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What: Our work focuses on the development of a distributed model-based mode estimation capability
that will ensure robustness of aerospace systems by endowing them with intelligence that allows to col-
lectively reason about faulty components and diagnose failures. Our approach is based on framing the
mode estimation task as a constraint optimization problem, leveraging structural properties to decom-
pose it into independent sub-problems, and distributing it among different physical units. The mode
estimation capability is part of a model-based autonomy architecture that can exploit the results to take
appropriate repair actions in order for the mission to proceed.

Why: Complex, multi-vehicle spacecraft systems, such as SPHERES (Fig. 1), are currently being de-
veloped in order to meet the challenging requirements of future aerospace missions. However, the
increasing complexity of aerospace systems is also increasing the potential for mission failure due to
malfunctions and unexpected component behavior. A capability for automated monitoring and diagno-
sis will reduce the impact of failures and increase the likelihood of mission success and science return.
Engineering models of spacecraft components can be exploited to reason about possible component
interactions and to identify and diagnose faults and take recovery actions. This provides a robust ap-
proach to fault management, where the task of the modeler is reduced to developing commonsense
engineering models of spacecraft components. The challenge is to develop efficient algorithms that can
reason through a large space of component interactions and find the most likely state consistent with
the model and the observations.

How: The task of mode estimation is to find the most likely sequence of states that is consistent with
the behavior model of the spacecraft and the sequence of commands and observations over time. This
can be framed as constraint optimization problem where one must determine the most likely states at
each time point and combine them into shortest path trajectories. Since the possible assignments can
grow exponentially with the number of variables, the central problem is state explosion that leads to
computational intractability if the number of variables or possible values is large.

The first part of our work aims at leveraging favorable properties of the mode estimation optimiza-
tion problem to combat state explosion. Our research combines a range of different methods from dif-
ferent areas and investigates possible trade-offs between them:

• using soft constraints, such as semiring-CSPs [1], as a uniform representational framework for
both constraints and uncertainty;

• decomposing constraint networks into trees [2, 3] as a basis for exploiting independence of sub-
problems through local consistency and dynamic programming;

• enumerating solutions in best-first order [6], allowing for anytime behavior and efficient focusing
on leading solutions;

• encoding constraints symbolically [4] to exploit regularities and compactly represent very large
belief spaces.

Figure 1: EO-1 earth observing satellite (left) and SPHERES formation flying test-bed (right)
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The second part of our work aims at leveraging the performance improvements of the underlying
constraint processing to introduce more accurate diagnostic algorithms, such as the n-step mode esti-
mation algorithm. This algorithm uses a sliding window of n previous observations and commands in
order to estimate and track the most likely trajectories of state evolution. Since it can exploit a more
“global” view, n-step mode estimation will provide more accurate diagnostic results than current ap-
proaches to mode estimation that are based on maintaining k best estimates [5].

The third part of our work investigates ways to distribute the mode estimation task among different
physical units, such as a fleet of spacecraft. We plan to accomplish this by exploiting the decomposition
of constraint networks into hierarchies of independent sub-problems. Our approach to distributed mode
estimation thus consists of two phases: an off-line compilation phase which compiles the constraint
graph into a tree structure, and an on-line mode estimation phase which computes the solutions to the
tree-structured problem using a distributed version of dynamic programming.

Progress: Up to now we have focussed on a centralized version of mode estimation. We developed
a prototype for a constraint optimization engine that integrates structural decomposition, symbolic en-
coding, and best-first enumeration. This is based on our previous work in constraint optimization [6].
We also outlined a first version of an n-step mode estimation algorithm that extends the k-best mode
estimation algorithm developed in [5] to get more accurate diagnosis results.

Future: Our next steps will address the issue of distributing the mode estimation sub-problems be-
tween different physical processors. This mapping must ensure minimal cost, processing power and
communications among processors. As the distributed mode estimation capability will form a basic
building block in the model-based autonomy architecture, it is also important to integrate the mode
estimation capability with distributed pre-planning and reconfiguration. We will demonstrate and val-
idate the distributed model-based executive on models of the EO-1 satellite and the SPHERES test-bed
flying in the International Space Station (Fig. 1).
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