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Abstract. From the tree, leading solutions can be efficiently enumerated using

Constraint optimization is at the core of many problems in Ar- directional consistency (an instance of dynamic programming) and
tificial Intelligence. In this paper, we frame model-based diagnosisa monotonicity property of semirings that allows early pruning of
as a constraint optimization problem over lattices. We then showinferior solutions.
how it can be captured in a framework for “soft” constraints known The paper is organized as follows. The next section formally de-
as semiring-CSPs. The well-defined mathematical properties of &ines model-based diagnosis as constraint optimization over lattices.
semiring-CSP permits us to devise efficient solution methods basefection 3 reviews semiring-CSPs. Section 4 frames constraint opti-
on decomposing diagnostic problems into trees and applying dymization over lattices, and in particular diagnosis, as a semiring-CSP,
namic programming. We relate the approach to SAB and TREE*and defines conditions under which the global objective function can
two diagnosis algorithms for tree-structured systems, which correbe folded into the constraints to define preference levels locally. Sec-
spond to special cases of semiring-based constraint optimization. tion 5 presents an algorithm for solving semiring-CSPs efficiently
based on tree decomposition, dynamic programming and pruning.
Finally, in Section 6 we show that SAB and TREE*, two diagnosis
1 INTRODUCTION algorithms for tree-structured systems [8, 20], can be understood as
Many problems in Artificial Intelligence can be framed as optimiza- special instances of semiring-based constraint optimization.
tion problems, where the task is to find a best assignment to a set of
variables such that a set of constraints is satisfied. Formalismsforsoﬂ DIAGNOSIS AS CONSTRAINT
constraints [19, 2] aim at more closely integrating constraint satis- OPTIMIZATION OVER LATTICES
faction and optimization. Soft constraints extend hard constraints by
defining preference levels, such that assignments are associated witefinition 1 (Constraint System) A constraint systeraver{T, L}
an element from an ordered set. This element can be interpreted é&sa tuple(X, D, F), whereX = {z1, ...,z } is a set of variables,
weight, cost, utility, probability, or user preference. A general frame-D = {Dx, ..., D, } is a set of finite domains, arld = { f1, ..., fm}
work for soft constraints are semiring-CSPs [2], which are based ofis a set of constraints. The constraintsare functions defined over
the mathematical structure of a semiring (a set with two operationsar(f;), where allowed tuples have valde and disallowed tuples
+ andx on it). The semiring operations{(and x) model constraint  have valuel.
projection and combination, respectively.

In this paper, we show how model-based diagnosis, and in gen- For example, the boolean polycell circuit [21] shown in Fig. 1
eral optimization problems composed of a lattice preference structurean be framed as a constraint system with variables =
and hard constraints, can be framed as semiring-CSPs. This extends, b, ¢, d, e, f, g, 2,9, 2,01,02,03,al,a2}. Variablesa to z are
on work in [21], which framed several model-based tasks as optiboolean variables with domaif0, 1}, whereas variablesl to a2
mization problems, and leads to a general framework where differerlescribe the mode of a component and have donj@rB}. If a
notions of model-based diagnosis found in the literature (cardinalitycomponent is good (denoted G) then it correctly performs its boolean
minimal diagnosis [10], subset-minimal diagnosis [14, 3], and prob-function. If a component is broken (denoted B) then no assumption
abilistic diagnosis [3]) can be easily obtained by choosing an approis made about its behavior. For the moment, we assume that obser-
priate semiring. The approach is based on breaking down a globations (as stated in Fig. 1) are included in the set of constraints. We
objective function, and defining preference levels locally per eactshall return later to the issue of how they can be added at run-time.
constraint. In the process, we interpret and exploit assumptions com-
monly made in model-based diagnosis as special properties of the
optimization problem behind it.

For classical constraint satisfaction problems (CSPs), local consis-
tency techniques [13] provide the basis for effective solution meth-
ods. The mathematical properties of semiring-constraints ensure that
local consistency is still applicable, except that it has to be organized
as directional consistency in a tree-structured evaluation scheme. We
present a method for computing solutions to a diagnostic problem,
formulated as a semiring-CSP, that is based on decomposing the
constraint network into an equivalent, tree-structured instance [11].

Figure 1. The Boolean Polycell example consists of three OR gates and
L MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, two AND gates. Input and output values are observed as indicated.
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In the following, byt |y we denote the projection of a tuple on a Definition 4 (Constraint System over Semiring) A constraint sys-
subsefY” of its variables. Given a constraint syst&rand a subset tem over a c-semirings a constraint system where the constraints
of the variablesZ C X, asolutionis a tupletz over the variablesin  f; € F are functions defined over vigf;) assigning to each tuple a
Z such that there exists an extensioof ¢ to all variablesX that  value inA.
fulfills the constraints, thatig, |z= tz and f;(t lvar(s;)) = T
for all f; € F. We denote the set of solutions @ as so[C). “Classical” constraints [13] correspond to constraint systems over
In diagnosis, the seZ corresponds to the mode variables. For ex- the semiringS;, where allowed tuples have valueand disallowed
ample, for the boolean polycell in Fig. % is the set of variables tuples have value.

{01, 02,03, al,a2}. Optimization extends a constraint system by an

objective function to define preference levels on the solutions: Definition 5 (Combination and Projection) Let f and g be two
constraints defined over v@gf) and var(g), respectively. Then,

Definition 2 (Objective Function) An objective functionU maps

tuples overZ C X to a setA with a partial order< 4 that forms a

complete lattice (that is, every subset of eleménis A has a great-

est lower bound gly) € A and a least upper bound Ib) € A). ) x g(t _lvar_(-q)); ) .
2. Theprojectionof f on a set of variabled”, denotedf |y, is a

Objective functions and lattices can be used to frame both NeW constraint oved” N var(f), where each tuplé has value
qualitative and quantitative notions of minimality in diagnosis. In ~ f (1) + f(t2) + ...+ f(tx), andty, t2,. . ., ), are all the tuples
cardinality-minimal diagnosis [10H is the set of integer values with ~ ©f f for whichz; |y = ¢.
total order<, andU returns for each mode assignment the number
fault mode assignments. In probabilistic diagnosis [8]is the in- : A ; .
terval 0, 1] with total order<, andU associates a probability value Straint optimization problem is to compute a functipoverZ ¢ X
with each mode assignment. In subset-minimal diagnosis [144 3], SU¢h thalg(t) is the best value attainable by extendintp X, i.e.,
is the lattice of subsets of with partial orderC, and each mode g9(t) = (®j:1 fi) ¥z
assignment is mapped to the subset of variables that represent a fault
mode assignment. One can think of further instances, for exampley DJAGNOSIS AS SEMIRING-BASED
associating a repair cost or partially ordered user preferences with CONSTRAINT OPTIMIZATION

each mode assignment. . . . . o .
For the boolean polycell example in Fig. 1, the cardinality- In this section, we investigate how optimization over lattices, as de-

minimal diagnoses arel=B, 02=G, 03=G, a1=G, a2=G with value  fined in Sec. 2, and in particular diagnosis, can be formulated as a
1 ando1=G, 02=G, 03=G, a1=B, a2=G with value 1. If we assume S€MIring-CSP. We first show that it is possible to “reconstruct” an
that OR gates have 1% probability of failure and AND gates havefduivalent semiring-CSP from a constraint system dvey L} and -
5% probability of failure, then the two leading probabilistic diag- @ lattice. We then investigate under which conditions it is possible
noses are the same assignments with values .0097 and .0048, respiécbreak down the global objective function and to define preference

1. Thecombinationof f and g, denotedf ® g, is a new constraint
overvar(f) U var(g), where each tuple has valuef (t |var(s)

Given a constraint systeiiX, D, F') over a c-semiring, the con-

tively. The subset-minimal diagnoses ale=B, 02=G, 03=G, a1=G, levels locally, that is, per each constraint, such that the ranking of so-
a2=G with value{o1}, 01=G, 02=G, 03=G, a1=B, a2=G with value  lutions is still preserved. This builds on conditions that were defined
{a1}, ando1=G, 02=B, 03=G, a1=G, a2=B with value{02, a2}. in [5] in the context of cost-based optimization in tree-structured

CSPs. We illustrate how these conditions correspond to assumptions

commonly made in model-based diagnosis.
3 SEMIRING-CSPS

Semiring-CSPs [2] are a framework for “soft” constraints where thePe€finition 6 (Separable Objective Function) An objective func-
constraints are extended to include a preference level. Semirindion U iS x-separablénto a set of functionsu, ..., uy, if x is a
CSPs subsume many other notions of preferences in constraints, sugmmutative, associative operation drwith unit element lupd),
as fuzzy CSPs [16], probabilistic CSPs [7], optimal CSPs [21], ordPsorbing element gil), andus @ ... @ ux = U.
partial constraint satisfaction [9]. Theorem 1 (Optimization as Semiring-CSP)LetC = (X, D, F)
Definition 3 ([2]) A c-semiringis a tuple(A4, +, x, 0, 1) such that be a constr_alnt system ovéﬂ',_J_} andU an pbjectlve functiorx -
separable intous, ..., us. Define a constraint systeifiX, D, F')
1. Aisasetand,1 € 4; over A as follows: For eachy; € F, let f; be defined over vdf;)
2. + is a commutative, associative and idempotent (kes, Aim-  asfj(¢) = glb(A) if f;(¢t) = L and f;(t) = lub(A), else. LetF” =
pliesa + a = a) operation with unit elemer® and absorbing  fiU...U f), Uui U...Uug. Then(A,lub, x, glb(A),lub(A)) is

elementl (i.e.,a+ 0 =g anda+ 1 = 1; a c-semiring, and@® """ f!) Iz = U(sol(C)).
3. x is acommutative, associative operation with unit elemesntd

absorbing elemera (i.e.,a x 1 = a anda x 0 = 0); Every objective functior¥ is trivially x-separable into itself, by
4. x distributes overt (i.e.,a x (b+¢c) = (a x b) + (a x ¢)). choosinga x b = glb({a, b}). Together with Theorem 1, this implies

that every constraint syste@i over { T, L} with objective function
For instanceS, = ({0,1},V, A,0,1) forms a c-semiring. The U can be turned into a semiring-CSP ovkthat has the same set of
idempotency of the- operation induces a partial ord€s overAas  solutions as”’ and ranks them in the same waylas
follows: a <g biff a+b = b (for Sp, 0 <g 1). In[2]itis shown that For instance, the objective functidi for subset-minimal diag-
(A, <s) forms a lattice. The partial order defines levels of preferencenosis (Sec. 2) is<-separable into unary functions defined over
and allows to select the “best” solutions for constraints defined over € Z, wherex = U, u;(t) = 0 if ¢ represents a correct assignment,
a c-semiring. andu,(t) = {z} if t represents a faulty assignment. Likewise, the



objective functions for cardinality-minimal diagnosis and probabilis- set of faulty components with respect to set inclusion, can be ob-
tic diagnosis arex-separable into unary functions where = + tained by choosing the semiritfy = (2%,N, U, Z, 0). The operator
and x = -, respectively. For model-based diagnosis, non-trivially N induces an ordering om b € 27 as follows:a <s biff a D b.
x-separable objective functions correspond to the assumption that Probability-Maximal DiagnosisDiagnoses where the preference
faults or sets of faults occur independently of each other. Togethetriterion is the probability of mode assignments, and the goal is to
with the results in [2], Theorem 1 establishes a one-to-one correspomaaximize the probability of a mode assignment, can be obtained by
dence between lattice preference structures over “hard” constrainthoosing the semiring, = ([0, 1], max, -, 0,1). For probabilistic
(functions onto{ T, L }) and semiring-CSPs. diagnosis, the objective function being-separable corresponds to
Up to now, we have two different types of constraints in the the assumption that failures are conditionally independent.
semiring-CSP: functions; that are defined only over variables from
the_setZ of variat_)les of interest, and bi-valued_ functiofisthat are 5 DECOMPOSITION AND DYNAMIC
defined over variables from the s&t of all variables. We seek to PROGRAMMING
eliminate this distinction by combining the two types of constraints.
Framing a diagnostic problem as a semiring-CSP is the basis for solv-
Definition 7 (Containment) A functionu; € F iscontainedn f; € ing it using constraint optimization methods. In particular, semiring-
F,if var(u;) C var(f;). CSPs allow to apply dynamic programming and early pruning to
efficiently compute leading solutions. In this section, we present
A partu; of the objective function that is contained in a hard con- & backtrack-free algorithm that returns all solutions up to a user-

straintf; can be applied to the tuples $f, turning it into a soft con- ~ SPecified threshold of preference.

straint. We can thus reduce the set of constraints, without changing L0c@l constraint propagation [13] is an efficient technique to
the set of solutions, by “absorbing” functions that are contained solve classical (hard) constraints. The mathematical properties of c-
in functions;: semirings (in particular, associativity and commutativity) guarantee
that local constraint propagation works in this extended framework as
well. The exception is that the -operation is not necessarily idem-
potent, which means that constraint propagation cannot be applied in
a “chaotic” way anymore. Research that aims at extending the notion
of local consistency to soft constraints [1, 18] has therefore focused
on directional consistency, where constraints are propagated in an
organized way following a hierarchical (tree) scheme.
For model-based diagnosis, the assumption that faults are ind?- The g_oal of structgral decompo_smon m_ethods [11, 12] is to
e . urn arbitrary constraint networks into equivalent, tree-structured
pendent for individual components means that there exists a L . . .
. . . . (acyclic) instances, possibly by aggregating constraints together. De-
separation such that eaeh will be contained in at least ong;. - . .
o - .composition was developed in the context of hard constraints, but the
Consequently, the objective function can be completely absorbed in . S
. . : |dtea can be naturally extended to constraint optimization [5]. Struc-
the constraints representing the components. Note that this does no P .
. tlljral decomposition is based on the hypergrapbf a constraint sys-
exclude cases where a component has more than one mode variable . : . .
- . . em (X, D, F), which associates a node with each variahlec X,
(e.g., sets of mode variables that are temporally indexed for dn‘ferenanoI a hyperedge with each constrajite F. Figure 2 shows the
time steps), and it does not exclude cases where the objective fung- yp 9 B -T19

tion associates values with tuples of mode variables (e.g., a probabi ypergraph for the boolean polycell circuit.

ity with the transition between two modes). ~ Definition 8 (Tree Decomposition [11, 12])A tree decomposition

We can now summarize different notions of model-based diagnosy; 4 constraint systertiX, D, F) is a triple (T, y, \), whereT' =
sis, introduced in Sec. 2, as special cases of semiring-based constr @}7 E) is a rooted tree, and, \ are labeling functions associating
optimization. Table 1 shows the resulting constraint (after absorpyith each node € V two setsy(v) C X andA(v) C F, such that
tion) for an AND-gate for each of the three notions of diagnosis. - -

Theorem 2 (Absorbing Contained Constraints) Let (X, D, F)

be a constraint system over a c-semirirffgl, +, x,0,1). Let
uq, f; € F be functions such that; is contained inf;. Then for the
constraint systeriX, D, F') whereF’ = F\ {ui, f;} U (u: ® f;),

(@7, f) bz = (R f5) Uz

1. For eachf; € F, there exists exactly onec V such thatf; €

Table 1. Constraintf,; in the polycell example (Fig. 1) for semiringé. A(v). For thisv, var(f;) € x(v); (covering Condltlon).;
(left), S,, (center) andS; (right). Tuples not shown have val@e 2. For eachz; € X, the set{v € V' | z; € x(v)} induces a
connected subtree @f (connectedness condition).

a2g y =z a2g y z a2g y z|

G 00 0o G 0 0 g 9% G 0O 0 Figure 3 shows a tree decomposition of the boolean polycell.
GO0O0 10 G 0 0 1 .99 G0O0 10 For a constraint syster@ = (X, D, F), a tree decompositioff’

G 0100 G 0 1.0.995 G o1 0 defines an equivalent, tree-structured constraint sy$t€nD, F)
BOOO1 B O O 0 .005 B O O Q {al} ) . . o

Bo o 11 B O O 1 .005 B O O {al} that is found by combining the constraints ,lm.v), that |s,F. =
BO1O1 B O 1 0 .005 B O 1 @ {al} UUGN(®fi€A(U) /7). Note that a unary constraint over a variable
BO1 11 B O 1 1] .005 B O 1 1 {al} can be added to the tree decomposition, without violating the cover-

ing and connectedness conditions, by adding it as a child of any node
Cardinality-Minimal Diagnosis Diagnoses where the preference v for which z; € x(v). This allows one to perform decomposition
criterion is the number of faulty components, and the goal is to min-as an off-line step, and to add observations for variables after the tree
imize the total number of faulty components, can be obtained byhas been constructed.
choosing the semiring. = (N{" U oo, min, +, oo, 0). For model-based diagnosis, absorption ofdéheonstraints stem-
Subset-Minimal Diagnosi®iagnoses where the preference crite- ming from the objective function is complete. This means that the
rion is the set of faulty components, and the goal is to minimize thehypergraph will correspond to the original device structure, which



fa2 fo2 function solve(v, b)
for each¢; € children(v)
solveg;)
F) = (f(0) @ f(e2) varron) [
if ¢(v) = 0then
throw inconsistent()
end if
end for

Figure 2. Hypergraph for the example in Fig. 1.

Figure 4. Bottom-up phase for solving a tree-structured semiring-CSP
through dynamic programming

{0370175’%][71’7%2} {f037fa1} Vo

The restriction operatqg “prunes” tuples of a constraint by set-
ting their value to0 if it is worse thanb. Formally, f; |% returns a
{a2,9,y,2} {fa2} | n vs | {ol,a,c,x} {for} function f; wheref;(t) = f;(t) if f;(t) <s b, andf}(t) = 0, else.

If the bottom-up algorithm is provided with a cut-off paramétehe
restriction operator limits the computation to tuples whose value is
<g b. This exploits the property that in a c-semiring, theoperator

is extensive [2], thatiSa x b) <g aforalla,b € A.

Values for solutions can be found by calling solve((@ot), where
root(T") is the root node of". After completion of the algorithm, the
best value of the tuples iffi(root(7")) is the value of the optimal

is often organized in a modular way that can be exploited througﬁ.olution. If<g is only a partial order, then the best value of the tuples

structural decomposition. In contrast, for an arbitrary optimizationin /f(root(T")) is a lub for the value of the optimal solution. The

problem, failure to separate and absorb the objective function mafroblem has no consistent solution if and only if there is a node

lead to large constraints that make the problem hard to decompost€ tree for whichf(v) = 0.

that is, lead to a tree node with a large number of variables. Table 2 shows the resulting root node constraint for probabilistic
Decomposition can be understood as a minimal “repair’ todiagnosis of the boolean polycell example (i.e., using semisipg

the constraint network such that directional consistency (dynami@nd parameteb=5.0E-5 that limits computation to single faults of

programming) becomes applicable. Solutions to a tree-structure@ND-gates and OR-gates and double faults of OR-gates.

semiring-CSP can be computed without search using two steps. The

first step computes values for tuples bottom-up, using an instance of Table 2. Constraintf(vo) for the polycell example (Fig. 1) after the

dynamic programming. This step can be viewed as generating an ex-bottom-up phase, using semiris and the tree decomposition in Fig. 3.

act heuristic for search. In a second, top-down step, the values are Tuples not shown have val@e

used to enumerate solutions. This step can be viewed as a search that

{027ba d7 y} {foQ} V2

Figure 3. A tree decomposition of the hypergraph in Fig. 2, showing the
labelsy and\ for each node.

. : e 3 al

is guided by an exact heuristic, and therefore backtrack-free. OG C(L; Cl % {) % yl Zl‘ 97E3
Previous work on constraint optimization based on decomposition G B 1 0 0 1 1 1f48E-3

and dynamic programming [5, 6, 12] has focussed on the task of B G 1 0 0 0 1 1]98E5

computing best values for individual variables or a single best as-
signment to all variables. We extend this work to address important The time complexity of the bottom-up phase is exponential in the
requirements of the diagnosis context. First, in diagnosis it is typicamaximum number of variables in a tree node (called the tree width),
that a limited number of leading solutions is required. For instance, ifind its space complexity is exponential in the maximal number of
the values of the solutions correspond to probabilities, the task couldariables that are shared between two tree nodes (called the sepa-
be to find a set of most likely solutions that cover most of the prob-rator size) [6, 12]. Hence, the benefit of tree decomposition is that it
ability density space. We deliver on this requirement by exploitingbreaks down the complexity from being exponential in the number of
an extensiveness property of c-semirings to prune the search spacedlh variables to being exponential in the number of variables per tree
the bottom-up and top-down phase. Second, in diagnosis it is typicatlement (node or edge). Note that the complexity does not depend on
that most variables are not mode variables. It would therefore be inthe semiring, which means that the extension from constraint satis-
feasible to enumerate solutions to the constraints that differ only ifaction (hard constraints) to constraint optimization (soft constraints)
the values for variableX \ Z. Our approach avoids this by system- does not increase the complexity of constraint solving.
atically eliminating these variables during the top-down phase. The pseudocode for the top-down solution enumeration phase is
The pseudocode for the bottom-up dynamic programming phasshown in Fig. 5. It enumerates the solutions with valug s b. For
is shown in Fig. 4. In Fig. 4, function childrénreturns the set of instance, in cardinality-minimal diagnosis (semirifig), one might
children of a nodef (v) is the constraint for node. The operation  perform the bottom-up phase with a limitation to single and double
f(v) ® fci) Yvar(s(v)), @lso known as semi-join, is the step that faults ¢=2), and, if it turns out that single faults exist, enumerate only
establishes directional consistency between a node and its parent.thte single faults{=1) in the top-down phase. It is easy to modify the
is a generalization of directional arc consistency for CSPs [13] to théop-down algorithm in such a way that, for example, the total num-
case of soft constraints [1, 18]. ber of enumerated solutions is restricted. In Fig. 5, preorder-node-



function extractT’, b)
v « preorder-node-iterator-first’)
m«—0
re f) |
begin loop
for each¢; € children(v)
m —mU (x(v) Nx(ci))
end for
rerT ‘U’(var('r)r‘]m)uz
v « preorder-node-iterator-ne4t)
if (v =nil) then
return r
end if
if not (x idempotentthen
rer ®71 f(’U) ’U’var(r)
end if
re (ref(v) %
m — m\ (x(parent(v)) N x(v))
end loop

Figure 5. Top-down phase for enumerating solutions to a tree-structured
semiring-CSP for whichx is idempotent or has an inverse.

iterator() enumerates the nodes of the tiéén pre-order (for the
tree in Fig. 3, for example, in ordep, v1, v2, v3). Constraint- con-
tains the resulting solutions. If the operatoiis not idempotent, the

The complexity of the top-down phase is worst-case exponential
in the number of variableX . The solution enumeration algorithm
as stated in Fig. 5 requires that theoperator of the semiring is
idempotent or has an inverse. This is the case for all three semirings
Se, Ss, andSy.

6 SAB AND TREE*

SAB [4, 8] and TREE* [20] are two diagnostic algorithms for tree-
structured systems.

SAB is a dynamic programming algorithm based on “weighting”
assignments to mode variables. A correct assignment has weight 0,
whereas an abnormal (faulty) assignment has weight 1. The goal is
then to minimize the total sum of the weights. This corresponds to
the semiringS.. The assumption that mode variables are not shared
between constraints is built into the weighting scheme; SAB would
lead to incorrect results if applied to diagnostic models that violate
this assumption. SAB has been combined with tree decomposition.
However, SAB only extracts a single best solution, and it does not use
a restriction operator. In [8], it has been shown that SAB compares
favorably to the conflict-based diagnostic algorithm GDE [3].

Like SAB, TREE* computes cardinality-minimal diagnoses.
TREE?* is based on the idea that the set of consistent assignments to
Z is sometimes small enough to associate it directly with each tuple,
instead of associating a least upper bound (lub) with each tuple that
guides the enumeration of these assignments in a separate top-down
phase. That is, TREE* collapses the bottom-up and the top-down
phase into a single phase. The set of assignments is concise because
a cut-off is used and because mode assignments are compactly rep-

bottom-up propagation has to be “canceled” by a semijoin operatiof¢Sented as subsets sf

7 ® " f(v) Yvar(r) Using the inversex ') of the operatorx. As
solutions consist only of assignments to the varialiles X, all
other variablesX \ Z must be eliminated from the result. A vari-

In TREE*, the variablesZ (mode variables) are not included
in the constraint system. Instead, mode assignments are associated
with tuples of the constraints. Mode assignments combine through

able inX \ Z can only be eliminated once it no longer occurs in the the operator. Since sets of mode assignmer)ts are considered, the
remaining (unprocessed) part of the tree. In the algorithm shown iyalues of tuples combine through the cartesian proddck B =

Fig. 5, the variables shared betweeand the unprocessed part of
the tree are represented by a multi-sefm is a multi-set rather than

{aUb | a € Abe B}. TREE* uses a cut-off to restrict the car-
dinality of the sets and thus the cardinality of the diagnoses. Since

a set because the same variable can occur on more than one edgdfire is no separate solution enumeration phase, solutions are found
the tree). The solution enumeration algorithm can be understood &% combining the values of tuples in the root of the tree (i.e., a special

projecting the tree on the variabl&s
Consider again the boolean polycell example for the semi$ing

root node withy = (@ is used).
TREE* treats the constraints and the values for their tuples sepa-

continuing on the example above. Assume that solution enumeratioffitely. thatis, it performs semi-joins on bi-valued constraints, and up-

is performed withh = 5.0E-5. Initially,v is vo, andr is the constraint
shown in Table 2. Node, has three children, and after the for-loop,
multi-setm is {c, z,y, y, z}. The projection operation after the for-
loop eliminates variablesand f from r. Assumev; is the next node
of T"in pre-order. Since operatichis notidempotent fos,,, a semi-
join is performed between and f,» using the operatiox ~*
followed by a combination (full join) of the two constraints. Restric-

dates the values of the tuples in a subsequent step. However, note that
updating the values can become exponentid iaven if the task is

only to find a single best diagnosis. Efficient data-structures, such as
algebraic decision diagrams (ADDs) [15], exist for constraints (func-
tions) over c-semirings wheré is a subset of the real numbers (as

is the case folS. and.S,). For larger constraints and larggr, it is
therefore more efficient to separate the bottom-up and the top-down

tion | removes 3 of the 6 tuples since their values fall below 5.0E-5Phases. Also, this allows for using two different cut-off parameers

The loop is repeated after is updated to{c, z, y}. Table 3 shows
the final solutions.

which permits better control over the number of diagnoses generated.
TREE* has been combined with a decomposition method for

hard constraints called hypertree decomposition [11]. For hard con-

straints, hypertree decomposition is a more powerful decomposi-

Table 3. Solutions for the polycell example (Fig. 1) as enumerated by the tion method because unlike tree decomposition, it allows for re-

top-down phase.

ol 02 03 al a2|

B G G G G| 9.7E-3
G G G B G| 48E-3
B G B G G| 98E-5
B B G G G| 98E-5

using constraints in different nodes of the tree. However, in the con-
text of soft constraints, this advantage diminishes because multi-
ple occurrences of the same constraint clash with the possible non-
idempotency of the constraint combination operator [12]. In [20] it
has been empirically shown that TREE* can outperform SAB, an
effect that can be mainly attributed to the use of a cut-off in TREE*.



7 CONCLUSION
(1]

This work builds on recent research in constraint programming and
optimization, extending and modifying it for the context of model- 2]
based diagnosis.

Semiring-CSPs [2] are based on local preferences (defined per
each constraint), whereas diagnosis is based on global preferencdsl
(defined per each solution). We therefore “reversed” the view in [2], 4]
starting from lattices over hard constraints, and investigated ways t&
fold them into a constraint system. This enhances the practical usefs]
fulness of semiring-CSPs, and it leads to methods and algorithms
that allow to perform model-based diagnosis over the general class
of lattice preference structures. (6]

In contrast, existing diagnosis algorithms such as SAB and TREE*[7)
require that preferences are mutually independent for individual vari-
ables; in the terminology of our framework, the objective function
must bex-separable into unary functions. This is not required in our 8
framework, although it can still be exploited: if the objective func- 9]
tion is x-separable into small (unary) functions, this will lead to bet-
ter (complete) absorbtion of contained constraints (Theorem 2), and0]
therefore to a smaller constraint system. Objective functions that are
not x-separable into unary functions occur in practice if probabil-[11]
ities are associated with mode transitions (it would be possible to
introduce an extra variable for the mode transition, but at the cost (fi2]
increasing the size of the constraint system).

Our work establishes a firm relationship between diagnosis as co 13
straint satisfaction over lattices, semiring-based constraint optimiza-
tion, and constraint propagation (dynamic programming) algorithms.
This can lead to new and interesting insights. Consider, for examplé}4]
the diagnostic task of maximizing the number of correctly working
components instead of minimizing the number of faulty components[.lsl
This problem might seem similar to cardinality-minimal diagnosis.
However, unlike cardinality-minimal diagnosis, it does not form a c-
semiring (the unit element of maximization, 0, is not the absorbind16]
element of summation). Theorem 1 implies that it does not corre-
spond to a lattice preference structure, and because semiring-CSﬁﬂ
capture necessary conditions for constraint propagation to work, It
also follows that dynamic programming algorithms of the type pre-
sented in Section 5 do not exist for this diagnostic problem. (1

Given a diagnostic problem formulated as a semiring-based °R'19]
timization problem, we presented an algorithm to compute all so-
lutions up to a user-specified threshold. Building on a best-first ex-
pansion scheme defined in [21], an alternative, any-time algorithri?0]
is presented in [17]. The algorithms have been implemented usin&ll
a (modified) version of algebraic decision diagrams (ADDs) [15] to
represent semiring-constraints. We are currently experimenting with
random examples and real-world applications from the spacecraft
domain. Current and future work includes incorporating techniques
from distributed database systems in order to perform the constraint
operations in an intelligent way, in particular processing large con-
straints only partially and caching intermediate results for incremen-
tal propagation.
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