 0gp c=c f(q)andJ isthe Jacobian matrix

Df (q).

q,

5.4 Temporal smoothness

We can add an additional term to our inverse kinematics apgéim
tion to smooth our results temporally:
q =argmin kf(q) cki + kg qpkd + ka anki
q
whereP is the covariance of the pose in the last fragwe and is
learned on a training sequence similarlyQandR. This yields a

Gauss-Newton update of the form:
g= J'RJI+Q '+P !
JIRY ¢c+Q ' gp+P * an

where gh=qn (.

6 Results

We evaluate the tracking results of our system on severaeond
test sequences composed of different types of hand motidfes.
show that our algorithm can robustly identify challengiragntd con-
gurations with fast motion and signi cant self-occlusiohacking
ground truth data, we evaluated accuracy by measuringjesian
error anqgjltter by computing the deviation from the Iocabmge
d(q'; ,s, |25 q'*!) of a ve-frame windowS = f 2;::::2g

(See Figure 11).
As expected, inverse kinematics reduces reprojectiorr egr@n-

forcing a set of corresponded projection constraints. Hewehere
is still signi cant jitter along the optical axis. By impasj the

Reprojection Error
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Figure 11: Reprojection error and jitter on several tracking se-
quences (lower is better). Inverse kinematics reducesgpejec-
tion error of the scene while temporal Itering reduces thiger
without sacri cing accuracy.

temporal smoothness term, this jitter is heavily penaliaed the
tracked motion is much smoother.

While temporal smoothing reduces jitter, it does not elatéinsys-
tematic errors along the optical axis. To visualize thesersy we
placed a second camera with its optical axis perpendicoldne
rst camera. We recorded a sequence from both cameras, tiging
rst camera for pose estimation, and the second camera fér va
dation. In our validation video sequence, we commonly olekr
global translation errors of between ve to ten centime{&ese Fig-
ure 12). When the hand is distant from the camera, the errobea
as high as fteen centimeters. We attempt to compensatehfer t
systematic error in our applications by providing visuadback
to the user with a virtual hand. While our system was desigoed
be low cost, the addition of a second camera signi cantlyuces
depth ambiguity and may be a good trade-off for applicatitias
require higher accuracy.

Figure 12: Even when our estimate closely matches the input frame
(left), monocular depth ambiguities remain a problem, asvah
from a different camera perspective (right).

Single-threaded performance of our system is approxiydtse0
ms per frame split across the following tasks: 50 ms for infage
cessing, 20 ms for nearest-neighbor lookup, and 30 ms fersev
kinematics. We use pipelining on a multi-core processont¢odase
throughput. All of our interactive demos run at 10 Hz with @tecy
of 160 ms on a 2.4 GHz Intel Core 2 Quad CPU.

6.1 Applications

We demonstrate our system as a hand-tracking user-ingenfi
three applications. First, we show a simple character aioma



system using inverse-kinematics.
physically-based simulation to manipulate and assemblet afs
rigid bodies. Finally, we demonstrate pose recognitiofiquerance
with a sign language alphabet transcription task.

Driving an animated character Our system enables real-time
control of a character's walking motion. We map the tips & th
index and middle ngers to the feet of the character with kiragic
constraints (See Figure 13) [Sturman and Zeltzer 1993]. Vthe
ngers move, the character's legs are driven by inverse rkiae
ics. A more sophisticated approach could learn a hand-aoacter
mapping given training data [Dontcheva et al. 2003; Lam et al
2004]. Alternatively, Barnes and colleagues [2008] dertrate us-
ing cutout paper puppets to drive animated characters aildete
story telling. We hope to enable more intuitive and prectsa&rac-
ter animation as we reduce the jitter and improve the acguséc
our technique.

(b)

Figure 13: We demonstrate animation control (a) and a sign lan-
guage nger spelling application with our hand-trackingénface.

Manipulating rigid bodies with physics We demonstrate an ap-
plication where the user can pick up and release buildingkisiéo
virtually assemble 3-D structures (See Figure 1). When weatle
that a block is within the grasp of the hand, it is connectethéo
hand with weak, critically damped springs. While this iatetion
model is unrealistic, it does suf ce for the input of basidians
such as picking up, reorienting, stacking and releasingkisloWe
expect that data-driven [Li et al. 2007] or physically-t$Pol-
lard and Zordan 2005; Kry and Pai 2006] interaction modelsld/o
provide a richer experience.

We encountered several user-interface challenges in gidrbody
manipulation task. The depth ambiguities caused by our @xono
ular setup (See Figure 12) result in signi cant distortidnsthe
global translation of the hand. The user must adjust his hasttbn

to compensate for these distortions, compromising thetoe
mapping between the actions of the real and virtual hand.eMor
over, it was dif cult for the user to judge relative 3-D pasits in
the virtual scene on a 2-D display. These factors made tle tas
of grabbing and stacking boxes a challenging one. We fouad th
rendering a virtual hand to provide feedback to the user was i
dispensable. Shortening this feedback cycle by loweritentzy
was important to improving the usability of our system. Weoal
experimented with multiple orthographic views, but fouhdstto
complicate the interface. Instead, we settled on usingstestows
to provide depth cues [Kersten et al. 1997].

Sign language nger spelling To demonstrate the pose recog-
nition capabilities of our system, we also implemented arefioan
Sign Language nger spelling application [Starner et aB8P We
perform alignment and nearest-neighbor matching on ariiboh
labeled hand poses (one pose per letter) to transcribedsiges-
sages one letter at a time. A letter is registered when the a&s0-
ciated with it is recognized for the majority of ten frameshis
nearest-neighbor approach effectively distinguishesldlters of
the alphabet, with the exception of letters that requireionatl, Z)

Next, we use the hand in aor precise estimation of the thumb (E, M, N, S, T). Our rescits

be improved with context-sensitive pose recognition andeaha-
nism for error correction.

7 Conclusions

We have introduced a hand-tracking user-input device ceegpof

a single camera and a cloth glove. We demonstrated this alevic
for several canonical 3-D manipulation and pose recognitisks.
Speci cally, we have shown that our technique facilitateeful
input for several types of interactive applications.

There are many possible extensions to our system. We caoisupp
more cameras for more accuracy or bimanual input as longeas th
hands do not occlude each other or interlock. Our system ean b
combined with multi-touch input devices to facilitate psec2-D
touch input. We can design props such as a clicker or trigger t
ease selection tasks. We can re ne our camera calibratiocegs

to support instantaneous deployment in a wider range dhgett

We can envision applications in computer animation and 3€d-m
eling, new desktop user-interfaces and more intuitive atemp
games. We can leverage existing design methods for hand inte
actions [Sturman and Zeltzer 1993] to apply hand-trackingp-
plications such as virtual surgery to virtual assembly. @bal of
this paper is primarily to deliver a robust and low-cost tisput
device: we intend to provide a software development kit aeot-i
pensive gloves so that other researchers may develop iatagin
applications of their own.
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