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Abstract

Model-based diagnosis has traditionally operated
on hardware systems. However, in most complex
systems today, hardware is augmented with soft-
ware functions that influence the system’s behav-
ior. In this paper hardware models are extended to
include the behavior of associated embedded soft-
ware, resulting in more comprehensive diagnoses.
Capturing the behavior of software is much more
complex than that of hardware due to the poten-
tially enormous state space of a program. This
complexity is addressed by using probabilistic, hi-
erarchical, constraint-based automata (PHCA) that
allow the uniform and compact encoding of both
hardware and software behavior. We introduce a
novel approach that frames PHCA-based diagno-
sis as a soft constraint optimization problem over a
finite time horizon. The problem is solved using
efficient, decomposition-based optimization tech-
niques. The solutions correspond to the most likely
evolutions of the software-extended system.

Introduction

tion. The embedded software in each of these systems inter-
acts with the hardware components and influences their be-
havior. In order to correctly estimate the state of these de-
vices, it is essential to consider their software-extended be-
havior.

As an example of a complex system, consider vision-based
navigation for an autonomous rover exploring the surface of
a planet. The camera used within the navigation system is
an instance of a device that has software-extended behavior:
the image processing software embedded within the camera
module augments the functionality of the camera by process-
ing each image and determining whether it's corrupt. A sen-
sor measuring the camera voltage may be used for estimat-
ing the physical state of the camera. A hardware model of
the camera describes its physical behavior in terms of inputs,
outputs and available sensor measurements. A diagnosis en-
gine such as Livingstone that uses only hardware models will
not be able to reason about a corrupt image. The embedded
software provides additional information on the quality of the
image that is essential for correctly diagnosing the naviga-
tion system. To see why this is the case, consider a scenario
in which the camera sensor measures a zero voltage. Based
solely on hardware models of the camera, the measurement
sensor and the battery, the most likely diagnoses will include

Model-based diagnosis of devices has traditionally operc@mera failure, low battery voltage and sensor fault. How-

ated on hardware systenide Kleer and Williams, 1987;

ever, given a software-extended model of the camera that

Dressler and Struss, 1996For instance, given an observa- Models the process of obtaining a corrupt image, the diag-

tion sequence, the Livingstor@illiams and Nayak, 1996
diagnostic engine estimates the state of hardware compd?

nostic engine may use the information on the quality of the
image. Knowing that the processed image is not corrupt, the

nents based on hidden Markov models that describe eadROSt likely diagnosis that the measurement sensor is broken
component’s behavior in terms of nominal and faulty modesmay be deduced.

Researchers at the other end of the spectrum have applied The above scenario demonstrates that a diagnostic system
model-based diagnosis to software debugd@onsoleet al,,
1993; Mayer and Stumptner, 2004This paper explores the 1) monitor the behavior of both the hardware and its embed-
middle ground between the two, in particular the monitoringded software so that the software state can be used for di-
and diagnosis of systems with combined hardware and soffignosing the hardware, and 2) reason about the system state
ware behavior.

for complex systems with software-extended behavior must:

given delayed symptoms. An instance of a delayed symptom

Many complex systems today, such as spacecraft, robotis the quality of the image determined by the camera software

networks, automobiles and medical devices consist of harcgfter it has completed all stages of image processing.

ware components whose functionality is extended or con- In this paper we introduce a novel model-based monitoring
trolled by embedded software. Examples of devices withand diagnostic system that operates on software-extended be-
software-extended behavior include a communications modaavior models, to meet requirements 1) and 2) listed above.
ule with an associated device driver, and an inertial navigatn contrast to previous work on model-based software debug-
tion unit with embedded software for trajectory determina-ging [Mayer and Stumptner, 2004; Grosclaude, 40QBe
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2 Modeling Software-Extended Behavior
Figure 3:Most likely diagnoses of the camera module based on the

Figure 1 shows the software-extended camera module for thgfyare-extended behavior models.

vision-based navigation scenario described above. In this ex-

ample, the failure probabilities for each of the battery, camera

and sensor are 10%, 5% and 1% respectively. A typical be- If an image is taken by the camera, process it to

havioral model of the camera is shown on the left of Figure determine whether it's corrupt. If algorithm X de-

2. The camera can be in one of 3 modes: on, off or broken.  termines that the image is corrupt, discard it and

The hardware behavior in each of the modes is specified in  reset the camera; retry until a non-corrupt image is

terms of inputs to the camera such as the power and the be- obtained for navigation. Once a high quality image

havior of camera components such as the shutter. The broken is stored, wait for new image request from naviga-

mode is unconstrained in order to accommodate novel types tion unit.

of failures. Mode transitions can occur probabilistically, or as

aresult ofissued commands. The battery and the sensor com-Such a specification abstracts the behavior of the image

ponents can be modeled in a similar way. For the scenario inprocessing software implemented in an embedded program-

troduced above, the most likely diagnoses of the module caming language such as Estef8erry and Gonthier, 1992

be generated based on the hardware models alone, as shoarRMPL [Williams et al, 2001. For the above scenario, the

on the right of Figure 2. However, the image processing softbehavior of the embedded software provides diagnostic infor-

ware provides extended functionality that is not described bynation necessary to correctly estimate the state of the camera

the model in Figure 2. The specification of the embeddednodule. Given that the image is not corrupt, the possibility

software can offer important evidence that substantially althat the camera is broken becomes very unlikely. This is il-

ters the diagnosis. A sample specification of the behavior olustrated in Figure 3.

the image processing software may take the following form:  Unlike a hardware component that can typically be de-
scribed by a single mode of behavior, monitoring software be-
havior necessitates tracking simultaneous hierarchical modes.

Eailure Probability A modeling formalism that will allow the specification of
10% T Battery software behavior must support: 1) full concurrency for mod-
Camera 6 | Samera eling sequential and parallel threads of behavior, 2) condi-

tional behavior, 3) iteration, 4) preemption, 5) probabilistic
behavior for modeling uncertainty and 6) propositional logic
constraints for specifying co-temporal relationships among
) variables. The following section reviews the modeling frame-
Figure 1:Camera Module for Navigation System work for handling these requirements.

Image
processing
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Definition 1 (PHCA) \
A PHCAis atuple< ¥, Po, 11,0, C, Pr >, where:

s 005 / ! |
eroken / 0.001 I \
e Y is a set of locations, partitioned into primitive loca- / 0001 0% { \
tions X, and composite locations.. Each composite | ] :
location denotes a hierarchical, constraint automaton. / \ [ 099 [
location may be marked or unmarked. A marked loca- L eerares ) oo ] i ool
tion represents an active branch.

e Pg(0,) denotes the probability th&; C ¥ is the set of Figure 4: PHCA model for the camera/image processing module.
start locations (initial state). Each composite locafion Circles represent primitive locations, boxes represent composite lo-
C ¥, may have a set of start locations that are marked-ations and small arrows represent start locations.
whenl; is marked.

e IIis a set of variables with finite domains:[Il] is the  sensor is broken with 1% probability. For the first trajectory
set of all finite domain constraints ovHr that indicates that the battery is low, the power to the cam-
e O C Ilis the set of observable variables. era is not nominal, hence the camera will stay in the "Off”
] . . . location. For the second trajectory, the camera will be in the
e U ¥ — C[ll] associates with each locatiénC ¥ a  »groren” location. For the third trajectory that indicates that
finite domain constrain'(l;). the sensor is broken, the power input to the camera will be
e Pr(l;), for eachl; C X, is a probability distribution unconstrained, and hence the PHCA state of the camera may
over a set of transition functiori&(l;) : Zﬁf) x C[I] (t) include a r_nark_ing of_ the "On” Iocatio_n._ _AIthough the ev_o_lu-
tions of this third trajectory have an initially low probability
of 1%, at time step 6 they become more likely than the oth-
rs as the embedded software determines that the image is
alid. The reason is because the second most likely trajec-

— 92 Each transition function maps a marked lo-
cation into a set of locations to be marked at the nex
time step, provided that the transition’s guard constraing,

is entailed. tory at time 2 with camera = "Broken” location marked has
Definition 2 (PHCA State) a 0.001 probability of generating a valid image, thus making
The state of a PHCA at timeis a set of marked locations the probability of that trajectory 0.005% at time 6. This latter
called a markingn(*) c %. trajectory is less probable than those trajectories stemming

from the sensor being broken with 1% probability. Similarly,

Figure 4 shows a PHCA model of the camera module irthe first trajectory with battery = low and camera = Off be-
Figure 1. The "On” composite location contains three sub-comes less likely at time step 6 as there is 0.001% probability
automata that correspond to primitive locations "Initializ- of processing a valid image while the camera is "Off”.
ing”, "Idle” and "Taking Picture”. Each composite or prim-  PHCA models have the following advantages that support
itive location of the PHCA may have behavioral constraints.their use for diagnosing systems with software-extended be-
The behavioral constraint of a composite location, such abkavior. First, since HMMs may be intractable, PHCA en-
(power_in = nominal) for the "On” location, is inherited coding is essential to support real-time, model-based deduc-
by each of the subautomata within that composite hierarchytion. Second, PHCAs provide the expressivity to model the
In addition to the physical camera behavior, the model incorbehavior of embedded software by satisfying requirements
porates qualitative software behavior such as processing thB-6) above[Williams et al, 2001. Third, the hierarchical
quality of an image. Furthermore, based on the image qualitypature of the automata enables modeling of complex concur-
the possible camera configurations may be constrained by thrent and sequential behaviors. As an example of concurrency,
embedded software. For example, if the image is determinethe PHCA in Figure 4 allows the simultaneous marking of
to be corrupt, the software attempts to reset the camera. Ththe "On” location of the camera, as well as the "Initializing”,
restricts the camera behavior to transition to the Initializing”ldle”, or "Taking Picture” locations. This is in contrast to
location. diagnosis based on non-hierarchical models that can estimate

Recall that Figure 3 shows the most likely state trajectorie®ach component to be in a single mode of operation. State es-
based on the software-extended PHCA model. At time stefimates of components may be required at different levels of
2, as the sensor measurement indicates zero voltage, the masanularity. For example, an image-based navigation function
likely diagnosis trajectories are 1) battery = low with 10% may require high level camera state estimates such as "On” or
probability, 2) camera = broken with 5% probability and 3) "Off”. On the other hand, a function that coordinates imaging



activities may need more detailed camera state estimates such domain for each variable Xy, Dy is the set of do-

as "Initializing” or "Taking Picture”. Simultaneous marking
of several camera locations such as "On” and "Initializing”,
allows their use within functions that require estimates at dif-
ferent levels of granularity.

The following sections introduce a novel diagnostic system
based on the PHCA modeling framework. We first introduce

our approach for diagnosis over a single time step, and then o

extend it to handle delayed symptoms. Our approach results
in a capability for diagnosing systems with software-extended

behavior in the presence of delayed symptoms. Furthermore,
our formulation of the diagnosis problem enables the use of

decomposition techniqué®echter, 200Bfor efficient solu-

tion extraction.

4 Diagnosis as Constraint Optimization based
on PHCA Models

We frame diagnosis based on PHCA models as a soft
constraint optimization problem (COP)Schiex et al,

1995. The COP encodes the PHCA models as probabilistic
constraints, such that the optimal solutions correspond to
the most likely PHCA state trajectories. The soft constraint

mains for PHCA variable8l, andDg,.. is a set of do-
mains for variables{ g ...

e Set of constraints? that include the behavioral con-

straints associated with locations within the PHCA, as
well as encoding of the PHCA execution semantics.

Preference functiong’ in the form of probabilities as-
sociated with tuples of constrainf?. Tuples of hard
constraints that are disallowed by the constraint are as-
signed probability 0.0, while the tuples allowed by the
constraint are assigned probability 1.0. Tuples of soft
constraints are mapped to a range of probability values
based on the PHCA model. These probability values re-
flect the probability distributio®Ps of PHCA start states
and probabilities associated with PHCA transitidhs

The optimal solution to the COP is an assignment to so-
lution variablesXy, that represent the state of the PHCA,
while maximizing the probability of the transitions that
lead to that state from the previous time step. This corre-
sponds to a state assignment that maximizes the product
of the probabilities of the enabled constraint tuples.

formulation allows a separation between probability specifi- A key to framing PHCA-based diagnosis as COP is the
cation and variables to be solved for. Thus, we can associafermulation of the constraint® that capture the execution

probabilities with constraints that encode transitions, whilesemantics of the PHCA. PHCA execution involves determin-

solving for state variables.

Definition 3 (Constraint Optimization Problem)

A constraint optimization problem (COP) is a triple

(X,D,F) whereX = {X;,...,X,} is a set of variables
with corresponding set of finite domaifis = { Dy, ..., D, },
andF = {F,...,F,} is a set of preference functions
: (Si, R;) — C; where(S;, R;) is a constraint and’; is a
set of preference (or cost) values. Each constrgshtR;)
consists of a scop§; = {X;1, ..
of variablesX, and a relation?; C D;; X ... x D;, onS;
that defines all tuples of values for variables9nthat are
compatible with each other. Each preference functign
maps the tuples ofS;, R;) to values inC;. The solution
to variables of interest (solution variable®¥) C X is an

., X1} representing a subset

ing the entailment of behavioral constraints, identifying en-
abled transitions from a current PHCA state, and taking those
transitions to determine the next state. Referring back to the
PHCA example in Figure 4, if we assume that at time t the
PHCA state is< On < Idle >> and that the transition guard
constraint(command = TakePicture) is entailed, and at
time t+1 the behavioral constraifthutter = moving) of

the transition’s target location is entailed, then the PHCA
state at time t+1 will be< On < TakingPicture >>.

To encode entailment of conditions such(@smmand =
TakePicture), a variable Ep is introduced with domain
{Entailed, Not — Entailed} to denote whether the transi-
tion guard condition is entailed. Entailment of a condition is
then formulated as a COP constraint that allows the assign-
ment Er = Entailed to be associated with tuples that list

assignment td that is consistent with all constraints, has all possible assignments to the variabtenmand that en-

a consistent extension to all variabl& and minimizes (or

tail the condition(command = TakePicture). Entailment

maximizes) a global objective function defined in terms ofconstraints are generated for all locations that have behavioral

preference functions;.

Given a PHCA state at timeand an assignment to observ-

able and command variableslih(see Definition 1) at times
t andt + 1, in order to estimate PHCA state at time- 1,

constraints and for all transitions that have guard constraints.
The following example on the left of Figure 5 shows a

probabilistic choice between two transitions for a section of

the PHCA in Figure 4. In order to encode this probabilistic

choice, we first introduce a location varial t}f for time

we encode both the structure and execution semantics of ﬂi?with domain{ Marked, Unmarked}. Then auxiliary vari-

PHCA as a COP, consisting of:
e Set of variablesXy, U II U Xgge., Where X5, =

{L1,...,L,} is a set of variables that correspond to

PHCA locationd; € X, I is the set of PHCA variables,
andXgye. = {En, ..., B, } is a set of auxiliary variables

used for encode the execution semantics of the PHCA.

e Set of finite, discrete-valued domait3x,, U D U
Dx,..., whereDx. = {Marked,Unmarked} is the

abIesEgi and E%) with domain{Enabled, Disabled} are
introduced for transitions T1 and T2 respectively.

The COP constraint that encodes the probabilistic choice
among the two transitions T1 and T2 is formulated logically:

Xg;f = Marked= 3T € {T1,T2}] ;E(Tt) — Enabled
AT € {{T1,T2}~T} | : BY) = Disabled)) A Xg}; =

Unmarked= (T € {T1,T2} | : E(Tt) = Disabled)



0.95 Xor® | En® | E,,0 | Prob. 5 Diagnosis with Delayed Symptoms

. 005 /. Marked | Enabled | Disabled | 0.95 Ideally, diagnosis will maintain a complete probability distri-
T o e Marked | Disabled | Enabled | 0.05 bution of all possible system states. However, maintaining all
Unmarked | Disabled | Disabled | 1.0 possible state trajectories at each time step is intractable be-
cause of exponential growth in state space. Thus at every time
Figure 5: left: PHCA with two probabilistic transitions.right: step a limited number of trajectories are typically maintained.
Probabilistic transition constraint. A potential problem with this approach is that it may miss the
best diagnosis if a trajectory through a pruned state that is ini-
tially very unlikely becomes very likely after additional evi-
This logical formula is compiled into a set of tuples with dence. Figure 6 illustrates this situation for the camera mod-
associated probability values, as shown in Figureighf). ule, where the initially unlikely stat€Sensor = Broken)
The tuples are mapped to probability values by the followingis pruned, resulting in the best diagnosis to be unreachable

preference function: when additional evidence is available at time 6.
. (t) (t) Nominal Nominal Sensor=Broken
F.—  Prob(Ti) if 3T;" : Ep) = Enabled) o | N o X
T 1.0 otherwise S — missed
g“ T e Battery=low
. . . . E Cam=Broken @ Cam=Broken
The above constraint identifies the enabled transition, but R Y Py itk K-Best
does not encode taking the transition. In general, the follow- X sens8-proken .
ing constraint encodes taking enabled transitions, unless the T ¢ Time
behavior constraint of the transition’s target location is not S behavior —>
e nta.i | ed : Image not corrupt|

~VLeX|:(FTe{TlTarget(T) = L} | : B
Enabled) A Behavior!) = Entailed) = X\ = Marked)

where E. represents a transition variablBehaviory, is
an entailment variable for the behavior constraints of location pegjing with delayed symptoms is particularly important

L U its composite parent if L is within a hierarchy, adly,  for diagnosing systems with software-extended behavior, due
is the Iocayon variable of L. Th(_a constraint is instantiated for;q typically delayed observations associated with software
each location of the PHCA, as indicatedWy. € ¥.. processing. Livingstone-2 (LAKurien and Nayak, 2040
Some semantic rules apply to PHCA hierarchies. For exaddresses the problem of delayed symptoms for diagnosing
ample, when a composite location becomes marked, all dhardware systems. We generalize the L2 capability to PHCA-
its start locations become marked. Since "Initializing” is abased diagnosis.
start location of the composite "On” location, a PHCA in state  We extend our COP formulation of PHCA-based diagnosis
< Off > may transition to state On < Initializing >>. to provide flexibility for regenerating the most likely diag-
Furthermore, a composite location should be marked if any ofioses over a finite time horizon rather than a single previous
its subautomata are marked. The COP constraints must costep. Thus, we frame the COP over a finite time horizi¥n (
rectly capture such PHCA semantics and encode mutual extages) and leverage thé-stage history of observations and
clusions to avoid interference and conflicting effects amondssued commands to generate the most likely diagnosis trajec-
the constraints. For brevity, the complete encoding of contories over the horizon. This involves augmenting the COP
straints is not presented. in the previous section to include model variables and con-

The formulation of diagnosis as COP is performed offline.Straints for each time step within theé-stage horizon. The
Given a PHCA, we have implemented a compiler that autoSolutions to the COP become assignments to location vari-
matically generates the corresponding COP. The COP is thableng), t € {0..N}, representing PHCA state trajecto-
used in an online solution phase by dynamically updatingies that have maximum probability within the horizon. This
it to incorporate constraints on new observations and issueprobability corresponds to the product of transition probabili-
commands. The solutions to the COP can be generated ujes enabled within that trajectory, multiplied by the probabil-
to a given probability threshold using a constraint optimiza-ity of the initial state of the trajectory. As time progresses dur-
tion solver for soft constraintsSachenbacher and Williams, ing the online solution phase, tiié-stage horizon is shifted
2004. The solutions incorporate the probability distribution from ¢ — ¢ + N)to (t + 1 — ¢t + N + 1) and the COP
on the initial states as encoded by the COP. The most likelpver the new horizon is dynamically updated by constrain-
solutions generated at a time step t dynamically update thimg its start states at time t+1 to match the solutions from the
COP to constrain the set of start states for solving the COP girevious iteration. This reformulation still limits the num-
time step t+1. For example, as Figure 3 shows, state estimatégr of trajectories tracked to a given probability threshold, as
at time 2 may only be reached through those at time 1. Thudescribed in the previous section. Referring to Figure 6, if
limiting the number of state trajectories maintained at eaclwe consider a time horizord (— 6), state trajectories will
time step has implications for diagnosing faults that manifesbe regenerated starting from th¥ ¢minal) state at time O.
delayed symptoms. Therefore, even though the number of trajectories is limited,

Figure 6:Missed diagnosis as a result of tracking a limited number
of trajectories {{-Best)



the trajectory ending at stat&dnsor = Broken) at time  number of variables and constraints generated, investigating
6 will have the highest probability based on the delayed obthe optimal size of the diagnosis horizon and its relationship
servation. Consequently, the stdt®ensor = Broken) at  to the number of trajectories tracked.

time 2 will be maintained because it is part of the most likely

trajectory at time 6. 7 Acknowledgments
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Figure 7:Process diagram for PHCA-based diagnosis



