
On-demand Bound Computation for Finding
Leading Solutions to Soft Constraints

Martin Sachenbacher and Brian C. Williams

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
{sachenba, williams}@mit.edu

Abstract. An important class of algorithms for constraint optimization
searches for solutions guided by a heuristic evaluation function (bound)
that can be computed using tree decomposition and dynamic program-
ming. Recently, it has been shown that if only a few best solutions are
needed, the cost of pre-processing can be avoided by interleaving dy-
namic programming with search. In this paper, we extend this hybrid
method to the case of A* search for semiring-CSPs with a total order.
A* is a specialization of branch-and-bound that finds best solutions in an
optimal number of steps, but requires more space due to a larger search
tree. To address this, we show how the hybridization can be understood
as demand-driven heuristics computation. This allows to use techniques
from heuristic search to significantly limit the number of search nodes ex-
panded. The resulting approach uses lazy, best-first variants of constraint
projection and combination operators to compute only those bounds
specifically required to generate a next best solution. Experiments on
randomly generated Max-CSPs indicate performance improvements over
classical dynamic programming methods for best-first search.

1 Introduction

Algorithms for constraint optimization are key to many problems in Artificial
Intelligence, such as monitoring, diagnosis, planning, autonomous control, or re-
configuration. It is typical for such applications that only a few leading solutions
are required, that is, a best solution and possibly a limited number of next best
solutions. For instance, in fault diagnosis, it might be sufficient to compute the
most likely diagnoses that cover most of the probability density space [15, 18].
In planning, it might be sufficient to compute a least-cost plan and some backup
plans in case the best plan cannot be executed.

Algorithms such as A* or branch-and-bound find best solutions to constraint
optimization problems using backtracking guided by a heuristic evaluation func-
tion (bound). Kask and Dechter [13, 10] have shown how such a heuristic func-
tion can be derived using a decomposition of the constraint network into a tree
and an instance of dynamic programming. However, when only a few leading
solutions are generated, performing dynamic programming prior to the search

2

becomes inefficient, because only a few of the bounds will typically be needed
to compute the best solutions. Recently, it has been shown that the excessive
cost of pre-processing can be avoided by interleaving dynamic programming with
backtracking search [2, 12, 17]. This hybrid approach improves backtracking by
recording information about solutions to subproblems (goods), leveraging the
fact that their size is bounded by structural properties of the network. Terrioux
and Jégou [17] present an instance of this method that uses tree decomposition
and branch-and-bound to compute optimal solutions to binary valued CSPs [16].

In this paper, we extend this hybrid method to A* search, which is a special-
ization of branch-and-bound. Given a heuristics, A* is guaranteed to find the
best solution in an optimal number of steps [6]. However, A* needs to maintain
a larger search tree and therefore requires more space than branch-and-bound
search. To address this difficulty, we show that the approach in [17] can also be
understood as demand-driven dynamic programming (heuristics computation),
leveraging the fact that the solutions are enumerated successively. This view
then allows us to incorporate techniques from heuristic search to significantly
reduce the size of the A* search tree: First, we use a novel expansion scheme [18]
that limits the number of search nodes expanded by exploiting a preferential in-
dependence property. Second, we employ a tighter heuristics than in [12], based
on a dual problem formulation that treats constraints as variables and tuples
as domains. Third, we describe a scheme that allows distributed computation
of the search tree. The approach is presented in the context of semiring-based
CSPs [3] with a total order on the preferences (equivalent to valued CSPs [4]). It
can be understood as devising lazy, best-first variants of the constraint combina-
tion and projection operators. The worst-case time complexity of the approach
is similar to the algorithm in [12], but due to the A* search, it has a higher
space complexity. However, the complexity is not worse than that of classical
dynamic programming methods for best-first search [13], and it can derive the
best solutions much faster. This is illustrated with preliminary experiments on
randomly generated Max-CSPs.

2 Semiring-based Constraint Optimization Problems

Definition 1 (Semiring [3]). A c-semiring is a tuple (A,+,×,0,1) such that

1. A is a set and 0,1 ∈ A;
2. + is a commutative, associative and idempotent (i.e., a ∈ A implies a + a =

a) operation with unit element 0 and absorbing element 1 (i.e., a + 0 = a
and a + 1 = 1);

3. × is a commutative, associative operation with unit element 1 and absorbing
element 0 (i.e., a× 1 = a and a× 0 = 0);

4. × distributes over + (i.e., a× (b + c) = (a× b) + (a× c)).

For instance, Sp = ([0, 1], max, ·, 0, 1) forms a probabilistic c-semiring. The
idempotency of the + operation induces a partial order ≤S over A as follows:
a ≤S b iff a + b = b (for Sp, ≤S ≡ ≤, and + ≡ max). In this paper, we assume
that ≤S is a total order.

3

Fig. 1. The full adder example consists of two AND gates, one OR gate, and two XOR
gates. Variables x, z, s, and c are observed as indicated.

Definition 2 (Semiring-based Constraint Optimization Problem). A
constraint optimization problem (COP) over a c-semiring is a triple (X,D, F)
where X = {x1, . . . , xn} is a set of variables, D = {D1, . . . , Dn} is a set of
finite domains, and F = {f1, . . . , fm} is a set of constraints. The constraints
fj ∈ F are functions defined over var(fj) assigning to each tuple a value in A.

For example, diagnosis of the full adder circuit shown in Fig. 1 can be framed
as a COP over Sp with variables X = {u, v, w, x, y, z, c, s, a1, a2, e1, e2, o1}. Vari-
ables u to s are Boolean variables with domain {0, 1}. Variables a1 to o1 describe
the mode of a component, “Good” or “Broken,” and have domain {G,B}. If a
component is good (G) then it correctly performs its Boolean function. If a com-
ponent is broken (B) then no assumption is made about its behavior. We assume
AND gates have a 1% probability of failure, whereas OR gates and XOR gates
have a 5% probability of failure. We assume that input variables x and z are
observed to be 1, whereas output variables s and c are observed to be 1 and 0,
respectively (therefore, we omit them in the following). Table 1 shows the re-
sulting constraints for the example, where each tuple is assigned the probability
of its corresponding mode.

A semiring-CSP is solved by applying a series of combination and projection
operations to its constraints:

Definition 3 (Combination and Projection). Let f and g be two constraints
defined over var(f) and var(g), respectively. Let t ↓Y denote the projection of a
tuple on a subset Y of its variables. Then,

1. The combination of f and g, denoted f⊗g, is a new constraint over var(f)∪
var(g) where each tuple t has value f(t ↓var(f))× g(t ↓var(g));

2. The projection of f on a set of variables Y , denoted f ⇓Y , is a new constraint
over Y ∩var(f) where each tuple t has value f(t1)+f(t2)+ . . .+f(tk), where
t1, t2, . . . , tk are all the tuples of f for which ti ↓Y = t.

Given a COP (X,D, F) over a c-semiring, the constraint optimization task
is to compute a function f over variables of interest Z ⊆ X such that f(t) is the
best value attainable by extending t to X, that is, f(t) = (

⊗m
j=1 fj) ⇓Z .

4

3 Tree Decomposition and Bound-Guided Search

An important class of algorithms for constraint optimization finds the best solu-
tions by searching through the space of possible assignments in best first order,
guided by a heuristic evaluation function [13, 10, 18]. In the A* framework [6],
the evaluation function is composed of the value of the partial assignment that
has been made so far, g, and a heuristic h that provides an optimistic estimate
(bound) on the optimal value that can be achieved for the complete assignment.
In the case of semiring-CSPs, this is an upper bound:

Definition 4 (Upper Bound). For two functions f1, f2 with var(f1) = var(f1),
f2 is an upper bound of f1, written f1 ≤S f2, if f1(t) ≤S f2(t) for all t.

Kask and Dechter [13] show how the bounding function h can be derived
from a decomposition of the constraint network into an acyclic instance called a
bucket tree:

Definition 5 (Induced Graph [9]). For a COP (X, D,F), let H be a hyper-
graph which associates a node with each variable xi ∈ X, and a hyperedge with
each constraint fj ∈ F . Let x1 ≺ x2 ≺ . . . ≺ xn an ordering on the variables X.
Then the induced graph G∗ of H is obtained by processing the variables from
last to first, and interconnecting all the lower neighbors of each variable xi.

Definition 6 (Bucket Tree Decomposition [14]). Given an induced graph
G∗, a bucket tree is a triple (T, χ, λ). T = (V, E) is a rooted tree that associates
a vertex vi with each variable xi, such that the parent of vi is vj if xj is the
closest lower neighbor of xi in G∗. χ and λ are labeling functions that associate
with each node vi, two sets χ(vi) ⊆ X and λ(vi) ⊆ F , such that

1. χ(vi) contains xi and every lower neighbor of xi in G∗;
2. λ(vi) contains every fj ∈ F such that xi is the highest variable in var(fj).

In this paper, we derive a bounding function from a tree decomposition,
which is a generalization of a bucket tree decomposition:

Definition 7 (Tree Decomposition [11, 14]). A tree decomposition for a
problem (X, D,F) is a triple (T, χ, λ), where T = (V, E) is a rooted tree, and
the labeling functions χ(vi) ⊆ X, and λ(vi) ⊆ F are defined such that

Table 1. Constraints for the example (tuples with value 0 are not shown).

fa1: a1 w y fa2: a2 u v fe1: e1 u y fe2: e2 u fo1: o1 v w

G 0 0 .99 G 0 0 .99 G 1 0 .95 G 0 .95 G 0 0 .95
G 1 1 .99 G 1 1 .99 G 0 1 .95 B 0 .05 B 0 0 .05
B 0 0 .01 B 0 0 .01 B 0 0 .05 B 1 .05 B 0 1 .05
B 0 1 .01 B 0 1 .01 B 0 1 .05 B 1 0 .05
B 1 0 .01 B 1 0 .01 B 1 0 .05 B 1 1 .05
B 1 1 .01 B 1 1 .01 B 1 1 .05

5

Fig. 2. Bucket tree (left) and tree decomposition (right) for the example in Fig. 1. The
trees show the labels χ and λ for each node.

1. For each fj ∈ F , there exists exactly one vi such that fj ∈ λ(vi). For this
vi, var(fj) ⊆ χ(vi) (covering condition);

2. For each xi ∈ X, the set {vj ∈ V | xi ∈ χ(vj)} of vertices labeled with xi

induces a connected subtree of T (connectedness condition).

The left-hand side of Fig. 2 shows a bucket tree for the full adder exam-
ple, given the variable ordering u, v, w, y, a1, a2, e1, e2, o1. The right-hand side
of Fig. 2 shows a tree decomposition for the example. The tree T (bucket tree
or tree decomposition) describes an equivalent, acyclic instance of the COP.
To compute the evaluation function h, this acyclic instance can be evaluated
by dynamic programming, implemented by a message-passing algorithm (called
cluster-tree elimination in [10]) that processes the nodes of the tree bottom-up
(that is, in post-order). At each node vi, the constraint

⊗
fk∈λ(vi)

fk is com-
puted and combined with all constraints sent by the children of vi (if any) to
obtain a constraint fvi . If vi has a parent node vj , then vi sends the constraint
hvi := fvi ⇓χ(vj) to vj .

The functions hvi computed by the dynamic programming algorithm can be
exploited to guide the search for solutions to the to the constraint optimization
task that consists of COP and the variables of interest are Z = X. For the case
of a bucket tree, Kask and Dechter [13] describe an algorithm that assigns the
variables top-down, that is, according to the variable order x1 ≺ . . . ≺ xn of
the bucket tree. Consider a point in the search where the current assignment
is x1 = x0

1, . . . , xi = x0
i . Let function g(i) be defined as the combination of all

constraint functions in the λ-label of nodes v1, . . . , vi in the bucket tree:

g(i) =
i⊗

j=1

(
⊗

fk∈λ(vj)

fk).

6

Let function h(i) be defined as the combination of all functions sent by the nodes
c1, . . . , cl that are children of v1, . . . , vi:

h(i) =
l⊗

j=1

hcj
.

Then g(i) × h(i)(x0
1, . . . , x

0
i) is the best value achievable when completing this

assignment. For example, consider the bucket tree on the left-hand side of Fig. 2
for the case where u to a1 have been assigned a value, that is, nodes v1 to v5

have been traversed. Then g(5) = fa1, and h(5) = hv6 ⊗ hv7 ⊗ hv8 ⊗ hv9 .
We generalize this idea from bucket trees to tree decompositions as follows.

Let p = v1, . . . , vn be a pre-order of the tree nodes. The node order defines a
partial variable order where the variables of a node precede the variables of the
next node. Formally, let χp(vi) ⊆ χ(vi) be groups of variables defined by

χp(v1) = χ(vroot), χp(vi+1) = χ(vi+1) \ (χp(v1) ∪ . . . ∪ χp(vi)).

Let Vp(xi) denote the node such that xi ∈ χp(vk). Then the partial variable
order defines xi ≺ xj if Vp(xi) ≺ Vp(xj).

A compatible order [12, 17] completes the partial variable order to a total
order by ordering also the variables within the groups χp(vi). For example, for
the tree on the right-hand side of Fig. 2, the node pre-order v1, v2, v3 induces
the three groups χp(v1) = {u, v, w, y, a1, a2}, χp(v2) = {e1, o1}, χp(v3) = {e2}.
The partial order χp(v1) ≺ χp(v2) ≺ χp(v3) can be completed to the compatible
order u, v, w, y, a1, a2, e1, o1, e2.

The principle for deriving bounding functions for search carries over from
bucket trees to tree decompositions, if compatible variable orders are used. Con-
sider again an assignment x1 = x0

1, . . . , xi = x0
i . Let function g(i) be generalized

to be the combination of all constraints in the λ-label of nodes v1, . . . , Vp(xi)
that are fully instantiated:

g(i) =
Vp(xi)⊗

j=1

(
⊗

fk∈λ(vj),var(fk)⊆{x1,...,xi}
fk). (1)

Let function h(i) be defined as the combination of all functions in the λ-label
of Vp(xi) that are not fully instantiated, and all functions sent by the nodes
c1, . . . , cl that are children of v1, . . . , Vp(xi), projected on x1, . . . , xi:

h(i) = (
l⊗

j=1

hcj

⊗

fk∈λ(Vp(xi)),var(fk)6⊆{x1,...,xi}
fk) ⇓{x1,...,xi} . (2)

For example, consider the tree on the right-hand side of Fig. 2 and the case
where the variables {u, v, w, y, a1} have been assigned a value. Then g(1) ⊗ h(1)

with g(1) = fa1 and h(1) = fa2 ⇓u,v ⊗hv2 ⊗ hv3 is a bounding function for the
value that can be achieved when completing this assignment.

7

4 Best-First Optimization with On-Demand Bounds

When only a few best solutions are required, using dynamic programming to pre-
compute all functions hvi is wasteful, because typically a large percentage of the
bounds are not needed during heuristic search. The cost of pre-processing can be
avoided by interleaving dynamic programming and search with each other. Re-
cently, Terrioux and Jégou [12] presented such a hybrid algorithm for the case of
branch-and-bound. BTDval [12] augments branch-and-bound search by record-
ing information that is obtained from a tree decomposition. It uses a compatible
order to first assign the variables and solve the constraints local to a tree node
vi, and then recursively computes the best extensions of this assignment for the
subtrees rooted in vi. The assignments shared between vi and its subtrees are
stored as goods, avoiding the re-computation of subproblems already solved.

Note that since the goods correspond to tuples of the functions hvi
, this

process can also be understood as a partial (or demand-driven) computation of
the functions hvi . In the following, we develop a hybrid of dynamic program-
ming and search for the case of A* search. Given a heuristic, A* search is faster
than branch-and-bound because it finds the best solutions in an optimal num-
ber of expansion steps [6]. However, A* needs to maintain a larger search tree,
which can make it practically infeasible. Viewing hybridization as demand-driven
heuristics computation allows to use techniques from heuristic search to signifi-
cantly reduce the size of the A* search tree. In this section, we present two such
techniques. They consist of exploiting a heuristic to limit the number of search
nodes expanded, and exploiting preferential independence to limit the number
of successor nodes generated during an expansion step. We also present a third
extension that does not reduce the size of the search tree, but allows for pro-
cessing it in a distributed way. The resulting variant of A* search generates the
bounding functions h partially and only to an extent that it is actually needed
in order to generate a next best solution. We call this approach best-first search
with on-demand bound computation (BFOB).

The first step to reduce the size of the search tree is to exploit the heuristic
h. Note that within a node vi, BTDval computes only the value of g, that is, it
can be viewed as using a heuristic h that is simply equal to the identity. We can
find a heuristic that is tighter, but not more difficult to compute, by switching to
a dual problem representation that treats the constraints as variables and their
tuples as domains. In the dual formulation, Equation 2 simplifies since each
constraint appears only once in the tree decomposition, and each constraint is
either completely instantiated or not instantiated at all. For example, consider
node v1 of the tree decomposition in Fig. 2, and assume a compatible order that
first assigns a tuple to function fa1 and then a tuple to function fa2. Using only
the identity (h = 1) as a heuristic, A* would generate the search tree shown in
Fig. 3(a). We improve on this by using a heuristic function h

(i)
succ that consists

of the next unassigned function fi+1 in the order (in the example, h
(i)
succ = fa2).

Note that h(i) ≤S h
(i)
succ ≤S 1. Using the heuristic h

(i)
succ, the search tree in the

example is reduced to the one shown in Fig. 3(b).

8

Fig. 3. A* search trees for the node v1 in Fig. 2, shown with empty heuristic h = 1 (a),

with heuristic h
(i)
succ that takes into account the value of the next assignment (b), and

with expansion limited to the best child by exploiting preferential independence (c).
The branches of the trees correspond to tuples of the functions fa1 and fa2 in Table 1.

The second technique limits the number of successor nodes generated when
a search node is expanded, by exploiting preferential independence [5, 18]. We
first show that an instance of preferential independence holds for c-semirings:

Proposition 1. If h0 ≤S h1 for h0, h1 ∈ A, then for g0 ∈ A, g0×h0 ≤S g0×h1.

Proof. Because × distributes over +, (g0 × h1) + (g0 × h0) = g0 × (h1 + h0).
Because h0 ≤S h1, h1 + h0 = h1. Thus, (g0 × h1) + (g0 × h0) = g0 × h1.

Proposition 1 implies that if the value of a successor node is better than or
equal to the values of all its siblings, then all siblings cannot immediately lead
to solutions that have a better value. Consequently, for A* it is sufficient to
generate this successor node only and to delay the generation of the siblings,
rather than generating all possible successors at once (for details, see [18]). This
can significantly limit the number of nodes generated at each expansion step. For
instance, consider again assigning a tuple to constraint fa1 in node v1. Because
the tuples where a1=G have a value that is better than or equal to the value of
all other tuples of fa1, it is sufficient to consider only one of those best tuples
and keep a reference to the next best sibling assignment. This is illustrated in
Fig. 3(c).

9

Fig. 4. Computational scheme for the tree decomposition in Fig. 2. The circled frag-
ments correspond to the nodes v1, v2 and v3 of the tree.

The third extension avoids maintaining an explicit search tree for each tree
node. This is accomplished by replicating each level in the search tree as a
constraint (the constraint consists of the current assignments at this level of
the search tree). This does not reduce the size of the search tree (in fact, the
replication incurs a higher constant for the space complexity), but it allows for
computation to proceed independently not only for each subtree, but also within
each tree node. For instance, consider again node v1 of the tree decomposition
in Fig. 2. In order to find a tuple of fv1, the constraints fa1, fa2, hv2 and hv3

have to be assigned a tuple. Instead of maintaining a search tree with four levels
(corresponding to the four constraints), we break it down using an intermediate
function f1 that is the result of combining fa1 and fa2, and an intermediate
function f2 that is the result of combining f1 and hv2. The resulting scheme is
illustrated in Fig. 4. In Fig. 4, the bold boxes correspond to given constraints,
whereas the other boxes correspond to constraints that need to be computed.
The variable order (sequence of functions in the dual representation) is implicitly
encoded in this scheme: each constraint operator in the network operates as
a consumer of the constraints of its children, and produces a constraint for
its parent. We assume two functions producer() and consumer() that return
the producing (preceding) and consuming (succeeding) operator of a constraint,
respectively. Function producer() returns nil for given constraints at the leaves
of the scheme, and function consumer() returns nil for the constraint fvroot at
the root of the tree.

Our approach can then be understood as best-first, incremental variants of
the constraint operators. For example, a best tuple of the function fv1 in Fig. 4
is computed as follows: Consider the best tuple of the function fe2, which is
〈e2 = G, u = 0〉 with value .95 (first tuple of fe2 in Table 1). The projection
of this tuple on u, which is 〈u = 0〉 with value .95, is necessarily a best tuple
of hv3 . Similarly, a best tuple of fa1 can be combined with a best tuple of
fa2, for instance the first tuples of fa1 and fa2 in Table 1. The resulting tuple

10

function BFOB(s, i)
if (i ≤ length(s)) then

return s[i]
end if
op ← producer(s)
if (op 6= nil) then

case op
proj: 〈t, v〉 ← nextBestProj(op)
comb: 〈t, v〉 ← nextBestComb(op)

end case
if (〈t, v〉 6= nil) then

append(s,〈t, v〉)
return 〈t, v〉

end if
end if
return nil

Fig. 5. Function BFOB for best-first search with on-demand bound computation.

〈u = 0, v = 0, w = 0, y = 0, a1 = G, a2 = G〉 is necessarily a best tuple of
constraint f1. This tuple needs to be combined with a tuple of hv2 . A best tuple
for hv2 is generated by combining the best tuple of fo1 with a best tuple of fe1

and projecting the result onto u, v, w, and y, yielding 〈u = 1, v = 0, w = 0, y = 0〉
with value .90. Since this tuple does not combine with the tuple found for f1

so far, generation of a next best tuple is triggered for both hv2 and f1. The
next best tuple of hv2 is 〈u = 0, v = 0, w = 0, y = 1〉 with value .90. This
tuple also does not combine with any of the tuples for f1 generated so far.
The process continues until a third tuple for hv2 is generated; for example, by
combining the third tuple of fe1 in Table 1 with the best tuple of fo1. The
resulting tuple 〈u = 0, v = 0, w = 0, y = 0〉 for hv2 combines with the first
tuple that has been generated for f1 and the tuple in hv3 to a best tuple for fv1 ,
〈u = 0, v = 0, w = 0, y = 0, a1 = G, a2 = G〉 with value 0.044. Notice that in
order to compute this best tuple, large parts of the constraints fa1, fa2, fe1, fe2,
and fo1 never needed to be visited.

Fig. 5 shows the pseudocode of BFOB. BFOB(s, i) returns the i-th best
tuple of a constraint s, or generates it, if necessary, by calling the constraint
operator that produces the constraint. Each constraint is represented as a list
of pairs 〈t, v〉, where t is a tuple and v ∈ A. The tuples are listed in decreasing
order according to their value v. Function length() returns the length of the list.
Function s[i] returns the i-th tuple-value pair of a constraint s, i ≤ length(s).
Function append() appends a tuple t with value v to the constraint. BFOB()
is based on the two functions nextBestProj() and nextBestComb() shown in
Fig. 6, that implement best-first variants of the constraint operators ⇓ and ⊗,
respectively.

11

function nextBestProj(op)
while (index(op) 6= 0) do
〈t, v〉 ← BFOB(input(op),index(op))
if (〈t, v〉 6= nil) then

t1 ← t ⇓var(output(op))

index(op) ← index(op) + 1
// check if result exists
for each 〈t2, v2〉 in output(op) do

if (t1 = t2) then goto while
end if

end for
// output next best result
return 〈t1, v〉

else
index(op) ← 0

end if
end while
return nil

function nextBestComb(op)
while (queue(op) 6= ∅) do
〈i, j, v〉 ← pop(queue(op))
〈t1, v1〉 ← BFOB(input1(op),i)
if (〈t1, v1〉 6= nil) then
〈t2, v2〉 ← BFOB(input2(op),j)
if (〈t2, v2〉 6= nil) then

t ← t1⊗ t2
if (var(input1(op)) 6⊇ var(input2(op))) then

// create next best sibling w.r.t. input1
〈t1′, v1′〉 ← BFOB(input1(op),i+1)
if (〈t1′, v1′〉 6= nil) then

push(queue(op),〈i + 1, j, v1′ × v2〉)
end if

end if
if (i = 1) then

// create next best sibling w.r.t. input2
〈t2′, v2′〉 ← BFOB(input2(op),j+1)
if (〈t2′, v2′〉 6= nil) then

push(queue(op),〈i, j + 1, v1× v2′〉)
end if

end if
// output next best result
if (t 6= nil) then

return 〈t, v1× v2〉
end if

end if
end if

end while
return nil

Fig. 6. Best-first variants of constraint projection and constraint combination.

12

Function nextBestProj() in in Fig. 6 consumes an input constraint input().
It takes a next best tuple from this constraint, computes its projection, and
then checks whether the resulting tuple already exists on the output constraint
output(). If the tuple does not already exist, it is a next best tuple of the output
constraint. An index index() is used to keep track of which tuple from the input
is processed next.

Function nextBestComb() in in Fig. 6 consumes two input constraints in-
put1() and input2(). The tuples in the input constraints are combined in a
best-first manner using A* search as described above. A search queue queue()
is used to keep track of which tuples from input1() and input2() are combined
next. Each entry in queue() is a triple 〈i, j, v〉, where i is the index of a tuple
〈t1, v1〉 in input1(), j is the index of a tuple 〈t2, v2〉 in input2(), and v ∈ A is the
heuristic value h

(i)
succ = v1 × v2.

Function nextBestComb() pops an entry with a best value v from the queue
and computes the respective combination of tuples from input1() and input2().
If the result is not empty (that is, the tuples match), then the combination is
a next best tuple of the output constraint. A next best sibling of the entry is
generated that points to the next entry on stream input1(). For the first tuple
of input1(), in addition a next best sibling is generated that points to the next
entry on stream input2(). An optimization is possible for the special case where
the variables of the constraint of input1() are a superset of the variables of
the constraint of input2(). In this case (it is known as semi-join), each tuple of
input2() can combine with at most one tuple of input1(). Hence, no next best
sibling needs to be generated that points to the next tuple of input1().

Initially, the tuples of the constraints are sorted according to their values.
For each constraint projection operator, index() is initially set to 1. For each
constraint combination operator, queue() is initially the singleton {〈1, 1,1〉}.
The tuples of the function fv1 at the root of the scheme, and thus the solutions
of the constraint optimization problem, can then be obtained in best-first order
by calling BFOB(fv1 ,1), BFOB(fv1 ,2), etc.

Theorem 1 (Correctness). The algorithm BFOB is sound, complete, and ter-
minates.

Apart from overhead due to additional data structures, on-demand function
computation is not computationally more complex than classical dynamic pro-
gramming methods for best-first search described in Sec. 3:

Theorem 2 (Complexity). Let (T, χ, λ) be a tree decomposition, T = (V,E).
Let w = maxvi∈V (| χ(vi) |)− 1 be the width of the tree decomposition. Then the
algorithm BFOB computes an optimal solution in time O((| F | + | V |)·exp(w))
and space O((| V |) · exp(w)).

However, the average complexity of on-demand function computation can be
much lower if only some best tuples of the resulting function are required.

13

Table 2. Results for random Max-CSPs, low density networks.

T C N K BFTC (% time) BFOB (% time)

4 (25%) 20 15 4 100% 1.4%

8 (50%) 20 15 4 100% 3.2%

Table 3. Results for random Max-CSPs, medium density networks.

T C N K BFTC (% time) BFOB (% time)

4 (25%) 15 10 4 100% 4.5%

8 (50%) 15 10 4 100% 14.3%

Table 4. Results for random Max-CSPs, medium to high density networks.

T C N K BFTC (% time) BFOB (% time)

4 (25%) 20 10 4 100% 9.7%

8 (50%) 20 10 4 100% 38.8%

5 Experimental Results

We evaluated the performance of BFOB on the task of generating best solutions
to random Max-CSP problems. Max-CSP can be formulated as a constraint op-
timization problem over the c-semiring (N+

0 ∪∞, min,+,∞, 0), where the tuples
of a constraint fj ∈ F have value 0 if the tuple is allowed, and value 1 if the tuple
is not allowed. To generate the constraints, we used a binary constraint model
with four parameters N , K, C, and T , where N is the number of variables, K is
the domain size, C is the number of constraints, and T is the tightness of each
constraint. The tightness of a constraint is the number of tuples having value 1.

We compared the performance of BFOB relative to the alternative approach
of pre-computing all functions hvi using dynamic programming pre-processing
as described in Sec. 3. We call this alternative algorithm BFTC (for best-first
search with tree clustering). BFTC is analogous to the algorithm BFMB de-
scribed in [13]. Tables 2, 3 and 4 show the results of experiments with three
classes of Max-CSP problems, N=15, K=4, C=20 (low density), N=10, K=4,
C=15, (medium density), and N=10, K=4, C=20 (medium to high density). In
each class, 10 instances where generated for 4 ≤ T ≤ 8 and we compared the
relative mean runtime of BFOB and BFTC. The comparison does not include
the time for computing the tree decomposition of the problem. All experiments
were performed using a Pentium 4 CPU and 1 GB of RAM.

Tables 2 to 4 indicate that BFOB leads to significant savings especially when
computing best solutions to problems with low constraint tightness and sparse to
medium constraint networks. This is consistent with experiments in [13], show-
ing that pre-computing bounding functions is inefficient especially for problems
that have many solutions. We are currently working on a comparison of BFOB
with BTDval and other algorithms for Max-CSPs to study time and space re-
quirements of dynamic programming with A* search versus branch-and-bound.

14

6 Related Work and Discussion

As already noted, the algorithm BTDval by Terrioux and Jégou [17] is closest
to ours. The approach in [17] is to improve backtracking by recording informa-
tion (goods) during search. We illustrated how this hybrid approach can also be
understood as computing a heuristic using dynamic programming on-demand.
An advantage of this perspective is that techniques to approximate heuristics
(bounding functions) become applicable in this framework. For instance, Dechter
and Rish [8] present a method to decrease the complexity of bound computation
by defining an approximate version of dynamic programming called mini-bucket
elimination (called mini-clustering [10] for the more general case of tree de-
compositions). The idea of mini-bucket elimination is to limit the size of the
computed functions by restricting their maximum arity to a fixed value z. This
is accomplished by partitioning functions f1, . . . , fk that need to be combined
into sets P1, . . . , Pm called mini-clusters, each having a combined number of
variables less than or equal to z. Then the function (

⊗k
i=1 fi) ⇓Y is bounded by

the function f =
⊗m

i=1(
⊗

fj∈Pi
⇓Y) that applies projection early at the level of

mini-clusters. The accuracy of the approximation can be controlled by varying
the parameter z. The algorithm BFMB(z) in [13] combines mini-clustering and
best-first search. Lower values for z lead to loose bounds that are easy to com-
pute, but will guide the search less and therefore necessitate more backtracking
in order to find optimal solutions. Kask and Dechter [13] empirically observe an
U-shaped performance curve when varying the parameter z, that is, a trade-off
between bound accuracy and search. It would be interesting to combine BFOB
with approximate bound computation using mini-buckets. This can be accom-
plished by replacing the scheme of operators and functions (Fig. 4) with an
approximate mini-clustering scheme.

A major difference of our approach to the algorithm in [17] is that we use best-
first (A*) search instead of branch-and-bound. A* search is faster than branch-
and-bound, but it requires more memory. BBMB(z) [13] is a variant of BFMB(z)
for branch-and-bound based on bucket trees. BBBT(z) [10] extends BBMB(z)
to tree decompositions. Each time a variable needs to be assigned during search,
BBBT(z) solves the single-variable optimization problem (Z = {xi}) for all
unassigned variables. That is, like BFOB and BTDval, BBBT(z) interleaves
dynamic programming and search. Unlike BFOB and BTDval, BBBT(z) can
dynamically change the variable order and prune domains during search. How-
ever, BBBT(z) does not compute bounds incrementally on-demand, but instead
starts a fresh dynamic programming phase at each search node. This can lead
to redundant computations, and therefore BBBT(z) and BBMB(z)/BFMB(z)
do not dominate each other [10]. Since the algorithm presented in this paper
is essentially an improvement of BFMB(z), we expect that BBBT(z) does not
dominate BFOB, either. However, variable reordering based on smallest domain
size as in BBBT(z) is not possible in BFOB because the values of variables
are only partially known. An interesting direction for future work would be to
evaluate the impact of the techniques described in Sec. refsec:OnDemandBound
within the branch-and-bound search paradigm.

15

7 Summary and Conclusion

Focusing on leading solutions is an important requirement in many applications.
A* search can generate best solutions faster than branch-and-bound search, but
needs good heuristics in order to be practically feasible. We presented an algo-
rithm called BFOB that guides A* search using bounds computed using tree
decompositions and dynamic programming. BFOB interleaves A* search and
dynamic programming to compute bounds on-demand and only to an extent
that is necessary in order to generate a next best solution. This hybridization
combines the benefits of A* search with the complexity bounds of dynamic pro-
gramming on trees to generate leading solutions more efficiently than classical
methods for best-first search.

References

[1] Babcock, B., et al.: Models and Issues in Data Stream Systems. Proc. ACM Symp.
on Principles of Database Systems (PODS) (2002)

[2] Bayardo, R., Miranker, D.: An optimal backtrack algorithm for tree-structured
constraint satisfaction problems. Artificial Intelligence 71 (1994) 159–181

[3] Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Solving and Op-
timization. Journal of ACM, 44 (2) (1997) 201–236

[4] Bistarelli, S., et al.: Semiring-based CSPs and Valued CSPs: Frameworks, Proper-
ties, and Comparison. Constraints 4 (3) (1999) 199–240

[5] Debreu, C.: Topological methods in cardinal utility theory. In: Mathematical Meth-
ods in the Social Sciences, Stanford University Press (1959)

[6] Dechter, R., Pearl, J.: Generalized Best-First Search Strategies and the Optimality
of A*. Journal of the ACM 32 (3) (1985) 505–536

[7] Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence
38 (1989) 353–366

[8] Dechter, R., Rish, I.: A scheme for approximating probabilistic inference. Proc.
UAI-97 (1997) 132–141

[9] Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence 113 (1999) 41–85

[10] Dechter, R., Kask, K., Larrosa, J.: A General Scheme for Multiple Lower Bound
Computation in Constraint Optimization. Proc. CP-01 (2001)

[11] Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decompo-
sition methods. Artificial Intelligence 124 (2) (2000) 243–282

[12] Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of
constraint networks. Artificial Intelligence 146 (2003) 43–75

[13] Kask, K., Dechter, R.: A General Scheme for Automatic Generation of Search
Heuristics from Specification Dependencies. Artificial Intelligence 129 (2001) 91–131

[14] Kask, K., et al.: Unifying Tree-Decomposition Schemes for Automated Reasoning.
Technical Report, University of California, Irvine (2001)

[15] de Kleer, J.: Focusing on Probable Diagnoses. Proc. AAAI-91 (1991) 842–848
[16] Schiex, T., Fargier, H., Verfaillie, G.: Valued Constraint Satisfaction Problems:

hard and easy problems. Proc. IJCAI-95 (1995) 631–637
[17] Terrioux, C., Jégou, P.: Bounded Backtracking for the Valued Constraint Satis-

faction Problems. Proc. CP-03 (2003)
[18] Williams, B., Ragno, R.: Conflict-directed A* and its Role in Model-based Em-

bedded Systems. Journal of Discrete Applied Mathematics, to appear.

