
Task-dependent Qualitative Domain

Abstraction ?

M. Sachenbacher a,∗, P. Struss b

aMIT CSAIL, 200 Technology Square, Cambridge, MA 02139, USA
bTechnische Universität München, Fakultät für Informatik, Boltzmannstr. 3,

85748 Garching, Germany

Abstract

Automated problem-solving for engineered devices is based on models that capture
the essential aspects of the behavior. In this paper, we deal with the problem of
automatically abstracting behavior models such that their level of granularity is
as coarse as possible, but still sufficiently detailed to carry out a given behavioral
prediction or diagnostic task. A task is described by a behavior model, as composed
from a library, a specified granularity of the possible observations, and a specified
granularity of the desired results. The goal of task-dependent qualitative domain
abstraction is to determine maximal partitions for the variables’ domains (termed
qualitative values) that retain all the necessary distinctions. We present a formal-
ization of this problem within a relational (constraint-based) framework, and devise
solutions to automatically determine qualitative values for a device model. The re-
sults enhance the ability to use a behavior model of a device as a common basis to
support different tasks along its life cycle.

Key words: Model-based systems, Qualitative reasoning, Domain abstraction

1 Introduction

Model-based systems [11, 25] represent knowledge about the structure and
behavior of a physical system in terms of a behavior model, and use it to

? Part of this work appeared in preliminary form in the Proceedings of the 18th
International Joint Conference on Artificial Intelligence (IJCAI-03).∗

Email addresses: sachenba@mit.edu (M. Sachenbacher), struss@in.tum.de (P.
Struss).

Preprint submitted to Elsevier Science 12 January 2004



support engineering tasks such as behavior prediction, diagnosis, planning and
testing. In recent years, model-based systems have increasingly been applied in
on-board contexts, as part of embedded systems, and in real-time applications
such as monitoring and control of space systems or passenger vehicles [15, 3,
20].

When constructing model-based systems, one of the most difficult parts is
modeling the device. A fundamental idea to support and facilitate modeling
is to compose models from model fragments, that is, re-usable elements of
knowledge about a device that can be organized in a library [6]. This requires
that model fragments have to be formulated, as far as possible, in a generic
way and independent of their specific application context. However, it also
means that information about the task a model will be used for cannot be
anticipated in the model fragments.

But a model needs to be suited for the problem-solving task at hand in order to
provide an effective and efficient solution to it. Using always the most accurate
and most detailed model available can render the respective problem-solving
task intractable, or at least unnecessarily complex and resource-consuming.
For instance, for the task of diagnosing a device in an on-board environment,
it is crucial to have a model that focuses only on those aspects that are es-
sential to the goal of discriminating between its normal and faulty behavior.
Any unnecessary details that are not relevant to this task impair its ability to
meet the stringent time and space requirements of this application. In general,
models straightforwardly composed from a library tend to be either inefficient,
because they are overly detailed (that is, too fine-grained), or ineffective, be-
cause they are not detailed enough (that is, too coarse-grained) for the task
they will be used for.

The approach pursued in this paper is therefore to automatically re-formulate
a behavior model, after it has been composed, to a level of abstraction that
is adequate for the specified task. We focus on the abstraction of the domains
of variables, that is, the problem of deriving meaningful qualitative values.
Much of the work in qualitative reasoning about physical systems [25, 7] relies
on this type of abstraction. The resolution of a behavior model’s domains has
a strong effect on the size of the model, the efficiency of reasoning with the
model, and the size of the solutions. Within an on-board or real-time setting,
the number of qualitative values determines how many of the observations will
be qualitatively different, and therefore it influences the frequency at which
reasoning has to be initiated at all. But often, qualitative values are defined
only ad hoc, for example, by introducing values such as “high”, “medium”,
or “low”. Although work has been carried out on finding qualitative values
within specific contexts, such as simulation [12, 13], the general problem of
characterizing and systematically deriving qualitative values for an arbitrary
relational (constraint-based) behavior model is a relatively unexplored area.

2



1.1 Example

Consider, for example, the system depicted in Figure 1. The device is a sim-
plified version of a pedal position sensor used in a passenger car. Its purpose
is to deliver information about the position of the accelerator pedal to the
electronic control unit (ECU) of the engine management system. The ECU
uses this information to calculate the amount of fuel that will be delivered to
the car engine.

Fig. 1. The Pedal Position Sensor

The pedal position is sensed in two ways, via the potentiometer as an analog
signal, vpot, and via the idle switch as a binary signal, vswitch. The idle switch
changes its state at a particular value pswitching of the mechanically transferred
pedal position. The reason for the redundant sensing of the pedal position is
that the signals vpot and vswitch are cross-checked against each other by the on-
board control software of the ECU. This plausibility check is a safety feature
of the system, in order to avoid cases where a wrong amount of fuel injected
evokes dangerous driving situations.

Assume we want to perform the plausibility check between the electrical sig-
nals vpot and vswitch automatically by the means of a behavior model of the
system. For the potentiometer model fragment, this requires a distinction in
the domain of vpot that corresponds to the switching point pswitching of the
switch. This is the only distinction in this domain that is required for the
purpose at hand.

The problem is that this particular distinction cannot be anticipated in a
generic model fragment of the potentiometer component, because it would not
make any sense in a different structure. It is only the specific combination of
the potentiometer and the switch together with the pursued task that requires
this distinction. In contrast, other tasks such as control or design might require

3



more detailed domains that would allow to relate the position of the switch
to particular potentiometer voltages.

The problem is important, because it impairs the idea of using a model of the
pedal position sensor as a common basis for different tasks. For engineered
systems, it is typical that several tasks along the product’s life cycle — such
as failure effects analysis, on-board diagnostics development, generation of
repair manuals or workshop diagnosis — share a significant amount of common
knowledge about the behavior of the system under consideration. It would be
unacceptable having to manually create models from scratch that are tailored
to each of these tasks.

1.2 Towards Qualitative Domain Abstraction from First Principles

The example above has confronted us with the problem that simply picking
model fragments from a library and composing the model is not enough. It
is infeasible, in general, to anticipate the required granularity in the domains
of variables. Therefore, the ability to transform the domains to the right level
of abstraction after composing the model’s constraints is a highly practical
requirement. It means grouping together domain values whose distinction is
irrelevant for the task at hand.

The core idea of distinctions between domain values being redundant is cap-
tured by the concept of interchangeability, first proposed by Freuder [8]. For
a constraint satisfaction problem (CSP) that consists of a set of variables,
domains and constraints on these variables, two values val1, val2 of a vari-
able v are said to be fully interchangeable, if for any solution where v = val1,
substituting v = val2 produces another solution, and vice versa. That is, solu-
tions involving val1 (val2) are identical to solutions involving val2 (val1) except
for the values val1, val2 themselves. Interchangeable values define equivalence
classes on the domains of the variables, and grouping them together corre-
sponds to an abstraction of the CSP that exactly preserves its set of solutions.
Freuder and Sabin [8], [9] already observe that interchangeability is related
to abstraction and the formation of “semantic groupings” within the domains
of variables. However, it is also known that in practice, interchangeability in
CSPs does not occur very frequently.

The idea pursued in this paper to leverage the specific context of a model-
based problem solving task to identify redundant distinctions. A model-based
problem solving task, such as behavioral prediction or diagnosis, is specific in
two respects:

(1) the input consists not only of the model, but also of the observations that
it is confronted with, such as measurements, hypothetical situations, etc.

4



Typically, observations are restricted because not all of the variables in
the model are observable (like in the example in Section 1.1), or because
values cannot be observed beyond a certain granularity.

(2) the output involves not all the feasible assignments of values to the vari-
ables, but instead only certain aspects of the solutions are required. Typ-
ically, we want to know whether values remain below or exceed a certain
threshold (as for the example in Section 1.1), or it is sufficient to deter-
mine values for a subset of the variables, such as mode variables, etc.

This context of a model-based task will be captured as (1) observable distinc-
tions that express what inputs to the problem solving process (for example,
observations) can occur, and (2) target distinctions that express what aspects
of the outcome we are after. Observable and target distinctions can be ex-
ploited to obtain so-called induced abstractions — domain abstractions that
often go beyond the level of interchangeability, but are still adequate for the
given model-based task. We pursue the approach in the context of general,
relational models that are not limited to restricted cases such as linear rela-
tionships or monotonic functions.

The paper is organized as follows. Section 2 introduces relational behavior
models, task-dependent distinctions and domain abstractions as fundamental
concepts of our approach. Section 3 formally defines task-dependent quali-
tative domain abstraction as the problem of obtaining distinctions that are
adequate for a certain task but as coarse as possible, and it characterizes
solutions to this problem. Section 5 sketches how domain abstractions are
computed and exploited within a model-based reasoning framework. Section
6 describes the application of reformulation based on task-dependent domain
abstraction in the context of a real-world example taken from the automotive
domain. In section 7, we discuss related work and identify directions for future
research.

2 Model-based Problem Solving

A behavior model is a relation (constraint) defined over a set of variables
v = (v1, v2, . . . , vn) with domains dom(vi), i = 1, 2, . . . , n:

R ⊆ dom(v) = dom(v1)× dom(v2)× . . .× dom(vn).

A domain can have an infinite or a finite number of elements, such as the “left”
and “right” states of the idle switch in the example considered in Section 1.1.
The relation is not limited to a class of algebraic operations or monotonic
functions, but can be any subset of the cross-product of the domains. Tables 1

5



Table 1
Variables and domains for an instance of the pedal position sensor model in Sec-
tion 1.1. The domain for variables involving voltage has five values. The domain for
variables involving position has six values (0% means that the gas pedal is in rest
position, and 100% means that the pedal is fully pushed through)

Variable Domain

sswitch {left, right}
p, pswitching {0%, 20%, 40%, 60%, 80%, 100%}
vpot {[0V,2V), [2V,4V), [4V,6V), [6V,8V), [8V,10V)}
vls, vrs, vswitch, vlp, vrp, vbatt, vgnd {[0V,2V), [8V,10V)}

Table 2
Relation for an instance of the pedal position sensor model in Section 1.1. It is
assumed that the only parameter in the system, pswitching, equals 40%. The relation
R consists of ten tuples (some of the variables have been omitted)

vpot p vswitch sswitch vbatt vgnd . . .

[0V,2V) 0% [0V,2V) left [8V,10V) [0V,2V) . . .

[0V,2V) 20% [0V,2V) left [8V,10V) [0V,2V) . . .

[2V,4V) 20% [0V,2V) left [8V,10V) [0V,2V) . . .

[2V,4V) 40% [0V,2V) left [8V,10V) [0V,2V) . . .

[4V,6V) 40% [0V,2V) left [8V,10V) [0V,2V) . . .

[4V,6V) 60% [8V,10V) right [8V,10V) [0V,2V) . . .

[6V,8V) 60% [8V,10V) right [8V,10V) [0V,2V) . . .

[6V,8V) 80% [8V,10V) right [8V,10V) [0V,2V) . . .

[8V,10V) 80% [8V,10V) right [8V,10V) [0V,2V) . . .

[8V,10V) 100% [8V,10V) right [8V,10V) [0V,2V) . . .

and 2 show the variables, domains and the relation for an instance of the pedal
position sensor example in Section 1.1.

We apply the operations ./ (join), Π (projection) and σ (selection) on relations.
Using the model for problem-solving means that external restrictions

Robs ⊆ dom(v)

such as observations, further restrict the set of possible states (left part of
Figure 2). Given a model R and an external restriction Robs, the basic task of
model-based reasoning is then to determine the remaining states (right part

6



of Figure 2):

Rsol = R ./ Robs.

Fig. 2. Relational framework for model-based problem solving. A model relation R,
confronted with external restrictions Robs, yields solutions Rsol.

For instance, for the model relation in Table 2, observing vpot = [2V,4V)
implies that sswitch = left and vswitch = [0V,2V).

2.1 Task-dependent Distinctions

We now augment the model-based problem solving framework presented above
by a means to represent task characteristics. A task is characterized by the
granularity of the inputs Robs that can occur or have to be considered, and
by the granularity of the outputs Rsol that is interesting or useful when solv-
ing problems with the model. The former is captured by so-called observable
distinctions, while the latter is captured by so-called target distinctions. Both
are defined in terms of domain granularity and both influence the appropriate
granularity of the behavior model R.

Observable distinctions are a means to express measurement granularity or
incomplete observability of variables (observations are only a special case of
external restrictions, which could also correspond to specifications given by
the user, or hypothetical situations). Observable distinctions identify states
that cannot be distinguished from each other; they give rise to abstractions
of the model because they introduce a “don’t know” indeterminism among its
states. An observable distinction for a variable is expressed as a partition of
its domain:

Definition 1 (Observable Distinction) An observable distinction for a vari-
able vi, denoted πobs,i, is a partition of its domain dom(vi).

A variable vi is not observable at all if πobs,i is equal to the trivial domain
partition πtriv,i := {dom(vi)}. For instance, in on-board diagnosis, only certain
variables corresponding to the sensor inputs might be observable.

7



Example 2 (Observable Distinction for Pedal Position Sensor) For the
pedal position sensor presented in Section 1.1, the electronic control unit senses
the output voltages of the potentiometer and the switch component, but cannot
measure the other variables. This can be stated as

πobs,vpot = {{[0V, 2V )}, {[2V, 4V )}, . . . , {[8V, 10V )}},
πobs,vswitch

= {{[0V, 2V )}, {[8V, 10V )}}.

The other variables receive the trivial partition

πobs,i = {dom(vi)}.

Target distinctions reflect the granularity of solutions we are after, identifying
states that need not be distinguished from each other. Target distinctions
give rise to abstractions of a model because they introduce a “don’t care”
indeterminism. Analogously to observable distinctions, target distinctions are
expressed as domain partitions:

Definition 3 (Target Distinction) A target distinction for a variable vi,
denoted πtarg,i, is a partition of its domain dom(vi).

A variable vi is said to have no target partition, if πtarg,i is equal to the trivial
partition. For instance, we might be interested in the values of certain output
variables only, such as the possible behavior modes of the components in the
case of a diagnostic task. For on-board diagnosis, it might even not be nec-
essary to know the particular behavior mode of the components, but instead
it might be sufficient to distinguish only those classes of behavior modes that
require different actions of the control unit.

Example 4 (Target Distinction for Pedal Position Sensor) The goal to
distinguish the ground voltage and battery voltage levels for the variable vswitch

in the example in Section 1.1 can be expressed as a target partition that sepa-
rates the two domain values [0V, 2V ) and [8V, 10V ):

πtarg,vswitch
= {{[0V, 2V )}, {[8V, 10V )}}.

The other variables receive the trivial partition

πtarg,i = {dom(vi)}.

8



2.2 Domain Abstractions

A domain partition πi can also be understood as a domain abstraction

τi : dom1(vi) → dom2(vi) ⊆ 2dom(vi)

that maps values from a base domain dom1(vi) to a transformed domain
dom2(vi) that consists of sets of values from the base domain, such that val
∈ τi(val). Abstractions can be extended straightforwardly from a single value
to a set of values by taking the union of the resulting sets, τi(val1)∪. . .∪τi(valk).
Likewise, they can be extended from abstracting a single domain to abstract-
ing a set of domains, τ = (τ1, τ2, . . . , τn). The application of an abstraction τ
to a relation R yields the transformed relation

τ (R) := {(τ1(val1), τ2(val2), . . . , τn(valn)) | (val1, val2, . . . , valn) ∈ R}.

Figure 3 illustrates the domain abstractions τ obs and τ targ corresponding to
observable and target distinctions, and their application to the relations Robs

and Rsol, respectively.

The merge of two domain abstractions τi,1 and τi,2 is the domain abstraction
τi,3 such that τi,3(val) = τi,1(val) ∩ τi,2(val). A domain abstraction τi,1 is a
refinement of τi,2, if for all val ∈ dom(vi), τi,1(val) ⊆ τi,2(val). We apply
the notion of refinement and merge equally to mappings and domains. An
abstraction τ 1 is a refinement of τ 2, if every τi,1 is a refinement of τi,2. Two
abstractions τ 1 and τ 2 are piecewise comparable, if for each τi,1 and τi,2, either
τi,1 is a refinement of τi,2, or τi,2 is a refinement of τi,1.

We extend the definition of the join operation to combine relations abstracted
by mappings τ 1 and τ 2. The result is only defined if τ 1 is a refinement of τ 2

or τ 2 is a refinement of τ 1. The result is a relation on the level of abstraction
of τ 1 in the former case, and a relation on the level of abstraction of τ 2 in the
latter case.

3 Qualitative Abstraction Problems

Given this representational apparatus, we can now formally define the problem
of task-dependent qualitative abstraction.

Definition 5 (Qualitative Abstraction Problem) Let R be a relational
behavior model, Obs a set of external restrictions, τ obs a domain abstraction

9



Fig. 3. Framework for model-based problem solving enhanced by task-dependent
distinctions. Observable distinctions (τ obs, indicated by grid on left-hand side) de-
fine the granularity of external restrictions (in this case, only four values can be
distinguished for each variable). Target distinctions (τ targ, indicated by grid on
right-hand side) define the granularity of solutions (in this case, only two values
need to be distinguished for each variable).

defined by observable distinctions, and τ targ a domain abstraction defined by
target distinctions. The qualitative abstraction problem consists of finding a
so-called induced domain abstraction τ ind such that

(1) (Adequacy) For all external restrictions Robs ∈ Obs,

τ targ(R ./ τ obs(Robs)) = τ targ(τ ind(R) ./ τ ind(τ obs(Robs))).

(2) (Maximality) If τ ind is a refinement of τ ′ind and τ ′ind fulfills (1), then τ ′ind

= τ ind.

The first condition (adequacy) states that the abstracted model τ ind(R) de-
rives a solution on the level of target distinctions, if and only if the original
model R derives the same solution on the level of target distinctions. We re-
quire this to hold for a set of external restrictions (actual observations, design
specifications, etc.) on the level of observable distinctions. This guarantees
that for any such external restriction, the abstracted model will yield the
same results as the original model. That is, if we apply τ ind before carrying
out our problem-solving task, it won’t affect the result because this abstrac-
tion incorporates all the distinctions that are necessary for this task. As a
consequence, we can substitute the abstracted model τ ind(R) for the original

10



model R in problem solving.

The view we take here is that a domain abstraction is considered adequate if
it keeps enough distinctions in the domains dom(vi) to preserve their original
“distinguishing power” with respect to the solutions. Distinctions in the do-
main of a behavior model should be made only if they are really necessary to
derive conclusions about the required solutions.

In general, there may be many adequate domain abstractions. In particular,
the identical domain abstraction τ id that retains all the distinctions in the
domains is an adequate abstraction. However, among all adequate abstrac-
tions, we prefer those that are maximal according to the second condition of
Definition 5. Maximal abstractions are coarsest in the sense that there exists
no other adequate abstraction of which they are a strict refinement (an ab-
straction that would further aggregate at least two of the qualitative values).

Definition 5 formalizes the problem of finding qualitative values for the do-
mains of variables: a domain abstraction that is both adequate and maximal
neither makes any unnecessary distinctions, nor abstracts away any distinc-
tions that are crucial to solve the problem.

A qualitative abstraction problem (QAP) describes a whole class of instances
defined by a model relation and set of external restrictions. This is in con-
trast to interchangeability, which is concerned with possibilities for abstrac-
tion within a single problem instance only. Interchangeability requires that the
solutions remains the same as for the original model. A QAP relaxes this basic
principle and demands that the solutions remain the same only on the level of
target distinctions, and only for inputs on the level of observable distinctions.

Example 6 (Multiplication Constraint) Let v = (v1, v2, v3). Let dom(vi)
be equal to the real numbers, i = 1, 2, 3. Let R express the behavior v1 ·v2 = v3,
and let Obs = 2dom(v). Assume that only v1 and v2 are observable, and that a
target partition is given only for v3:

πtarg,3 = {val1, val2, val3, val4, val5} = {(−∞, 0), 0, (0, 1), 1, (1,∞)}.

Assume, first, that the observable distinction for v1 and v2 is the identical
partition πid. Then the induced abstractions for v1 and v2 are also equal to the
identical abstraction:

πind,1 = πind,2 = πid.

To see this, consider an abstraction τ that maps two different real numbers

11



a1 6= a2 onto the same value for v1. Then choosing the external restriction

Robs = {(a1,
1

a1

, (−∞,∞))}

reveals the loss: for the case 0 < a1 < a2, the original relation R yields the
solution val4 for v3, whereas the abstraction τ (R) yields the solution val4∪val5
for v3 (the other cases are similar). Now assume that the observable distinction
for v1 and v2 is a partition that consists of the integer values and open intervals
between them:

πobs,1 = πobs,2 = {. . . ,−1, (−1, 0), 0, (0, 1), 1, . . .}

As suggested by Figure 4, in this case all values of v1 greater than 1 can
be summarized. It would not pay off to distinguish between them because the
values of v2 are not fine-grained enough to determine, for instance, whether
v3 is less than, equal to, or greater than 1. Therefore, the induced abstractions
for v1 and v2 are given by

πind,1 = πind,2 = {(−∞,−1),−1, (−1, 0), 0, (0, 1), 1, (1,∞)}.

This example illustrates the influence of the granularity of the external re-
strictions on the level of abstraction that can be achieved.

3.1 Solutions to Qualitative Abstraction Problems

The definition of a qualitative abstraction problem is quite general. In par-
ticular, it includes situations where the external restrictions do not comprise
all possible observations at the level of observable distinctions, and situations
where it is impossible to discriminate solutions at the level of target distinc-
tions. In the following, we restrict ourselves to qualitative abstraction problems
where these cases do not occur.

Definition 7 (Obs-Completeness) A QAP is obs-complete, if all observa-
tions at the level of observable distinctions can occur: τ obs(Obs) = 2τ obs(dom(v)).

Obs-completeness means that all possible observations on the level of observ-
able distinctions have to be considered. Consequently, induced abstractions
can be derived without knowing the exact set Obs.

Definition 8 (Sol-Completeness) A QAP is sol-complete, if all solutions
at the level of target distinctions can be distinguished: ∀ πtarg,i, ∃ Robs ∈ Obs
such that Πi(τ targ(R ./ τ obs(Robs))) = πtarg,i.

12



Fig. 4. Projections of the multiplication constraint in Example 6 on the qualitative
values of v3. The grid corresponds to the granularity of observations for v1 and v2.
The diagram for v3 = val2 (not shown) coincides with the axes v1,v2.

Sol-completeness means that all possible solutions defined by the target dis-
tinctions can indeed be distinguished based on the model and the external
restrictions.

The results of our analysis can still be applied to QAPs that are not obs-
complete or sol-complete, but then the resulting abstractions are not neces-
sarily maximal (because there might be additional possibilities for abstraction
that are not related to the coarseness of observable or target distinctions).
In addition, we demand that τ obs and τ targ are piecewise comparable. Note
that this is not actually a restriction, because it can be established for any
QAP by possibly introducing additional variables that separate the target and
observable distinctions.

Intuitively, if QAP is sol-complete, we have to keep all the target distinctions,
because we need them to distinguish the solutions. But we can eliminate the
distinctions between observations that would lead to the same set of solutions.
If QAP is obs-complete, then the possible observations on the level of τ obs are
the possible subsets of τ obs(dom(v)). For each tuple tobs,j ∈ τ obs(dom(v)), let

13



Rsol,j be the solution it derives on the level of target distinctions:

Rsol,j := τ targ(R ./ tobs).

Let Robs,k denote the sets of tuples tobs,j that obtain the same solution:

Robs,k :=
⋃

j:Rsol,j=Rsol,k

tobs,j.

Then the Robs,k form the elements of a partition of τ obs(dom(v)):

Σ(R, τ obs, τ targ) :=
⋃

k

{Robs,k}.

The set Σ(R, τ obs, τ targ) defines a partition over tuples at the level of observ-
able distinctions, aggregating those that yield the same solutions. We illustrate
these concepts with a simple example.

Example 9 (Equality) Let v = (v1, v2). Let dom(vi) = {0, 1, 2} for i = 1, 2.
Let R be given as

R = {(0, 0), (1, 1), (2, 2)}.

Assume that the only non-trivial observable partition is a partition for v1:

πobs,1 = {{0}, {1}, {2}}, πobs,2 = {{0, 1, 2}},

and that the only non-trivial target partition is a partition for v2:

πtarg,1 = {{0, 1, 2}}, πtarg,2 = {{0}, {1, 2}}.

Then the set Σ(R, τ obs, τ targ) contains the two elements (see also Figure 5)

Robs,1 = {({0}, {0, 1, 2})}, Robs,2 = {({1}, {0, 1, 2}), ({2}, {0, 1, 2})}.

For the pedal position sensor model (Table 2) with the observable and tar-
get distinctions specified in Examples 2 and 4, the partition Σ(R, τ obs, τ targ)
consists of the four elements shown in Figure 6.

The following theorem shows that two domain values can be aggregated if they
are not distinguished by a target distinction, and if they are interchangeable
with respect to every relation in Σ(R, τ obs, τ targ).

14



Fig. 5. The model relation R (left) and the two elements of the partition
Σ(R, τ obs, τ targ) (right) for Example 9.

Fig. 6. Partition Σ(R, τ obs, τ targ) for the pedal position sensor example. The parti-
tion consists of four elements (all variables except vpot and vswitch have no observable
distinction and have been omitted from the figure).

Theorem 10 (Solution to QAP) Let QAP be a qualitative abstraction prob-
lem that is obs-complete and sol-complete. Let τFI,Λ,i be the domain abstraction
that aggregates the interchangeable values of a relation Λ, that is, two values
val1, val2 ∈ dom(vi) are combined if 1

Π1,...,i−1,i+1,...,n(σvi=val1(Λ)) = Π1,...,i−1,i+1,...,n(σvi=val2(Λ)).

Then the merge of τtarg,i and every domain abstraction

τFI,Λ,i where Λ ∈ Σ(R, τ obs, τ targ)

is an induced abstraction for QAP.

1 This relational notion of interchangeability is slightly more general than the orig-
inal definition of Freuder [8] in that it includes also the case where val1 or val2 do
not occur in the relation Λ.

15



A proof is given in the appendix. In Example 9, the values 1 and 2 for variable
v1 are interchangeable in both partition elements Robs,1 and Robs,2. Therefore,
the two qualitative values {0} and {1, 2} are derived for variable v1. Variable
v2 receives the same distinctions because they are equal to its target partition.

For the pedal position sensor example, two pairs of values for vpot are inter-
changeable in all partition elements Robs,1, . . . , Robs,4 (Figure 6). Theorem 10
derives the following three qualitative values for vpot:

{{[0V, 2V), [2V, 4V)}, {[4V, 6V)}, {[6V, 8V), [8V, 10V)}}.

The first qualitative value {[0V,2V), [2V,4V)} corresponds to situations where
vswitch equals ground voltage, the third qualitative value {[6V,8V), [8V,10V)}
corresponds to situations where vswitch equals battery voltage, and the second
qualitative value {[4V,6V)} corresponds to situations where the position of
the switch and, hence, the voltage of vswitch, is ambiguous.

Theorem 10 shows that the basic concept of interchangeability plays a central
role in the determination of solutions to a qualitative abstraction problem. In
particular, the problem of finding interchangeable values in a relation can be
recast as a special case of a QAP, where one distinguishes only empty from
non-empty solutions:

Corollary 11 (Interchangeability as QAP) Let QAP = (R, τ obs, τ targ) be
an obs-complete qualitative abstraction problem such that τ obs = τ id, τ targ =
τ triv

2 . Then τFI,R,i is an induced abstraction for QAP.

In general, however, the granularity of induced abstractions is different from
the granularity of interchangeable values. Induced abstractions can be either
more coarse or more fine-grained than τFI,R. The former case occurs in Ex-
ample 9, where interchangeability would have distinguished between all the
domain values for both v1 and v2. The latter case occurs if target distinc-
tions are specified between domain values that would be interchangeable with
respect to the model relation.

Theorem 10 provides only one solution, but a QAP might have multiple solu-
tions in general. The following example illustrates this.

Example 12 (Multiple Solutions) Let v = (v1, v2). Let dom(v1) = {0, 1, 2, 3},
dom(v2) = {0, 1}. Let R be given by

R = {(1, 0), (2, 1), (3, 0), (3, 1)}.

2 These conditions already imply that the QAP is sol-complete.

16



Assume that the only non-trival observable partition is a partition for v1

πobs,1 = {{1}, {2}, {0, 3}}, πobs,2 = {{0, 1}}

and that the only non-trival target partition is given by a partition for v2:

πtarg,1 = {{0, 1, 2, 3}}, πtarg,2 = {{0}, {1}}.

Then there a three different induced abstractions for v1:

πind,1 = {{1}, {2}, {0, 3}},
π′ind,1 = {{1}, {0, 2}, {3}},
π′′ind,1 = {{0, 1}, {2}, {3}}.

In Example 12, the domain value 0 of variable v1 does not occur in the model
relation R and can be freely allocated to different partition elements. Among
the three possible solutions, Theorem 10 provides the induced abstraction
πind,1, whose qualitative values are comprised of observable partition elements.

Theorem 10 also constitutes a possible starting point for finding approxima-
tions of qualitative values that avoid the cost of computing interchangeable
values. One approach is to use only necessary conditions for interchangeability.
A necessary condition for two domain values val1, val2 ∈ dom(vi) to be inter-
changeable with respect to a relation Λ is that val1, val2 are interchangeable
with respect to a projection of Λ on a subset of its variables. In the extreme
case, we consider only the projection of Λ on the variable vi itself:

Proposition 13 (Approximate Solution to QAP) Let QAP be a quali-
tative abstraction problem that is obs-complete and sol-complete. Let τapp,i be
the merge of τtarg,i and every domain abstraction

τFI,Λ′,i where Λ′ := Πi(Λ), Λ ∈ Σ(R, τ obs, τ targ).

Then there exists an induced abstraction for QAP that is a refinement of τapp,i.

Computing the approximation τ app is easier than determining τ ind, because
it involves only the projection and intersection of sets, and does not require
to determine the interchangeable values in Λ.

The approximation τ app corresponds to considering only observations for in-
dividual variables, and not simultaneous observations for different variables.

17



As illustrated by Example 14, it is not adequate because in general, an ob-
servation might lead to a different solution only if combined with additional
observations for the other variables.

Example 14 (Xor-Gate) Let v = (v1, v2, v3). Let dom(vi) = {0, 1} for i =
1, 2, 3. Let R be given as

R = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.

Assume that a non-trivial observable distinction is given only for variables v1

and v2 and that a non-trivial target distinction is given only for v3:

πobs,1 = {{0}, {1}}, πobs,2 = {{0}, {1}}, πtarg,3 = {{0}, {1}}.

Then Σ(R, τ obs, τ targ) contains the two elements (see Figure 7)

Robs,1 = {({0}, {0}, {0, 1}), ({1}, {1}, {0, 1})},
Robs,2 = {({0}, {1}, {0, 1}), ({1}, {0}, {0, 1})}.

The approximation yields only the trivial partition as a lower bound for the
granularity of v1 and v2. However, the induced abstraction corresponds to the
granularity of the base domain:

πind,1 = {{0}, {1}}, πind,2 = {{0}, {1}}.

Fig. 7. Projection of Robs,1 (left) and Robs,2 (right) on variable v1 yields no distinc-
tion for Example 14.

Proposition 13 yields a lower bound on the granularity of the induced ab-
stractions derived by Theorem 10, which is often sufficient in practical cases.
Both in Example 9 and in the pedal position sensor example (Figure 6), the
distinctions derived by τ app are identical to those derived by Theorem 10.

18



4 A Prototypic System for Task-dependent Domain Abstraction

The computation of induced abstractions for a QAP involves, based on the re-
sults above, the subproblems of constructing the model relation R, computing
the partition Σ(R, τ obs, τ targ), and determining interchangeable values within
the elements of this partition.

Our prototypic system AQUA (Automated Qualitative Abstraction) [19] de-
termines the relation R through structural decomposition of the constraint
network defined by the model fragments it is composed of. Structural de-
composition [10] transforms a constraint network into an equivalent acyclic
(tree-structured) instance. AQUA then iterates over the partition elements of
the observable and target distinctions and labels the tuples of the relation R
that are consistent with the respective partition elements. Since directional arc
consistency is sufficient for establishing consistency in a tree-structured net-
work, this step can be performed efficiently by local constraint propagation.
This step yields the partition Σ(R, τ obs, τ targ).

Interchangeable values in the partition elements of Σ(R, τ obs, τ targ) can then
be found using the basic algorithm described in [8]. Alternatively, the par-
tition elements can be projected on the individual variables to obtain the
approximate solution. AQUA also performs further optimizations in that it
can automatically remove redundant values (domain values that do not ap-
pear in any constraint) and eliminate variables that have no distinction at
all. The decomposition step is independent of the particular task in terms of
observable and target distinctions; hence, the resulting tree can be re-used for
different combinations of observable or target distinctions.

AQUA builds on components of an existing model-based reasoning framework
called Raz’r that consists of a development system for composing a device
model from of a library of model fragments, and a runtime system for per-
forming behavioral prediction and diagnosis based on actual measurements
for the device. In addition to the basic Raz’r components, AQUA includes a
module that computes induced abstractions as described above, an abstractor
module that applies domain abstractions to a real-valued or finite behavior
model, and a signal transformation module that generates qualitative obser-
vations by applying domain abstractions to (time-varying) measurements.

Using AQUA to automate qualitative domain abstraction, several tasks can
be supported in the context of building model-based systems that are often
carried out manually or solved on an ad hoc-basis. The common theoretical
basis is to find suitable domains for the variables in a model. However, in
different contexts this basic task can have different interpretations, depending
on what the terms variable and domain refer to, including magnitudes, modes

19



of components, and deviations from reference behaviors.

5 Application: On-board Diagnosis of a Passenger Vehicle

In a project involving European car manufacturers and suppliers [21], task-
dependent qualitative domain abstraction was used to build a prototype of a
model-based system capable of diagnosing emission-related failures of turbo-
charged diesel engines, a problem of significant importance regarding environ-
mental impact and compliance with legal requirements.

Fig. 8. View of the Demonstrator Car

This system had to make use of the sensor signals available on-board in the
car, transform them to a qualitative level and exploit them for detecting and
localizing faults based on a model of the turbo control system of the diesel
engine (Figure 9). It was installed on a demonstrator vehicle with a number
of built-in faults (see Figure 8).

As part of the project, numerical (real-valued) models were developed for the
relevant components, including a characteristic map describing the complex
behavior of the engine. The resulting model was composed of 16 fragments
and had 146 variables (see [19] for details).

The particular interest of the involved car manufacturers concerned failures of
the system that lead to increased carbon emissions due to an excessive quantity
of fuel injected or an insufficient airflow to the engine. The fuel combustion
process is largely determined by λ, the stoichiometric ratio between air and

20



Fig. 9. Turbo Control and exhaust gas re-circulation subsystem of the vehicle.
Through the EGR valve and the wastegate valve, the ECU controls the air sup-
ply to the engine by determining the amount of exhaust gas that will be fed back
to the inlet and that drives the turbocharger turbine, respectively.

fuel:

λ =
actual air quantity

theoretical air requirement
.

A fuel-lean mixture (λ > 1) contains more air, while a fuel-rich mixture (λ < 1)
contains less air. Hence, in our framework, the modeling goal to distinguish
normal situations from situations where combustion is incomplete (and there-
fore increased carbon emissions occur) could be expressed as a target partition
for λ, stating whether it is above or below a certain critical value λcrit:

πtarg,λ = {(−∞, λcrit), [λcrit,∞)}.

The fact that only certain variables in the system are measured could be
expressed as an observable distinction for the variables in the system. It asso-
ciates the identical domain mapping with variables that correspond to signals
of the control unit, and the trivial domain mapping with all the other variables.

Abstraction of the model was performed in two steps. In a first step, the real-
valued model fragments were turned (using AQUA’s model abstractor) to a
finite system description by applying initial domain mappings from the real
numbers to discrete domains (these initial mappings could be chosen arbitrar-
ily, but had to be sufficiently fine-grained to ensure sol-completeness). In a
second step, task-dependent domain abstraction was used to further reduce
these discrete values to qualitative values, eliminating any of the initial dis-

21



Table 3
Typical example showing the performance of the initial model and the model ob-
tained by task-dependent domain abstraction during a time frame of 9.75 seconds

Quantitative
(no abstraction)

Initial
abstraction

Qualitative
abstraction

Number of Observations 1053 28 12

Runtime for Diagnosis 3 – 2.79 sec 1.84 sec

tinctions that were irrelevant to the task of diagnosing incomplete combustion.

The two steps took AQUA roughly 3 minutes. Both models were then con-
fronted with actual measurements taken from the car. Table 3 shows the results
for a continuously running measurement that involved a leakage fault in the
pipe between the turbine and the engine inlet. The duration of the shown time
frame is approximately 10 seconds, and 1053 quantitative observation vectors
occur during this time frame.

The initial model abstraction reduced this number to 28 different vectors.
Compared to the initial abstraction, qualitative domain abstraction achieved
a further significant reduction. In the example time frame, only 12 of the
28 initial discrete vectors are found to be qualitatively different, hence the
frequency of observations is reduced from approximately 2.8 observations per
second to 1.2 observations per second. The qualitative model yields the same
diagnostic result about one third faster than the initial model.

Qualitative domain abstraction reduces both the complexity of reasoning with
the model, and the number of time points at which this reasoning has to be
initiated. In the context of the project, these two effects were instrumental
to design a diagnostic system that could meet real-time requirements and
was actually capable of keeping up with the rate of the measurements in the
on-board context.

6 Discussion

While several pieces of work have addressed the problem of automatically de-
riving appropriate models [26, 16, 17, 28, 14, 18], the work presented here
is distinctive in that it focuses specifically on the granularity (resolution) of
the domain values. This limited scope enables a less knowledge-based, more
“mathematical” view of automated modeling. It allows for representing the

3 Apart from the runtime required for diagnosis, there are further processing steps
(for instance, signal processing) that are similar for both models and not shown in
the table.

22



space of candidate models implicitly and concisely as the space of possible
domain partitions, and it allows for taking on the view of transforming (re-
formulating) models by means of well-defined operators τi. In comparison,
other approaches to automated modeling either require to explicitly enumer-
ate the space of candidate models [1, 22], or at least to pre-define a set of
fragments with different levels of detail to choose from [16, 17, 14, 18] (note
that there might be an infinite number of candidate models in the case of
domain abstraction). Another difference is that our general relational rep-
resentation subsumes both infinite and finite constraints, and is not limited
to specific types of constraints or special-purpose reasoning methods (for in-
stance, [16, 17, 28] employ variants of order-of-magnitude reasoning). It leaves
reasoning with the model to any problem solver that can handle the relational
operations join, projection and selection. Together with the narrow focus on
domain abstraction, the relation-based formalization allows for capturing the
conditions for a solution in a single, concise formula (Definition 5) and, more
importantly, allows for determining the solutions analytically and in closed
form (Theorem 10). In contrast, [16, 17, 14, 18] all devise search procedures
that start from an initial model and backtrack until they find a solution.

Williams [27] defines a so-called hybrid algebra for automated abstraction of
a behavior model, with the goal of preserving information about the sign of
the result as far as possible. The approach thus captures the idea of obtaining,
given a base model, optimal information with respect to a targeted granularity
(in this case, the signs of the variables). However, the specific domain abstrac-
tion to signs is hard-wired into the transformation rules of the algebra, and
the constraints are restricted to operators such as addition or multiplication.
QSIM [12, 13], a system for performing qualitative simulation of device behav-
ior over time, incorporates methods for refining the domains of variables by
deriving new distinctions (“landmarks”) during the simulation process. The
base domain is given as the real numbers, and new landmarks are introduced
whenever the derivative of a variable reaches zero. Except for signs, only in-
formation on the ordinal relationship and knowledge about values that must
be assumed at the same time (“corresponding values”) is provided. Therefore,
the mapping of qualitative values to their base domain is only partially known,
and the derived distinctions can in general not be exploited to simplify the
constraints. Extensions of QSIM that deal with semi-quantitative reasoning [2]
allow to further constrain the landmark values to numeric intervals. However,
these methods are specific to the context of simulation, and the constraints
are limited to a set of algebraic relationships and monotonic functions.

The notion of observable and target distinctions generalizes notions of task-
dependent characteristics that have been previously exploited in constraint-
based and model-based reasoning. Chung [4] presents a compilation method
for diagnostic models that eliminates the non-observable variables. This cor-
responds to a special case of observable distinction that is equal to τid,i for the

23



observables and equal to τtriv,i for all other variables. In constraint optimiza-
tion, it is common to distinguish between decision variables that appear in
the solutions and non-decision variables that do not appear in the solutions.
This can be viewed as a special case of target distinctions that is equal to
τid,i for the decision variables and equal to τtriv,i for the non-decision variables.
Torasso and Torta [24] recently presented an approach for merging together
behavior modes that are indistinguishable, based on a notion of observation
granularity that is equivalent to observable distinctions. However, the method
does not incorporate a notion of target distinctions.

The theory of task-dependent domain abstraction is applicable both to finite
and infinite models. However, our current implementation (AQUA) is based
on a finite-domain representation and can derive induced abstractions only for
the finite case. As outlined in Section 5, it is possible to approximate induced
distinctions for real-valued models by first applying an initial discretization,
and then generating induced abstractions for this finite representation. To
mitigate the problem of finding “good” initial discretizations, [19] develops a
method for iterative refinement of qualitative values. [23] investigates cases of
real-valued functions for which exact induced distinctions can be obtained. For
the special case of real-valued monotonic functions and target distinctions that
can be expressed as landmarks, deriving induced abstractions becomes similar
to the problem of finding corresponding values for landmarks [13]. Note that
observability of a real-value variable is most naturally specified as a certain
range encompassing a measured value, reflecting the accuracy of the measure-
ment. Since this does not correspond to a partition of the domain values of the
variable 4 , extending task-dependent domain abstraction to infinite domains
might also have ramifications on the notion of task-dependency.

7 Conclusion

The increasing complexity of engineered devices has lead to an increased
demand for computer-supported behavior prediction, diagnosis, and testing.
Given the maturity and scale of model-based systems, the question of how to
re-use behavior models is of growing interest. It has been shown that a model
composed from a library cannot be expected to have a level of granularity
suitable for different tasks right away. Instead, the ability to re-formulate the
model after composing it is a crucial requirement. We identified, within a
common relational framework, fundamental properties of re-formulation that
is based on abstraction of domain values. The degree of domain abstraction

4 In some situations, this case could be handled by re-formulating the behavior
model in terms of variables expressing deviations (see [26, 5]) and stating observable
distinctions for these deviations.

24



that can be achieved is strongly dependent on the characteristics of the task
in terms of available inputs and required outputs. Observable distinctions and
target distinctions are a means to capture these aspects, and they can be
exploited to derive qualitative values as distinctions that are both adequate
and as coarse as possible. Task-dependent qualitative domain abstraction is a
contribution to further bridging the gap between quantitative and qualitative
modeling, as it allows for expressing knowledge about component behavior
without committing early to a specific abstraction level of the domains. It
can help to make model-based system more efficient and more effective due to
automating steps that are currently done by hand.

Acknowledgements

The authors thank the two anonymous referees for useful comments and sug-
gestions, and Claes Carlén, Oskar Dressler, Ulrich Heller, Andreas Malik,
Jakob Mauss, Björn Svensson and Daniele Theseider-Dupré for fruitful col-
laboration. This research was funded in part by the European Union through
contract BE95/2128 and by Deutsche Forschungsgemeinschaft through grant
SA1000/1-1.

A Appendix: Proof of Theorem 10

We have to show that τ ind, defined as the merge of τ targ and all abstractions
τFI,Λ, is both adequate and maximal. First, we show that τ ind is adequate.

Let Robs be an external restriction. We need to show τ targ(R ./ τ obs(Robs)) =
τ targ(τ ind(R) ./ τ ind(τ obs(Robs))). The direction “⊆” is obvious. To show the
direction “⊇”, consider the relation Γ ⊇ τ obs(Robs) that contains, for every
tuple in τ obs(Robs), its partition element Λ. Then because Λ combines only
tuples that yield the same solution, τ targ(R ./ τ obs(Robs)) = τ targ(R ./ Γ).
Let τFI,Σ be the merge of every domain abstraction τFI,Λ. Then because τFI,Λ

aggregates only interchangeable values, and because τ ind is a refinement of
τFI,Σ, R ./ Γ = R ./ τFI,Σ(Γ) = R ./ τ ind(Γ). Because τ ind is a refinement
of τ targ, τ targ(R ./ τ ind(Γ)) = τ targ(τ ind(R ./ τ ind(Γ)) = τ targ(τ ind(R) ./
τ ind(Γ)). From Γ ⊇ τ obs(Robs), it follows that τ targ(τ ind(R) ./ τ ind(Γ)) ⊇
τ targ(τ ind(R) ./ τ ind(τ obs(Robs))).

Second, we show that τ ind is maximal. We need to show that for any ab-
straction τ ′ind,i that further combines partition elements of τind,i, at least one
external restriction exists that yields a solution Rsol for the original model

25



and a different solution R′
sol 6= Rsol for the abstracted model. Because the ob-

servable and target distinctions are piecewise comparable, there are only two
possibilities how a simpler abstraction τ ′ind,i can be formed:

(1) If τtarg,i is a refinement of τobs,i, then τind,i = τtarg,i, and τ ′ind,i must combine
at least two partition elements of τtarg,i.

(2) If τobs,i is a refinement of τtarg,i, then if τ ′ind,i does not combine partition
elements of τtarg,i, it must combine at least two partition elements of
τFI,Λ,i.

In the case where τ ′ind,i combines at least two partition elements p1, p2 of τtarg,i,
because of sol-completeness, there exists at least one external restriction Robs

that yields a solution Rsol := τ targ(τ ind(R) ./ τ ind(τ obs(Robs))) such that
Πi(Rsol) = p1. Then for R′

sol := τ targ(τ ’ind(R) ./ τ ’ind(τ obs(Robs))), it holds
that Πi(R

′
sol) = p1 ∪ p2, and therefore Rsol 6= R′

sol.

In the case where τ ′ind,i combines at least two partition elements p1, p2 of τFI,Λ,i,
because p1, p2 are distinguished in τFI,Λ,i, there exists at least one partition
element Λ of Σ(R, τ obs, τ targ) for which p1, p2 are not interchangeable, that
is, where Π1,...,i−1,i+1,...,n(σvi∈p1(Λ)) 6= Π1,...,i−1,i+1,...,n(σvi∈p2(Λ)). Let Robs be
defined as

Robs := p2 × Π1,...,i−1,i+1,...,n(σvi∈p1(Λ)) ∪ p1 × Π1,...,i−1,i+1,...,n(σvi∈p2(Λ)).

Robs comprises exactly the tuples that are missing to make p1, p2 interchange-
able with respect to Λ. Because of obs-completeness, Robs and Λ can occur as
observations, and they yield two solutions Rsol := τ targ(R ./ τ obs(Robs)) =
τ targ(R ./ Robs), Rsol := τ targ(R ./ τ obs(Λ)) = τ targ(R ./ Λ). Because
Λ comprises, by definition, all tuples that yield the same solution Rsol,Λ,
it holds that Rsol 6= Rsol,Λ. Then for R′

sol := τ targ(τ ’ind(R) ./ τ ’ind(Robs)),
R′

sol,Λ := τ targ(τ ’ind(R) ./ τ ’ind(Λ)) it holds that R′
sol = R′

sol,Λ = Rsol ∪ Rsol,Λ,
and because Rsol 6= Rsol,Λ, it follows that either Rsol 6= R′

sol or Rsol,Λ 6= R′
sol,Λ.

References

[1] S. Addanki, R. Cremonini, and J. S. Penberthy. Graphs of models. Ar-
tificial Intelligence, 51(1–3):145–177, 1991.

[2] D. Berleant and B. Kuipers. Qualitative and quantitative simulation:
Bridging the gap. Artificial Intelligence, 95(2):215–255”, 1997.

[3] F. Cascio, L. Console, M. Guagliumi, M. Osella, A. Panati, S. Sottano,
and D. Theseider Dupré. Generating on-board diagnostics of dynamic
automotive systems based on qualitative models. AI Communications,
Special Issue on Model–Based Reasoning, 1999.

26



[4] S. Chung, J. Van Eepoel, and B.C. Williams. Improving model-based
mode estimation through offline compilation. In International Symposium
on Artificial Intelligence, Robotics and Automation in Space, St-Hubert,
Canda, 2001.

[5] Hidde de Jong and Frank van Raalte. Comparative envisionment con-
struction: A technique for the comparative analysis of dynamical systems.
Artificial Intelligence, 115(2), 1999.

[6] B. Falkenhainer and K. D. Forbus. Compositional modeling: Finding the
right model for the job. Artificial Intelligence, 51:95–143, 1991.

[7] Boi Faltings and Peter Struss, editors. Recent Advances in Qualitative
Physics. The MIT Press, Cambridge, Massachusetts, 1992.

[8] E. C. Freuder. Eliminating interchangeable values in constraint satisfac-
tion problems. In Proceedings of Ninth National Conference on Artificial
Intelligence, pages 227–233, Anaheim, CA, 1991.

[9] E. C. Freuder and D. Sabin. Interchangeability supports abstraction and
reformulation for constraint satisfaction. In Proceedings of Symposium on
Abstraction, Reformulation and Approximation (SARA’95), 1995.

[10] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A compari-
son of structural CSP decomposition methods. Artificial Intelligence,
124(2):243–282, 2000.

[11] W. Hamscher, L. Console, and J. de Kleer, editors. Readings in Model-
based Diagnosis. Morgan Kaufman Publishers, San Mateo, CA, 1992.

[12] B. J. Kuipers. Qualitative simulation. Artificial Intelligence, 29(3):289–
338, 1986.

[13] Benjamin J. Kuipers. Qualitative Reasoning: Modeling and Simulation
with Incomplete Knowledge. MIT Press, Cambridge, MA, 1994.

[14] A. Levy, Y. Iwasaki, and R. Fikes. Automated model selection for sim-
ulation based on relevance reasoning. Artificial Intelligence, 96:351–394,
1997.

[15] N. Muscettola, P. Nayak, B. Pell, and B.C. Williams. Remote agent: To
boldly go where no AI system has gone before. Artificial Intelligence,
103:5–48, 1998.

[16] P. Pandurang Nayak. Causal approximations. Artificial Intelligence,
70:277–334, 1994.

[17] P. Pandurang Nayak and L. Joskowicz. Efficient compositional modeling
for generating causal explanations. Artificial Intelligence, 83:193–227,
1996.

[18] J. Rickel and B. Porter. Automated modeling of complex systems to
answer prediction questions. Artificial Intelligence, 93:201–260, 1997.

[19] M. Sachenbacher. Automated Qualitative Abstraction and its Application
to Automotive Systems. PhD thesis, Technische Universität München,
Department of Computer Science, 2001.

[20] M. Sachenbacher, P. Struss, and C. Carlén. A prototype for model-based
on-board diagnosis of automotive systems. AI Communications, 13(2):83–
97, 2000.

27



[21] M. Sachenbacher, P. Struss, and R. Weber. Advances in design and im-
plementation of OBD functions for diesel injection systems based on a
qualitative approach to diagnosis. In Society of Automotive Engineers
(SAE) World Congress, Detroit, USA, 2000.

[22] P. Struss. What’s in SD? Towards a theory of modeling for diagno-
sis. In L. Console W. Hamscher and J. de Kleer, editors, Readings in
Model–based Diagnosis, pages 419–450, San Mateo, CA, 1992. Morgan
Kaufmann.

[23] P. Struss. Automated abstraction of numerical simulation models: Theory
and practical experience. In Proceedings of the International Workshop
on Qualitative Reasoning, Sitges, Spain, 2002.

[24] G. Torta and P. Torasso. Automatic abstraction in component-based
diagnosis driven by system observability. In Proceedings of Eighteenth
International Joint Conference on Artificial Intelligence, Acapulco, Mex-
ico, 2003.

[25] D. Weld and J. de Kleer, editors. Readings in Qualitative Reasoning about
Physical Systems. Morgan Kaufmann, San Mateo, CA, 1990.

[26] D. S. Weld. Reasoning about model accuracy. Artificial Intelligence, 56,
1992.

[27] B. C. Williams. A theory of interactions: Unifying qualitative and quan-
titative algebraic reasoning. Artificial Intelligence, 51:39–94, 1991.

[28] K. Yip. Model simplification by asymptotic order of magnitude reasoning.
Artificial Intelligence, 80, 1996.

28


