
On-demand Bound Computation
for Best-First Constraint Optimization

Martin Sachenbacher and Brian C. Williams

MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139, USA {sachenba,williams}@mit.edu

Abstract. An important class of algorithms for constraint optimization
searches for solutions guided by a heuristic evaluation function (bound).
When only a few best solutions are required, significant effort can be
wasted pre-computing bounds that are not used during the search. We
introduce a method that generates—based on lazy, best-first variants
of constraint projection and combination operators—only those bounds
that are specifically required in order to generate a next best solution.

1 Introduction

Many problems in Artificial Intelligence can be framed as constraint optimization
problems where only a few best (“leading”) solutions are needed. For instance,
in fault diagnosis it might be sufficient to compute the most likely diagnoses
that cover most of the probability density space [6]. In planning, it might be
sufficient to compute the best plan, and a few backup plans in case the best
plan fails. When only a few leading solutions need to be generated, algorithms
that search through the space of possible assignments guided by a pre-computed
heuristic evaluation function (bound) [4] become inefficient, because only some of
the bounds will typically be needed to compute the best solutions. We present a
method called best-first search with on-demand bound computation (BFOB) that
efficiently computes leading solutions for semiring-based CSPs [1]. BFOB opti-
mally interleaves bound computation and best-first search, such that bounds are
computed and assignments are expanded only as required to generate each next
best solution. The algorithm can still generate all solutions and its complexity
is never worse than performing bound computation as a separate pre-processing
step, yet it can derive the best solutions much faster. The approach involves
lazy, best-first variants of constraint combination and projection operators, and
a streamed computation scheme that coordinates these operators by exploiting
a tree decomposition [3, 5] of the optimization problem.

2 Semiring-based Constraint Optimization Problems

A constraint optimization problem (COP) over a c-semiring S = (A, +,×,0,1)
[1] is a triple (X, D, F) where X = {x1, . . . , xn} is a set of variables, D = {D1,
. . . , Dn} is a set of finite domains, and F = {f1, . . . , fm} is a set of constraints.

2

Fig. 1. Full adder example (left), consisting of two AND gates, one OR gate and two
XOR gates, and computational scheme (right) for a tree decomposition of the example.

The constraints fj ∈ F are functions defined over var(fj) assigning to each tuple
a value in A. The + operation of the c-semiring induces an order ≤S over A as
follows: a ≤S b iff a + b = b. In this paper, we assume that ≤S is a total order.

Example. Diagnosis of the full adder circuit in Fig. 1 can be framed as a COP
over the probabilistic c-semiring Sp = ([0, 1],max, ·, 0, 1) with variables X =
{u, v, w, y, a1, a2, e1, e2, o1}. Variables u to y have domain {0, 1}. Variables a1 to
o1 describe the mode of a component and have domain {G,B}. If a component
is good (G) then it correctly performs its boolean function; if it is broken (B)
then no assumption is made about its behavior. Assume AND gates have a
1% probability of failure, and OR and XOR gates have a 5% probability of
failure. Table 1 shows the resulting constraints, where each tuple is assigned the
probability of its corresponding mode.

3 Optimization using Bound-Guided Search

Solutions to a COP can be found by searching through the space of possible
assignments in best first order, guided by a heuristic evaluation function [4]. In
A* search, the evaluation function is f = g × h, composed of the value of the
partial assignment made so far, g, and a heuristic h that provides an optimistic
estimate (bound) on the value that can be achieved when completing the assign-
ment. Kask and Dechter [4] show how h can be derived from a decomposition

Table 1. Constraints for the example (tuples with value 0 are not shown).

fa1: a1 w y fa2: a2 u v fe1: e1 u y fe2: e2 u fo1: o1 v w

G 0 0 .99 G 0 0 .99 G 1 0 .95 G 0 .95 G 0 0 .95
G 1 1 .99 G 1 1 .99 G 0 1 .95 B 0 .05 B 0 0 .05
B 0 0 .01 B 0 0 .01 B 0 0 .05 B 1 .05 B 0 1 .05
B 0 1 .01 B 0 1 .01 B 0 1 .05 B 1 0 .05
B 1 0 .01 B 1 0 .01 B 1 0 .05 B 1 1 .05
B 1 1 .01 B 1 1 .01 B 1 1 .05

3

of the constraint network into an acyclic instance called a bucket tree [5]. The
tree is evaluated bottom-up (that is, in post-order) using dynamic programming
to compute a constraint hvi

for each tree node vi. Let function g(i) be defined
as the combination of all functions of the nodes v1, . . . , vi of the bucket tree,
and let function h(i) be defined as the combination of all functions of the nodes
c1, . . . , cl that are children of v1, . . . , vi:

g(i) =
i⊗

j=1

(
⊗

fk∈vj

fk), h(i) =
l⊗

j=1

hcj
.

Then the value g(i)(x0
1, . . . , x

0
i) × (h(i) ⇓xi+1)(x

0
i+1) is an upper bound (with

respect to ≤S) on the value that can be achieved when extending the assignment
x1 = x0

1, . . . , xi = x0
i by xi+1 = x0

i+1. We generalize the derivation of bounds
from bucket trees to tree decompositions [3, 5] by assigning variables in groups:
Let p = v1, . . . , vn be a pre-order of the nodes V of a tree decomposition. Then
p defines an ordering on groups of variables G1, . . . , G|V | ⊆ X, by letting G1 =
var(hv1), Gi+1 = var(hvi+1) \ (G1 ∪ . . . ∪ Gi). Consider the tree decomposition
in Fig. 1, consisting of three nodes v1, v2, and v3. If the variables in the group
G1 = {u, v, w, y, a1, a2} have been assigned (that is, node v1 has been traversed),
then g(1)⊗h(1) with g(1) = fa1⊗fa2 and h(1) = hv2⊗hv3 is a bounding function
for the value that can be achieved when extending the assignment by assigning
the variables in the group G2 = {e1, o1}.

4 On-Demand Bound Computation

When only a few best solutions are required, computing bounds for all assign-
ments is wasteful, since typically a large percentage of the bounds is not needed
in order to compute the best solutions. The key to capturing this intuition for-
mally is the following monotonicity property of c-semirings, which is an instance
of preferential independence [2]:

Proposition 1. If h0 ≤S h1 for h0, h1 ∈ A, then for g0 ∈ A, g0×h0 ≤S g0×h1.

It implies that in best-first search, it is sufficient to consider only the ex-
pansion with the best value (and keeping a reference to its next best sibling).
This is sufficient because all other expansions cannot lead to solutions that have
a better value with respect to the order ≤S . The constraint-based A* scheme
in [7] exploits this principle in order to significantly limit the successor nodes
created at each expansion step. The idea pursued in this paper is to generalize
on this: if it is unnecessary to create all possible expansions of a node, then
it is also unnecessary to compute bounds on all possible expansions of a node.
This allows us to interleave best-first search and the computation of a bounding
function h, such that h is computed only to an extent that it is actually needed
in order to generate a next best solution. We call this approach best-first search
with on-demand bound computation (BFOB).

4

function nextBestComb(f1, f2)
while (queue 6= ∅) do
〈i, j, v〉 ← pop(queue)
〈t1, v1〉 ← at(f1, i)
if (〈t1, v1〉 6= nil) then
〈t2, v2〉 ← at(f2, j)
if (〈t2, v2〉 6= nil) then

t ← t1⊗ t2
if (var(f1) 6⊇ var(f2)) then
〈t1′, v1′〉 ← at(f1, i+1)
if (〈t1′, v1′〉 6= nil) then

push(queue,〈i+1, j, v1′×v2〉)
end if

end if
if (i = 1) then
〈t2′, v2′〉 ← at(f2, j+1)
if (〈t2′, v2′〉 6= nil) then

push(queue,〈i, j+1, v1×v2′〉)
end if

end if
if (t 6= nil) then return 〈t, v1× v2〉
end if

end if
end if

end while
return nil

function nextBestProj(f)
while (index 6= 0) do
〈t, v〉 ← at(f, index)
if (〈t, v〉 6= nil) then

t1 ← t ⇓var(fresult)

index ← index + 1
for each 〈t2, v2〉 in fresult do

if (t1 = t2) then goto while
end if

end for
return 〈t1, v〉

else
index ← 0

end if
end while
return nil

Fig. 2. Best-first variants of constraint combination and constraint projection.

The approach requires to compute the functions hvi incrementally and in
best-first order. We achieve this—akin to streamed, on-demand computation
in distributed databases—by applying constraint projection and combination
operations only partially, that is, to subsets of the tuples of the constraints.
Consider the scheme of functions and operations shown in Fig. 1. The best tuple
of function fe2 is 〈e2=G, u=0〉 with value .95 (first tuple of fe2 in Table 1). The
projection of this tuple on u, which is 〈u=0〉 with value .95, is necessarily a best
tuple of f4. Similarly, a best tuple of fa1 can be combined with a best tuple of
fa2, for instance the first tuples of fa1 and fa2 in Table 1. The resulting tuple
〈u=0, v=0, w=0, y=0, a1=G, a2=G〉 with value .98 is necessarily a best tuple of
constraint f1. Eventually, a best tuple for hv1 can be computed from the scheme
without visiting large parts of the constraints fa1, fa2, fe1, fe2, and fo1.

The functions nextBestProj() and nextBestComb() shown in Fig. 2 imple-
ment such best-first variants of the constraint operators ⇓ and ⊗, respectively.
The helper function at(f, i) returns the i-th best tuple of a constraint f , or
generates it, if necessary, by calling the constraint operator producing f . For
each projection operator, index is initially 1, and for each combination operator,

5

Table 2. Results for random Max-CSPs (10 instances each)

T C N K BFPB (% time) BFOB (% time)

4 (25%) 20 15 4 100% 1.4%

8 (50%) 20 15 4 100% 3.2%

4 (25%) 15 10 4 100% 4.5%

8 (50%) 15 10 4 100% 14.3%

4 (25%) 20 10 4 100% 9.7%

8 (50%) 20 10 4 100% 38.8%

queue is initially {〈1, 1,1〉}. Initially, the tuples of the constraints are sorted
and inserted at the inputs (leafs) of the scheme. BFOB then assigns variables
in groups following a pre-order traversal of the tree as described in Sec. 3, and
when expanding a search node, it computes a bound on-demand for the best
expansion using function at(). The best-first variants of the constraint operators
have the same worst-case complexity as their counterparts ⇓ and ⊗. However,
the average complexity of on-demand function computation can be much lower
if only some best tuples of the resulting function are required.

5 Experimental Results

We compared the performance of BFOB relative to the alternative approach
of pre-computing all functions hvi . We call this alternative algorithm BFPB
(it is analogous to the algorithm BFMB described in [4]). Table 2 shows the
results of experiments with three classes of Max-CSP problems for the task
of generating a single best solution. The results indicate that BFOB leads to
significant savings especially when computing best solutions to problems with
low constraint tightness and sparse to medium network density.

References

[1] Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Solving and Op-
timization. Journal of ACM, 44 (2) (1997) 201–236

[2] Debreu, C.: Topological methods in cardinal utility theory. In: Mathematical Meth-
ods in the Social Sciences, Stanford University Press (1959)

[3] Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposi-
tion methods. Artificial Intelligence 124 (2) (2000) 243–282

[4] Kask, K., Dechter, R.: A General Scheme for Automatic Generation of Search
Heuristics from Specification Dependencies. Artificial Intelligence 129 (2001) 91–131

[5] Kask, K., et al.: Unifying Tree-Decomposition Schemes for Automated Reasoning.
Technical Report, University of California, Irvine (2001)

[6] de Kleer, J.: Focusing on Probable Diagnoses. Proc. AAAI-91 (1991) 842–848
[7] Williams, B., Ragno, R.: Conflict-directed A* and its Role in Model-based Embed-

ded Systems. Journal of Discrete Applied Mathematics, to appear.

