Real-Time Enveloping with Rotational Regression
by
Robert Yuanbo Wang

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2007
(© Massachusetts Institute of Technology 2007. All rights reserved.

Department of Electrical Engineering and Computer Science
February 1st, 2007

Certified DY . ..o e
Jovan Popovic
Associate Professor
Thesis Supervisor

Accepted by.o
Arthur C. Smith
Chairman, Department Committee on Graduate Students

Real-Time Enveloping with Rotational Regression

by
Robert Yuanbo Wang

Submitted to the Department of Electrical Engineering anch@uter Science
on February 1st, 2007, in partial fulfillment of the
requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Enveloping (or skinning) is the process that relates a te)evhich an animator controls,
to a 3-D surface mesh, which the audience sees. This praecegsessary in most com-
puter graphics applications that involve animated charactThe complexity (and speed)
of enveloping solutions vary from photo-realistic musdlawdations used for movie pro-
duction, to artifact-ridden heuristics such as linear 8lskinning used for video games
and training simulations.

We propose a method for example-based enveloping of 3-Dacteas. We can ap-
proximate the output of muscle simulations or other highigy enveloping tools with a
model that can be evaluated at speeds comparable to thetfasteloping techniques. Our
technique introduces a rotational regression model thatacaurately capture common
skinning behaviors such as muscle bulging, twisting, arallehging areas such as the
shoulders. Our better treatment of rotational quantisesmade possible by a framework
that predicts mesh deformation gradients instead of megéxvpositions. We reconstruct
the vertex positions from deformation gradients in an aold#l step by solving a Poisson
equation.

We show that our model is significantly more expressive tlagal blend skinning
and capable of capturing a wider variety of effects withcemeralization problems. Our
method is also comparable in run-time speed to linear bl&whmg. All in all, we are
proposing a more general, less artifact-ridden, replaoémoe linear blend skinning that
will allow for more realistic enveloping in real-time apgdtions.

Thesis Supervisor: Jovan Popovic
Title: Associate Professor

Acknowledgments

Thanks goes to llya Baran, Marco DaSilva, Paul Green, Eugeste Fom Mertens, and
Sylvain Paris for conversation and discussion. Thanks ey office mate Jiawen Chen
for providing technical advice on GPUs and software toolsd Af course, special thanks
go to my collaborators, Kari Pulli and Jovan Popovic.

We thank Joel Anderson, Dragomir Anguelov, and Michael Cdoreheir generosity
in providing the datasets we used to test our model. The T-Rample was provided by
Joel Anderson. The Drago example was provided by Dragomgu&iov. The Elbow,
Shoulder, James and Gorilla examples were taken from Pos&hé Muscle Arm and

Dragon Leg were provided with the cMuscleSystem by Michaeh€o

Contents

1 Introduction 15
1.1 Related Work e 16
1.2 OVEIVIEW o e 18

2 Deformation Gradient Prediction 23
2.1 Notation e 24
2.2 Rotational Regression o 4 2

2.2.1 Model 25
222 TrainiNg e 26
2.3 Scale/ShearRegression 0o 27.

3 Mesh Reconstruction 29
3.1 Poisson Mesh Reconstruction 29
3.2 Near-Rigid/SSD Vertex Constraints 30
3.3 Reduced Mesh Reconstruction 1. 3

4 Dimensionality Reduction 35
4.1 Vertexreduction e 53
4.2 Predictor Reduction 7 3

5 GPU Implementation 39

6 Results 41
6.1 Error Metric e 41

7 Conclusion

A Reduced Poisson Formulation Details

47

53

List of Figures

1-2

2-1

2-3

Our technique accurately captures muscle deformatrons a set of ex-
amples and efficiently evaluates them on graphics hardwarthis case,
we approximate the anatomical model used to produce thendgrtuth

(29,380 vertices) at speeds suitable for interactive agptins. Our tech-

nique is more accurate than linear blend skinning and alamfst. 20

Overview. Our model maps a skeletal peg®o its corresponding mesh
posey(q). The mapping has two steps. First, we predict deformation
gradients of the mesh based on the skeletal pose. We therstaod vertex

positions from these predictions by solving a Poisson eguuiat 21

We learn a mapping from a sequence of bone transfornsaticasequence
of deformation gradients. We build separate regressionefsddr rota-
tion and scale/shear, learning parametérandw for rotation andH for
scale/shear. The rotation mode{q) and scale/shear modg(q) combine

to form our deformation gradient predictor. 24

Arm flexing. While most of the forearm rotates in the samedion and
amount as the bone, parts of the bicep rotate along differesst and by

differentamounts. 25

Our rotation predictors learn a constant rotationas affisetl’ and a con-
stant angle scale factar to relate a joint rotation sequence (source) to a

triangle rotation sequence (target). 26

9

2-4 Muscle arm error histogram. We plot a histogram of thersrfor our ro-
tational regression heuristic compared to SSD for threegpo$ a muscle
flexing. We also show the angle scale factor in false coloteNugat trian-
gles on the bicep are related to the joint rotation by a srball fon-zero)

scale factor while triangles on the forearm move nearhdhgi. 27

3-1 “Fixing” Poisson. We use the Poisson equation to recoosvertex po-
sitions from edge predictions (a). However, low-frequeaoyprs can ac-
cumulate, and the extremities of the mesh may no longer nth&foint
configuration (b). Fixing a set of near-rigid vertices toittf8SD prediction

(red dots) solves this problem (¢c). 30

4-1 \ertex clustering. Successive iterations merge coatdd vertices into
fewer and fewer proxy-bones. The resulting transformatialso form a

good initial guess for predictor reduction. 37

4-2 Training a Reduced Model. Given a set of example skeletesh pairs,
we can extract triangle deformation sequentks Our predictor reduc-
tion step gives us sequences of key deformation gradientesegsD),
from which we train key deformation gradient predictor. $a@redictors,

combined with the mesh reconstruction matri€gsandCs,, form our model. 37

5-1 Mesh reconstruction on the GPU. We laad C> and the bone weights for
matrix-palette skinning on the GPU beforehand. At runtime need only

send the vectord(q) andg permodel. 39

6-1 Our errors are not only generally lower than SSD, but thi@indard devi-
ations (error-bars) are smaller as well, meaning that threr®are harder
to detect visually. All errors are normalized so that 100%responds to
the best rigid-articulated body predictor for each exampeth approxi-
mation error (dotted line) and generalization error (stiid) for both SSD

and our rotational regression method (RR) are shown. (Lowsstier.) . . 43

10

6-2

6-5

Our model captures real deformations of 3-D human scin thathis case,

we are better at approximating the shoulders than SSD,tdaspse in the

training set. 45
The large shoulders of the gorilla are poorly approxedaty SSD, but
captured by our technique. L L oL L 45
Twisting bar and arm test. We took three poses from anaiomsequence

of a twisting bar and trained an SSD model, an EigenSkin/P%idai
and our model. We evaluated each model on an unseen test \Mske.
SSD has difficulty even representing the twisting deforomgtthe Eigen-
Skin/PSD model overtrains on the small set of poses andttadsrrectly
interpolate thetwist. 6 4
Anatomical arm test. We extracted a set of poses from atoarcally
motivated arm rig with both bending and twisting at the elbdive twist-
ing and muscle bulges are enough to prevent SSD from appatixigithe
examples well. The technique of Mohr and Gleicher [21] dostsel, but
there are still differences. Our model produces a resulbsirmdistin-

guishable from the ground truth. 46

11

12

List of Tables

6.1 While our method is slower than SSD, we are usually withfachor of
two in terms of both frame-rate and the number of floatingipopera-
tions. Our results compare most favorably for large dedaiteshes, such
as the T-rex, because most of the time is spent on the samixpalette
skinning computation as SSD. The absolute speed is alscisufffor use

in interactive applications. oo . 44

13

14

Chapter 1

| ntroduction

Enveloping (or skinning) is a common and fundamental taglomputer graphics. When-
ever an animator controls a character via a skeleton, gowvgjas used to map these con-
trols to deform a mesh surface. There is no standard way &l@e. An artist may run a
physical simulation to model muscle deformations or tumaglex systems of shape blend-
ing for more direct control. For interactive applicatiofisgar blend skinningenjoys the
most popularity. It is easy to use and can be acceleratedagphigs hardware. However,
linear blend skinning suffers from artifacts such as jowltapse and restricts the range of
deformations available to the artist.

The shortcomings of linear blend skinning are well-knowmd #éhere has been a rich
body of work on alternatives. Much of this work proposes nevdeling approaches. How-
ever, given the intricacy of existing modeling tools, ansarnay not want to or be able to
switch. For this case, there are techniques that train ompbes exported from other
enveloping tools. Most of these example-based approaeheas & model of corrective dis-
placements on top of linear blend skinning. However, disgtaent models extend poorly
to correcting the rotational errors of linear blend skirgnimhe methods that directly model
rotational deformations rely on strong assumptions abdwdrerand how these deforma-
tions occur. Finally, most techniques are simply not fagtugin for use in applications
such as video games and training simulations.

We believe that an artist should be able to use any envelapoigor even run a muscle

simulation, without worrying about the computational effircy of the resulting model.

15

Thus, our technique learns from examples exported from égkibox enveloping tool
and generates a model suitable for fast evaluation on graplrdware. We also anticipate
that a common set of skinning behaviors would include defdions such as twisting,
muscle bulges, and shoulder deformations. We designedotatianal regression model
with these behaviors in mind. All in all, we are proposing teghnique as a more general,
less artifact-ridden, replacement for linear blend skigni

Our rotational regression model predicts surface rotatioom bone rotations. We also
predict surface scaling and shearing separately, and adhaésson equation to reconstruct

vertex positions from these predictions. Our techniqueesadke following contributions:

Rotational Regression Enveloping: We propose an enveloping technique that naturally
models rotations. This is in contrast to techniques thagality blend rotation matrices
or use displacements to model rotational deformations. Jydyaa simple but general

heuristic that maps bone rotations (in pose space) to teantations on the surface mesh.

Accurate and GPU Ready Poisson Reconstruction: We formulate a more accurate
Poisson mesh reconstruction process by integrating @agyetlict near-rigid vertices as
constraints. We also adapt our reconstruction framewarkiimdel reduction, allowing it

to be computed on the GPU.

Dimensionality Reduction: Finally, we present a general dimensionality reductioresud
compatible with our reduced mesh reconstruction framewmakapproximates a sequence

of poses with bounded error.

1.1 Reated Work

Physically-based and Anatomically-based approaches. Some of the most realistic re-
sults in enveloping have been obtained by muscle simukii28, 30, 27]. Commercial
packages for muscle simulations are readily available amdhoonly used in movie pro-
duction and special effects [5, 7]. Other approaches uss@hlgut not anatomy to describe

muscle deformations [13, 4, 3, 11]. We complement theseoagpes by transforming the

16

models they produce into a form suitable for evaluation @pgics hardware. In fact, our
main application is to take custom rigged models that aréycts evaluate and learn an

efficient form for use in a training simulation or video game.

Linear blend skinning is the most pervasive enveloping technique used in intgeact
applications. This unpublished technique is also knowniragesweight enveloping and
skeletal subspace deformation, whose acronym SSD we udesfogmainder of this paper.
The benefit of SSD lies in its ease of use and applicability ¢d@mn graphics hardware in
the form ofmatrix-palette skinningll8]. SSD transforms each vertex with a linear blend of
bone rotations. The blend weights are usually hand-paibigtthere are also well-known
techniques for optimally training them for a set of exampids 14].

Linearly blending rotations leads to well-known artifastech as collapsing joints and
the “candy wrapper effect” [19, 21]. There have been manfriegies that address these
problems. Wang and Phillips [28] and Merry et al. [20] propaesriations to SSD that
trains more blend weights per vertex per joint. While thesel@®are more expressive,
they also require more training data to prevent overfittifige remaining techniques fall
into two broad categories: displacement interpolating@gaghes and rotation interpolating

approaches.

Displacement interpolating approaches take as input a baseline SSD model and a set
of training poses composed of skeleton-mesh pairs [19, 241122]. They compute
corrective displacements to the SSD model based on théngailata and interpolate these
displacements in pose space. Adding displacements works$onerrect minor errors of
SSD. However, we show that interpolating displacement®trect SSD rotational errors,
such as those found in twisting motion, becomes unwieldyyireng abundant training
data. Our technique complements the displacement apmsatiove because it provides

a superior baseline technique that better approximatational deformations.

Rotation interpolating approaches. Weber [29], and Mohr and Gleicher [21] extend the
expressive power of SSD by introducing additional sphétinaarly interpolated “half-

way” joints. However, these joints are addegbriori, without regard to the actual defor-

17

mations given by example poses. We extend the idea of intiodlwadditional joints by
identifying precisely where they are needed (Section 4)mmftting the behavior of these
joints to surface deformations. We show that this improyesnexisting techniques, espe-
cially for the case of joints with both bendirand twisting. Kavan and’ara [16] take an
existing SSD model and non-linearly blend quaternioneexof transformation matrices.
This technique corrects twisting defects but cannot apprate muscle deformations that

were never present in the original SSD model.

Deformation gradient approaches: Deformation gradients have been used by a variety
of techniques for pose modeling [25, 2, 8]. We share withéheshniques a common
Poisson reconstruction step, but differ in how we model t®meination gradients. Der
et al. [8] describe a pose space with the non-linear span et afsddeformation gradi-
ents extracted from example meshes. This pose space cabelexplored by mesh-based
inverse-kinematics. While this is useful for certain apgtions, animators often want to
control a mesh with a specific skeleton or precisely drive ewd-effector joints. Further-
more, Der et al. [8] model the pose space non-parametrjéatlyrring an evaluation cost
cubic in the number of training poses. The SCAPE pose moddigisedeformation gradi-
ents from bone rotations much like our own model [2]. SCAPE®an handle different
identities in addition to different poses. On the other hamd method more accurately

predicts rotational deformations and is orders of mageitiagter to evaluate.

1.2 Oveview

Our task is to learn a mappingd q) from a set of example skeleton-mesh p&is y*). We
choose to learn our mapping in the space of deformation gnéli Deformation gradients
encode the local orientation, scaling, and shearing of mmegf the mesh with respect to
arest pose We train and evaluate deformation gradient predictofq) that can relate our
input, bone transformations, to deformation gradientsurfautput mesh surface (Section
2). From these predictions, we can reconstruct the meskxedsitions by solving a

Poisson equation (Section 3). We begin by describing a gtiedistep that evaluates the

18

deformation gradient of every triangle, and a reconstoncstep that solves for the position
of every vertex. However, we can exploit coherency and daatin of the vertices and
triangles (Section 4) to reduce the number of deformatiawlignts we have to predict and
the number of coordinates we have to solve for at runtime. r@dumction not only makes
CPU evaluation much faster, but also takes the particulan fafrmatrix-palette skinning,

allowing us to perform the bulk of our runtime evaluation be GPU (Section 5).

19

Ground
truth 1 Hz

Our
method 440 Hz

Linear

blend 580 Hz
skinning

Figure 1-1: Our technique accurately captures muscle deformatioma icet of examples
and efficiently evaluates them on graphics hardware. In thsec we approximate the
anatomical model used to produce the ground truth (29,38tces) at speeds suitable for
interactive applications. Our technique is more accurdtart linear blend skinning and
almost as fast.

20

Deformation
Gradient
Prediction

L—<

— y(q)
Mesh
Reconstruction

Figure 1-2: Overview. Our model maps a skeletal pes® its corresponding mesh pose
y(q). The mapping has two steps. First, we predict deformationigras of the mesh
based on the skeletal pose. We then reconstruct vertexgrasftom these predictions by

solving a Poisson equation.

21

22

Chapter 2

Deformation Gradient Prediction

The deformation gradient is a local description of origotgtscaling, and shearing of a
deformed pose relative to a rest (or undeformed) posey lagtdy be the coordinates of a
body at a deformed pose and at the rest pose respectivelyubmity D = Vyy is called
the deformation gradient. if is given by an affine transformatiogp,= Ay + b, as is the
case for the three vertices of a triangle, the deformatialignt is the matrix4d € R3*3,
We seek to relate bone transformatien® mesh deformation®. For an articulated rigid-
body, this mapping is the identity between each bone andgitesegment it affects. Linear
blend skinning generalizes this mapping, allowing surfdetrmations to depend on a
linear blend of bone transformations. We've designed ofordeation gradient predictors

D(q) to capture additional deformations such as twisting andcfeusulges.

We extract deformation gradient sequences from a set ofmefd mesh poses on a
per-triangle basis, similarly to Sumner and Pogd@5], and James and Twigg [14]. The
deformation gradienD can be separated into a rotation componirdnd a scale/shear
componentS using polar decomposition, and these components need tedted dif-
ferently. We predict the former with a rotational regreasimodel and the latter with a
scale/shear regression model. Together, these two poedidorm our deformation gra-
dient predictorsD(r) (Figure 2-1). While we begin by describing deformation geadli
predictors on a per-triangle basis, our model can be apfdiady sequence of deformation

gradients—a property we exploit for our reduced reconsivncstep.

23

AL\ D R() * S() = D(q)

Deformation gradient - 5

sequence \l/ i Regression % W I o —»A
Bone transformation Deformation
sequence gradient predictor

Figure 2-1: We learn a mapping from a sequence of bone transformatioaséguence of
deformation gradients. We build separate regression n®ofielrotation and scale/shear,
learning parameter$l” andw for rotation andH for scale/shear. The rotation mode(q)
and scale/shear modél(q) combine to form our deformation gradient predictor.

2.1 Notation

We denote each skeletal pogeto be a vector of/ concatenated bone transformations
lvec(Q,)T,dT, ... vec(Q,)T,d%]T € R12/*%1, Bone transformations are defined relative
to the rest pose but are not relative to the parent frame. Easthy ¢ R3V*! is a vector
of V' concatenated vertex positions. In the next section, we findrivenient to work in
axis-angle representations. We ésandp to denote the axis-angle forms of bone rotations
@ and mesh rotationg respectively. We represent axis-angle quantities as &kewith

angle encoded in the magnitude and axis encoded in theidimect

2.2 Rotational Regression

The basic assumption of SSD is that vertices on the mesHaramsvith the bones affecting
them. However, when a muscle bulges, some parts of the mesbtdotate by the same
amount as the joint causing the bulge. Other parts may ratatiee opposite direction
or along a different axis (Figure 2-2). We propose a more ggmaeodel relating a joint
rotation sequence to a triangle rotation sequence.

Below, we assume that we know which joint affects the trianlyigoractice, we train a
model for each joint in the skeleton and select the one thettdg@proximates the triangle

rotation sequence.

24

Figure 2-2: Arm flexing. While most of the forearm rotates in the samectior and
amount as the bone, parts of the bicep rotate along diffeagas and by different amounts.

2.21 Mode

To relate bone rotations to triangle rotations, we first needxpress both in the same
coordinate frame. Lef and p denote our bone rotations and triangle rotations expressed
in the joint frame. Intuitively,d is the joint rotation. We relate the angle of the triangle
rotation to the joint angle by a scale factoand the axis of the triangle rotation to the joint
axis by a rotation offsell’. By using the axis-angle representation, this relationskps

on a linear form:

p(a) = ulWéy(q),

wheref,(q) extracts the rotation of boriefrom skeletal pose (Figure 2-3).

For each triangle, we are fitting only four parameters (tlioeehe rotation offset’
and one for the scale facta). However, this simple model works surprisingly well. The

model handles twisting with the rotation scale faetpwhile the rotation offset to the axis

25

w

& \
if angle & axis \

offset

I source ' target
rotation rotation

Figure 2-3: Our rotation predictors learn a constant rotational axifs#ti} and a con-
stant angle scale factar to relate a joint rotation sequence (source) to a triangleatmn
sequence (target).

effectively models muscle bulges (Figure 2-4).

2.2.2 Training

For training, we are given rotation sequences for a hgnand a trianglep’. First, we
transform both sets of rotations into the joint frame, fargW¥,(q’) andp°. The optimal

parameter$l € SO; andu € R are given by

argmin Z [uW 8,(q) — p'||%,

Wu i€l...N

which can be solved with coordinate descent, alternatingrden solving foru and @)
separately. Given rotation offsét’, v has a closed-form solution. Given scale facior
solving forW becomes an instance of the Procrustes problem, also ygedditosed form
solution [10].

We initialize the scale factar independently ofV:
2
argmin » ~ (u]|8y(a)|| — 5'[])".
w i€l...N

If the rotational deformation is well represented by thiglseoffset model, it can be shown
that starting with this initial guess yields the optimalg@eters in the first iteration.

Our training technique is fast enough that we can afford tweha fit a model for

26

Y
o-h

—
ow

kR

===SSD
=== Qur method

0 0.5 1 1.5 2 2.5
error (radians)

—
ON

—
od

number of triangles (log scale)

Figure 2-4: Muscle arm error histogram. We plot a histogram of the erfansour rota-

tional regression heuristic compared to SSD for three pades muscle flexing. We also
show the angle scale factor in false color. Note that triasgia the bicep are related to the
joint rotation by a small (but non-zero) scale factor whileatrgles on the forearm move

nearly rigidly.

each joint and select the best one that fits our triangleiontaequence. We can also fit
the residual rotations to additional bones for areas witltiple joint dependencies. In

practice, we found that two bones were sufficient for all of examples.

2.3 Scale/Shear Regression

We predict each component of the scale/shear matrix lipeath respect to the axis-angle

representation of two joints [2],
vec(S(q)) = Hy, 1, (a)

The two joint rotations that we use are the joint associatiéative best rotational predictor
found by the rotational regression stép, and its paren®,,. We denoted;, ;,(q) as

6,, (q)T 9b2(q)T 1]7 € R™1. Given a scale/shear sequerttend bone rotation sequence

27

q‘, we can determine the parametéfsc R?*" of this predictor using least-squares:

argmin Z HHébl,b2<qi)_va:(Si)||2'

i€l..N

28

Chapter 3

M esh Reconstruction

To map deformation gradient predictions back to vertextpo®s, we solve a Poisson equa-
tion. First, we describe this process in its most generahftation: when we have a
deformation gradient prediction at each triangle and mggleise. Next we modify the for-
mulation to integrate the global positions of a set of négidrvertices. These near-rigid
vertices are easy to predict with SSD, and improve accurgdptboducing global trans-
lation information into our Poisson problem. Finally, werfalate a reduced form of our
mesh reconstruction optimization by exploiting cohereang coordination of triangles

and vertices. This will allow us to perform the entire redomstion step on the GPU.

3.1 Poisson Mesh Reconstruction

Our deformation gradient predictions describe the shag@gaantation of triangles, which
are then pieced together while enforcing vertex continadgstraints to obtain the final

mesh. Our Poisson equation relates deformation gradienertices through edges [2]:
argmin Y Y | Di(q)Vi; — visl®, (3.1)
Y kel.Tj=23

wherevy, ; = yi; — Y1 denotes thgth edge of the:th triangle in the pose we are solving
for andv, ; denotes the same edge in the rest pose. Equation 3.1 is-@dg@ses problem

corresponding to a linear system. We pre-factor the lefidhside of this system with the

29

sparse Cholesky factorization [26]. Given the per-triamgrmation gradient predictions

for a new pose, we can obtain the vertex positions by backisutiosn.

3.2 Near-Rigid/SSD Vertex Constraints

Without information about the translational componentha skeleton, the Poisson opti-
mization does not detect or compensate for global transiatiproblems. Low-frequency
errors can accumulate (Figure 3-1), and the extremitiescbbaacter may veer away from
the joint configuration. We address this problem by idemijya set of near-rigid vertices.
Near-rigid vertices are easy to predict, since by definjtenen an articulated rigid-body
predictor would suffice. In practice, we use the richer SSRIeho SSD does not suffer
from error accumulation problems because each vertex isragmt on the translational
components of the skeleton, which contains informatioruabee global position of each
bone. Fixing a set of vertices to their SSD prediction presidur optimization with this

information as well. An additional benefit of this processhiat our method is exactly as

fast as SSD for regions SSD predicts well and improves thiétguehere it does not.

(a) (b) (c)
=

—

Figure 3-1: “Fixing” Poisson. We use the Poisson equation to recondtugrtex positions
from edge predictions (a). However, low-frequency errorsaacumulate, and the extrem-
ities of the mesh may no longer match the joint configuratmnKixing a set of near-rigid
vertices to their SSD prediction (red dots) solves this [@ob(c).

We evaluate the error of each vertex over the training settlareghold to select the
set of vertices best predicted by SSP, We fix the vertices of this sef’ to their SSD
predictions in our objective function. Define the linear migpsuch thatV, q is equivalent
to Z;f wapTH(q)y., the SSD prediction of vertexat posey. We obtain our SSD weights

w,, DY non-negative least-squares [14]. We substigute= ¥,q for all y, € F' into

30

Equation 3.1:

argmin Z Z HDk(q>‘A’k,j - Vlc,jH2
y

ke€l..T j=2,3

where

(

Yii — Y1 if Yi,j ¢ F andym ¢ F

Vk,j Vi — \Ikaq if only Vi1 € F (32)

\\Ijk,jq —Yk&,1 if Only Yi,j cF.

If both vertices of an edge are fixed, the error term for theeezdm be dropped completely

from the objective function.

We can solve Equation 3.2 similarly to Equation 3.1, by @etdring the left-hand side
of the corresponding linear system, and evaluating newspwih back-substitution. While
this formulation is sufficient for some applications, wedaduce a faster formulation in the

next section that is competitive with SSD in terms of speed.

3.3 Reduced Mesh Reconstruction

The optimization problem in Equation 3.2 solves for the damaites of every verteXx{’ de-
grees of freedom) and requires predicting the deformatiadignt of every triangl®,.(q).

In this section, we reduce this optimization to involve otilg transformation matrices of

a set of P proxy-boneg12P degrees of freedom) and to require the prediction of anly
deformation gradients. The size Bfdoes not depend on the resolution of the mesh, but
rather on the complexity of the deformation. In our examplesever exceeds)0. While

we reformulate our optimization in this section, the dstafiselecting the key deformation

gradients and proxy-bones are given in Section 4.

Our reduced mesh reconstruction scheme is based on thehdethé triangles and

vertices of an articulated model are very coordinated. Vigeass each triangle deformation

31

gradient predictor as a linear combinationfokey deformation gradient predictors:

Di(q) = Y BreDi(a). (3.3)

lel...P

We express each vertex as the SSD-like prediction from af ggbry-bones:
Ya(t) = Y apTh(t)§a = Pyt (3.4)

where®, is defined similarly tol, andt packs the proxy-bone transformatichissimilarly
to q. Our choice of an SSD-like model here is significant becalbieeetaluation o (t)

can be performed on the GPU with matrix-palette skinning.

We substitute Equations 3.3 and 3.4 into Equation 3.2 angedok the proxy-bone

transformations:

2

t(q) = argfnin >y H > BreDe(@) Vi — Vi,

kel... T j=2,3 (el..P

where
(

(I)k,jt — (I)]ﬁlt if Yk, ¢ F andym ¢ F

Vig = Pp it —Viriq ifonlyy,, € F (3.5)

\I/k’jq — q)kylt if Only Yi,j el
\

Because we chose linear models for both predictor and vesztiictions, the solutiot(q)
is also linear with respect to the deformation gradient jateds D,(q) and the bone rota-
tionsq, taking the form of

t(q) = C1d(q) + Caq, (3.6)

whered(q) = [vec(D;(q))? .. .vec(Dp(q))?]*. The derivation of”; andC, are given in
the Appendix. To obtain the vertex positiopswe substitute(q) for t in Equation 3.4.

Thus we have reduced our entire Poisson mesh reconstrgtéprinto a matrix-vector
multiplication (Equation 3.6) and matrix-palette skingi(Equation 3.4). We describe in

Section 5 that both of these operations can be performededdRtJ. The cost of evaluating

32

P deformation gradient predictors is negligible comparenésh reconstruction, involving

only nine7-component dot products and a handful of quaternion midsgder predictor.

33

34

Chapter 4

Dimensionality Reduction

In the previous section, we described a reduced formulaifathe mesh reconstruction
step. We outlined the form of the reduction to be matrix-ftalskinning for vertices and
a linear blend model for deformation gradients. In this isectve find the parameters
required by the reduction: the SSD weightgor the vertex reduction, the blend weights
@ for the predictor reduction, and the key deformation gnadedictorsD,(q). Given
the formulation of our reduced reconstruction model, we waite objective functions
for finding each of these terms. As we shall see, however,raplthese optimization
problems directly can be intractable, and we describe aesing technique for finding
these quantities approximately. Note that our proposestaling is one of many that are
possible. In particular, the mean-shift approach advactieskinning mesh animations
by James and Twigg [14] could be substituted for the vertdueton below. Mean-shift
clustering is less susceptible to noise. On the other han@pgproach is faster, progressive,

and clusters bones based on vertex error.

4.1 Vertex reduction

We measure the error of our vertex reduction over a set afitbi@imeshes’ by the L?
difference between the SSD-based proxy-bone predictidrtta ground truth vertex po-
sition, (T}, cap) = S0 SV |lyh — 32} awsTiya|?. Ideally, we would like to find the

smallest number of proxy-bonds for a given maximum error threshold This would

35

require us to solve

min P subjecttoE (T}, a, ;) < e.

ngaa,b

However, this optimization is too intractable for us to ektairectly. Given fixedP and
fixed transformationd}, we can solve for weights,, , using non-negative least-squares
[14]. Similarly, given fixedP and fixedw, 4, we can find the least-squares solutionFr
However, we cannot solve for both simultaneously, and we @toknow P beforehand.
Instead, we take an approximate approach inspired by waresh decimation [6, 9].

Define the erroi 4, g of joining proxy-boneA to proxy-boneB ast.V > acan Ive —
T}y.||*. This error is an upper bound for the real approximationreaf@ining the vertices
of groupG 4 to groupG . We add all possible joins between contiguous groups into a
priority queue and iteratively perform the join with the lest error until our error threshold

is reached (Figure 4-1). Specifically:

1. Begin with a proxy-bone for each triangtanitialized to the transformation matri-
cesT; mapping the vertices of from the rest pose to each poselnitialize the

associated grou@', to contain the vertices of triangle

2. Greedily pick the joinA — B with the smallest errof/4_. 5 and add the vertices of

group A to groupB.
3. Solve for the weights,, ; given the current set of transformatiofis
4. Solve for the transformatior® given the current set of weights, ;.
5. If B(T}, a,p) < €go to Step 2.

In practice, we need not evaluate steps 3, 4, or 5 at evetider Error increases
smoothly, and we only need to be careful when we get closeetthtleshold. For efficiency
reasons, we also only consider joins of contiguous proxyekd6]. We restrict each vertex
to depend on only the proxy-bone transformations of thegroloelongs to and the groups

adjacent to that group. This reduces overfitting and alsstisquerformance.

36

Predictor
Reduction

[TTTT

Figure 4-1: Vertex clustering. Successive iterations merge coordohaertices into fewer
and fewer proxy-bones. The resulting transformations atsmfa good initial guess for
predictor reduction.

i —_—

Reduced Training

S D A IL.IL. ‘ ‘4,‘4, mi Model
Tyt Pl]
. ’&; B SEFRFN Y ﬂ?k \ e‘é"‘

Examples Triangle deformation Key deformation : :
y" q" i=1.. . N — grafilent sequences — gra@ent sequences — D () Deformation _
s D,’(k=1...T Reduction Dé (=1 P Regression e q gradient predictors

Figure 4-2: Training a Reduced Model. Given a set of example skeletchpairs, we
can extract triangle deformation sequenc®s. Our predictor reduction step gives us
sequences of key deformation gradient sequeesom which we train key deformation
gradient predictor. These predictors, combined with themresonstruction matrice§’;
and (s, form our model.

4.2 Predictor Reduction

To obtain key deformation gradient predictd?s q), we first find key deformation gradient
sequence®); from triangle deformation gradient sequendgis We then train predictors
from these sequences as in Section 2 (Figure 4-2). Our eetrator finding the best key

sequences is the objective function from Equation 3.2 vinéhgdubstitution

Dj = Z Bre D}

lel...P

37

wheref;, , are the blend weights:

, 2
: 1., ¥
argmin E E g H g BreDyVi j — Vk’jH)

Br.exDp iel1.. N kel.. T j=2,3 £el...P

We can solve the optimization above using coordinate désakernating between solving
for Bx, and D} separately. Fortunately, vertex reduction allows us td §tam a particu-
larly good initial guess foD}, (Figure 4-1). We initializeD}, to be the upper-left 3x3 matrix
of the T} matrix we found from vertex clustering. The coordinate @esconverges in
three iterations or less for all of our examples. Having miatd key deformation gradient
sequences);, we can train deformation gradient predictdrg q) as described in Section
2.

38

Chapter 5

GPU Implementation

On GPU

+
~€~
I

&

N

:

AN RAS

Q
$
\
|

_—
Matrix Matrix
vector palette ~
multiplies [t(q) skinning y(q)
I

d(q) q Mesh Reconstruction

Figure 5-1: Mesh reconstruction on the GPU. We loé#l, C; and the bone weights for

matrix-palette skinning on the GPU beforehand. At runtime need only send the vectors
d(q) andq per model.

There are two components of our GPU implementation: a magctor multiplication
and matrix-palette skinning. Both operations are straggithrd on modern graphics hard-
ware and our implementation is one of many that are possWe.take a total of three
passes to skin our character, not including the final rendgoass. The first pass performs
the matrix-vector multiplication. The next pass uses mgidlette skinning to compute

the vertex positions. The third pass computes the normabkeof the skinned character

39

from the post-transformed geometry. The only data that wel $e the GPU at runtime
are the vectorized deformation gradient predictidg) and bone transformatiorg—the

remainder of the computation is performed completely orGR&J.

Matrix-vector multiplication: We precompute and uplo&d, andCs into video mem-
ory as a static floating-point texture. For each model, weanbtexturesl(q) andq at each
frame and use a fragment program to perform the matrix-veatdtiplication, one column
at atime. The results are rendered on to the skex 1 rectangle and accumulated using
hardware blending. We store the final result, a vector of atar@ated proxy-bone transfor-

mation matrices, as a texture.

Matrix-paletteskinning: There are many ways to apply matrix-palette skinning on mod-
ern graphics hardware; see Lee [18] for a recent surveygl d&if the increase in multi-pass
rendering in video games, we chose to skin only once per fiaraseparate pass, storing
the positions in a texture. These results can be played lmokaich subsequent render-
ing pass. This avoids redundant skinning on each rendeesg @nd is similar to DirectX
10 menexport skinning [18] and deferred shading [12]. For each vertex,semd the
proxy-bone weights and indices as texture coordinateshwtan be used to look up the

proxy-bone transformation matrices computed in the prev/jmass.

Normal vectors: While traditional normal vector computation for a skinneduccter is
usually approximated on the GPU, we perform this computatiore accurately using the
triangle normals of the skinned vertices. For each vertexpwecompute the indices of
its 1-ring of neighbors. At runtime, these indices are pasdeng as texture coordinates
and used to fetch the position of each neighbor computed thenskinning computation
in the previous pass. We then take the appropriate crossigiothb compute each triangle

normal, and normalize the sum of the triangle normals toiolkee vertex normal.

40

Chapter 6

Results

Our technique compares favorably in quality to SSD, disgiaent interpolating approaches,
and rotation interpolating approaches. We also comparspéed of our GPU implemen-
tation to matrix-palette skinning. Our datasets includeidtecreated examples from Poser,

anatomically simulated examples using the cMuscleSys@nand 3-D human scan data

2].

6.1 Error Metric

We evaluate all our examples using a metric inspired byptireent position erro{PPE)
developed by Karni and Gotsman [15] in the context of aniomatiompression. PPE mea-
sures the total error of each predicted vertex, normalizethe best constant prediction
of the animation. However, in the context of enveloping, dhénation of a moving walk
could be globally well preserved but locally prone to adifa We are only interested in
these local deformations; the global motion is alreadymive the skeletal information at
each pose. Ownveloping errometric normalizes the total error at each predicted vertex

by the error of the best articulated rigid-body predictidh@ animation:

N 14 i i
EE — Zz Za ”ya(q) _yaH2
S 2y lIra(a’) — yill?

41

wherer,(q') is the best articulated rigid-body predictionygfbased on the skeletal frames
q‘, computed by selecting the single best bone transformébiothe vertex over all the
poses.

We measure both approximation error and generalizatiam. ekpproximation error is
measured by evaluating the model on the training set. We uneagneralization in two
ways. For the datasets where we are given an animation segjuga sample key frames
from the sequence for training and evaluate over the entigeience. For the datasets
where we are given a set of random and disjoint poses, weatedlue leave-one-out cross
validation (LOOCYV) error. That is, for each examplec 1... N we train on theN — 1

poses not including and evaluate the resulting model on pése

Comparison with SSD: We compared our model both in terms of quality and speed to
SSD. All of our SSD models were trained using non-negatieastisquares [14]. Like
James and Twigg [14], we cap the number of non-zero weigttsuat In Figure 6-1, we
show that our technique is superior in terms of quality ommgexample we tried. Not
only is our total enveloping error lower, the variance of ewrors across the vertices is also
lower, meaning that our errors are low-frequency and lestsaditing visually. We compare
particular poses in Figures 6-2 and 6-3.

We evaluate the speed of our technique in Table 6.1. While eelawer than SSD,
the performance difference is always within a factor of tWhile faster GPU implemen-
tations are possible, we use the same matrix-palette sigrimiplementation for both our
method and SSD. Both methods were benchmarked on a Penti8rGHz. machine with
a NVIDIA GeForce 8800 GTX. We also estimate the number of iih@apoint operations
for each method to provide a hardware independent perspexstiperformance.

Overall, our technique approximates deformations sicamifily better than SSD, while

generalizing well and being comparable enough in speede s its replacement.

Comparison with Displacement Interpolating Approaches. We highlight the limita-
tions of displacement interpolation for the case of a sintpie-joint twisting model, il-

lustrated in the Bar and Elbow examples of Figure 6-4. Ond jwiists 180 degrees with

42

SSD Train @ SSD Test M RR Train ® RR Test
150.0% =

120.0% - :
L — -
o — -
5 90.0% I T r
LIJ . °° i | |
o - ®. ?
£ : - :
B— . : . . - - : . . .
O 60.0% - : [| L T '
> ' . : ' -.
Lﬁ i. '] . '] =T
. "] 4 i. : 1 - .
30.0% - ' ' . ' = e
: - : C) L ! ---l - [] - :
o ‘ ws| " |

0.0%
James Drago Gorilla Pragon T.Rex Elbow Bar Muscle ghouider
Leg Arm

Figure6-1: Our errors are not only generally lower than SSD, but theinstard deviations
(error-bars) are smaller as well, meaning that the errors aeeder to detect visually. All
errors are normalized so that 100% corresponds to the bggt+articulated body predictor
for each example. Both approximation error (dotted lineyl eneralization error (solid
line) for both SSD and our rotational regression method (BR)shown. (Lower is better.)

respect to the other. This example is a special case of wigamgkin [17] and pose space
deformation [19] are equivalent. Our model can learn theting deformation with just
three training examples, while pose space deformationgia perfect approximator, fails

to generalize correctly to the new pose.

Comparison with Rotation I nterpolating Approaches: The insertion of half-way joints
and expanding/contracting joints as proposed by Mohr areic¢r [21] can perfectly
model the twisting effects in Figure 6-4. In other casesjdolnique is less accurate. We
highlight the limitations of Mohr and Gleicher’s techniguéh an anatomically rigged arm
(Figure 6-5). In this case, the elbow is undergoing both bendnd twisting. Applying
Mohr and Gleicher’s model allows the vertices of the foreannchoose a linear combi-
nation of the bending joint and the half-way twisting joibtit not the correct solution—a

joint that bendsandtwists halfway. While more joints can always be added maguaillr

43

Example | Vertices | Joints Proxy | Training| Testing | Our | SSD | Our| SSD
bones| Poses | Poses | flops | flops | fps| fps

James 11106 73 80 31|LOOCV | 5.1M| 2.6M| 595| 1000
Drago 12500 16 80 49|LOOCV | 5.0M| 2.9M| 618| 1030
Gorilla 25438 61 100 46|LOOCV | 9.9M| 5.9M| 449| 673
Dragon Leg 2210 14 40 9 86| 1.0M| 0.5M| 681| 1144
T-Rex 29380 155 60 11 121] 9.4M| 6.8M| 443| 583
Elbow 2610 2 30 3 15| 1.0M| 0.6M| 685| 1164
Bar 80 2 25 3 50| 0.2M| 0.0M| 711| 1228
Muscle Arm 5256 3 30 4 40| 2.0M| 1.2M| 692| 1200
Shoulder 2610 2 40 10 100] 1.0M| 0.6M| 690| 1172

Table 6.1: While our method is slower than SSD, we are usually within a faaftowvo in

terms of both frame-rate and the number of floating-pointratiens. Our results compare
most favorably for large detailed meshes, such as the Thegause most of the time is
spent on the same matrix-palette skinning computation &s Bl absolute speed is also

sufficient for use in interactive applications.

method locates where they are most needed and adds themadicedin

44

Ground truth Our method SSD

Figure 6-2: Our model captures real deformations of 3-D human scan datshis case,
we are better at approximating the shoulders than SSD, despise in the training set.

RRE

Ground truth Our method

Figure 6-3: The large shoulders of the gorilla are poorly approximatgd3sD, but cap-
tured by our technique.

Training Evaluation

AL RY
e

Ground Our Eigenskin/ SSD
truth method PSD
Figure 6-4. Twisting bar and arm test. We took three poses from an animatguence
of a twisting bar and trained an SSD model, an EigenSkin/PS8amand our model. We
evaluated each model on an unseen test pose. While SSD hadtglieven representing
the twisting deformation, the EigenSkin/PSD model ovartran the small set of poses
and fails to correctly interpolate the twist.

Training Evaluation

§999

Ground Our [Mohr and ssD
truth method Glelcher]

Figure 6-5: Anatomical arm test. We extracted a set of poses from an ameatly moti-
vated arm rig with both bending and twisting at the elbow. Theting and muscle bulges
are enough to prevent SSD from approximating the examplésTied technique of Mohr
and Gleicher [21] does better, but there are still differesc Our model produces a result
almost indistinguishable from the ground truth.

46

Chapter 7

Conclusion

We have presented an example-based enveloping modellsditalise in interactive ani-
mation systems. Specifically, our experiments have shoatrtiational regression is an
effective way of capturing muscle bulging, twisting andemesuch as the shoulder. We
have tested our technique on a wide variety of examples, uniegsboth approximation
and generalization error. Our method compares favorabbydwious techniques in terms
of quality and is usually within a factor of two of SSD in terwisspeed.

Our model is good at approximating smooth, large-scalerdegtions such as muscle
bulges. Fine wrinkles and sharp creases found in intriddte and cloth may be better
handled by a displacement interpolation technique. Extendur technique with a dis-
placement correction model would also allow it to approxenaaining poses exactly, an
important feature to animators. To properly handle clogimasics and collisions need to
be addressed. An exciting avenue of future work is to find ahognto our rotation model

for dynamics.

47

48

Bibliography

[1] Brett Allen, Brian Curless, Zoran Popdyiand Aaron Hertzmann. Learning a corre-
lated model of identity and pose-dependent body shapetiari@r real-time synthe-
sis. In2006 ACM SIGGRAPH / Eurographics Symposium on Computer Aisimat
pages 147-156, September 2006.

[2] Dragomir Anguelov, Praveen Srinivasan, Daphne Koll8gbastian Thrun, Jim
Rodgers, and James Davis. Scape: shape completion and ianimigbeople. ACM
Transactions on Graphi¢24(3):408—-416, August 2005.

[3] Steve Capell, Matthew Burkhart, Brian Curless, Tom Duchaamgl Zoran Popo@éi
Physically based rigging for deformable characters2085 ACM SIGGRAPH / Eu-
rographics Symposium on Computer Animatipages 301-310, July 2005.

[4] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, amanZBopowt. In-
teractive skeleton-driven dynamic deformationACM Transactions on Graphics
21(3):586-593, July 2002.

[5] cgCharacter. Absolute character tools 1.6, 2003. Wipnv.cgcharacter.com/.

[6] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrvariational shape approx-
imation. ACM Transactions on Graphic23(3):905-914, August 2004.

[7] Michael Comet. Cmusclesystem 1.31, 2006. http://www.etatigital.com/.

[8] Kevin G. Der, Robert W. Sumner, and Jovan Popounverse kinematics for reduced

deformable modelsACM Transactions on Graphic25(3):1174-1179, July 2006.

49

[9] James R. Diebel, Sebastian Thrun, and Michaéigy. A bayesian method for prob-
able surface reconstruction and decimatid@M Trans. Graph.25(1):39-59, 2006.

[10] D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3gildrbody transforma-
tions: a comparison of four major algorithmblach. Vision Appl.9(5-6):272—-290,
1997.

[11] Zheng Guo and Kok Cheong Wong. Skinning With Deformableiids. Computer
Graphics Forum24(3):373-381, 2005.

[12] Shawn Hargreaves. Deferred shadingPhceedings of the Game Developers Con-

ference March 2004.

[13] Dae-Eun Hyun, Seung-Hyun Yoon, Jung-Woo Chang, JoomrkySeong, Myung-
Soo Kim, and Bertidttler. Sweep-based human deformatidine Visual Computer
21(8-10):542-550, 2005.

[14] Doug L. James and Christopher D. Twigg. Skinning mesmations. ACM Trans.
Graph, 24(3):399-407, 2005.

[15] Z. Karni and Craig Gotsman. Efficient compression of 4aftly animation se-
guencesComputer And Graphi¢c28(1):25-34, 2004.

[16] Ladislav Kavan and i Zara. Spherical blend skinning: a real-time deformation of
articulated models. 18I3D '05: Proceedings of the 2005 symposium on Interactive

3D graphics and gamegages 9-16, New York, NY, USA, 2005. ACM Press.

[17] Paul G. Kry, Doug L. James, and Dinesh K. Pai. Eigenskaal time large defor-
mation character skinning in hardware. $ICA '02: Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animagiages 153-159, New
York, NY, USA, 2002. ACM Press.

[18] Matt Lee. Seven ways to skin a mesh: Character skinniwigited for modern gpus.

In Proceedings of GameFest, Microsoft Game Technology CorderAugust 2006.

50

[19] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose spafmrdations: A unified
approach to shape interpolation and skeleton-driven deftbon. InProceedings of
ACM SIGGRAPH 20Q@omputer Graphics Proceedings, Annual Conference Series,
pages 165-172, July 2000.

[20] Bruce Merry, Patrick Marais, and James Gain. Animatjosce: A truly linear frame-
work for character animation ACM Transactions on Graphic25(4):1400-1423,
October 2006.

[21] Alex Mohr and Michael Gleicher. Building efficient, acate character skins from

examplesACM Trans. Graph.22(3):562-568, 2003.

[22] Taehyun Rhee, J.P. Lewis, and Ulrich Neumann. Real-tirighted pose-space de-

formation on the gpuComputer Graphics Forun25(3):439-448, September 2006.

[23] Ferdi Scheepers, Richard E. Parent, Wayne E. Carlson, Sieghen F. May.
Anatomy-based modeling of the human musculaturePrbteedings of SIGGRAPH
97, Computer Graphics Proceedings, Annual Conference Seagesd63—-172, Au-
gust 1997.

[24] Peter-Pike J. Sloan, Ill Charles F. Rose, and Michael Fe@olsShape by example.
In SI3D '01: Proceedings of the 2001 symposium on Interactivgfaphics pages
135-143, New York, NY, USA, 2001. ACM Press.

[25] Robert W. Sumner and Jovan PopoviDeformation transfer for triangle meshes.
ACM Trans. Graph.23(3):399-405, 2004.

[26] Robert W. Sumner, Matthias Zwicker, Craig Gotsman, angdd?opov. Mesh-
based inverse kinematicACM Trans. Graph.24(3):488-495, 2005.

[27] Joseph Teran, Eftychios Sifakis, Geoffrey Irving, &onald Fedkiw. Robust qua-
sistatic finite elements and flesh simulation2005 ACM SIGGRAPH / Eurographics
Symposium on Computer Animatjgrages 181-190, July 2005.

51

[28] Xiaohuan Corina Wang and Cary Phillips. Multi-weight efoping: Least-squares
approximation techniques for skin animation. AGM SIGGRAPH Symposium on

Computer Animatioppages 129-138, July 2002.

[29] Jason Weber. Run-time skin deformation.Proceedings of Game Developers Con-
ference 2000.

[30] Jane Wilhelms and Allen Van Gelder. Anatomically basesteling. InProceedings
of SIGGRAPH 9/Computer Graphics Proceedings, Annual Conference Seagesp
173-180, August 1997.

52

Appendix A

Reduced Poisson Formulation Details

Let (k, j) € F, be the set of edges where neitlygr nory, ; are fixed.
Let (k, j) € F, be the set of edges where onjy; is fixed.
Let (k,j) € F, be the set of edges where onjy; is fixed. Then,

A € RI2Px12P _ Z (D — @hl)T(@k,j — dpq)+

(k j)EFo
Z (I) (I)jw‘ + Z (I)z’lq)k,l
(k,j)EF1 (k,j)EF>
By € RO = 3" (&) — &1) Bre(Vi; © Lya)

(kv.j)EFO

+) () B ® Ises)
(k.g)eF1

+ Z —®p1) Bre(Vi; @ Isxs)
(k,j)eF,

where® denotes the Kronecker product.

By € R*P79P =By, ... Byp]

32 c RIQPXIQJ — Z (q)k;J)Tg[k;,l + Z ((pk;71)T\I[k7j

(k.j)eF (k,J)EF?

Cl c R12P><9P :A_lBl; 02 c R12P><12J — A—lB2

53

(A.1)

