Institut fiir Informatik der
Technischen Universitat Munchen
Lehrstuhl Informatik IX

Automated Qualitative Abstraction
and its Application to

Automotive Systems

Martin Sachenbacher

Vollstandiger Abdruck der von der Fakultat fiir Informatik der Technischen Uni-

versitdt Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Dr.h.c. Wilfried Brauer
Priifer der Dissertation:
1. Univ.-Prof. Dr. Peter Struss
2. O.Univ.-Prof. Dr. Georg Gottlob,
Technische Universitit Wien (Osterreich)

Die Dissertation wurde am 12. 4. 2001 bei der Technischen Universitat Miinchen

eingereicht und durch die Fakultit fiir Informatik am 5. 7. 2001 angenommen.

Abstract

The increasing complexity of engineered devices, e.g. in the domain of au-
tomotive systems, has lead to an increased demand for computer-supported be-
havior prediction, diagnosis, and testing. Model-based reasoning is an emerging
subfield of Artificial Intelligence that is concerned with representing knowledge
about the structure and behavior of physical systems in terms of a model and
using it to automate the above-mentioned tasks.

Modeling is the hard part of model-based reasoning. In order to make it
feasible, it is crucial to break down the knowledge about a device into re-usable
components and to organize them in a library. On the other hand, in order to
keep reasoning with a model computationally tractable, it is important to have
an adequate representation that includes only the distinctions that are required
to perform a particular task.

In this thesis, we deal with the problem of finding a level of granularity for
a behavior model that is as coarse as possible, but still fine enough for a given
behavior prediction or diagnosis task. The focus is on task-dependent domain
abstraction: i.e., the problem is to determine distinctions within the domains of
variables (termed qualitative values) that are both necessary and sufficient, given
the constraints of the behavior model, a granularity of possible observations, and
a granularity of desired results. We present a method that allows to automatically
determine qualitative values, starting from a base model that has been composed
from a library.

A principled application of this work is to turn real-valued models, as com-
monly used in industry, into qualitative models to make them accessible to auto-
mated reasoning methods. The resulting methods and software tools thus greatly
enhance the ability to use a behavior model of an engineered device as a common
basis to support different tasks along its life cycle. The thesis describes the ap-
plication to real-world examples taken from the automotive domain. This leads
to the first model-based diagnosis system running on-board a passenger vehicle.
The prototype is shown to provide useful results for a number of emission-related
failure scenarios that were implemented on a Volvo demonstrator car.

Zusammenfassung

Die zunehmende Komplexitéat technischer Systeme, z.B. im Automobilbereich,
fithrt zu einem steigenden Bedarf an computerunterstiitzter Verhaltensvorher-
sage, Diagnose und Testgenerierung. Modellbasiertes Schlieflen ist ein Teilgebiet
der Kiinstlichen Intelligenz, das sich mit der Représentation von Wissen iiber
Struktur und Verhalten physikalischer Systeme in Form eines Modells und dessen
Verwendung zur Automatisierung der genannten Aufgaben beschaftigt.

Der Modellierungsschritt stellt die Hauptschwierigkeit bei modellbasiertem
Schliefen dar. Er ist nur dann effizient durchfithrbar, wenn das Wissen tiber
ein Gerdt durch moglichst allgemeine, wiederverwendbare Komponentenmodelle
repriasentiert wird, die in Form einer Modellbibliothek organisiert und so fiir
verschiedene Aufgaben herangezogen werden konnen. Andererseits erfordert effi-
zientes Problemldsen mit einem Modell eine angemessene Reprisentationsebene,
in der nur Unterscheidungen berticksichtigt werden, die zur Durchfiihrung einer
gegebenen Aufgabe tatsdchlich notwendig sind.

Diese Arbeit beschaftigt sich mit dem Problem, eine Granularitdtsebene fiir
ein Verhaltensmodell zu finden, die so grob wie moglich, aber noch fein genug
flir eine gegebene Verhaltensvorhersage- oder Diagnoseaufgabe ist. Den Schwer-
punkt bildet dabei die aufgabenabhingige Wertebereichsabstraktion: d.h. das
Problem besteht darin, Unterscheidungen innerhalb des Wertebereichs von Va-
riablen (sogenannte qualitative Werte) zu finden, die sowohl notwendig als auch
hinreichend sind, bezogen auf die Constraints des Verhaltensmodells, die Gra-
nularitit der moglichen Beobachtungen, und die Granularitit der gewiinschten
Ergebnisse. Wir stellen eine Methode vor, mit der qualitative Werte automa-
tisch bestimmt werden konnen, ausgehend von einem Basismodell, das aus einer
Modellbibliothek erzeugt worden ist.

Eine prinzipielle Anwendung besteht darin, numerische Modelle, wie sie haufig
in der Industrie verwendet werden, in qualitative Modelle zu transformieren und
dadurch den Methoden des automatischen Schlufifolgerns zuginglich zu machen.
Die resultierenden Verfahren und Software-Werkzeuge ermaglichen es, ein Verhal-
tensmodell als gemeinsame Basis zur Unterstiitzung verschiedener, wahrend des
Lebenszyklus eines technischen Systems anfallender Aufgaben einzusetzen. Die
Arbeit beschreibt dies anhand von realen Beispielen aus dem Automobilbereich.
Dies fiihrt schliefilich zum ersten modellbasierten Diagnosesystem, das on-board
auf einem Personenfahrzeug lauft. Es wird gezeigt, dafl dieser Prototyp niitzliche
Ergebnisse fiir eine Reihe von emissionsrelevanten Fehlerszenarien liefert, die auf
einem Volvo-Versuchsfahrzeug implementiert wurden.

Acknowledgments

Many people have contributed to this work. This supports my general belief
that scientific work often arises from the interaction with a creative “environ-
ment”, rather than from the mind of a single person.

For the scientific part of this environment, I first would like to thank my
supervisor, Peter Struss. He has a particular knack for structuring and organizing
research on a conceptual and general level, while never losing sight of its practical
applications. Many aspects of this work were influenced by his ideas, while at
the same time its presentation was clarified through his suggestions. He gave me
the freedom to pursue my interests, and provided encouragement and guidance
throughout my work on this thesis.

I would also like to thank my former colleagues at the Technische Univer-
sitdt Miinchen, Ulrich Heller, Andreas Malik and Jakob Mauss, for interesting
discussions, collaboration, and in general for sharing the fun of graduate student
life with me. Oskar Dressler from Occ’'m Software helped to improve this work
by many discussions and provided continuous support and hints for integration
with the Raz’r model-based reasoning framework, fairly going beyond the scope
of normal “customer care”. Alexander Kutscha implemented core parts of the
software presented in this thesis, its GUIs, and its interfaces to Raz’r. Part of
the models used in the examples are based on a model library developed by Flo-
rian Dummert during his master thesis. Andreas Malik implemented the parts of
the signal transformation module that manage the interfacing with vehicle data.
Finally, I would like to thank the scientific community around the DX and QR
workshops at which I was able to participate. My thesis benefitted from com-
ments of reviewers on papers that presented aspects of this research, as well as
from discussions arising during these events. Of the many people, I would like to
mention Daniele Theseider—Dupré for his valuable feedback.

A main feature of this work is that it ranges from basic theoretic ideas to
a real-world application. This is not an easy task and requires a “milieu” also
on part of the application domain; without this, the evaluation of the research
ideas would have been impossible. This environment consisted of the German
project INDIA (Intelligent Diagnosis in Industrial Applications) and the Euro-
pean project VMBD (Vehicle Model-based Diagnosis, see figure 1). During the
latter project, I was a scholarship holder of the Robert Bosch GmbH at Stuttgart,
Germany. I am indebted to Wolfgang Bremer, Michael Walther, and Reinhard
Weber from Bosch’s research and development department. Volvo Car Corpo-
ration (now part of Ford Motor Company) at Goteborg, Sweden contributed to
analyzing the requirements of the guiding application, selecting the demonstra-
tor scenarios, and preparing the demonstrator car. During several visits, Claes
Carlén and Bjorn Svensson helped me with installations in the car, took measure-
ments, and even allowed me to test drive the car in the landscapes surrounding
Goteborg. They and their families made my visits to Goteborg a particular en-
joyable experience. I appreciate this a lot as I know now that such people are
usually very busy individuals.

Last but not least, I would like to thank Franz Wotawa, who commented on
earlier drafts of this manuscript. Finally, another general belief of me is that
while the third factor — the private milieu of friends and family — is equally
important, it should be omitted from acknowledgments.

Figure 1: Participants and the two demonstrator cars of the VMBD project
(image taken by Claes Carlén)

Martin Sachenbacher
January 2001

Contents

1 Introduction 1
1.1 Motivation 3
1.1.1 Example. 3
1.1.2 TheProblem)

1.2 Objective 6
1.3 Overview of Proposed Solution 6
1.3.1 Model Representation 6
1.3.2 Model Abstractions, 7
1.3.3 Characterization of Tasks 7
1.3.4 Computational Solution 8

1.4 Contribution 9
1.5 Reader’s Guide 9
2 Automotive Systems 11
2.1 Types of Components 11
2.1.1 Example: Electronic Diesel Control 12
2.1.2 Function. 13

2.2 Typesof Tasks 13
2.2.1 Failure Modes and Effects Analysis 13
2.2.2 On-board Monitoring and Diagnosis 15
2.2.3 Off-board Diagnosis and Repair 16

2.3 Requirements L Lo 16
2.3.1 Increasing Complexity 17
2.3.2 System Variants 17
2.3.3 Limited Knowledge, 18
2.3.4 Limited Observability 18
2.3.5 Different Objectives 18
2.3.6 Completeness of Analysis 18
2.3.7 Real-time Requirements 19

2.4 The Problem 19
2.5 The Vision e 20
2.6 SUMMAry e 22

ii CONTENTS

3 Model-based Problem Solving
3.1 Model-based Systems oo
3.1.1 Characterizing Different Types of Tasks
3.2 Relational Behavior Models
3.2.1 Relations
3.2.2 Basic Operations on Relations
3.2.3 Combining Relations to Networks of Relations
3.2.4 Interpretation of Relations as Propositional Theory
3.3 Conceptual Modeling
3.3.1 Ontologies for Conceptual Modeling
3.4 Component-oriented System Descriptions
3.4.1 Behavioral Part
3.4.2 Structural Part
3.5 Model Composition
3.6 Performing Problem Solving Tasks
3.6.1 Model-based Prediction
3.6.2 Model-based Diagnosis
3.6.3 Trading off Diagnosis against Prediction
3.7 Discussion
3.8 Summary

4 Qualitative Abstractions of Models
4.1 Representing Physical Behavior
4.2 Incompleteness and Parsimony in Problem Solving
4.2.1 Dimensions of Incompleteness
4.2.2 Dimensions of Parsimony
4.2.3 Coping with Incompleteness and Parsimony
4.3 Model Abstraction
4.3.1 Domain (Value) Abstraction
4.3.2 Relation (Function) Abstraction
4.3.3 Variable Abstraction oL
4.4 Problem Solving with Model Abstractions
4.4.1 Properties of Model Abstractions
4.5 Qualitative Models as Parsimonious Abstractions
4.5.1 Automated Modeling through Model Selection
4.5.2 Automated Modeling through Model Composition
4.5.3 Automated Modeling through Model Transformation
4.5.4 Reasoning about Relevancy
4.5.5 Hybrid Algebras L
46 Related Fields. o o
4.6.1 Abstraction in Constraint Satisfaction
4.6.2 Abstraction in Theorem Proving
477 Discussion oo
4.7.1 Towards Qualitative Abstraction from First Principles . . .
4.8 SUmmaryo e

23
23
23
25
27
28
29
29
30
30
32
32
33
35
36
36
38
40
42
43

45
45
47
47
48
49
50
50
53
54
55
55
56
56
o7
58
58
59
60
60
62
63
64
65

CONTENTS iii

5 Task-dependent Qualitative Abstraction 67
5.1 Task-dependency in Problem Solving 68
5.2 Task-dependent Distinctions 69

5.2.1 Observable Distinctions 70
5.2.2 Target Distinctions 70
5.3 Task-dependent Qualitative Abstraction Problem 72
5.3.1 Induced Distinctionso 73
5.4 Task-dependent Abstraction as a Search Problem 78
5.4.1 Search Space for Induced Distinctions 78
5.5 Characterizing Induced Distinctions 80
5.5.1 The Scope of External Restrictions 80
5.5.2 The Scope of the Model Relation 81
5.5.3 The Scope of Target and Observable Distinctions 82
5.5.4 The Scope of the Problem Solving Task 84
5.6 Induced Distinctions and Interchangeability 84
5.6.1 Complexity of Finding Induced Distinctions 85
5.7 Determining Induced Distinctions 85
5.7.1 Observation Partitions and Solution Partitions 86
5.7.2 Approximations to Induced Distinctions 88
5.7.3 Complete Solution to Induced Distinctions 90
5.8 Discussiono 93
5.9 Summaryo 95

6 Computation of Qualitative Abstractions 97
6.1 Building Blocks for the Computation of Induced Distinctions . . . 97
6.2 Computation of Model Relations 98

6.2.1 Computation of Model Relations using Solution Synthesis
Methods o 99
6.2.2 Representing System Descriptions as Constraint Graphs . . 100
6.2.3 Hierarchical Clustering of System Descriptions 102
6.2.4 Building SD Trees 102
6.2.5 Heuristics for SD Tree Topologies 105
6.2.6 Minimizing SD Trees 107
6.3 Basic Operations on Model Relations 108
6.3.1 Projection of the Model Relation 108
6.3.2 Restriction of the Model Relation 109
6.3.3 Abstraction of the Model Relation 109
6.4 Computing Induced Distinctions 110
6.4.1 Determining Observation Partitions 110
6.4.2 Determining Solution Partitions 112
6.4.3 Verifying Properties of Qualitative Abstraction Problems . 113
6.5 Transforming System Descriptions 114
6.6 Discussion 116

6.7 Summary 118

iv

7

CONTENTS

Prototype for Qualitative Abstraction 119
7.1 Overview of Components and Interfaces 120
7.1.1 Components of the Raz’r Framework 120
7.1.2 Interfaces of the Raz’r Framework 120
7.1.3 Components of the Enhanced Raz’r Framework 121
7.1.4 Interfaces of the Enhanced Raz’r Framework 122
7.1.5 Prototype for Generation of System Descriptions 124
7.1.6 Prototype for Computation of Induced Distinctions 124
7.1.7 Prototype for Signal Transformation 126
7.2 Principled Use for Building Model-based Systems 127
7.2.1 Determining Significant Distinctions 128
7.2.2 Determining Significant Deviations and Diagnostic Distinc-
tlons 132
7.2.3 Supporting Diagnosability Analysis and Design 136
7.2.4 Deriving Qualitative Abstractions of Real-valued Models . . 137
7.3 Discussion 142
T4 Summary . . . oo 144
Real-world Application: Vehicle Diagnosis 145
8.1 Background and Motivationo 145
8.1.1 Demonstrator Car 146
8.1.2 Application System L 147
8.1.3 Diagnostic Scenarios 148
8.1.4 Goals and Requirements, 149
8.2 Model Fragments oo 151
8.2.1 EngineModel oo 152
8.2.2 Intake Manifold Model, 155
8.2.3 Turbine Modelo 155
8.2.4 Turbo Control Valve Model 155
8.2.5 Wastegate Valve Model and Converter Model 156
8.2.6 Control Unit Model 156
8.2.7 Observations 156
8.2.8 Properties of the Model 158
8.3 Generating a System Description 158
8.3.1 Ground Model 159
8.3.2 Diagnostic Results 0oL 159
8.4 Task-dependent Qualitative Abstraction 164
8.4.1 Target Distinctions 164
8.4.2 Observable Distinctions 165
8.4.3 Transformed Model 165
8.4.4 Diagnostic Results 167
8.5 Evaluation and Discussiono 167

8.6 Summary 169

CONTENTS

9 Summary

9.1 Related Work
9.2 Conclusions

9.2.1 Achievements from a Scientific Point of View
9.2.2 Achievements from an Application Point of View

9.3 Future Work

9.3.1 Directions for Scientific Work

9.3.2 Directions for Applications

Bibliography

171
172
174
174
175
175
175
177

179

vi

CONTENTS

Chapter 1

Introduction

Artificial Intelligence (AI) is a science concerned with problem solving by the
means of computers. Model-based reasoning is a subfield of AI concerned with
representing knowledge about the structure and behavior of physical systems, and
using it to automate engineering tasks such as behavior prediction, diagnosis, and
testing. It is based on the idea that once the essential aspects of a system have
been captured in the form of a behavior model, the tasks mentioned above can
be performed using well-understood and computer-supported methods.

However, performing effective problem solving requires, in the first place, a
problem representation that is adequate for the task at hand. For instance, when
diagnosing the behavior of an engineered device in an on-board environment, it
is crucial to have a model that focuses on the essential aspects of the system only,
in order to meet the stringent time and space requirements of this application.
To put it short, modeling is the hard part of model-based reasoning.

Despite its importance, the problem of automatically deriving representations
that are suited for a certain task still remains, for a large part, an unsolved
problem. As David Waltz put it during his presidential address at the Fifteenth
National Conference on Artificial Intelligence ([Wal99)):

“AI has for the most part focused on logic and reasoning in artificial
situations where only relevant variables and operators are specified
and has paid insufficient attention to processes of reducing the richness
and disorganization of the real world to a form where logical reasoning
can been applied. (...) AI models already assume that somehow
we’ve discovered the objects and relations that are important in a
situation. Very little work has been done on the problem of actually
turning real, complex scenes into symbolic situation descriptions. And
I would argue that this is where most of intelligence really lies.”

An important idea in order to make modeling of physical systems feasible is
to break down the knowledge about a device into re-usable components, and to
organize them in a library. A model of the system can then be assembled by
composing model fragments from the library, based on a structural description

2 CHAPTER 1. INTRODUCTION

of the system. This requires that the model fragments have to be formulated, as
far as possible, in a generic way and independent of their application context.

These objectives immediately create a tension, because what is an adequate
model depends on the structure of the system and the specific task it will be
used for — a kind of information that cannot be anticipated in generic model
fragments. Hence, in general, the composition of models from a library will lead
to system models that are either inefficient, because they are overly detailed (i.e.
too fine-grained), or ineffective, because they are not detailed enough for the task
at hand (i.e. too coarse-grained). What we would like to have instead is a model
that has just the right granularity in the sense that it makes all the sufficient,
but only the necessary distinctions to solve a particular task.

The problem of task-dependent modeling can only be investigated in the con-
text of concrete application tasks and concrete physical systems. This seems
obvious — but, as one of the key persons in the field of model-based reasoning,
Johan de Kleer, has noted ([dK93]):

“Much AI research falls into the trap of examining issues for their
own sake, losing sight of the overall objective, and thereby effectively
building bridges over dry land . (...) Focusing on reasoning about
the physical world constantly brings fundamental issues to attention.
Significant AI progress can be made only by applying Al ideas to
tasks. Otherwise, we tend to spin our wheels.”

This has motivated our basic approach to carry out the work in close rela-
tionship to applications, to include industrial partners and experts, and to tackle
a real-world example taken from the automotive domain. Because one cannot
learn about the problems to be addressed in industrial applications without un-
derstanding their nature to some extent, it is also the reason why significant parts
of this thesis deal with the function and behavior of vehicle subsystems and issues
that are relevant in this particular context.

On the other hand, while doing so, one is faced with the risk of creating
specific solutions that have only a limited scope of interest. In order to ensure
that the resulting methods are transferable and of more general importance,
care has thus to be taken for never leaving the firm ground of mathematical
argumentation. This is the reason why considerable sections of this work are
concerned with mathematical formalisms, e.g. with the definition of spaces and
mappings between elements of these spaces, and mathematical proofs in order to
warrant important properties.

In this thesis, we investigate the problem of finding a level of granularity for
a behavior model that is as coarse as possible, but still fine enough for a given
behavior prediction or diagnosis task. The focus is on task-dependent domain
abstraction. I.e., the problem is to determine distinctions within the domains of
variables (termed qualitative values) that are both necessary and sufficient, given
the constraints of the behavior model, the granularity of possible inputs, and the
granularity of desired outcomes of model-based problem solving.

1.1. MOTIVATION 3

In order to automate this aspect of problem solving, it is necessary to lay bare
the underlying intuitions and diverse facets of task-dependency, and to make them
explicit and formal to such a degree that terms like “sufficient” or “necessary”
distinctions can be reasoned about.

Based on this, we present a method that allows to automatically determine
qualitative values, starting from a base model that has been composed from a
library. The resulting methods and software tools enhance the ability to use a
behavior model as a common basis to support different tasks. The thesis describes
their application to real-world examples taken from the automotive domain. In
particular, this leads to the first model-based diagnosis system running on-board
a passenger vehicle. This prototype is shown to provide useful results for a
number of emission-related failure scenarios that were implemented on a Volvo
demonstrator car.

1.1 Motivation

1.1.1 Example

Consider, for example, the system depicted in the figure 1.1 below. The device
is a simplified version of a pedal position sensor used in a passenger car. Its
purpose is to deliver information about the position of the accelerator pedal to
the electronic control unit (ECU) of the engine management system. The ECU
uses this information to calculate the amount of fuel that will be delivered to the
car engine.

The pedal position is sensed in two ways, via the potentiometer as an ana-
logue signal, vy, and via the idle switch as a binary signal, vech. The idle
switch changes its state at a particular value of the mechanically transferred
pedal position. The two possible values of vgyien correspond to two ranges of
Upot, separated by a particular voltage value. The reason for the redundant sens-
ing of the pedal position is that the signals from the potentiometer and the switch
are cross-checked against each other by the on-board control software of the ECU.
This plausibility check is a safety feature of the system, in order to avoid cases
where a wrong amount of fuel injected evokes dangerous driving situations.

Assume we want to perform the plausibility check between the electrical sig-
nals vpor and vsyscn automatically by the means of a behavior model of the sys-
tem, e.g. as part of a diagnosis or design verification task. For many problems,
it is convenient to use behavior models of electrical components that distinguish
only between the three qualitative values for voltage, e.g.:

ground : woltage =0V
voltage = { between : 0V < woltage < 10V)
battery : woltage =10V

If we used such a representation for our device, it turns out to be sufficient
to reason about simple failures in the electrical harness, for instance, shorts to
ground or battery. However, it would be of limited use for the kind of task that

4 CHAPTER 1. INTRODUCTION

/ Potentiometer \ Switch
\
e | T
Pedal
Vie Jt Um}(]ht vleft Um}(]ht
Node, Node,
[
I Battery
Upm‘, Uswitch gnd | batt
Electronic Control Unit

Figure 1.1: The Pedal Position Sensor

we want to perform for the pedal position sensor. The reason is that this task
refers to the redundancy which purposefully has been implemented in the system.

For example, consider the case where vy, is above the switching point due
to an increased resistance of the potentiometer, but still lower than the battery
voltage (10V). This failure would remain undiscovered using the representation
above. Both the original and the modified value are subsumed by between, which
is consistent with the switch being either on its left or right position. Thus,
this situation cannot be distinguished from the normal operation of the device.
Detecting the failure requires an additional distinction in the domain of vy,
which further refines the value between. However, this distinction is missing in
the domain of voltage, hence the compositional model will be of limited utility
for the above-mentioned task.

One could argue that the domain of vy, can easily be replaced by a four-valued
domain in order to achieve this additional distinction. The deeper problem, how-
ever, is that the particular distinction in the domain of vp,; cannot be anticipated
in a generic model of the potentiometer, because the voltage landmark would not
make any sense in a different structure. It is only the specific combination of the
potentiometer and the switch that requires this distinction. Of course, we could
use also numerical models that would be able to relate the switching position to a
particular division of the potentiometer voltage vpo:. However, this model would
be overly detailed for the purpose discussed. It would likely be too inefficient to
meet the tight space and run-time requirements of being part of the control unit’s
on-board software, for instance. We would rather like to have a composition of
component models that make just the right distinctions as required by the other
components of the device and the task the model is intended for.

1.1. MOTIVATION)

We might have some intuitions of how this can be achieved. Starting from
a basic understanding of how the components in the device behave, and the re-
quirements to achieve a distinction between certain behavioral features, a human
problem solver might be able to determine which distinctions he has to make
for certain sets of variable values in the system, considering the structure of the
device. For instance, the required distinction between ground and batt for vgwirch
requires the distinction between the two switch states, which in turn determines
a distinctive position of the pedal. This, in turn, induces the desired distinction
in the domain of vpe.

1.1.2 The Problem

The tiny example above has confronted us with the problem that simply picking
model fragments from a library and composing the model is not enough. It is
infeasible, in general, to anticipate the required granularity in the model frag-
ments, in particular distinctions in the domains of variables. Instead, the ability
to transform the model to the right level of abstraction after composing them is
a crucial requirement.

The problem is important, because it impairs the idea of using a model as
a common basis for different tasks. E.g. for automotive systems, it is typical
that several tasks along a product’s life cycle — such as failure modes and ef-
fects analysis, on-board diagnostics development, generation of repair manuals
or workshop diagnosis — each share a significant amount of common knowledge
about the behavior of the system under consideration. Hence, it would be un-
acceptable to manually create models from scratch that are tailored to each of
these tasks. Instead, one would like to use a common base model and transform
it in task-dependent ways such that the required set of tailor-made models is
obtained.

This thesis is about automating the transformation of models to a level of
abstraction that is adequate for a specific structure and task, much like an engi-
neer’s ability to come up with a suitable representation when faced with a certain
problem. To do this, we have to answer the following questions:

(1) What is a behavior model? How can it be expressed in a formal way? (i.e.
what is the representation?)

(2) What is a model abstraction? What is the space of possible model abstrac-
tions? (i.e. what is the search space?)

(3) How can a task be characterized? When is a model abstraction “adequate”
for a certain task? (i.e. what is the goal criterion?)

(4) How can we efficiently construct task-dependent model abstractions? (i.e.
what is the computational search strategy?)

We propose answers to each of the above questions, in particular for domain
abstractions and for the two fundamental problem-solving tasks of behavior pre-
diction and diagnosis.

6 CHAPTER 1. INTRODUCTION

We will turn the developed concepts into an implementation of a system that
is able to automatically derive models of physical systems at the required ab-
straction level and to use them for various application tasks. This provides an
answer to the tension between the generality of model libraries (i.e., the require-
ment of re-usability) vs. the effectiveness of models (i.e., the requirement of
task-orientation).

1.2 Objective

From an application point of view, it is desirable to integrate and reconcile dif-
ferent tasks that share the same type of knowledge. As outlined above, this can
be achieved by defining a base model that captures this common knowledge, and
re-using it along the different tasks. Currently, however, methods and computer-
supported tools are lacking that would support such an integrated perception of
work processes along the various tasks. The methods and tools developed in this
thesis are intended as a contribution to enhance this horizontal integration, and
further alleviate the disruption between different stages of a product’s life cycle.

From a scientific point of view, the problem of capturing only the “significant
aspects” in a model is the central subject of study in the field of qualitative rea-
soning. Qualitative reasoning is a branch of Artificial Intelligence that combines
the quest for computational theories underlying the core skills of engineers with
techniques that intend to capture only the essential distinctions in a model of
a physical system. Yet, there is still a considerable lack of formal theories that
would characterize what the significant distinctions or aspects of models are,
and methodologies of how they can be derived. This thesis intends to provide
a contribution to this research issue through providing a rigorous definition of
task-dependent qualitative distinctions, and developing a formal methodology for
task-dependent qualitative modeling.

1.3 Overview of Proposed Solution

In this section, we give a brief overview of our answers to the questions raised
and the goals outlined in the previous sections. The rest of the thesis develops
these ideas in detail.

1.3.1 Model Representation

We will represent models of the behavior of physical systems in a fairly general
way. In particular, we do not only treat models composed of continuous or mono-
tonic functions, but also models that contain discrete states and operating modes,
as motivated by the example of the switch component in the previous section.
This is achieved by representing behavior models as relations (constraints) on
the parameters and variables v = (v1,v2,...,v,) — involving input and output
variables, internal and state variables — of a system. Accordingly, a model of a
component, C, to be analyzed can be stated as a relation

1.3. OVERVIEW OF PROPOSED SOLUTION 7

RC - DOM(’Uil) X DOM(UZ'2) X ... X DOM(’U%)

In this notation, DOM (v;) denotes the domain of a variable v;. The domain
could consist of infinitely many elements, e.g., the real numbers or intervals re-
flecting a certain precision, but also finite numbers of elements like the states
of a switch, certain behavior or failure modes, or qualitative values. A system
description then consists of variables v, domains DOM (v;), and the relations
describing the behavior of the individual components. It defines a relation R(v)
capturing the possible behaviors of the physical system.

This uniform representation allows to cover a broad range of formal or semi-
formal behavioral knowledge commonly used in the automotive industry, for in-
stance, equational models or characteristic maps based on measurements of com-
ponents with complex behavior like the engine. It also provides the basis for a
computational solution, which is based on methods that efficiently represent and
manipulate finite relations.

1.3.2 Model Abstractions

As noted above, we cannot expect to find models of a component in the library
that have the required granularity right away. Rather, the models have to be
generated starting from a base model and using some kind of transformation
operation that yields as output a more abstract model.

Abstraction might affect each of the constituents of a system description. As
demonstrated by the example, a useful type of abstraction can be characterized
by dropping “unnecessary” distinctions in a base domain DOM (v;), such that the
abstracted model is formulated in terms of coarser values that possibly contain
fewer distinctions than the original base domain. Such transformation operations
can be expressed by domain mappings that map elements of base domains to
elements of transformed domains DOM’:

71 : DOM (v;) — DOM’ (v;) C 2POM (i)

A domain mapping 7; induces an abstraction of the system model. The idea is
that the elements of the domain DOM’(v;) define qualitative values, i.e. exactly
the values that have to be distinguished from each other. The composed base
model of the system, together with the domain abstractions for each of the system
variables, thus defines the space of possible model abstractions.

1.3.3 Characterization of Tasks

We will be concerned with two fundamental problem-solving tasks on the basis of
relational behavior models. Prediction is the task of determining restrictions of
model variables based on observations (e.g., measurements). Diagnosisis the task
of revising, based on observations that yield conflicting restrictions for variables,
the model in such a way that it becomes consistent again with the observations.

8 CHAPTER 1. INTRODUCTION

The characteristics of a problem-solving task, i.e. the goal criterion for model
abstraction, will be characterized by two different aspects termed observable dis-
tinctions and target distinctions.

Observable distinctions capture what can be distinguished in a model, due to
the observations that are available — for instance, the granularity of the measure-
ments. Target distinctions capture what needs to be distinguished in a model,
due to the purpose one is after — for instance, to discriminate faulty behavior
modes from correct behavior modes in diagnosis, or to distinguish acceptable
deviations from unacceptable deviations of output variables.

In our framework, target distinctions and observable distinctions will both be
characterized by abstractions for the domains of variables in the model.

For the pedal position sensor example, the target distinction would separate
the ground and battery voltage from the rest of the voltage values for the variable
Vswiteh, (assuming that the plausibility check of the control unit itself is not repre-
sented in the model), while the given observability can be expressed by observable
distinctions for veyiten and vper.

1.3.4 Computational Solution

Based on this formalization of the problem, we will be able to characterize solu-
tions, and we show that the general problem of determining qualitative domain
abstractions starting from a base model is intractable (i.e., NP-hard). This mo-
tivates the development of both an incomplete and a complete solution to the
problem. The incomplete solution has the property that the resulting model will,
in general, be too abstract: this means it might not contain all of the required
distinctions, but the distinctions included in the resulting model are necessary
ones.

The algorithmic realization is based on a data structure called SD Tree that
provides an implicit, hierarchical representation of a model relation in order to
avoid combinatorial explosion. The computational complexity of operations on
the SD Tree, and thus the efficiency of deriving qualitative domain abstractions,
can be bound to structural properties of the system model.

The devised methods have been implemented in the form of several prototypic
software modules, which are equipped with graphical user interfaces. They have
been integrated into an existing commercial model-based framework for compos-
ing models and applying them to the tasks of behavior prediction and diagnosis.

Because we focus on the application to automotive systems, the software mod-
ule that deals with qualitative abstraction of observations features an interface to
a domain-specific measurement acquisition tool that is of wide-spread use in the
automotive industry. This enables the application of the tool kit also by people
which are not familiar with its underlying theoretical background.

1.4. CONTRIBUTION 9

1.4 Contribution

We sum up the main contributions of this work. From a scientific point of view,
this thesis makes the following important contributions:

e it introduces a formalization of different tasks, model abstractions, and
appropriate models within a common relational framework, making the
problem amenable to theoretical analysis.

e it derives a first-principles solution for task-dependent automated qualita-
tive model abstraction and analyzes some of its interesting properties.

e it develops algorithms and data structures as a basis for efficient computa-
tion of solutions to the problem on a computer.

e it characterizes principled applications, e.g. deriving significant deviations
for model-based prediction or distinctions for model-based diagnosis.

From an application point of view, the prominent research contributions are:

e it develops methods that automatically transform a behavior model to the
granularity adequate for a task at hand, thus supporting the re-use of knowl-
edge along various tasks.

e it describes an implementation of the methods in the form of software com-
ponents, which interact with a commercial model-based prediction and di-
agnosis framework.

e it combines elements of these components to form the first prototype of a
model-based diagnosis system running on-board a passenger vehicle, pro-
viding useful diagnostic results for a set of failure scenarios.

e it evaluates these components and prototypes on a couple of examples from
the automotive domain, and, in particular, on a real demonstrator vehicle
with built-in faults.

1.5 Reader’s Guide

This thesis consists of an analysis of the requirements of the application domain
(first part), a description of the employed methods and solutions (second part),
and empirical results using a computer implementation (third part):

e Chapter 2 starts with a description of automotive systems, the types of
systems primarily considered in the thesis, and identifies the main tasks
and requirements that arise in this application domain.

10 CHAPTER 1. INTRODUCTION

e Chapter 3 provides necessary background and describes the state of the art
in modeling the behavior of physical systems. It provides a formalization in
terms of relational behavior models, which is the foundation to automate
the tasks stated in the precedent chapter.

e Chapter 4 introduces the concepts of qualitative descriptions, and discusses
the contribution of a various number of existing approaches to the core
problem of arriving at a model with adequate (i.e. qualitative) granularity.

e Chapter 5 introduces our framework for task-dependent qualitative model
abstraction and analyzes some properties of the solution, in particular, its
worst-case computational complexity.

e Chapter 6 is concerned with putting the solution to work. This is done by
devising methods that allow to exploit the specific structure of a behavior
model in order to make its abstraction computationally feasible.

e Chapter 7 gives an overview of the implemented prototype for task-dependent
qualitative model abstraction, and describes principled applications to var-
ious types of modeling problems.

e Chapter 8 describes the integration of the techniques into a prototype for
model-based on-board diagnosis of an automotive system, and evaluates it
on a real demonstrator vehicle.

e Chapter 9 summarizes the results and discusses the achievements and con-
tributions in relation to existing work. Based on this, it identifies directions
for future work both for application prototypes and scientific research.

Basic theoretic achievements of this thesis (chapters 5 and 6) have been pub-
lished in [SS99], [SS00] and [SSO1], while results and perspectives for the con-
sidered application (chapters 2 and 8) can be found in [SSCO00b], [SSW00] and
[SSCO00a).

Chapter 2

Automotive Systems

In this chapter, we describe automotive systems, which are the primary focus
of application in this thesis. Starting from a description of the components and
structure of automotive systems, we identify some major tasks and requirements
that arise in this application domain. As it will be shown, car industries provides
a good example for industrial needs in connection with behavior analysis and
diagnosis. This leads us to a characterization of the core problem of qualitative
modeling from a work process point of view.

The purpose of this chapter is thus to ground the subsequent work in two re-
spects. First, it is shown that a real application problem of economic importance
is tackled in this thesis. Second, the fundamental reasons are revealed for the
needs and challenges that will be addressed in the following chapters.

However, the scope of the methods that will be developed is not limited to
automotive systems. Automotive systems have been chosen as a typical repre-
sentative of a class of applications that is characterized by involving large and
complex engineered devices. Hence, similar patterns of tasks and requirements
might be found e.g. in the domain of aircraft and spacecraft industry, trans-
portation systems, power plants, etc. Readers who are interested in the scientific
results only can thus skip this description of the application background and
proceed with the formalization developed in the next chapter.

2.1 Types of Components

In a car, all functions, such as accelerating or braking, are achieved by one or more
automotive subsystems, such as the drive-train or the braking system ([Bau96]).
Whereas these subsystems used to be purely mechanical devices in the past, they
are now often combinations of several different physical domains. In order to
achieve more functions and to make solutions more cost effective, electronically
controlled systems are used in modern cars, consisting of one or more microcom-
puters that run control software. In the context of automotive systems, these
microcomputers are termed electronic control units (ECUs). An electronic con-
trol unit reads in signals from various sensors and governs actuators in order to

11

12 CHAPTER 2. AUTOMOTIVE SYSTEMS

»(Electronic Control Unit
Sensor A A Actuator
signals A \4 signals
Fuel Air
Supply Supply
Y
Driver A \4 Dashboard
Command Diesel Engine Display

Figure 2.1: Components of the Electronic Diesel Control

achieve the vehicle functions. Automotive structures that combine a physical
part and electronic control units are often called mechatronic systems. Examples
of mechatronic systems are the anti-lock braking system (ABS), the electronic
diesel control (EDC), the automatic climate control (ACC) or the vehicle dynam-
ics control (VDC) (see [Bau96]).

Hence, the components of an automotive system can be divided into three
main parts: sensors, actuators and the ECU. Sensors measure physical quantities,
such as temperature or pressure. These physical quantities are converted into
electrical signals and undergo initial conditioning like filtering, amplification, or
analog—digital conversion before being processed within the ECU. The ECU then
outputs electrical signals that govern actuators in order to achieve the desired
functionality.

2.1.1 Example: Electronic Diesel Control

A typical instance of an automotive system is the electronic diesel control (EDC)
(see [Bau96]). The pedal position sensor considered in section 1.1.1 is a small sub-
system of the EDC. The EDC is responsible for supplying appropriate amounts
of fuel and air to the diesel engine, in order to provide the thrust necessary for
vehicle motion. Figure 2.1 shows a schematic view of this system. The sensors in
the EDC provide information about the current condition of the engine and the
driver commands. There exist sensors for the following quantities:

e sensors for driver commands: accelerator pedal position, brake pedal switch
position and clutch switch position;

e sensors for engine conditions: engine speed, boost pressure, atmospheric
pressure, intake air quantity, intake air temperature, fuel temperature and
engine temperature.

The actuators in the EDC influence certain input quantities in order to govern
the behavior of the diesel engine. Actuators exist for the following quantities:

2.2. TYPES OF TASKS 13

e actuators for the air supply: wastegate valve position and turbo control
valve position;

e actuators for the fuel supply: fuel quantity solenoid, fuel injection pressure
solenoid, fuel injection timing solenoid and the fuel shut-off valve;

e indicator lamps to inform the driver in the case of failure.

The electronic control unit (ECU) processes the information from the sensors,
performs system-specific control algorithms, and outputs corresponding actuator
signals in order to achieve the desired thrust of the diesel engine as demanded by
the driver.

2.1.2 Function

The main aim during the design of an automotive system such as the EDC is
to ensure that the vehicle will fulfill as much of the designed functionality as
possible, even in the case of faults. Engineers define a priority of functions to be
fulfilled, such as

e to prevent safety-critical situations (e.g. an uncontrollable engine),
e to prevent severe system damage (e.g. to the engine or gear box),

e to comply with legal restrictions (e.g. regarding emissions, fuel consump-
tion, or noise),

e to maintain mobility (e.g. to have the engine running, possibly with reduced
performance),

e to achieve comfort functions (e.g. air condition, smooth running).

2.2 Types of Tasks

During the life cycle of an automotive system such as the EDC, a number of
different tasks have to be carried out (figure 2.2). Each of these tasks pursues
a different goal and is performed at a different stage within the cycle. However,
a common feature of the tasks is that each one requires a certain amount of
knowledge about the system. In particular, they require to derive and to analyze
information about the system’s normal and faulty behavior. In the following, we
characterize some of the most important tasks to be carried out.

2.2.1 Failure Modes and Effects Analysis

Failure modes and effects analysis (FMEA) is carried out during the design phase
of an automotive system. FMEA aims at investigating and assessing possible
causes and effects of system malfunction, in order to pinpoint necessary revisions
of the design as early as possible. It is a method for preventive quality assurance

14 CHAPTER 2. AUTOMOTIVE SYSTEMS

. On-board Off-board .
Design FMEA Diagnosis Diagnosis Repair

Physical Device

Figure 2.2: Types of tasks during the life cycle of an automotive system

that is of wide-spread use in many companies. The FMEA process starts from the
functionality of individual components or processes of the system, and considers
possible ways in which these constituents could fail. The possible failures of the
constituents are called failure causes. The goal of an FMEA for automotive sys-
tems is to predict the effect of the failure causes on the behavior of the subsystem
and the whole vehicle. The focus is on the impact of the faults on the functions
of the system, such as passenger safety, environmental aspects, and reduction of
comfort functions (see section 2.1.2). For instance, during an FMEA of the EDC,
the effects of a stuck-at-ground failure of the pedal position sensor switch on the
fuel quantity of the diesel engine might have to be considered. The derived be-
havioral consequences are called failure effects. The priority of functions outlined
in section 2.1.2 can be used to assign a severity number to failure effects, ranging
from 1 (least severe) to 10 (very severe).

The result of the analysis is documented using three factors: the severity of
the failure effect (5), the detectability of the failure (D), and the likelihood of
the failure to occur (O). With these three factors, a risk priority number (RPN)
is obtained as

RPN =S5-D-0.

The magnitude of the risk priority number is the basis for deciding on potential
design revisions. The results of the analysis are documented in the form of a
standardized table (see figure 2.3). Such a document serves as a certification
of the quality of the product, as being demanded to an increasing extent by
customers and legal acts.

In order to simplify the analysis, it is common in FMEA to analyze only
single faults, to consider only worst case situations, and to document only the
differences compared to the normal behavior of the system.

FMEA is carried out by engineers. Since predicting the effect of failures
requires knowledge at different abstraction levels, ranging from single component
behavior to complex functions of the vehicle, an FMEA team has to involve several
people from different departments. FMEA is thus a costly task that binds a lot
of valuable resources of the involved engineers.

2.2. TYPES OF TASKS 15

Component, | Function, | Failure | Failure | Failure | RPN
Process Purpose Mode Effect Cause

Figure 2.3: Structure of an FMEA document

2.2.2 On-board Monitoring and Diagnosis

On-board monitoring and diagnosis of automotive systems consists of devising
ECU procedures — often based on FMEA results — that continuously supervise
the sensor values in order to recognize failures of the system. In case of a failure,
alarms have to be signalized in order to warn the driver, or fault codes have to
be generated and stored in the ECU memory.

For failures that are considered critical, it might also be necessary to perform
so-called recovery actions. Recovery actions attempt to take the vehicle back
into safe operational conditions again and to partially restore its functionality.
Recovery actions can consist of minor performance reductions hardly perceivable
by the driver, or so-called limp-home modes that just allow the driver to reach
the next service bay, or even a complete shut-down of the engine.

Hence, for on-board diagnosis, localizing a failure without ambiguity is often
not essential. Instead, failures have to be identified to a degree where it is possible
to choose the right action, i.e. to perform a recovery action, to alarm the driver,
or to generate a failure code.

In current practice, on-board monitoring and diagnosis is regarded as an ad-
dendum to the design of an automotive system. Current on-board diagnosis
procedures of automotive systems detect faults on the basis of pre-defined range
and plausibility checks for signals. This means that there is a fixed relationship
between violations of plausibility checks, failures that are assumed to cause this
and built-in recovery actions that will be performed by the system.

This reflects the fact that at present, the development of on-board diagnosis
for automotive systems usually does not follow precisely defined methodologies or
criteria. E.g., what is considered to be the normal range of a value or a significant
deviation is mostly based on the opinion of experts that design the system and on
previous experience, rather than a systematic analysis of the system’s behavior
and the characteristics of the pursued task.

In control units for the EDC, currently about one half of the software is
dedicated to on-board monitoring and diagnosis, and this share is still growing.
This reflects also a trend to increase the amount of on-board diagnosis in order to
exploit more information about the context of faults that occur only sporadically.

16 CHAPTER 2. AUTOMOTIVE SYSTEMS

2.2.3 Off-board Diagnosis and Repair

Off-board diagnosis and repair of automotive systems is part of the after-sales
and carried out in the field workshops. It aims at re-establishing the complete
functionality of an automotive system for which a fault has been detected. This
task typically involves the localization and replacement of faulty components.

Hence, the task of off-board diagnosis is to localize failures down to the small-
est replaceable unit. In contrast to the other tasks outlined in this chapter, iden-
tifying the actual kind of fault is less important for off-board diagnosis. However,
it might be relevant for the repair process itself, e.g. in order to suspend tests
which could be dangerous to the mechanic.

Off-board diagnosis often uses information from on-board monitoring and
diagnosis. The failure codes stored in the ECU can be read out in the service
bays, and usually they constitute the starting point for off-board diagnosis. As
noted above, however, failure codes as generated by the current control units
are not diagnoses in the sense of failure localization. Since they document only
violated plausibility checks of ECU signals, it is possible that different component
failures lead to the same failure code.

Off-board diagnosis aims at discriminating among them. It is not limited to
measuring the ECU signals, but can make use of additional observations, exploit-
ing service equipment ranging from volt meters to motor testers, or even human
observations. Due to the standardized and controllable workshop environment,
off-board diagnosis can use more information about the application context, e.g.
the current driving situation or the load of the engine. It can also devise dis-
tinguishing tests, in order to drive the automotive system into a new state and
reveal symptoms that where not observable in the original state, e.g. through
activating the operating phases of an anti-lock braking system individually.

During off-board diagnosis, a mechanic will usually be guided by repair man-
uals. Repair manuals are manually created documents that contain diagnostic
instructions for a specific car type. They aim at bringing together knowledge
from design (e.g., by providing diagrams of the circuit structure) and after-sales
(e.g., by ordering test actions according to their costs).

Off-board diagnosis is of great economic importance to car manufacturers.
For instance, it is estimated that European passenger cars have an average yearly
down-time of 16 working hours due to malfunctions and maintenance. This figure
is even greater for commercial vehicles. For the European Community alone, this
amounts to a total of over one billion hours for diagnosis and repair. For a large
German-American car manufacturer, it is projected that in the future about half
the sales will be made with services for the car such as after-sales, and not with
the production of the car itself.

2.3 Requirements

The speed-up of innovation cycles and the increased complexity of automotive
systems has increased the complexity and costs of all the tasks mentioned above.

2.3. REQUIREMENTS 17

In order to understand the fundamental reasons, we have to analyze the challenges
that must be faced during these tasks. The most fundamental of these challenges
are presented in the following.

2.3.1 Increasing Complexity

With increased environmental awareness, stricter constraints are imposed on the
car manufacturers to develop clean cars, and also to keep them clean during
their life cycle. For instance, the California Air Resource Board (CARB) man-
dated that cars sold in the state of California have to be able to monitor certain
emission-relevant vehicle subsystems and report faults to the driver ([Cod93]).
Also, safety systems such as the anti-lock braking system that provide passive or
active protection without effort on the part of the driver are now more and more
regarded as part of the standard equipment of a passenger car.

These growing requirements are making the design and maintenance of au-
tomotive systems more and more complex. Sometimes, functions can only be
achieved through the interaction of several subsystems, which have to communi-
cate data over networks in the vehicle. For instance, the vehicle dynamics control
(VDC), a system which assists steering by preventing lateral instability of the ve-
hicle, issues commands to the EDC system and to the braking system in order
to reduce the fuel quantity or to increase braking forces whenever it detects a
tendency of the vehicle to be pushed out of the turn. Such complex behavior
makes manual analysis difficult and error-prone.

2.3.2 System Variants

Automotive systems, like most engineered devices, come in many different vari-
ants. They vary from version to version, depending on mounting positions, vehicle
type, year of production, and so forth.

One reason is that a supplier of automotive subsystems has to develop his
products for many car manufacturers and a lot of car models, all of which impose
different requirements on the base system. The actual configuration may differ in
the number of sensors and actuators; redundant equipment, such as comfort func-
tions, may be present or absent dependent on the specific car manufacturer. Also,
the components themselves come in different constructive details with respect to
geometry or material.

This creates a problem for managing and updating the information, but also
for behavior analysis and diagnosis of a device at hand. Each of the modifications
must be thoroughly handled during fault analysis in FMEA, during the design
of on-board diagnosis, and also in the process of off-board diagnosis. Generating
specialized solutions for all variants by hand can be infeasible, or is at least very
expensive. Thus, there is a need for automated support in order to handle the
system variants.

18 CHAPTER 2. AUTOMOTIVE SYSTEMS

2.3.3 Limited Knowledge

Automotive Systems combine various physical domains. The knowledge about
the behavior of certain components, especially components that involve several
physical domains like the combustion engine, is incomplete and precarious. In
contrast to electric or hydraulic components, there exist no general mathematical
models that capture their behavior completely.

Particularly in the case of a failure, certain quantities may not be known
exactly or they even remain unknown. For instance, during an FMEA of the
EDC, it might be required to predict the effect of a leakage — which causes a
too low pressure of the intake air in a diesel engine or a too high exhaust gas
recirculation rate — on the emissions and the performance of the vehicle. To
some extent, it is therefore necessary to reason about components even if their
behavior is ill-specified.

2.3.4 Limited Observability

Automotive Systems have to work in a lot of different situations. The context in
which a car is operated in, e.g. as characterized by road and weather conditions
or the engine load, is highly dynamic and uncertain. Often, it will neither be
measurable for on-board monitoring and diagnosis, nor will it be reproducible for
off-board diagnosis in the workshop.

Additionally, in order to achieve cost effectiveness, in general very few sensors
are available in automotive systems. For instance, for some versions of the EDC,
the hydraulic parts do not contain any sensor at all. The main consequences are
incomplete observations and rather qualitative symptom descriptions. However,
monitoring and diagnosis have to be capable of processing such information.

2.3.5 Different Objectives

While all of the tasks outlined above require to analyze the behavior of an au-
tomotive system, each one is targeted at a different goal. FMEA concentrates
on the difference between normal and faulty behavior, in particular behavioral
aspects of the output or performance of the system. For on-board diagnosis, the
set of actions that can be taken by the control unit determines certain classes of
behaviors that need to be distinguished. For off-board diagnosis and repair, the
focus is on discriminating faults at the granularity of replaceable components.
These different objectives impede a straightforward re-use of results between the
different tasks.

2.3.6 Completeness of Analysis

Since they are concerned with safety and environmental aspects, any of the tasks
characterized above has to be carried out as completely as possible, particularly
for automotive systems like the ABS or the EDC.

2.4. THE PROBLEM 19

For behavior analysis in FMEA, completeness has to be achieved in two re-
spects: it is necessary to cover all the possible failure causes of a system con-
stituent, but also to consider all the relevant circumstances, such as driving con-
ditions, vehicle load, states of interacting subsystems, etc. This makes complete-
ness difficult to achieve, since an enormous number of possible circumstances have
to be considered. For diagnosis, covering these situations is a complex task, and
often turns out to be infeasible for hand-crafted diagnostic procedures which are
based on predefined range or plausibility checks only.

2.3.7 Real-time Requirements

In an on-board environment, there is only limited time available to come up with
a diagnostic conclusion. The reason is that in the case of a failure, the automotive
system often has to be moved to another state (e.g. shutting down the engine)
to prevent safety-critical situations or severe system damage, or to comply with
legal restrictions with respect to emissions or noise.

As a consequence, the computational requirements for on-board diagnosis
functions are relatively high. On the other hand, the memory and computing
resources of current ECUs are relatively low. Thus, one has to focus on essential
aspects of behavior only and must avoid any unnecessary detail.

2.4 The Problem

The tasks presented above differ with respect to the phase of the product life
cycle during which they can be carried out. They involve different organizational
units within a company, or even different companies such as suppliers and man-
ufacturers. As a consequence, the involved knowledge is spread among different
places and different points in time.

However, it has been shown that the different task share, at least to a certain
extent, common knowledge about the system under consideration. For instance,
both in behavior analysis and diagnosis it is essential to know how the system
behaves normally, and how it will behave in the case of a failure.

From a work process point of view, it is desirable to integrate different tasks
that are concerned with the same type of knowledge. This helps to avoid unnec-
essary double work and to mitigate update problems that are likely to occur if
an automotive system undergoes several revision and modification cycles.

To achieve a more efficient, redundant-free organization of work processes,
a common basis for computer-supported representation and utilization of the
knowledge underlying FMEA, on-board diagnosis or workshop diagnosis is re-
quired. In the following, this will be referred to as horizontal integration.

However, horizontal integration is not just a matter of simply storing all the
available information in a common database, or writing converters that mediate
between different formats and standards. The difficulty lies in the different ways
the knowledge is used, and in particular the different granularity of the knowledge
that each of the tasks requires.

20 CHAPTER 2. AUTOMOTIVE SYSTEMS

For instance, during the design of an automotive system, it might be necessary
to use a computer-based simulation of the behavior of its hydraulic subsystem in
order to decide on valve diameters, pipe lengths, etc. Later on, during the design
of on-board diagnosis of this system, failures of the hydraulic components have to
be considered. This also requires knowledge about the behavior of this subsystem,
but at a different level of abstraction, as now whole classes of behaviors, such as
leakages, occlusions, etc. have to be considered. The simulation model contains
knowledge of this kind, but can’t be used for this purpose right away, since a
specific granularity (i.e., real numbers) and use (i.e., simulating behavior over
time) is hard-coded into this piece of work.

As another example, choosing the right level of abstraction is crucial to the
task of diagnosis. If diagnostics is based on a model that is inadequate for the
task at hand, the diagnostic results are likely to be wrong or useless. A too coarse
model may fail to reveal existing contradictions. A too fine-grained model, on the
other hand, may suggest inconsistencies that are meaningless in the sense that
they rely on insignificant discrepancies of values. Furthermore, using always the
best, most accurate and most detailed model available also tends to make the
task intractable, or at least unnecessarily complex and resource-consuming.

This illustrates the basic problem of achieving re-use of knowledge at different
levels of abstraction. The knowledge, or at least significant parts thereof, might
be readily available. But often, it is not represented in a form that would make
it amenable for any other task than the one it has been originally used for. It is
quite common in the automotive industry that various simulation models exist
for different physical domains of a system, but they hardly can be exploited
e.g. for on-board diagnosis. However, such a re-use of knowledge becomes more
and more important, given the ever-increasing complexity of automotive systems
and the emerging trend to achieve more sophisticated functionality through the
interaction of several subsystems.

2.5 The Vision

From a more generalized and conceptual point of view, we have to reconcile
two opposing objectives, namely generality of knowledge vs. task-specificity of
knowledge. The former point is crucial to achieving re-use of knowledge, while
the latter point is crucial to achieve efficacy of a certain task.

We propose in this thesis the view that behavior models could form the basis
for supporting different tasks along the process chain (figure 2.4). The question
is how models of a physical device can be obtained that are adequate for a par-
ticular task. We will discuss requirements on the form of such behavior models,
and we will present computer-supported methods that deal with the problem of
automatically generating such behavior models.

In a nutshell, the solution proposed in this thesis (figure 2.5) consists of using
a set of generic, re-usable model fragments stored in a library. Task-specificity
comes in through the structure of a behavior model, expressed as interconnections

2.5. THE VISION 21
A Model »| Design
7
Y
e ¥ Model » FMEA
/////
. ///
PhyS}cal -7 »| Model N O.n—boar.d
Device |~ Diagnosis
A > ~
NN
v Tal Model > O'ff—boar.d
N Diagnosis
N
N\
4 Model »| Repair

Figure 2.4: Model-based support for different tasks

between instances of these model fragments, and a characterization of the task
the model is used for. The granularity of a suitable model is determined both by
the structural context and the task requirements, such as the given observability
and the need to distinguish certain classes of behaviors from each other.

For instance, in on-board diagnosis, the task might be to discriminate between
failures that require different actions. It might be possible or impossible to achieve
this for a given structure of an automotive system, given the characteristics of
the task in terms of the available sensors, the placement of the sensors, their
accuracy, etc.

Essentially, the approach is characterized by “first compose, then transform”.
A generic model is composed from the model fragments in the library. Trans-
formation operators (see figure 2.5) will be developed that adapt the granularity
of a model to a specific task, but preserve the essential information, such that
nothing is “lost” compared to the original model. It should be clear that we are
particularly interested in transformations that are maximal in the sense that they
preserve only the information that is truly essential in order to perform a partic-
ular task, and carry no “unnecessary” information. Based on a formal treatment
of these informal concepts, we will also be able to investigate to what extent this
is possible in principle.

Our approach supports the idea of having a general problem solving method
that is independent of the particular model at hand. This contributes to the
important separation of general knowledge from the specific ways in which this
knowledge is used. It thus helps to achieve the desired horizontal integration and
re-use of knowledge.

22 CHAPTER 2. AUTOMOTIVE SYSTEMS

Physical Structure
Device Task Description

Y l
Generic Model - On-board
Base » Transfor- Diagnosis

Model |—>| Design |

Model |—»| FMEA |

2\

Model mation
Off-board
A Model [——
Diagnosis
If\./lg’del | Model |—>| Repair
tbrary Behavior

Figure 2.5: Model-based support for different tasks using a generic base model
and task-dependent model transformations

2.6 Summary

In this chapter, we have characterized the application domain of automotive sys-
tems. It serves as a typical representative of an industrial application, illustrating
various tasks and requirements that have to be faced.

A core problem in such a real-world domain is the tension between generality
of knowledge vs. task-specificity of knowledge. The former is the prerequisite for
re-using knowledge, whereas the latter is a necessary precondition to carry out a
task efficiently.

Current practice tends to spatiotemporally distribute the knowledge about
the behavior of a system, and thus leads to limited re-use of data that might
have been valuable for different tasks. Based on this, we outlined our approach
to this problem, which is more general in the sense that it is not limited to the
application domain of automotive systems. It consists of composing a base model
from generic model fragments, and then to apply task-specific transformations in
order to adapt it to the various tasks along the process chain. The next chapter
investigates the structure of the required behavior models in more detail.

Chapter 3

Model-based Problem Solving

In this chapter, we are concerned with the representation and use of knowledge
that captures the behavior of physical systems. We investigate properties and
conceptual features that behavior models must have in order to meet the ap-
plication requirements presented in chapter 2. To this end, we characterize in a
uniform way the different tasks that can be performed with such behavior models.

In order to automate the tasks outlined in section 2.2 such that they can
be supported by computer-based tools, we will introduce a formal description
of compositional behavior models. This allows to realize the idea of re-using
behavioral knowledge by composing a model from a library of model fragments,
as presented in section 2.5. We will consider models of components of physical
systems that are described as relations, a general concept that covers differential
equations, functional dependencies, etc. This formalization serves as a uniform
means to represent behavior models, and it is the foundation for subsequent
theoretical analysis.

3.1 Model-based Systems

A system that uses an explicit representation of knowledge about the physical
world in the form of a model is called a model-based system. The question is how
and to what extent a model-based system can accomplish the tasks that have
been outlined in chapter 2. In particular, we would like to know what roles a
device model can play in the various tasks, and what requirements it must fulfill
in order to support them. To answer this question, the next section describes
how each of the tasks outlined in chapter 2 can in principle be supported by a
model-based system (see also [Str00]).

3.1.1 Characterizing Different Types of Tasks

In the following, we characterize how models can be used in order to support
the various tasks. In order to keep the description concise, we will do this in an
informal way first, and later introduce more precise definitions. In the following,

23

24 CHAPTER 3. MODEL-BASED PROBLEM SOLVING

e MODEL denotes a behavior model (which possibly contains also a descrip-
tion of faulty behaviors),

e CRITERIA denotes a description of certain behaviors (e.g. desired or
allowed situations, undesired or not allowed ones), and

e OBS denotes external restrictions on the system (e.g. through observations,
specification of operating modes, or specification of parameters).

We will use the informal operators “U” to denote combinations of the above
elements, such as MODELUQOBS for a behavior model combined with external
restrictions, and “F” to denote inference from a behavior model.

Design and FMEA

As it has been described in chapter 2, failure modes and effects analysis (FMEA)
tries to predict the consequences of component failures on a device. If we have a
model that captures the behavior of the device together with its possible failures,
this task can be characterized as the derivation of behavioral descriptions from
the model:

MODELF?.

If we focus on FMEA as a means for safety analysis, it could also be un-
derstood as checking consistency of the model with certain behavioral descrip-
tions that characterize e.g. safety critical or dangerous behaviors which must be
avoided:

MODELUCRITERIAV® 1.

This check determines whether certain behaviors can occur. For instance, it
could be important to verify that even if one of the return valves of an anti-lock
braking system is occluded, it is still possible to brake the wheels of the vehicle.

Monitoring and Diagnosis

In monitoring, we have observations of the system (e.g. sensor signals), and we
are interested in knowing whether the device is behaving correctly. Current on-
board diagnosis performs this task using a set of pre-defined criteria only, such
as plausibility checks or thresholds for signals:

OBS UCRITERIAV' L.

However, in general, this task is characterized as checking the consistency of
the model with the given observations:

MODELUOBS -’ 1.

3.2. RELATIONAL BEHAVIOR MODELS 25

If we have detected an inconsistency — which means that we have detected a
failure —, diagnosis amounts to the task of finding the possible origins. To this
end, we have to revise the model in such a way that it becomes consistent again
with the observations:

MODELUOBS+ 1 — MODEL' UOBS V/ 1.

The revision procedure, i.e. the step from MODEL to MODEL', can consist
of just dropping parts of the model that describe normal component behaviors,
or substituting them with descriptions of possible failures. In the former case, the
faults will just be localized, whereas in the latter case, also the types of failures
can be identified. Hence, a model of faulty behavior will be required for fault
identification, but it is not necessarily required for fault localization. Figure 3.1
summarizes the different types of abstract problem-solving tasks.

Model
Revision
@ Discrepancy
Behavior inconsistent
Prediction consistent

Criteria, Obs,

Figure 3.1: Model-based behavior prediction, consistency checking, and model
revision

3.2 Relational Behavior Models

Our ultimate goal is to analyze different levels of abstraction of models of a
physical system, and to develop methods that automatically transform them.
This requires to define behavior models in a strict and formal way.

As we have seen in the previous chapter, behavior models have to express
principled knowledge of science and engineering about physical phenomena. En-
gineers commonly express such knowledge as equations or differential equations
over some system variables and parameters, or e.g. as characteristic lines or
characteristic maps that have been obtained through evaluating various mea-
surements. Also, manipulation and reformulation of models is often done using
this representation, e.g. in order to derive linear approximations, to test if a
solution exists, or to solve for output variables of a system. However, represent-
ing behavior models directly in the form of symbolic formulae leads to several

26 CHAPTER 3. MODEL-BASED PROBLEM SOLVING

difficulties. First, representations for mathematical equations are not unique. It
would require to define some normal form, which is difficult even if we restrict
ourselves to a subclass of formulae only ([DST93]). Also, using the model would
be difficult with such a representation. For instance, determining the admissible
values of a variable — i.e., solving for that variable — requires different solution
algorithms that depend on the form of the equations, such as Gaussian elimi-
nation for linear equations, or Grobner basis methods for non-linear equations.
This conflicts with our goal to have a general problem solving method that is
independent of the particular model at hand (section 2.5). While one form might
work e.g. for simulation of a model, using the same form for checking if the model
contradicts another one, as required e.g. for the diagnosis task, might become
intractable or even impossible.

In contrast, many of the Al-centered approaches to modeling device behavior
treat models uniformly as sets of logical sentences (e.g. [dKMR92], [Rei87]).
This representations allows to prove, for instance, whether a certain model is
consistent with another. On the other hand, this level of representation does
not reflect the nature of behavior models, as it abstracts from the fact that they
capture knowledge about physical phenomena of a device. Hence, this form makes
the models hard to handle e.g. for engineers. For instance, there is no obvious
way how representations based on logical formulae can be derived from their
existing models, which typically correspond to numerical differential equations.
What is required is a level of representation that is more amenable to computer-
supported methods than symbolic representations of mathematical formulae, but
still retains more of the original problem structure than a set of propositional
sentences does.

This is the motivation for representing behavior models as relations (also
called constraints), and operations on behavior models as operations on these
relations. Using this representation, we will still be able to talk, in the context of
behavior models, about essential concepts such as shared variables, or solutions
for a certain variable. The relational representation can thus be viewed as an
additional layer in order to mediate and fill the gap between the two extremes
characterized above. This is helpful in particular if models of the behavior of
physical systems are not constructed from scratch, but stem at least to some
extent from the mathematical or engineering level. Also, as we will see later, a
relational representation can be used at different levels of abstraction of a model,
and thus lends itself to the task of transforming a model.

The relational representation is complete in the sense that it is possible to
interpret an arbitrary equation in terms of a relational behavior model. On the
other hand, there is a correspondence between relations and logical propositions
(see section 3.2.4) and, thus, a well-defined basis for performing inferences, as
required e.g. for behavior prediction or diagnosis, on the basis of relational be-
havior models. Following the considerations above, however, we will regard such
logical theories mostly as an optional representation that could be obtained, if
necessary, from an underlying relational model. In the following, we will present
the foundations of relational behavior models.

3.2. RELATIONAL BEHAVIOR MODELS 27

3.2.1 Relations

Relations capture behavior information by restricting the set of possible behav-
iors. This is based on the view that the behavior of a device can be described in
terms of an ordered set of variables

v = (V1,V2,...,0).

By v[vi;, iy, - .., v;,] we denote a restriction of v to a subset of k variables
Vi1, Vis, - - -, Vi, . The term variable refers to internal variables, output variables,
state variables, but also derivatives thereof, or time. Each of the variables v;,
where i = 1,2,...,n, can take values from a domain DOM (v;):

Definition 1 (Domain) A domain, denoted DOM, is a set of values which are
defined extensionally (i.e., by enumerating them) or intensionally.

A domain can consist of an infinite number of elements, e.g. the real values,
integers or intervals, but also a finite number of elements like a set of symbolic
values, or the “left” and “right” states of the idle switch in the example considered
in section 1.1.1. It can be ordered, partially ordered, or not ordered at all. For
v; and vj, DOM (v;) and DOM (v;) are not necessarily the same, i.e. each of the
variables used to describe the behavior of a device can possibly have a different
domain. Thus, the cartesian product

DOM (v) = DOM (v1) x DOM (v2) X ... x DOM (vy,)

denotes the possible space to describe the behavior of a device. A relation
type constrains the set of possible value combinations:

Definition 2 (Relation Type) A relation type (or constraint type) RT with
arquments arg = (argi,args,...,argy) denotes a subset of the possible behavior
space:

RT(arg) C DOM/ (arg1) x DOM (args) x ... x DOM (argg).

Relations (or constraints) can be derived from a relation type by identifying
its arguments with a subset of the variables:

Definition 3 (Relation) Let RT be a relation type with arguments arg = (argi,
arga, ..., argy). Let v be variables such that DOM (v;;) = DOM (argy), ...,
DOM (v;,) = DOM (argy). A relation (or constraint) R is the result of identify-
ing the variables v;,,vi,, ..., v;, with arguments arg in RT (arg):

R(viy, viy, . .. ,v5,) = RT(arg).

An element of a relation, val € R, is termed a tuple. The ordered set of
variables that a relation R is defined on is called the scheme of R and denoted
scheme(R). Relations that are based on the same relation type consist of the
same set of tuples, but can have a different scheme. If it is not clear from the
context, we write R.v; to make explicit that a certain variable v; belongs to
scheme(R).

28 CHAPTER 3. MODEL-BASED PROBLEM SOLVING

3.2.2 Basic Operations on Relations

In order to use relations for capturing behavior — e.g. deriving the consequences
of observing physical situations of a device, or connecting several device con-
stituents to form a larger device — we have to define operations on relations. In
the following, we define three basic operators on relations: projection, selection
and join. They form the basis for manipulations of relational behavior models
in the sense that more complex operations on models can be expressed in terms
of these basic operations. These operators correspond to operations known in
relational algebra ([Ull89], [Fre93]). However, we are also interested in the inter-
pretation of the operations with respect to the underlying mathematical level.

Definition 4 (Projection) Let R(v) C DOM (v1)x DOM (vg)%...x DOM (vy,)
denote a relational behavior model. Let proj denote a subset of variables of v.
Then the projection of R on proj, denoted Ily.0;(R), is defined as

Lo (R) = {vallproj] | val € R}

From the mathematical view, the projection operation on a subset of model
variables corresponds to the elimination of variables. A special case is to solve a
set of equations for a single variable by eliminating all the other variables.

Definition 5 (Selection) Let R(v) C DOM (vy) x DOM (v3) X ... x DOM (vy,)
denote a relational behavior model. Let cond denote a selection criterion for

tuples of R. Then the selection of R witch respect to cond, denoted oeona(R), is
defined as

Oeond(R) := {val € R | cond(val) is true}

In particular, cond can be the restriction of variables to a subset, or single
elements, of their domain. The selection operation corresponds to restricting
a model (or mathematical formulae) through some “external” information, e.g.
observations of input variables, or specification of parameters.

Definition 6 (Join) Let R(v) C DOM (vi) x DOM(v3) X ... x DOM (vy,),
S(w) € DOM (wy) x DOM (w3) X ... x DOM (wy,) denote two relational be-
havior models. Let w = (uy,us,...,u) denote the subset of variables common to
v and w, i.e.

u = scheme(R) N scheme(S).

Then the join of R and S, denoted R S, is defined as

R S = Hscheme(R)Uscheme(S)O—(R.ulzs.ul)/\.../\(R.uk:S.uk)(R X S)

Joining corresponds to combining sets of mathematical formulae through the
identification of variables, which can lead to additional restrictions of the other
variables.

3.2. RELATIONAL BEHAVIOR MODELS 29

3.2.3 Combining Relations to Networks of Relations

Using the operators in section 3.2.2, relations can be implicitly defined using sets
of smaller relations, just as composing sets of equations:

Definition 7 (Constraint Network) A constraint network over variables v is
a set of relations Ry, ..., Ry,, where for each relation R;, scheme(R;) is a restric-
tion of v, and |J; scheme(R;) = v. The constraint network implicitly represents
a unique relation R with scheme(R) = v, which stands for all consistent assign-
ments to the variables:

R = {val = (valy,...,valy) | VR; : yepeme(r,) (val) € R} =
= RixRyx<...xxRy,.

A constraint network is said to define a constraint satisfaction problem (CSP).
The tuples of the relation R defined by the constraint network are called the
solutions of the CSP. A binary CSP is a special case of constraint satisfaction
problem where for all relations R;, scheme(R;) consists of at most two variables.

3.2.4 Interpretation of Relations as Propositional Theory

As noted during the beginning of this section, many of the early approaches to
model-based problem solving are based on representations of device behavior in
terms of logical sentences (e.g. [Rei87]). In fact, there exists a close relationship
between relational models as presented above and logical theories. Given a rela-
tion R, a propositional formula @ can be constructed such that each model of ®
corresponds to a tuple of R:

Definition 8 (Propositional Encoding) Let R be a relation. Let the propo-
sition v; = wval denote that variable v; € scheme(R) takes the value val €
DOM (v;). The propositional encoding of R is the formula ® defined by

Yv; : Jval € DOM (v;) : v; = val
AYv; ¢ (v; = valy € DOM (v;) = Yvala € DOM (v;) \ {vali} : v; # valy)
AYval = (valy,vals, ... ,val,) & R: —(v1 =valy A ... \v, = valy).

The formula ® expresses the fact that each variable must take a value from its
domain, the fact that these values are pairwise exclusive, and the possible value
assignments allowed in R. ® is a “negative” encoding of R in the sense that it
represents only the tuples that are not allowed in R.

It holds that every model of the propositional encoding of R corresponds to
a tuple of R. In particular, R is non-empty if and only if ® has a model. This
provides a basis for interpreting the manipulation of relational models as deriv-
ing inferences in propositional logic, and vice versa. The relationship between
constraint systems and logic is investigated in more detail in [Mac92].

30 CHAPTER 3. MODEL-BASED PROBLEM SOLVING

3.3 Conceptual Modeling

In this section, we investigate the impacts of the tasks and their requirements
on the employed behavior models in more detail. As has been shown in section
3.1.1, model-based problem solving tasks require not just deriving inferences from
the model, but also changing (i.e., revising) the behavior model itself. This is
even true for a prediction task such as FMEA, since it deals with the effects of
different faulty behaviors of components in exchange for their normal behavior.
Accomplishing this efficiently imposes requirements on the form of the model.
For instance, in FMEA, predicting failure effects for the different failure models
of a component model would be very inefficient, if the rest of the model had to
be built from scratch each time. In diagnosis, checking whether certain failure
hypotheses are consistent with the observations would be infeasible if it involved
re-building of the complete model.

This illustrates that we need to organize behavior models in such a way that
they support model revision, in the sense that changes can be performed locally,
and unaffected parts of the model (and consequently, unaffected inferences) can
be re-used for the revised model.

This can be achieved by a meta-concept for behavior models that further
structures a model into two parts: a set of model fragments and a structural
description. The model fragments capture the behavior of basic constituents of
the device. The structural description defines the current instances of model
fragments and the way they interact with each other. Thus, a behavior model of
a device can be composed from a structural description and a library of model
fragments. This separation promises efficient solutions for behavior prediction
and diagnosis, since part of the model (and inferences) can be re-used during
model revisions. It is also the foundation to remedy the variant problem outlined
in section 2.3.2, because different structural variants of a device involve modi-
fications of the structural description only, whereas the model fragments in the
library remain the same.

3.3.1 Ontologies for Conceptual Modeling

To put this idea to work, it is necessary to develop a conceptual layer for behavior
models that deals with the representation, composition and revision of models at
the level of model fragments. In Al such conceptual layers are termed ontologies.
There exist two major types of ontologies, which essentially differ in the extent
and type of possible model revisions that they are able to handle.

In process-oriented ontology ([For90]), the basic behavior constituents of a
model are processes. Processes describe interactions among objects, such as a
heat flow between a flame and liquid in a container. The view is that the be-
havior expressed in the process model cannot be allocated to one of the involved
objects alone, but is rather due to a certain relationship between the objects
(such as spatial proximity) and certain preconditions (such as the presence of a
temperature difference between the objects). Whenever the conditions for their

3.3. CONCEPTUAL MODELING 31

activity are true, processes will come into existence. In doing so, one process
can also create the necessary preconditions for another process (such as a boiling
process, if the temperature of the liquid exceeds a certain limit). Conversely,
processes cease to exist if the conditions for their activity are invalidated (such
as a balanced temperature, or the container being removed).

Thus, process-oriented modeling is suited to describe the behavior of dynamic
systems that lack a fixed a priori structure of constituents, like chemical processes
or ecosystems. It has been applied e.g. to thermodynamic systems ([For90]),
waste water treatment ([SH98|) and the prediction of algae blooms ([HS97]).
One can say that the higher the degree of model revision, the more important
the ontological level becomes and the more sophisticated is has to be. Hence, it is
not surprising that the high flexibility of a process-oriented description comes at
a considerable complexity for composing and diagnosing such models ([Hel01]).

Automotive systems, on the other hand, are highly structured devices. Since
modularity simplifies the design of an engineered device considerably, there often
exists a natural decomposition of the device into a limited number of component
types, such as valves, relays, resistors, etc. The instances of these component
types may differ with respect to some parameters (e.g. a valve diameter), but
they share the same type of behavior and the same paths of interaction (e.g. two
hydraulic ports and a command line). Consequently, the behavior of a device can
be obtained as the interaction of a fixed set of component type instances. From
the point of view of diagnosis, faulty behaviors are due to failures of one or more
components. These failures can be described by failure models which are also
local to the component types.

These considerations are the reason why we focus on a component-oriented
ontology ([Dav84, dKB90]) for modeling devices such as automotive systems.
The component-oriented ontology describes the behavior of a device in terms of
components and conduits that define possible paths of interactions among them.
Thus, on the one hand, component-oriented ontology has the desired feature to
enable the localization of behavior descriptions in the form of model fragments.
On the other hand, compared to process-oriented modeling, it is a reasonable
compromise in terms of the number of the concepts at the conceptual layer that
need to be introduced. It is worth noting that the component-oriented ontology
can be cast as a special case of the more general process-oriented ontology (see
[SH98, Hel01]).

Diagnostic applications of component-oriented modeling have focussed mostly
on devices that involve simple logical gates or electrical circuits ([dKW87]). It
is appropriate when other properties of the “stuff” transported via the conduits
— like binary signals, electrical current or voltage — can be ignored, and no
significant “stuff” is stored within conduits. As will be discussed later, however,
this implicit assumption can present a limitation in the context of real automotive
systems, in particular when dealing with phenomena like the fuel combustion
process or the formation of exhaust emissions.

32 CHAPTER 3. MODEL-BASED PROBLEM SOLVING

3.4 Component-oriented System Descriptions

We can now augment our basic notion of relational behavior models (section
3.2) by primitives that further structure them at a component-oriented, concep-
tual level. As outlined above, the model is separated into a structural part and
behavioral fragments:

e component types are physical constituents of a device (such as valves, relays
and resistors) that share the same normal and faulty behavior and the same
interaction paths.

e conduits (or connections) are paths that pass material or information be-
tween component types. This is the only way by which component types
are allowed to interact with their environment.

A model that is composed of a behavioral part describing the behavior of
constituents and a structural part describing the structure of the constituents is
called a system description (see also [Rei87]).

3.4.1 Behavioral Part

A behavioral model fragment captures the physical phenomena associated with
a component type in terms of variables that characterize its operation:

Behavior Mode

A behavior mode, denoted mode, captures a distinct behavior (e.g. Ohm’s law),
which is common to all instances of a component type. The values of mode are
classified as either correct or faulty, e.g. “ok” or “shorted” for the case of a
resistor. Changing the behavior mode is thus the starting point for revising a
model during diagnosis. There is a default behavior mode which is considered
valid if no revision of the model has yet taken place. The behavior modes can
also have associated probabilities.

Behavior Description

A behavior description for a component type specifies a set of relation types
among the variables of a component type that captures its behavior for a par-
ticular behavior mode. It is possible that only the correct behavior mode has an
associated relation. In this case, the faulty behavior is unrestricted, i.e. equal to
DOM (v). The variables used in a behavior description can be further classified
into internal variables and external variables.

Internal Variables

Internal variables are visible only to the component itself, and cannot be accessed
by other components. There are three different types of internal variables:

3.4. COMPONENT-ORIENTED SYSTEM DESCRIPTIONS 33

e parameters are constants that describe attributes of specific instances of a
component type, e.g. the resistance of a resistor component type, or the
opening diameter of a valve component type.

e state variables are dynamic internal variables which can change over time
and represent operational states of a component, e.g. the state of a switch
or the filling level of a tank.

e intermediate variables are variables local to a behavior description. They
are introduced only for convenience, e.g. in order to further structure com-
plex behavior descriptions by defining intermediate expressions.

The behavior mode could also be viewed as a distinct internal variable that
switches between different behavior descriptions, with the difference that it is
subject to external revision procedures.

External Variables

External variables, also called interface variables, are exogenous to a component
and can be shared with other component models. Thus, they describe quantities
through which a component type can interact with its environment, e.g. electrical
current or air temperature. A terminalis a collection of external variables in order
to describe a physical interconnection, e.g. an electrical terminal comprising
interfaces for current and voltage, or a hydraulic terminal comprising interfaces
for pressure, flow and temperature.

3.4.2 Structural Part

The structural part of the system description defines the instances COM PS of
component types in a behavior model and the way they are interconnected. Since
components can only interact through their terminals, the latter is achived by a
definition of shared terminals. A structural description could be e.g. the output
of a CAD system during the design phase of a device.

The separation of a structural part and a behavioral part in a system descrip-
tion enables the separation of general-purpose knowledge in the form of knowledge
about component type behavior and device-specific knowledge in the form of a
description of the device structure, as demanded in section 2.5.

Example 1 (PPS Model) A system description can be defined to capture the
behavior of the pedal position sensor (section 1.1.1). The behavioral part consists
of five component types:

o Switch with external variables: vViert, Vright, Vswitch, POSition
Internal variables: switchstate (state variable), poSswitching (parameter)
Behavior description:

34 CHAPTER 3. MODEL-BASED PROBLEM SOLVING

switchstate = left = Vgwiteh = Vieft,
switchstate = right = Vswiteh = Vright,
position < posawitching < switchstate = left,
POSILION > POSgwitching < switchstate = right

e Potentiometer with external variables: vViefi, Vright, Vpot, POSition
Behavior description:

Vpot - 100% = (100% — position) - viefs + position - Vpighs

e Node with external variables: vy, vg, vs
Behavior description:
V1 = V2 = V3

e Battery with external variables: vpgst, Vgnd
Internal variables: batt (parameter), gnd (parameter)
Behavior description:

Vpatt = batt, VUgnd = gnd

o Pedal with external variables: angle, position
Behavior description:
position = angle

Assume there is only one behavior mode per component type, and that the
domain is

DOM = {[0V,2V),[2V,4V), [4V,6V), [6V,8V), [8V, 10V)}
for variables involving voltage and
DOM = {0%,20%,40%, 60%, 80%, 100% }

for variables involving position and angle, where 0% means that the gas pedal is
in rest position, and 100% means that the pedal is fully pushed through. Let the
domain for position times voltage (occuring in the potentiometer model) be given
as a domain with 20 elements

DOM = {[0,50), 50, 100), . .., [950, 1000)}.

The structural part of the system description contains two instances of the
component type Node (denoted Node; and Nodez) and one instance of the other
component types (denoted Switch, Potentiometer, Pedal, Battery). The con-
nectivity of these siz components is described by

Pedal.position = Potentiometer.position = Switch.position,
Potentiometer.vicpy = Nodey.vs, Potentiometer.vy;gns = Nodeg.vs,
Switch.viery = Nodey.ve, Switch.vpgny = Nodeg.va,
Nodey.vy = Battery.vgng, Nodeg.v1 = Battery.vpa

3.5. MODEL COMPOSITION 35

3.5 Model Composition

Model composition denotes the process of mapping a conceptual model to the
underlying mathematical relation. The behavior descriptions associated with the
conceptual elements, i.e. the relation types for the specific behavior modes of the
components, are given in the behavioral part of the system description. During
the model composition step,

(1) the conceptual elements C; € COMPS have to be instantiated with their
corresponding behavior descriptions (i.e. their relation types are instanti-
ated to form relations RCj;),

(2) potentially, the behavior descriptions have to be further refined by instan-
tiating them with with specific parameters or modes,

(3) the structural part of the system description has to be translated into a
definition of shared variables for the relation schemes.

Thus, the result of model composition is a constraint network (see section
3.2.1), which forms the basis for prediction or consistency checking. Figure 3.2
provides a schematic view of the model composition step.

A conceptual level

Model = Model
Library "| Composition

mathematical level
(constraint
@ network)

Figure 3.2: Model composition maps a behavior model from the conceptual level
(top) to the mathematical level (bottom)

Model composition requires that the behavior constituents contain only lo-
cal behavior descriptions, which do not make assumptions about other behavior
constituents or global properties of the system. Otherwise, it could not be guar-
anteed that each conceptual model can be mapped to a mathematical model.
This is called the no-function-in-structure principle ([dKB90]). It states that, for
instance, a model of an outlet valve must not assume a specific direction of the
flow, even if this should cover all the situations that occur during the normal
behavior of the device. If it becomes necessary for other components to change
their behavior description, e.g. due to a leakage failure, the valve model would

36 CHAPTER 3. MODEL-BASED PROBLEM SOLVING

cause an inconsistency at the mathematical level. Hence, violation of the no-
function-in-struture modeling principle can significantly reduce the utility and
re-usability of a model fragment.

The model composition step is more or less trivial for a component-oriented
ontology. However, it can be more difficult to perform for process-oriented on-
tologies, since in this case the existence of one behavior constituent, i.e. process,
can render the preconditions for the existence of other processes invalid, which
means that model composition becomes non-monotonic ([For90, SH98, Hel01]).

3.6 Performing Problem Solving Tasks

The following two sections describe how prediction and consistency checking can
be performed on the basis of a composed model.

3.6.1 Model-based Prediction

The constraint network that is the output of model composition implicitly de-
scribes all the possible states of the model. On the mathematical level, the states
are equivalent to the solutions of the constraint network:

Definition 9 (State) A state is a tuple of the relation

RCl MRCQ > ...NRCnL,C’i S COMPS,

where RC; is the relation for component C;, and COM PS' are the components
in the system description.

External restrictions R+ on a subset of the variables in v, such as observa-
tions, further restrict the set of possible states:

Definition 10 (External restriction) An external restriction is a relation
Rext Q DOM(’U)

Given an external restriction R.;; that reduces the possible states of the
model, the task of model-based prediction is to determine the remaining states,
i.e. tuples of the relation

SOL(’U) = R(’U) R Rea:t-

To this end, the constraints corresponding to the external restrictions and
the constraint network resulting from the model composition step have to be
used to derive restrictions on the remaining variables. Model-based prediction
is also called state completion, since the initial restrictions Rey: can be viewed
as a partial state description, and the determination of possible states as the
task of completing it by the means of the model. State completion does not

3.6. PERFORMING PROBLEM SOLVING TASKS 37

involve the conceptual level of the model. Hence, this step is not specific to
model-based problem solvers. There exists a variety of algorithms in order to
derive solutions of a constraint satisfaction problem (see e.g. [Tsa93]). Due to
the inherent complexity of the problem, model-based predictors are often based
on incomplete constraint satisfaction algorithms, which means that they cannot
rule out all inconsistent states. Consequently, they will derive only a superset of
the possible states SOL(v).

In the case of finite domains, the resulting states can be explicitly enumerated.
This is called an envisionment of the system ([dKB90]). However, for larger
systems, the envisionment can be overwhelming. In these cases, it is preferrable
to have an implicit characterization of the states only. This is captured by an
orthogonal solution:

Definition 11 (Orthogonal Solution) An orthogonal solution characterizes a
set of possible states by independent restrictions for variables:

SOL'(v) = I, (SOL(v)) x L, (SOL(v)) % ... x IL,, (SOL(v)).

An orthogonal solution characterizes states by individual restrictions for vari-
ables. Compared to sets of states, the expressive power is limited, since disjunc-
tions of tuples (like e.g. the set {(0,0),(1,1)}) cannot be expressed. However,
it can be computed by efficient algorithms and is sufficient for most purposes.
In particular, the set of solutions is empty if and only if the set of orthogonal
solutions is empty.

Example 2 (Model-based Prediction for PPS Model) Consider again the
behavior model given in example 1. Let the parameters for the components Bat-
tery and Switch be specified as

gnd = [0V, 2V), batt = [8V,10V), posswitching = 40%.
For an external restriction that restricts variable Pedal.position to 20%,

HSwitch.state(SOL(v)) = {l@ft}, HSwitch.vswitch (SOL(U)) = {[OVZ 2V)}

Conversely, for an external restriction that restricts variable Switch.state to the
value le ft,

HPedal.position(SOL(v)) = {0%7 20%}

|

The above example illustrates that model-based prediction has no built-in
“direction” for evaluation, as opposed e.g. to numerical simulation models.

38 CHAPTER 3. MODEL-BASED PROBLEM SOLVING

3.6.2 Model-based Diagnosis

Model-based diagnosis also starts from initial restrictions Re,: and the constraint
network that is the output of model composition. In the context of diagnosis, the
restrictions Rey: typically correspond to observations OBS of the system.

Diagnosis consists of two tasks. The first is to check consistency of OBS with
the model, and the second is to revise the model in the case of an inconsistency.
The former task corresponds to checking whether consistent states exist on the
level of the mathematical relations, i.e. if it holds that

SOL(v) = 0.

This can be accomplished by model-based prediction as outlined in the pre-
vious section. Model-based prediction can therefore be viewed as a precondition
for model-based diagnosis.

The second task, the revision of the model in case of an inconsistency (i.e.
if SOL(v) is empty), aims at re-establishing consistency of the model with the
observations. As noted earlier, this involves the conceptual layer of the model.

In a component-oriented ontology, the structure of the device is assumed to
be fixed. Thus, a revision step consists of changing the behavior mode of one or
more components. Hence, the search space for diagnostic revisions is determined
by the components and their possible behavior modes. An element of this search
space is called mode assignment:

Definition 12 (Mode Assignment) Let COMPS C COMPS be a set of
components. A mode assignment, denoted M A, is an assignment of behavior
modes to components:

/\ RC;.mode = m; for m; € DOM (RC;.mode).
C;eCOMPS’

MA is called complete if COMPS" = COMPS, and partial otherwise.

A diagnosis can be characterized as a mode assignment that re-establishes
consistency of the model with the observations:

Definition 13 (Consistency-based Diagnosis) Let M A be a complete mode
assignment. MA is called a consistency-based diagnosis for a behavior model
R(v) and a set of observations OBS, if

oara(R(v)) = OBS # 0.

M A is minimal if no mode assignment M A’ that substitutes fault modes oc-
curing in M A for correct modes is a consistency-based diagnosis.

Consistency-based diagnoses are sometimes termed candidates, because fur-
ther observations during the diagnostic process could either confirm or refute

3.6. PERFORMING PROBLEM SOLVING TASKS 39

a diagnosis. From the perspective of the characterization in section 3.1.1, a
consistency-based diagnosis serves the purpose of two task, namely failure local-
ization and failure identification.

If we are only interested in localization of failures, it is not necessary to know
the failure mode for each of the components. Instead, if

ok; € DOM (RC;.mode)

denotes the correct behavior modes of a component Cj, it is sufficient to know
if RC;.mode € ok; or RC;.mode ¢ ok; holds. This leads to a weaker form of
diagnosis, which has been first described in [dKW87], [Rei87] and is defined as
follows:

Definition 14 (Consistency-based Fault Localization) Let A C COMPS.
A is a consistency-based fault localization for R(v) and OBS, if

UFL(R(’U)) >x1OBS 75 @
where F'L is defined as

/\ RC;.mode & ok; N /\ RC;.mode € ok;.
Cien C;€COMPS\A

A consistency-based fault localization A is minimal if no proper subset A’ C A is
a consistency-based fault localization.

Consistency-based fault localization has been implemented in a system called
General Diagnosis Engine (GDE) ([dKW8T7]). De Kleer and Williams ([dKW87])
have also laid the foundation for efficient computation of consistency-based diag-
noses based on so-called conflicts. Conflicts capture certain parts of the model
that give rise to an inconsistency. More precisely, conflicts describe (partial)
mode assignments that cannot hold:

Definition 15 (Conflict) Let M A be a mode assignment such that
oma(R(v)) <t OBS =).

Then MA is called a conflict. MA is minimal if no mode assignment M A’ that
restricts M A to a proper subset of its components is a conflict.

It follows that at least one of the behavior modes involved in a minimal conflict
has to be changed in order to re-establish consistency. Conflicts thus provide
a starting point for model revision that is more focused than just arbitrarily
choosing behavior modes of components for revision. Examples for conflicts and
diagnoses will be given in chapters 7 and 8.

It has been shown in [dKW87] that if the conflicts involve only correct behav-
ior modes, the set of minimal conflicts characterizes all possible consistency-based

40 CHAPTER 3. MODEL-BASED PROBLEM SOLVING

diagnoses for a model and OBS. Technically, the computation of diagnoses is
thus reduced to the computation of minimal conflicts.

Since conflicts link elements of the conceptual level (mode assignments) to
properties of the mathematical level (consistency), computing them requires a
link between the conceptual level and the constraint network. Intuitively, during
processing steps at the mathematical level, it is necessary to keep track of the
information which conceptual elements are involved at each step.

De Kleer ([dK86]) proposes an assumption-based truth maintenance system
(ATMS) that accomplishes this task. An ATMS logs the elements of the con-
ceptual layer (i.e. the assignments of behavior modes) that are used during the
solving process of the constraint network in the form of labels for inferences. Ac-
tually, this can be viewed as a more general task, and it is independent of the goal
of model-based diagnosis. The labels can be used to derive conflicts, but they are
also useful in order to determine which inferences remain valid and thus can be
re-used if the model has undergone certain changes on the conceptual layer.

From a practical point of view, it might turn out to be difficult to exhaustively
describe the faulty behaviors of a component. However, if the faulty behavior is
unknown (i.e., the corresponding relation is unrestricted), nothing useful can ever
be inferred from a component assuming this mode. One way to remedy this is to
assign failure probabilities to fault models, and to assign the lowest probability
to behavior modes that represent unknown faults. This is the basis of a system
called SHERLOC K which has been described in [dKW89]. It allows a ranking of
mode assignments according to their probability, but still, it provides no means
to prove the correctness of components, since an unknown fault can never be
refuted.

Deriving correctness of components is useful because it can help to improve
fault localization. The principle is that if the fault models are assumed to be
complete, and if all fault models of a component have been refuted, then the
correct behavior mode must hold for this component. Hence, the component can
be removed from the set of candidates, which helps to constrain the set of possible
diagnoses. This principle is called physical negation and has been realized in the
GDE+ system ([SD89]). It requires to make an assumption about completeness
of the set of fault models. An alternative approach to achieve the same effect is
to characterize the physically impossible behaviors for a component ([FGN90]).

However, it turns out that if the fault modes are assumed to be complete,
minimal conflicts are no longer sufficient to characterize the set of all diagnoses
([dKMR92]). For this case, [IKMR92] present an alternative characterization of
fault localizations based on so-called kernel diagnoses. For fault identification,
[DS94] provides a characterization that is based on default logic ([Rei80]). Figure
3.3 provides an overview of the framework for model-based problem solving.

3.6.3 Trading off Diagnosis against Prediction

The tasks of prediction and diagnosis are interrelated in the sense that it is possi-
ble to trade the number of model revision cycles to be carried out (figure 3.3) for

3.6. PERFORMING PROBLEM SOLVING TASKS 41

Model
Revision
y / /
Model Conflict
Composition Generation
A A

1

Qoo D4 e

1 dencies
Model \ - 7

Library I

inconsistent

Behavior

Prediction consistent

Observations Diagnosis

Figure 3.3: Basic elements of a model-based problem solving architecture (see
also [SSCO0D])

the size of the involved constraint network. The idea is that if possible revision
steps are known a priori, they can be anticipated in the constraint network, such
that it is sufficient to “switch” between different parts of an extended constraint
network instead of modifying it in order to establish consistency with observa-
tions.

For a component-oriented ontology, the model revisions performed during
diagnosis are limited to changing the behavior modes of components. Hence,
it is possible to anticipate the model revision steps by including the behavior
models of different behavior modes in the initial constraint network. This can be
accomplished by extending the constraint network to include some or all of the
behavior modes of a component:

R(v) = 04, (RCY) 31 05, (RC3) 5 . .. 1 75, (RCip)

where s; specifies a subset of the behavior modes of a component C;. More
generally, it is possible to define a spectrum between prediction and diagnosis,
depending on how much revision steps are included in the constraint network. In
the extreme, if every possible revision is anticipated in the model, the constraint
network completely covers all situations that can occur, and consequently, there
will never by an inconsistency of the constraint network with external restrictions.
Thus, no revision of the model is necessary, and diagnosis is reduced to prediction
using the extended constraint network. This is the basis of approaches that cast
model-based diagnosis as a constraint satisfaction problem (e.g. [El 98]).

42 CHAPTER 3. MODEL-BASED PROBLEM SOLVING

However, anticipating possible model revisions comes at certain costs. The
more revision cycles are omitted, the larger the size of the required constraint
network. Furthermore, as the size of the constraint network increases, it is more
and more likely that parts of the constraint network will actually never be used
during problem solving. Trading model revision for the size of the constraint
network is thus more difficult for a process-oriented ontology. Since in this case,
the possible model revisions to be anticipated are not limited to the change of
behavior modes, their number can be infeasibly large.

3.7 Discussion

What have we gained by now, in terms of the challenges outlined in the previous
chapter? Compared to traditional diagnostic approaches that are based e.g. on
pre-defined plausibility checks of variables, the outlined approach of consistency-
based diagnosis offers a number of advantages:

(1) Diagnosis of multiple failures: The set of consistency-based diagnoses —
or kernel diagnoses — characterizes all possible solutions in the diagnos-
tic search space. This covers also combinations of failures, which is often
beyond the capabilities of hand-made analysis.

(2) Completeness of the results: The previous point is also the reason why it is
possible to guarantee completeness of the result, provided that the model of
the device is accurate. This was one crucial requirement in order to achieve
the necessary coverage when dealing with safety-critical systems.

(3) Models of correct behavior suffice: It has been shown that in order to per-
form consistency-based fault localization, only models of the correct behav-
ior of a device are necessary. This means that unanticipated failures can be
diagnosed, which is an advantage compared e.g. to pre-defined plausibility
checks.

We have also seen that a compositional model can be easily adapted to struc-
tural variants of a device, which helps to remedy the variant problem. More
generally, it has been pointed out that the tasks which we want to accomplish
involve changing or revising the behavior models themselves. In order to do this,
it is first necessary to make explicit the possible modifications of models in terms
of different behavior modes. Second, in order to do this efficiently, it is crucial
to devise a conceptual modeling layer that allows to re-use unaffected parts of
the model during revision. With this background, we can identify one main rea-
son why the behavior models currently used in the automotive industry, e.g. for
tasks such as simulation, can hardly be re-used for different purposes: they lack
this conceptual modeling layer and do not make explicit possible model revisions.
Consequently, it is hard to adapt these models to tasks other than the ones they
have been originally designed for.

3.8. SUMMARY 43

3.8 Summary

In this chapter, we have first analyzed how two basic problem solving tasks —
behavior prediction and diagnosis — can be supported by behavior models. Next,
we have introduced mathematical relations (i.e. constraints) as an universal
means to formally describe behavior models. In this representation, elements
of a relation (i.e. tuples) correspond to states of the system model.

We have derived necessary preconditions on the structure of relational behav-
ior models. In particular, it is necessary to revise the model during tasks such as
diagnosis. In order to accomplish this revision efficiently, the model is structured
into two layers: a mathematical level (constraint network) and a conceptual layer.
Model revision is done on the conceptual layer, which allows to identify and re-
use parts of the mathematical level which are not affected during revision. The
precondition is to organize a model into model fragments, which can be stored in
a library.

We presented a commonly used ontology for this conceptual layer that con-
sists of components and interface variables. This component-oriented ontology is
suited for the application domain of automotive systems. We then defined how
conceptual elements are mapped to a constraint network in the model compo-
sition step. Once a constraint network is obtained, various solution algorithms
can be applied in order to solve it. This problem can also be cast as deriving
inferences for a logical theory. The results can be interpreted as behavior pre-
diction that determines the possible states of the system. Model-based diagnosis
can be carried out in the case where the set of predicted states is empty, i.e. a
fault has been detected. Different notions and algorithms have been presented
that capture the tasks of fault localization and fault identification.

The outlined framework for model-based problem solving has a number of
useful properties, such as completeness of the results. Given a behavior model of
the device under consideration, we are thus equipped with methods to perform
the tasks identified in the previous chapter.

However, we have not yet dealed with the problem of how to get such a model
in the first place, in particular, if the physically possible behaviors of the device
components are not completely known. The next chapter describes how this can
be achieved.

44

CHAPTER 3. MODEL-BASED PROBLEM SOLVING

Chapter 4

Qualitative Abstractions of

Models

This section describes techniques how to deal with incompleteness of knowledge in
the context of model-based problem solving. Incompleteness can refer to incom-
plete knowledge about the behavior of a device, incompleteness of the available
input to the behavior model (e.g., observations), and incomplete specification of
the aspects of the outcome that one is interested in. It is shown that in order to
yield sound results, incompleteness has to be considered in all parts of the prob-
lem solving process, and not just in isolated aspects thereof (e.g., only during
consistency checking).

Qualitative abstraction is the basic approach to handle this problem. It aims
at including only the essential information in a behavior model. Fundamental
properties of qualitative abstractions, in particular domain abstractions, are re-
viewed in this chapter. The second part of this chapter outlines the state of the
art in deriving qualitative behavior models. It becomes apparent that in most
approaches, a certain level of abstraction is implicitly assumed or pre-defined in
the problem solving process. Moreover, it is argued that currently, there exists no
first principles methodology to construct qualitative abstractions, starting from
a ground representation and a characterization of the problem solving task.

4.1 Representing Physical Behavior

Chapter 3 provided us with a framework to define relational behavior models
and to use them for fundamental problem solving tasks such as diagnosis and
behavior prediction. As a first requirement imposed on the behavior models, we
have seen that they have to be organized in such a way that they enable the steps
of model composition and model revision. As an answer to this requirement, the
basic concepts of compositional modeling have been presented in the last chapter.

The representation of a device in terms of relations allows to express behavior
information about a device by restricting the set of possible tuples. A second
requirement is that we want to make sure that the relation defines a behavior

45

46 CHAPTER 4. QUALITATIVE ABSTRACTIONS OF MODELS

R(v)

Uy

SIT

1

Figure 4.1: A relational behavior model covers the physically possible situations

model of the device, i.e. that it indeed describes (at least part of) the physical
world. Therefore, we have to establish a link between the tuples in a relation and
the possible situations that can occur for the device in the physical world. This

is captured by the two definitions below. They follow the presentation given in
[Str92b).

Definition 16 (Physical Situation) Let D be a device. Let SIT be the set of
situations which are physically possible for D. If, in a particular physical situation
s € SIT, v has the value val € DOM (vi) x DOM (v2) X ... x DOM (vy,), we
write

Val(s,v,val).

We will not further specify what physical situation are, nor how the set of
physical situations can be characterized. We just use them in order to capture the
relationship between a physical behavior and a model of this physical behavior.
In particular, we can use this relationship to formally define a relational behavior
model:

Definition 17 (Relational Behavior Model) Let DOM;, DOMs, ..., DOM,
be domains. A relation R(v) C DOM (v1) x DOM (vg) X ...x DOM (vy,) specifies
a behavior model of a device D, denoted M (D, R), if and only if

Vs € SIT : Val(s,v,val) = val € R.

The behavior model is called strong if the implication holds also for the reverse
direction (see [Str92b]), and is called weak otherwise. The idea is that the tuples
in a relational behavioral model of a device cover at least the set of behaviors
that the device can exhibit. However, a behavior model that is weak might
contain combinations of values that do not correspond to any physically possible
situation. This is illustrated by Figure 4.1.

4.2. INCOMPLETENESS AND PARSIMONY IN PROBLEM SOLVING 47

4.2 Incompleteness and Parsimony in Problem Solv-
ing

Incomplete characterizations of physical situations are ubiquitous, e.g. due to
the granularity of observations, or due to the nature of available information
about the behavior of system components (see chapter 2). On the other hand,
the “true” physical behavior in a particular situation is singular, which implies
that in any real-world application, behavior models are necessarily weak.

This aspect is referred to as incompleteness in model-based problem solving.
It means that situations might be specified or be known only incompletely, thus
always sets of physical situations rather than a singular, “true” physical situation
have to be considered. To analyze this in more detail, section 4.2.1 identifies the
possible sources of incompleteness in the model-based problem solving process.

Apart from incompleteness that is caused by the nature of available inputs
to the problem solving process, it can also be useful to purposefully represent a
device incompletely. The motivation is to have a parsimonious representation of
a device that avoids any details in the model that would complicate the problem
solving process itself, or that are unnecessary from the point of view of the result
one is after. This is analyzed in more detail in section 4.2.2.

Section 4.2.3 is then concerned with requirements on the part of the behavior
model in order to account for incompleteness and parsimony in the problem-
solving process.

4.2.1 Dimensions of Incompleteness

Recall the formalization of the two basic problem-solving tasks — prediction and
diagnosis — as given in chapter 3. The goal of prediction is to determine states
(called SOL) under external restrictions called CRITERIA that are consistent
with the model:

MODELUCRITERIA}F SOL.

The goal of diagnosis is to detect discrepancies of the model with external
restrictions called OBS"

MODELUOBS V' 1.

Prediction and Diagnosis can be affected by incompleteness in a number of
possible ways:

e For diagnosis, OBS can be incomplete. Possible reasons are, for instance,
the imprecision of sensor signals of measured variables (e.g. which yield a
set of values, like an interval, rather than a single value), or non-measurable
external variables (e.g. the influence of road conditions on the behavior of
an anti-lock braking system; see section 2.3.4).

48 CHAPTER 4. QUALITATIVE ABSTRACTIONS OF MODELS

e For prediction, CRITERIA can be incomplete, for instance, reflecting an
incomplete specification of a hypothetical situation (e.g. a braking distance
that is assumed to be “longer than normal”).

e MODEL can be incomplete, reflecting partial knowledge about component
behavior (e.g. in terms of parameters or functions; see section 2.3.3). For
instance, for a behavior model that describes a leakage fault in a pipe,
it might be only known that it has an opening with non-zero diameter.
However, the precise parameters of the leak concerning its diameter, shape,
etc. remain unknown.

4.2.2 Dimensions of Parsimony

In addition to the dimensions outlined in section 4.2.1, the necessity to deal with
sets of situations can also be imposed by the goals of

e simplicity of the problem solving process (i.e. “F”), e.g. to achieve tractabil-
ity or improved efficiency of problem solving, or in order to keep the library
of model fragments small,

e intuitiveness and naturalness of the outcome (i.e. SOL), e.g. to focus on
the distinction between correct or faulty behaviors, or in order to provide
meaningful explanations by classifying the space of resulting behaviors into
meaningful regions.

The first point refers to the fact that in the context of automated model-
based problem solving, state descriptions must be “usable” in the sense that
basic problem-solving steps such as consistency checking and inference can be
carried out efficiently. Hence, for instance, interval-based methods that aim at
characterizing sets of numerical states by specifying real-valued intervals for sys-
tem variables ([RR84]) are not a general solution. Although interval-based rep-
resentations allow to cover sets of physical behaviors, they might fail to fulfill the
tractability requirement. For instance, consistency might be impossible to decide
for expressions involving intervals. This illustrates that an accurate representa-
tion of behavioral states might be inoperative because it renders basic problem
solving steps too complex. Unnecessary complexity in the characterization of
behavioral states should be avoided from this point of view, because larger sets
of states tend to increase the complexity of solutions algorithms, and tend to
decrease the possibilities of re-use during reasoning (e.g., when using an ATMS
for keeping track of inferences). For instance, complexity analysis of constraint
satisfaction algorithms has shown that the amount of computation required for
behavior prediction grows exponentially with the number of variables in the model
([Kui86)).

The second point refers to the fact that it might be desirable to have incom-
plete descriptions in order to avoid any details in the model that are unnecessary
from the point of view of the desired outcome. In general, a model is unnecessarily

4.2. INCOMPLETENESS AND PARSIMONY IN PROBLEM SOLVING 49

detailed if it makes distinctions that are irrelevant to the result of the problem-
solving process. For instance, for the task of diagnosis, distinctions between states
should be avoided if they do not contribute to the detection of inconsistencies
or to the discrimination of behavior modes. E.g. for the pedal position sensor
example in section 1.1.1, it was only necessary to make distinctions for the volt-
age of the potentiometer that correspond to the switch-over point of the switch.
This illustrates that the adequacy of a description can depend on the required
granularity of the outcome.

4.2.3 Coping with Incompleteness and Parsimony

As the previous sections have shown, it is inevitable that sets of situations, rather
than single situations, occur during problem solving. The basic problem with sets
of situations is that we cannot restrict ourselves to considering just one or a sub-
set of these situations. Instead, all possible states that correspond to physical
situations have to be represented, in order to maintain the model property (def-
inition 17). If this is not the case, it might occur that behaviors are wrongly
refuted during problem solving.

For instance, if we would use a leakage model that chooses a specific parameter
for the leakage opening, situations can occur where a leakage is physically present,
but its behavior model is refuted, because it restricts the opening parameter to
a value that does not correspond to the “real” physical situation. If we want to
avoid this, we have to ensure that the sets of states cover all the possible leakage
faults. Hence, a crucial requirement during modeling is to maintain the model
property. This implies that numerical simulation models, capturing only one
situation at a time by assigning single numerical values to variables, are in general
inadequate for model-based problem solving. In almost all cases, the behavior of
the device that is physically present would become inconsistent during problem
solving, and we could only hope that the remaining behaviors (or diagnoses) are
in some sense “close” to the true physical behavior.

To remedy this, a common approach in numerical modeling is to consider
incompleteness during the consistency check. That is, the predicted and the
measured values are considered inconsistent only beyond a certain (absolute or
relative) tolerance threshold A:

v; = waly A v; = wvala A Jvaly —valy] > AF L.

This approach lies at the basis of the signal range check methods used in
current on-board diagnosis and monitoring procedures (see section 2.2.2 in chap-
ter 2). However, this approach considers incompleteness only in an isolated way,
in this case, during the consistency check. Following the considerations above,
this approach is of limited use for model-based applications, because the inter-
action of system variables — i.e. the device behavior itself — is not considered.
The applied threshold is fixed and independent of the actual behavior. Hence, it
would only be adequate for the special case where the variables affected by a fault

50 CHAPTER 4. QUALITATIVE ABSTRACTIONS OF MODELS

correspond directly to the observed variables. In the general case, however, it is
impossible to determine the tolerance threshold A independently of the system.

This illustrates that the systematic basis for a general solution is to deal with
incompleteness (i.e. sets of situations) within the behavior model and during the
process of reasoning. The next section deals with such general approaches that
can express incompleteness within a behavior description.

4.3 Model Abstraction

The last section has identified as a basic requirement for behavior models to
ensure coverage of sets of physical situations. A representation that aims at rep-
resenting whole sets or classes of behavioral states is called an abstraction. This
is based on the view that there exists a fine-grained, e.g. real-valued, behavior
model that accurately describes the physical behavior of a device, but it is, due
to the reasons outlined above, not accessible or not applicable during problem
solving. Abstraction corresponds to a mapping from an original representation to
a new representation. In the context of abstraction, the original representation
is often called the ground (or base) representation, and the abstracted represen-
tation is called the transformed representation. An abstraction is called sound if
the transformed representation contains the base representation as an element:

Definition 18 (Sound Abstraction) Let Dground be a space of ground descrip-
tions and Dgpstract be a space of abstract descriptions consisting of sets of ground

descriptions. An abstraction T : Dground — Dabstract s sound, if for each
d € Dground, d € 7(d).

According to chapter 3, a behavior model consists of variables, domains and
relations. Abstraction might affect each of these constituents. Thus, there are
three basic types of possible abstractions: abstraction of variables, abstraction of
domains, and abstraction of the relations between variables. Of course, combi-
nations of these basic types are possible.

4.3.1 Domain (Value) Abstraction

First, we consider the case of model abstraction through the abstraction of do-
mains. We pay special attention to this type of abstraction because it is probably
the most obvious case, and it will be the starting point for the techniques de-
scribed later in the thesis. As noted above, this type of abstraction can be
expressed by a mapping of the elements of a ground domain to a transformed
domain:

Definition 19 (Domain Mapping) Let DOM (v;) be a domain. A domain
mapping is a total mapping

7 : DOM (v;) = DOM'(v;),val — val'

that maps elements of DOM (v;) to a domain DOM'(v;).

4.3. MODEL ABSTRACTION 51

For a sound domain abstraction, val € val’ and DOM’(v;) C 2POM®) In a
transformed model based on sound domain abstraction, the domain mapping 7;
aggregates the values of DOM (v;), i.e. the transformed domain is of the same
size or of smaller size than the base domain. The aggregated values, i.e. the
elements of the transformed domain DOM’(v;), are termed qualitative values:

Definition 20 (Qualitative Value) A qualitative value val' € DOM'(v;) de-
notes a (implicitly or explicitly specified) subset of values from the ground domain
of a variable v;:

val' € 2POM(w:),

For larger or infinite domains, it is infeasible or impossible to represent the
ground values corresponding to a qualitative value by explictly enumerating them.
Instead, they have to be described implicitly. Intervals are examples of implicitly
specified qualitative values. If the ground domain is ordered, the ground values
can be implicitly represented in a compact way by specifying lower and upper
boundaries.

The boundaries can be thought of a representing the limits of regions where
a change in behavior occurs, e.g. the freezing point or the boiling point of water.
In the context of qualitative values, such boundaries are called landmarks. For
instance, qualitative values for the ground domain of real numbers can be given
by an ordered set of landmarks I; < ls < ... <l and the open intervals around
them:

(_OO’ ll)u lla (ll,lQ)’ s 7lka (lka OO)

This is the representation for qualitative values that underlies QSIM ([Kui86],
[Kui94]; see also section 9.1). For a real-valued ground domain, the value zero is a
prototypical landmark. It separates the set of positive values from the set of neg-
ative values. The transformed domain corresponding to this domain abstraction
is called the sign domain:

Example 3 (Sign Domain) Let DOM (v;) be the set of real values. The sign
domain DOM’(v;) is defined by

minus : wval <0
7i(val) = zero : wval =0
plus : wval >0

The sign domain is widely used in model-based reasoning because it has a
number of desirable properties ([Str90], [Wil92]; see also section 4.4.1).

Like in example 3, of special interest are qualitative values that consist of
disjoint sets of ground domain values. Since domain mappings 7; are total, non-
overlapping qualitative values form a partition of the ground domain:

52 CHAPTER 4. QUALITATIVE ABSTRACTIONS OF MODELS

Definition 21 (Domain Partition) A partition m; of a domain DOM (v;) is
set of non-empty disjoint subsets P; of DOM (v;) that together cover the entire
domain:

1. Vj: Pj € 2POMEIN\ ¢ (non-emptiness),
2. PN P, # 0= P, = P, (mutually exclusiveness),

3. U; P; = DOM (v;) (exhaustiveness).

There is a duality between domain mappings with disjoint qualitative values
and partitions of domains: a domain abstraction could in this case either be
understood as a mapping from a ground domain to an explictly defined new
domain that consists of sets of elements of the ground domain, or as a partition of
the ground domain where the partition elements implicitly define a new domain.
Depending on the purpose, the first view or the second might be more convenient.

Proposition 1 (Duality of Domain Partitions and Domain Mappings)
A partition © of a domain DOM defines a domain mapping with disjoint quali-
tative values and vice versa.

Because domain partitions are a central concept, we will define relationships
between domain partitions. The definitions below capture the refinement and
merge of two partitions:

Definition 22 (Refinement of Domain Partitions) Let 71, 2 denote par-
titions of a domain DOM . 1 is called a refinement of ma, if

VP, € m : dP; € my s.th. P; C P;.
w1 18 called a strict refinement, if, additionally, ™ # 3.

If a partition 7 is a (strict) refinement of 7, we say conversely that w2 is a
(strict) abstraction of .

Definition 23 (Merge of Domain Partitions) Let w1, o denote partitions
of a domain DOM . The merge of w1, ma is the partition that contains all inter-
sections of their elements:

MERGE('/Tl,']TQ) = {B ﬂPj’F’i € 7T1,Pj € 7T2} \ 0.

Domain mappings 7 can be generalized straightforwardly from ground domain
values to qualitative values val’ € DOM’ by defining

7(val') := U T(val).

valcval’

4.3. MODEL ABSTRACTION 53

Hence, a domain abstraction can itself be applied to qualitative values, and
domain abstractions can be concatenated to form a hierarchy of abstractions. A
set of domain mappings is denoted

T = (71,72, .-, Tn)-

The application of 7 to the tuples of a relation R(v) yields the transformed
relation

T(R) := {(m1(valy), 2(vala), ..., mm(valy)) | (vali,valy, ..., val,) € R}.

We will also apply the basic operations on relations (section 3.2.2) to ab-
stracted versions of relations. If an operator combines a relation on a set of
ground domains with a transformed relation, we demand, for convenience, that
the result is a relation defined on the ground domains. E.g., R; b 7(R2) will be
used as a shorthand notation for the relation

Ry < {wval | val € val| x vally x ... x vall,, (val},vall, ... vall) € T(R2)}.

Because of the duality of partitions and domain abstractions, we will apply
the notion of refinement, merge and concatenation both to domain partitions and
domain abstractions.

Example 4 (Domain Mapping for Switch Model) Let RC denote the be-
havior model of the component Switch as presented in example 1, together with
the definition of its parameter possyitching as presented in example 2. Consider
a domain partition for the domains of Viefi, Vright, Vswiten that consists of three
partition elements:

{{lov;2V)},{[2V,4V), [4V,6V), [6V,8V)},{[8V, 10V) } }.

Let T denote a domain abstraction for the variables in the switch model that
corresponds to the above partition for variables viest, Vright, Vswitch, and is equal to
the identical mapping for the remaining variables. Then the transformed relation
T(RC) consists of only 54 tuples, whereas the original relation RC consists of
150 tuples.

|

4.3.2 Relation (Function) Abstraction

The second type of abstraction affects the relation types between the variables of
a model. Relation abstraction maps relation types of a model to sets of relation
types. The precondition is that the base relation types and the transformed
relation types have the same scheme. For a sound relation abstraction, the tuples
of the original relation type must be included in the transformed relation type.
Most frequently in this approach, for simplicity only the special case of relation
types that correspond to functions is considered.

54 CHAPTER 4. QUALITATIVE ABSTRACTIONS OF MODELS

Definition 24 (Qualitative Function) Let S be a scheme. A qualitative func-
tion denotes a (implicitly or explicitly specified) subset of functions from the set
of all functions over S.

For instance, one might want to abstract the non-linear dependence of friction
on the mass of a car into the class of monotonic functions. QSIM ([Kui86, Kuid4])
provides such a representation for qualitative functions that correspond to the
set of monotonically increasing or decreasing functions.

Since knowledge about the monotonicity of a function provides only a weak
constraint, qualitative functions can be additionally constrained by specifying so-
called corresponding values ([Kui94|). Corresponding values are tuples of land-
mark values that the variables in a qualitative function take on at the same time.
Thus, they provide additional constraints on the sets of functions. For instance, a
corresponding value (0,0) for a unary monotonic qualitative function constrains
the functions to pass through the origin.

One problem with function abstraction is that since the number of possi-
ble functions is large, further restrictions are necessary in order to derive useful
results. E.g. in QSIM, the set of functions is restricted to so-called sensible
functions ([Kui94]).

An advantage of this type of abstraction is that compared to value abstrac-
tion, additional knowledge about the behavior of a device can be captured and
exploited for reasoning. In particular, knowledge about the deviation Aw; of
a variable v; can be propagated if it is known that the involved functions are
monotonic. For instance, the real-valued constraint vy = vy + v3 implies that

Avi = Avy + Awvs.

This is the basis for so-called deviation or comparison models ([Wel88, dJvR99],
see also the example in section 7.2.2) that aim at describing the behavior of a
system relative to some reference behavior.

4.3.3 Variable Abstraction

The third type of abstraction affects the vector of variables in a model. Variable
abstraction maps variables of the base model to new variables of the transformed
model, which are possibly a combination of several variables of the base represen-
tation. Compared to the other types of abstraction, variable abstraction strongly
affects the representation of the behavioral space of a model. Thus it is, in general,
more difficult to handle from a theoretical point of view. Variable abstraction is
often closely related to specific application domains. For instance, spatial aggre-
gation is an application of variable abstraction where infinitely many spatially
distributed variables are mapped to a finite set of qualitative regions ([BKZY96],
[Lun96)).

As another example, fitting approximations ([Wel92]) for physical equations
can be cast as (unsound) variable abstractions where variables are eliminated
from a ground model by restricting them either to zero or one.

4.4. PROBLEM SOLVING WITH MODEL ABSTRACTIONS 55

4.4 Problem Solving with Model Abstractions

We have identified principled possibilities for abstracting a relational behavior
model. The question is what properties a transformed behavior model can have,
relative to properties of the ground behavior model. Of particular interest is the
model property defined in section 4.1 which demands that the actual behavior of
a device is covered by the model.

4.4.1 Properties of Model Abstractions

Struss [Str90] has developed a framework for analyzing the relationship between
solutions (i.e., sets of states) obtained with a ground model and the solutions
obtained with an abstracted model in the context of interval-based domain ab-
stractions. It extends a framework originally used by [Kui86]. A later paper
([Str92b]) investigates properties of relation abstractions in the context of model-
based diagnosis. In the following, we review essential results of this analysis.
First, we observe that a sound abstraction of a behavior model is also a behavior
model of the device:

Proposition 2 (Sound Abstractions are Model-Preserving) Let R be a
model and D be a device such that M(D,R). If T is a sound abstraction, then
M(D,7(R)).

This is the basis for using sound abstractions of behavior models for model-
based problem solving. Even in the presence of incomplete information, behaviors
that do not appear as solutions can be safely refuted, because it is guaranteed
that they do not correspond to any physically possible behaviors. On the other
hand, solutions might occur that do not correspond to physically possible behav-
iors. Two other fundamental properties that are of interest when reasoning with
abstractions are completeness and stability:

Definition 25 (Completeness and Stability) An abstraction is

e complete, if each solution of the abstract description covers at least one of
the ground solutions,

e stable, if the abstract solutions remain the same for transformations of
ground descriptions that do not change the ground solutions.

Proposition 3 (Incompleteness) Abstract reasoning methods are, in general,
not complete, i.e. there exist abstract solutions which have no ground counterpart
(called “spurious” solutions).

For the case of domain abstractions, the reason for incompleteness is the
selection problem ([RR84, Str90, Kui94]). It denotes the fact that techniques for
reasoning with abstractions cannot enforce coherent selection of elements from
the base domain for multiple occurrences of the same variable in a qualitative
representation.

56 CHAPTER 4. QUALITATIVE ABSTRACTIONS OF MODELS

Proposition 4 (Instability) Abstract reasoning methods are, in general, not
stable.

More specifically, domain abstractions with a finite number of values do not
preserve the associativity of arithmetic operators such as addition or multipli-
cation, except for the domain partition corresponding to sign abstraction. This
implies that abstractions are in general not stable with respect to transformations
that change the order in which arithmetic operators are applied. The latter point
is the foundation for approaches that transform behavior descriptions at the level
of the ground representation before applying abstractions. For instance, the idea
in [Wil92] is to perform a symbolic reformulation of arithmetic constraints such
that the selection problem is diminished (see sections 4.5.5 and 9.1).

4.5 Qualitative Models as Parsimonious Abstractions

The requirements outlined in section 4.2 motivate to have descriptions of sets
of states that cover all physically possible situations and that are as concise as
possible with respect to the purpose of model-based problem solving. This lead to
the development of qualitative modeling methods ([WdK90], [FS92]), which aim
at covering classes of behaviors through computational methods, reflecting only
the essential (i.e. the significant) distinctions. Qualitative modeling emerged
primarily from common-sense reasoning about the physical world. Thus, it was
originally termed qualitative physics or naive physics ([Hay90]).

Soundness demands that behavior models have to describe classes of behaviors
that cover all physical behaviors of the device at hand. Parsimony of behavior
models demands that behavior models are abstracted enough to include only
information that is relevant to the context of the problem solving task.

Hence, qualitative modeling can be characterized as the problem of finding a
level of abstraction that simplifies as much as possible, but does not oversimplify.
Now that we have characterized the goal of qualitative modeling, the question is
how we can obtain qualitative models in a defined or even automated way. In
the following, we review various approaches that can be found in the literature.

4.5.1 Automated Modeling through Model Selection

One of the first approaches to automated modeling consists of selecting an ade-
quate model from a set of candidate models. The principle of automated mod-
eling through model selection is to have a fixed hierarchy of models to choose
from. Each element of the hierarchy consists of a complete (i.e., already com-
posed) model of the device that captures its behavior at a pre-defined level of
abstraction. The model at each abstraction level must be provided by the user.
The basic idea is then to start the problem solving process with the simplest
(i.e., most abstract) model, and to switch to a more complicated (i.e. more fine-
grained) model only if necessary. Addanki et al. ([ACP91]) describe an instance
of this method where the space of models is represented as a graph. The nodes

4.5. QUALITATIVE MODELS AS PARSIMONIOUS ABSTRACTIONS 57

of the graph correspond to models, while the edges of the graph correspond
to abstractions that are applied in going from one model to the other. Struss
([Str92al) describes a similar approach that is tailored to the diagnostic problem
solving process. These approaches have in common that the space of models has
to be pre-defined and explicitly represented. The strategies enable to choose a
suitable model among a set of behavior models, but do not provide a means to
construct these models automatically. The adequacy of an abstraction level is
defined implicitly by the control strategy that defines how to switch from one
model to another and the given problem to be solved.

4.5.2 Automated Modeling through Model Composition

Automated modeling through model composition avoids the need of having to
represent the space of possible models explicitly, and frees the user from the
burden of defining the models a priori. Instead of selecting an adequate model
of a complete device, it aims at composing it from a set of model fragments for
each component type.

Because the search space for possible combinations of model fragments is
much larger compared to the selection of an already composed model, automated
generation of models through composition requires to have an explicit notion of
the task the model is used for in order to guide the search. This task is expressed
in the form of a user query that needs to be answered based on a structural
description of the device and a library of model fragments.

Falkenhainer and Forbus ([FF92]) describe an instance of this approach, us-
ing an ATMS-based mechanism in order to identify classes of model fragments
for a component that are deemed relevant to the user query. Rickel and Porter
([RP94]) as well as Iwasaki ([IL95]) use automated model composition to con-
struct a model for answering questions concerning the qualitative behavior of
a system over time. Nayak ([NJA92, Nay95|) describes the automated compo-
sition of a model in order to answer queries about the causal relationship of
variables. Nayak also shows that the general task of constructing an adequate
model through composition is intractable. However, if the sets of model frag-
ments for a component are organized into classes, such that elements of different
classes are mutually exclusive, it is shown that the search can be decomposed
into independent subproblems and, hence, it becomes tractable.

Automated modeling through model composition requires to have a library
of pre-defined classes of model fragments for the component types. Because it is
difficult to specify model fragments a priori that will combine with each other in a
coherent way, it is difficult to give guarantees on the outcome of the composition
step. In particular, it can in general not be ensured that the composed model
is a sound abstraction. Instead, heuristic strategies have to be used in order
to choose suitable model fragments. For instance, it cannot be guaranteed that
the device model resulting from the method described in [Nay95] indeed allows
to derive the most parsimonious causal explanation of its behavior. Similarly,
the approach described in [RP94] does not provide guarantees of soundness or

58 CHAPTER 4. QUALITATIVE ABSTRACTIONS OF MODELS

simplicity of the model. Another problem is that since the model is composed
relative to a single query only, it will be rather specific and thus difficult to adapt
to a modified task.

4.5.3 Automated Modeling through Model Transformation

Automated modeling through model transformation tries to avoid some of these
problems by making the abstraction step more explicit. While automated mod-
eling through model composition offers only two options for a model fragment
(it can either be included in the behavior model or not), the idea of automated
modeling through model transformation is to devise a set of abstraction operators
that automatically transform model fragments (and thus models that have been
composed thereof) to different levels of representation. The repeated application
of the abstraction operators then yields a hierarchy of model abstractions. In
general, the result depends on the specific sequence in which the operators are
applied. Soundness of the abstraction can be ensured by carefully designing the
abstraction operators. Since this can be difficult in general, the devised operators
are often specific to a particular application domain.

For instance, Mauss ([Mau98]) and Ranon ([Ran98]) describe model trans-
formation for a specific set of component types that occurs in the domain of
electrical circuits. Struss and Heller ([SH98| describe the automated transforma-
tion of process-oriented models in the context of ecological domains.

Model transformation can provide a clearer semantics than model composi-
tion, and offers a still more flexible approach than the selection or composition
of pre-defined models or fragments. However, the mentioned approaches lack a
notion of adequacy of a level of abstraction. There is no criterion to decide when
the application of the transformation operators should be stopped. Consequently,
the model will be abstracted just as much as possible, i.e. as long as one of the
operators is applicable. Transformation and composition can also be combined
with each other in order to further transform a model that has been automati-
cally composed. [Nay95] is an example of such a combined approach where first
a model is composed that contains behavioral knowledge relevant for a query,
and then becomes simplified by substituting model fragments with simpler ones,
following a simplicity order that is predefined in the model fragment class.

4.5.4 Reasoning about Relevancy

A problem with the approaches described in the sections above is that the rele-
vancy of features or distinctions within the model is built into the control sequence
of the modeling system. This has motivated a number of approaches that aim at
reasoning explicitly about relevancy and parsimony ([LIM92]).

To address the problem of deriving parsimonious descriptions that suppress
unnecessary detail, Raiman [Rai91] describes an approach that is based on order-
of-magnitude reasoning. The idea is to define an abstraction of domain values
that allows to focus on significant magnitudes only. It consists of a set of local

4.5. QUALITATIVE MODELS AS PARSIMONIOUS ABSTRACTIONS 59

rules that describe how orders of magnitude — and thus “significance” — prop-
agates. This allows to draw conclusions like the following: imagine an object m;
with a very large mass hitting an object mo with a very small mass head-on.
If m1 and mo had a similar velocity prior to the collision, then the velocity of
the two objects afterwards will be similar to the initial velocity of object mj.
However, the rules described in [Rai9l] lack a rigorous mathematical basis, in
the sense that significance is defined only locally. As a consequence, the resulting
abstraction is not sound. For instance, the rules do not cover the case where
a large number of locally insignificant effects finally sum up to a significant ef-
fect. However, Raiman’s approach can be seen as one of the earliest approaches
to reason explicitly about relevancy in the context of physical systems. Nayak
([Nay95]) presents a variant of this approach that has a more formally defined
semantics based on logarithmic scales.

Iwasaki ([Iwa92]) and Kuipers ([Kui94|) describe an approach for reasoning
about relevancy in the context of temporal behaviors. This so-called time-scale
abstraction is based on classifying dynamic behaviors into predefined categories
such as instantaneous, fast, and slow, which can be associated with time scales of
seconds, minutes, and days, respectively. The basic idea is that during reasoning
at a particlar time scale, the behaviors at faster time scales can be modeled as
instantaneous, while the behaviors at slower time scales can be neglected in the
model. However, the scope of this a priori definition of relevance is limited. In
general, whether or not a behavior should be modeled as instantaneous cannot
be decided a priori, as it depends on the interactions occuring in the particular
model, the observability of variables, and the reasoning goals in terms of the
questions that need to be answered with the model. Iwasaki ([[FST95]) refines the
approach by linking the notion of instantaneous vs. non-instantaneous changes
to measurability of durations, using a calculus of hyper-reals that is similar to
order-of-magnitude reasoning.

4.5.5 Hybrid Algebras

Transformations of behavior models that do not affect the set of solutions on the
ground level of representation can increase the set of solutions on the abstract
level (see section 4.4.1). Thus, ad-hoc abstraction of mathematical expressions
can lead to over-abstraction in the sense that applying suitable transformations
to the expressions before abstracting them can yield a tighter set of solutions.
Based on this observation, Williams ([Wil92]) defines a so-called hybrid algebra
for automated abstraction. The idea of the system MINIMA, described in [Wil92],
is to combine a symbolic (real-valued) representation of a behavior model with
sign abstraction. Abstracting the domains of variables to signs simplifies the
symbolic manipulation of mathematical expressions considerably. In MINIMA,
shifting to the abstraction level of signs is postponed until the behavior model has
undergone a sequence of symbolic manipulations that transform its equations to a
unique normal form. The normal form eliminates the occurrence of the selection
problem, hence MINIMA avoids problems caused by instability of abstractions.

60 CHAPTER 4. QUALITATIVE ABSTRACTIONS OF MODELS

Williams’ approach thus captures the idea of obtaining — starting from a base
model — optimal information with respect to a targeted level of distinctions,
in this case, the signs of the variables. On the other hand, the approach is
computationally demanding due to the involved symbolic reasoning. MINIMA
is not concerned with the conceptual layer of models, and the specific domain
abstraction to signs is hard-wired into the set of transformation rules defining
the hybrid algebra.

4.6 Related Fields

In the following sections, we provide a survey of different approaches to abstrac-
tion from related fields, focusing particularly on domain abstraction.

4.6.1 Abstraction in Constraint Satisfaction

Abstraction, though a fundamental and powerful idea, has received only limited
interest in the area of constraint satisfaction. The motivation to use abstraction
in constraint satisfaction emerged primarily from its use to simplify and guide
the solution process. The idea is that given a constraint satisfaction problem P
to be solved, it can be transformed into a simpler problem P’ such that P’ can be
more easily solved than P. Solving P’ then can provide knowledge that makes the
subsequent search for a solution to the original problem P easier. Techniques for
transformation of constraint satisfaction problems either involve the abstraction
of variables, the abstraction of values, or the abstraction of relations.

Interchangeability ([Fre91]) is an example for constraint abstraction based on
the abstraction of domain values. It captures the idea of distinctions between
values in a constraint satisfaction problem being redundant. Two values are
interchangeable if exchanging one for another in any solution of a constraint
satisfaction problem produces another solution. The definition below is adapted
from [Fre91]:

Definition 26 (Full Interchangeability) Let Ry, R, ... Ry, be a set of rela-
tions with variables v = (v1,va, ..., v,) and solution SOL(v) = Ry X1 Ry ...
R,,. Two values valy, valy € DOM (v;) are fully interchangeable iff every tuple
of SOL(v) which contains val; remains a solution when valy is substituted for
valy, and every tuple of SOL(v) which contains valy remains a solution when
valy is substituted for valy.

If two values valy, valy are fully interchangeable, the only difference in the sub-
sets of solutions involving val; and vals are valy and vals themselves. Therefore,
sets of fully interchangeable values can be replaced by one meta-value, without
losing any solutions. The sets of fully interchangeable values, i.e. the meta-values,
form equivalence classes. Hence, it is only necessary to retain the meta-values in
DOM (v;) instead of the values that constitute them. As a consequence, the do-
main size of the problem can be reduced. Replacing fully interchangeable values
by a single new domain value corresponds to a special case of domain abstraction:

4.6. RELATED FIELDS 61

. val, : :
Ua cocooo| R

val,

Figure 4.2: Domain abstraction corresponding to full interchangeability

Definition 27 (Interchangeability as Domain Abstraction) For a relation
R(v), the domain abstraction Trr,r corresponding to full interchangeability is de-
fined by the domain partitions m; = {P; 1, Pia,..., P} given as

vall, valy € Pl"j = va\{vi}(avizvall (R)) = H'U\{’Ui}(o-’l/i:’l/al2 (R))

In T7r1,R, two values vali,valy appear in the same partition element if and
only if they belong to tuples of the relation that differ only in the value for variable
vi, and are equal for all the other variables. Graphically, this means that tuples
involving wvaly, vals form a rectangular “block”. This is illustrated by figure 4.2.

[Fre9l] also defines a local form of interchangeability, called neighborhood
interchangeability, for binary constraints:

Definition 28 (Neighborhood Interchangeability) Let Ri, Ra,... Ry, be a
set of binary relations with variables v = (v1,va,...,v,). Two values valy, valy €
DOM (v;) are neighborhood interchangeable iff for every relation R; involving v;,

{val|(valy,val) € R;} = {val|(valy,val) € R;}.

Neighborhood interchangeability is a sufficient, but not necessary, condition
for full interchangeability. Sets of values that are neighborhood interchangeable
can be determined in polynomial time. Neighborhood interchangeability and
full interchangeability are special cases of k-interchangeability ([Fre91]), where
k —1 < n. With this generalized notion, 2-interchangeability is equivalent to
neighborhood interchangeability, and n-interchangeability is equivalent to full in-
terchangeability. [Fre91] also describes how interchangeability of values can be
computed using a data structure called discrimination tree. [CN98| extends this
procedure with the goal to localize independent subproblems in a constraint sat-
isfaction problem. Choueiry and Noubir also show that for a special class of
constraints expressing mutual exclusion between values, interchangeability cor-
responds to a decomposition of the original constraint satisfaction problem into
locally independent subproblems. [FS95] uses neighborhood interchangeability
in order to support abstraction and reformulation in the process of constraint
satisfaction. [WF97] describes an iterative abstraction method for constraint
satisfaction problems that is based on local interchangeability.

62 CHAPTER 4. QUALITATIVE ABSTRACTIONS OF MODELS

Conceptually, local forms of interchangeability can be viewed as complement-
ing local constraint processing techniques, such as arc consistency ([Tsa93]),
which aim at removing domain values that can not participate in any solution.

4.6.2 Abstraction in Theorem Proving

Theorem proving is concerned with the automation of proof construction in for-
mal theories. The most common use of abstraction in theorem proving is to
abstract the theorem to be proved (often referred to as the goal), and then to use
the structure of a proof found for this abstracted goal to guide the construction
of a proof for the original goal.

Giunchiglia and Walsh ([GW89]) propose a formalization of abstraction in
the context of theorem proving. Abstractions are functions which map one rep-
resentation of a formal system (called the ground representation) into a new
representation (called the abstract representation). A formal system consists of
a language, a set of axioms and a deductive machinery. Note that due to the
duality outlined in section 3.2.4, problem solving using relational models can be
understood as an instance of theorem proving, and model abstractions can be
cast as abstractions of formal theories.

The goal is to find abstractions that preserve certain desirable properties of
the original formal system, which leads to a classification of abstractions into two
basic types. T*-abstractions classify on whether or not provability is preserved be-
tween the ground representation and the abstract representation, whereas NT™-
abstractions classify on whether the detection of inconsistency is preserved. Of
particular interest in our context are TI (theorem increasing) and NTI (non-
theorem increasing) abstractions (|[GW89], [GW92]):

Definition 29 (TI/NTI abstraction) Let an abstraction f be a mapping from
one formal system %1 to another formal system ¥o. Let TH(X) denote the set
of well-formed formulas that are theorems of a formal system ¥, and NTH(X)
denote the set well-formed formulas that are non-theorems of . The abstraction
fis TIL iff for any well-formed formula o, « € TH(X1) = f(a) € TH(X2).
The abstraction f is NTI, iff for any well-formed formula o, « € NTH(3) =
f(a) € NTH(39).

An abstraction is TT iff for any theorem in the ground representation, there
exists a corresponding abstract theorem. An abstraction is NTT iff for any well-
formed formula that is not a theorem in the ground representation (i.e., that
yields an inconsistency), its abstraction yields an inconsistency when added to
the abstract representation of the formal system.

Domain abstractions are TI/NTI-abstractions in this terminology. Giunchiglia
and Walsh show that a major problem with the use of TI/NTI-abstractions is
that even if the ground formal system is consistent, the abstract formal system
may be inconsistent. This problem is termed the “false proof problem” in [Pla81].
It is a major obstacle to the use of TI/NTI-abstractions to guide proofs in the
ground representation, because if the abstract formal system is inconsistent, any

4.7. DISCUSSION 63

well-formed formula of this system is a theorem and thus it provides no infor-
mation when used in filtering out non-theorems in the ground formal system.
It turns out that any TI/NTI-abstraction is subject to the false proof problem,
ie. for any TI/NTI-abstraction, there exits a set of consistent axioms whose
abstraction is inconsistent. Hence, adequate abstractions cannot be determined
independently of the formal system at hand. This illustrates that the question of
adequate abstractions cannot be answered satisfactorily from a pure logic point
of view, as there are no universally valid criteria to prefer one abstraction over
the other. In the context of model-based problem solving, this implies that an
adequate abstraction depends both on the behavior model and the characteristics
of the task it will be used for.

4.7 Discussion

Qualitative modeling provides a means to deal with incompleteness of knowledge
in models and data, as present in real-world applications, and enables to achieve
complete coverage of situations, as required by safety-critical applications such as
FMEA or on-board diagnosis. Qualitative abstractions cover classes of systems
and components. From a practical point of view, this helps to keep the model
library small through avoiding irrelevant distinctions between component types.

More fundamentally, qualitative abstraction is the prerequisite for being able
to reason about conceptual elements, such as the behavior modes of a component,
explicitly. Without the step of abstraction, we could not talk about component
types — e.g. for a resistor or a valve — to be revised or re-used in different
contexts, but would instead be confronted with an infinitely large (and thus
intractable) number of specific component instances.

Deriving qualitative abstractions is thus a highly practical requirement. It
requires, in general, a notion of the purpose the model is used for. Usually,
this purpose is understood as a user query about the interdependence of certain
variables that needs to be answered based on a model. However, this notion
of the purpose of model-based problem solving is of limited use, regarding the
aim to support the principled tasks outlined in chapter 3. For instance, it would
not be helpful in order to construct a model that is specifically suited for a
diagnostic task where the goal is to discriminate among different behavior modes
of a component, or for a prediction task where the goal is to decide whether
a certain output variable, like the braking force, is above the required level.
Achieving this requires a more general notion that takes into account more of the
goals and conditions of problem solving. In particular, it is necessary to express
what aspects of the outcome of the problem solving process are interesting or
useful, and which inputs to the problem solving process (i.e., possible external
restrictions) can occur or have to be considered.

The notion of a model purpose should be formal enough to serve as a sound
criterion to drive the process of modeling. Existing approaches that incorporate a
notion of model purpose (e.g. in the form of a user query) often cannot give guar-

64 CHAPTER 4. QUALITATIVE ABSTRACTIONS OF MODELS

antees that a certain transformation step makes the model more “optimal” with
respect to the expressed purpose. For instance, in [Nay95], where the ultimate
goal is to generate parsimonious causal explanations, it cannot be guaranteed
that the transformed model indeed leads to a most parsimonious causal expla-
nation. Instead, the transformations are only used as a heuristics in order to
approach this goal.

Another point is that the transformation steps themselves must be sound
in order to guarantee that the result of modeling is a sound abstraction. This
was one of the difficulties involved in automated model composition. The model
transformations described in [FF92| and [Nay95] do not correspond to any type
of the abstractions defined in sections 4.3.1 to 4.3.3. The model simplifications
devised in [Nay95] aim at including the relevant physical phenomena, and ensure
that a causal explanation can be derived from the transformed model. While
these aspects are important for the kind of task pursued in this work (generating
causal explanations from the model), they are not directly related to the problem
of achieving coverage of physical situations.

Approaches to reason about relevancy (section 4.5.4) aim at making the ratio-
nale behind transformation steps (e.g., identifying the gross behavior of a system)
more explicitly in order to reason directly on this basis (e.g., small influences are
subsumed by large influences). However, they often lack a sound mathemati-
cal basis. Since the number of rules that describe how relevancy propagates is
necessarily limited, they can capture significance only through pre-defined, task-
independent levels of abstraction.

Symbolic manipulations that transform the model before applying abstrac-
tions (section 4.5.5) can be designed to have defined mathematical properties,
but they affect the structure of the model on the conceptual level. Applying such
transformations can thus be problematic if the model later has to undergo model
revisions, e.g. for the task of diagnosis.

4.7.1 Towards Qualitative Abstraction from First Principles

These considerations have motivated our goal to develop a first-principles-approach
for deriving qualitative abstractions of behavior models from a ground represen-
tation, based on the following requirements:

(1) The applied transformation steps must be sound abstractions that belong
to one of the abstraction types presented in sections 4.3.1 to 4.3.3. We will
focus on domain abstraction (section 4.3.1) as the underlying abstraction

type.

(2) There has to be a notion of modeling goals that allows to express what
aspects of the outcome of the problem solving process we are after.

(3) There has to be a notion of modeling conditions that allows to express what
inputs to the problem solving process (i.e., external restrictions) can occur.

4.8. SUMMARY 65

(4) We need a criterion for mazimality of an abstraction level, based on the
condition that further abstraction steps applied to a maximally abstracted
model would cause over-simplifications that would prevent one from reach-
ing at least one of the modeling goals.

(5) The method should be applicable to arbitrary relational models, and not be
limited to restricted cases such as e.g. monotonic functions.

Hence, in addition to the ideas and concepts presented in chapter 3, our goal
(and contribution) is to make explicit task-dependency in order to reason directly
about such aspects as observability, desired distinctions, possible distinctions,
necessary distinctions, and unnecessary distinctions in a model. The ability to
explicitly reason about task-dependency is the prerequisite to automate the task
of finding the right granularity of a model. The focus is on domain abstraction
(sections 4.3.1), i.e. the goal is to find — based on the above requirements —
suitable qualitative values for the domains of variables.

4.8 Summary

In this chapter, we have been concerned with the impact of incomplete knowledge
on the model, and techniques how to handle this in the models and the model-
based problem solving process. In doing so, we have identified another limitation
of existing problem solving techniques for automotive systems. Existing methods
consider imprecision only during isolated parts of the problem solving process,
such as the consistency check. However, in general, the relation between a fault
and deviations of system variables cannot be determined a priori and locally, but
must be derived from the system model. Abstraction is the general method to
solve this problem. We have analyzed several types of abstractions, and focused
particularly on domain abstraction. Fundamental properties of abstractions are
soundness, incompleteness and instability. Besides the ability to deal with in-
complete inputs to problem solving, abstraction is also the basis for purposefully
representing a system incompletely, with the intention of avoiding any details in
the model that are unnecessary for the result. Qualitative modeling is the task
of finding a level of abstraction that includes only the relevant distinctions in the
model. Automatically deriving qualitative abstractions is of highly practical im-
portance in order to make the idea of model-based systems feasible. Methods for
automated modeling have been presented that are based on selecting, composing
or transforming a model with an adequate level of abstraction. Often, such meth-
ods are based on predefined abstractions only, lack an explicit or general notion
of the purpose the model is used for, or cannot guarantee that the resulting model
is sound or adequate with respect to the specified purpose. This is the motivation
for developing a method that allows to automatically derive qualitative abstrac-
tions of relational models, based on a sound type of abstractions and an explicit
notion of desired outcomes and available inputs of the problem solving process.
This will be the topic of the next chapter.

66

CHAPTER 4. QUALITATIVE ABSTRACTIONS OF MODELS

Chapter 5

Task-dependent Qualitative
Model Abstraction

In this chapter, we develop the necessary apparatus to formally characterize our
goal, which was up to now informally described as having the “right model for
the particular task”. To this end, we have to define more precisely what is meant
by “model”, by “task”, and by “right”, respectively.

The model is given by a compositional, relational behavior model as described
in chapter 3. A particular task is characterized by the purpose to obtain solutions
of model-based problem-solving tasks at a specified level of granularity, based on
external restrictions that are available at a particular level of granularity. These
two aspects of task-dependency are captured by target distinctions and observable
distinctions, respectively.

What is “right” is then defined as the requirement to have a model that is
maximally abstracted, but still allows to achieve the purpose equally well as the
base model. We restrict ourselves to the abstraction type of domain abstractions
(section 4.3.1). Observable distinctions that are coarser than the base model
can give rise to abstractions in a domain as certain distinctions cannot be made.
Conversely, target distinctions that are coarser than the base model can give rise
to abstractions in a domain because certain distinctions need not be made.

A qualitative abstraction problem can then be captured as a triple that con-
sists of a relational model and two domain abstractions that specify observable
distinctions and target distinctions. Solving a qualitative abstraction problem
means to incorporate only distinctions in a domain that are both necessary and
sufficient for the purpose, i.e. finding a set of domain abstractions that is both
distinguishing and mazimal. This formalization allows to investigate fundamental
properties related to the existence of solutions and the computational complexity
of the problem of determining qualitative values for the domains of variables.
These results lay the basis for the computational solution presented in the next
chapter.

67

68 CHAPTER 5. TASK-DEPENDENT QUALITATIVE ABSTRACTION

5.1 Task-dependency in Problem Solving

In chapter 3, we have defined a model-based reasoning framework that consists
of a space for defining behavior models, a space of observations (i.e. external
restrictions), and a space of solutions. The basic tasks of behavior prediction and
diagnosis can be formalized in terms of these concepts. Figure 5.1 summarizes
this framework graphically.

A A A

o O

N V> 1 >
R R RMR . — SOL

ext ext

Figure 5.1: Framework for model-based problem solving: A model relation R
together with external restrictions Req: yields solutions SOL

Chapter 4 described how incompleteness of behavioral knowledge can in prin-
ciple be accounted for through abstractions. Qualitative models have a level of
abstraction that is appropriate in the sense that it includes only the distinctions
that are essential to derive the solutions.

Our ultimate goal is to derive such qualitative abstractions. Thus, we first
need criteria that allow us to decide whether a certain level of abstraction is
appropriate for a certain task or not. The appropriateness of a model depends
on task-dependent characteristics, which are given by

e the context the model is used in, as determined by the set of possible external
restrictions (e.g., observations corresponding to measurements),

e the purpose the model is used for, as determined by the set of possible
solutions that we want to discriminate (e.g., different behavior modes for
diagnosis).

The set of external restrictions characterizes the available “inputs” to the
model. The set of possible solutions characterizes the “outputs” that we are
interested in when solving problems using the model.

Chapter 4 showed that both of these task-dependent characteristics can in-
fluence the appropriate granularity of the behavior model: if either the possible
inputs or the possible results have a granularity that differs from the granular-
ity of the base model, this can give rise to possible abstractions of the behavior
model. The following sections address the problem of characterizing the adequate

5.2. TASK-DEPENDENT DISTINCTIONS 69

granularity of behavior models relative to these characteristics of a task. In order
to accomplish this, we first have to enhance our model-based problem solving
framework to explicitly incorporate such task-dependent characteristics. This is
described in the next section.

5.2 Task-dependent Distinctions

Within the framework outlined in the previous section, task-dependent charac-
teristics can be captured by means of two different kinds of abstractions:

(1) the identification of states in the observation space that cannot be distin-
guished, given the granularity of external restrictions.

(2) the identification of states in the solution space that need not be distin-
guished, given the granularity of solutions.

The first type of abstraction, which identifies states that cannot be distin-
guished from each other, will be termed observable distinction. This name re-
flects the idea that distinctions expressed by observable distinctions constitute
the granularity of the possible external restrictions. However, note that obser-
vations are only a special case of external restrictions, which could in general
correspond to measurements, specifications given by the user, or hypothetical
situations as considered e.g. in an FMEA.

The second kind of abstraction, which identifies solutions that need not be
distinguished from each other, will be termed target distinction. This name re-
flects the idea that distinctions expressed by target distinctions constitute the
possible solutions, and, hence, the “purpose” of abstraction.

We will capture task-dependent abstractions in the context of domain ab-
straction only. We do not consider relation abstraction (section 4.3.2) or variable
abstraction (section 4.3.3). One reason is that the model-based reasoning frame-
work that will be the basis for the implementation (see chapter 7) can, at the
moment, only deal with value abstraction.

Hence, we are interested in abstractions of the state space that arise from
domain abstractions. An orthogonal partition is a partition of the state space
that consists of independent domain partitions for the individual variables:

Definition 30 (Orthogonal Partition) Letwv = (vy,...,v,) be model variables,
DOM (v) = DOM (v1) X ... x DOM (vy). An orthogonal partition is a partition
of DOM (v) that is defined by domain partitions for the individual DOM (v;), i.e.

™= (T, T2, ..., Tp).

It has been shown in section 4.3.1 that a domain partition corresponds to
a domain abstraction. Thus, 7 corresponds to a set of domain abstractions
T = (71,72,...,Tn). We will capture the two types of task-dependent abstractions
(target distinctions and observable distinctions) as orthogonal partitions. This is
described in more detail in the next two sections.

70 CHAPTER 5. TASK-DEPENDENT QUALITATIVE ABSTRACTION

5.2.1 Observable Distinctions

Observable distinctions are domain abstractions that identify states which cannot
be distinguished from each other. They give rise to abstractions of a model be-
cause they introduce a “don’t know” indeterminism among the behavioral states
of a device.

Observable distinctions are abstractions reflecting the granularity of the in-
puts to the model, which might be coarser than the granularity of the base model
e.g. due to incomplete observability. They are a means to express measurement
granularity or even non-observability of intermediate variables. The latter case
occurs e.g. in on-board diagnosis, where only certain variables that correspond
to the sensor inputs are observable. Hence, conceptually, observable distinctions
aim at capturing the kind of incompleteness that was considered in section 4.2.1
of chapter 4.

As noted in the previous section, an observable distinction is represented as
an orthogonal partition of the observation space:

Definition 31 (Observable Distinction) An observable distinction, denoted
Tobs, 1S an orthogonal partition of the space DOM (v).

Figure 5.2 illustrates observable distinctions graphically. A variable v; is not
observable at all if the domain partition for v; specified by meps is equal to the
trivial domain partition, i.e.

Tobs,i = {DOM (v;)}.

Example 5 (Observable Distinction for Pedal Position Sensor) For the
pedal position sensor presented in section 1.1.1, the electronic control unit senses
the output voltages of the potentiometer and the switch component, but cannot
measure the other variables. This can be stated as

Tobs,vpor — {lovi2v)} {[2V,4v)}, ... {[8V,10V)}},
Tobs,vswitch — {{[0‘/7 2V)}> {[2V7 4V)}7 e {[SV') 10V)}}

The other variables receive the trivial partition

Tobs,i = {DOM (v;)}.

5.2.2 Target Distinctions

Target distinctions identify solutions that need not be distinguished from each
other. They give rise to abstractions of a device model because they introduce a
“don’t care” indeterminism among its behavioral states.

For instance, in behavior analysis for FMEA, we might be interested in the
values of certain output variables only, such as the torque of the engine or the

5.2. TASK-DEPENDENT DISTINCTIONS 71

Figure 5.2: Observable distinctions define the granularity of external restrictions

braking force at the wheels. Values for intermediate variables such as the pres-
sure at various points in the system or the flow into the brake cylinders are not
interesting by themselves, but only useful if necessary to derive these results. As
another example, consider the task of diagnosis, where we are interested only in
the possible behavior modes of the components. For on-board diagnosis, it might
even not be necessary to know the particular behavior mode of the components,
but it is instead only necessary to distinguish such classes of behavior modes that
require different recovery actions.

Conceptually, target distinctions are a means to express the kind of parsimony
that was considered in section 4.2.2 of chapter 4. Analogously to observable
distinctions, target distinctions are captured as an orthogonal partition of the
solution space:

Definition 32 (Target Distinction) A target distinction, denoted Tiarg, is an
orthogonal partition of the space DOM (v).

Figure 5.3 illustrates target distinctions graphically. A variable v; is said to
have no target partition if the domain partition mg; is equal to the trivial
domain partition { DOM (v;)}.

Example 6 (Target Distinction for Pedal Position Sensor) An ezample
for a target distinction occurs for the pedal position sensor example presented in
section 1.1.1. The initial goal to distinguish the voltage values ground = [0V, 2V')
and battery = [8V,10V) for the variable vgyin, can be expressed (if the plausi-
bility check itself is not represented in the model) as a target partition for this
variable that separates [0V, 2V') and [8V,10V) from the rest of the domain values:

Tiargwawien = 1110V, 2V)},{[2V,4V), [4V,6V), [6V,10V)}, {[8V,10V) } }.
The other variables receive the trivial partition

Targi = {DOM (v;)}.

72 CHAPTER 5. TASK-DEPENDENT QUALITATIVE ABSTRACTION

X
Ttu,rg R/ Remt
A A A :
X = ; f
/A N T
> 7 > I >
R Re,r,t Ttarg(RMRcmt) = 50L

Figure 5.3: Target distinctions define the granularity of solutions

We have now augmented the framework for model-based problem solving
by observable distinctions and target distinctions as a means to represent task-
dependent characteristics explicitly. The framework is summarized in figure 5.4.
A behavior model R(v), combined with external restrictions Rez; of a given gran-
ularity Tops, leads to solutions that are distinguished at a granularity T¢arg only.

Tobs Ttl"'g
£) A
s |
Y . T . 1 —
R Rawl‘ Ttarg(RNRw‘f) = SOL

Figure 5.4: Framework for model-based problem solving using task-dependent
distinctions

Equipped with the means to specify the conditions of a particular task, we
now return to the problem of deriving abstractions of behavior models that are
suited for this particular task. This problem is addressed in the next section.

5.3 Task-dependent Qualitative Abstraction Problem

Using the terminology introduced in the previous section, the problem of finding
a qualitative model abstraction can be captured as follows. If we are given a
behavior model R, a domain abstraction 7,45 corresponding to observable dis-

5.3. TASK-DEPENDENT QUALITATIVE ABSTRACTION PROBLEM 73

tinctions and a domain abstraction Tiarg corresponding to target distinctions,
we would like to find a domain abstraction of the model that yields the same
results as the original model. In other words, we would like to find an abstrac-
tion that incorporates all necessary distinctions, given the target and observable
distinctions.

This guarantees that if we apply the abstraction to the behavior model, then
for the considered external restrictions, the abstracted model will yield the same
results as the original model. As a consequence, we can substitute the abstracted
model for the original model in problem solving. A qualitative abstraction prob-
lem thus consists of the following ingredients:

Definition 33 (Qualitative Abstraction Problem) A qualitative abstraction
problem QAP is a tuple (R, Tobs, Ttarg), where R is a relational behavior model,
Tobs @5 a domain abstraction defined by observable distinctions, and Tiarg i a
domain abstraction defined by target distinctions.

Of course, it is possible that even the base behavior model R itself cannot
determine all distinctions defined by T¢aqrg. But with respect to the possible ones,
the domains DOM (v;) of the base model may be overly detailed.

Solving a qualitative abstraction problem corresponds to determining dis-
tinctions to be made in the domains DOM (v;) that are necessary in order to
reproduce their distinguishing power. This means finding a set of domain parti-
tions

™= (T1,...,7Tn)

which is able to preserve as much information as possible with respect to the
target distinctions. The approach taken is based on the view that when using the
model, it is sufficient to get optimal information about the resulting solutions,
and that distinctions in the domain of a behavior model should be considered
only if they are necessary to derive conclusions about these solutions.

5.3.1 Induced Distinctions

As stated above, the solutions to a qualitative abstraction problem are given by a
set of domain partitions 7r, which corresponds to a set of domain abstractions 7.
If 7 contains sufficient distinctions to derive all information about the resulting
solutions, it will be denoted distinguishing domain abstraction:

Definition 34 (Distinguishing Domain Abstraction) Let QAP = (R, Tobs,
Tearg) be a qualitative abstraction problem. A distinguishing domain abstraction
for QAP is a set of domain abstractions

T = (Tl,TQ,...,Tn)

such that for the considered external restrictions Reqt C Tobs(DOM (v)), the
abstracted model derives a solution SOL C Tiarg(DOM (v)) if and only if the
base model derives the same solution:

74 CHAPTER 5. TASK-DEPENDENT QUALITATIVE ABSTRACTION

Ttarg(R > Re:rt) = SOL & Ttarg(T(R) > T(Rext)) = SOL.

The requirement expressed in definition 34 means that if we are given an
external restriction on the level of observable distinctions — actual observations,
design specifications, etc. —, applying the distinguishing domain abstraction 7
before determining the result does not change the solutions on the level of the
target distinction. Put in other words, the abstracted behavior model contains
sufficient distinctions.

There might exist more than one possible domain abstraction that fulfills this
criterion. In particular, the domain abstraction that corresponds to the identical
mapping

Tia - DOM (v) - DOM (v),val — val

retains all the distinctions of the domains, and thus it is a distinguishing
domain abstraction. Also, the domain abstraction corresponding to the merge of
the observable and target distinctions

Tmerge ‘= MERGE(Tobs, Ttarg)

contains sufficient distinctions to be a distinguishing domain abstraction.
Hence, we also have to state the requirement that a qualitative abstraction con-
tains only necessary distinctions. This means that in the case where there exists
more than one distinguishing domain abstraction, we would like to find a maximal
one. A maximal abstraction guarantees that any finer abstraction incorporates
distinctions that are unnecessary, given the target and observable distinctions:

Definition 35 (Maximal Distinguishing Domain Abstraction) Let QAP
= (R, Tobs, Ttarg) be a qualitative abstraction problem. A distinguishing domain
abstraction Ting is a maximal distinguishing domain abstraction for QAP, if there
does not exist a distinguishing domain abstraction 7}, for QAP such that Tina
is a strict refinement of T, .

A maximal distinguishing domain abstraction incorporates only distinctions
that together are both necessary and sufficient according to the target and ob-
servable distinctions. It represents a level of abstraction that is most adequate to
solve the problem, as it neither makes any unnecessary distinctions, nor does it
abstract away any distinctions that are crucial to solve the problem. A maximal
distinguishing domain abstraction thus captures the intuition behind a qualita-
tive model. Definition 35 might be thought of as a formal definition of qualitative
abstraction in the sense of section 4.5. More precisely, it formalizes the problem
of finding qualitative values for the domains of variables: Since a maximal distin-
guishing domain abstraction 73,4 corresponds to a set of domain partitions, find-
ing Tind means finding maximal partitions of the individual domains DOM (v;).
The maximal partitions of the individual DOM (v;) then constitute sets of quali-
tative values for the individual variables v;. However, since this holds only under

5.3. TASK-DEPENDENT QUALITATIVE ABSTRACTION PROBLEM 75

certain preconditions, e.g. the restriction to value abstraction, we prefer to use
the term induced distinction instead of qualitative abstraction to avoid confusion
with the general problem outlined in chapter 4:

Definition 36 (Induced Distinction) An induced distinction, denoted Tipnd,
is the partition of DOM (v) corresponding to a maximal distinguishing domain
abstraction Tind.

An induced distinction expresses and formalizes our initial goal of determining
qualitative values for the domains of the model variables from first principles.

Example 7 (PPS Switch) Consider a subset of the pedal position sensor model
described in example 1 that consists of the components Switch, Battery, Node;
and Nodey. Let Tiarg be given as in evample 6, and let Tops be equal to the
identical domain mapping. Then the induced distinction for the switch state is

Tind,Switch.state — {{l@ft}, {T’Zght}}

Neaxt, consider a structural modification where component Switch is connected to
Battery as shown in figure 5.5. Then an induced distinction does not have to
distinguish between the two switch states, because both states will yield the same
result on the level of target distinctions:

Tind,Switch.state = {{leftu Tight}}'

This example illustrates the influence of the structural part of the model on the
granularity of the induced distinctions.

a

Battery

Figure 5.5: Switch with modified structure

76 CHAPTER 5. TASK-DEPENDENT QUALITATIVE ABSTRACTION

Example 8 (Multiplication Constraint) Let v = (v1,v2,v3). Let DOM (v;)
be equal to the real numbers, 1 = 1,2,3. Let R express the behavior vy = vy - va.
Assume that the only non-trivial target partition is given for vs:

Ttarg,3 = {(—00,0),0,(0,1),1, (1,00)}.

Let these partition elements be denoted valy,vals, . .. ,vals. Assume, first, that the
observable partition for vi and vy is given by m;y. Then the induced distinctions
for vy and vy are also equal to my:

Tind,1 = Tind,2 = Tid-

To see this, consider an abstraction T that maps two different reals a; # as onto
the same domain value. Then choosing the external restriction

Reqy = {(a1, i)}
ai
reveals the loss: e.g. for the case 0 < a1 < ag, the base relation yields the so-
lution SOL = {((—00,00), (—00,00),vals)}, whereas the abstraction T(R) yields
SOL' = SOL U {((—00,00), (—00,00),vals)} (the other cases are similar). Now
assume that the observable partition for vi and ve is given by a partition that
consists of the integer values and open intervals between them:

Tobs,1 = Tobs,2 = {) _17 (_170)707 (07 1)7 17 e }

In this case, the picture changes. As suggested by figure 5.6, all values of vy
greater than 1 can be summarized. Intuitively, it would not pay off to distinguish
between them because the values of vo are not fine-grained enough to exploit the
distinction e.g. for determining whether vs is less than, equal to, or greater than
1. Therefore, the induced distinctions for vi and vo are given by

7de71 = 7de,2 = {(—OO, —1), —1, (—1, 0), 0, (0, 1), (1, OO)}

This example illustrates the influence of the granularity of the external restrictions
on the level of abstraction that can be achieved by induced distinctions. O

The examples and definitions above raise a couple of interesting questions:

(1) In the case of finite domains, how many induced distinctions can occur in
principle? I.e. what is the size of the search space for solutions?

(2) Under what conditions is it possible to derive induced distinctions? I.e.
when can we guarantee that a unique solution does exist?

(3) What degree of abstraction can be achieved, for different combinations of
problem solving tasks and given initial conditions? I.e. what determines
the characteristics of a solution?

5.3. TASK-DEPENDENT QUALITATIVE ABSTRACTION PROBLEM 77

Vs

Figure 5.6: Projections of the multiplication constraint in example 8 on the
qualitative values of v3. The diagram for vz = valy (not shown) coincides with
the axes vy,v9.

(4) How costly is it do derive induced distinctions? I.e. what is the complexity
of deriving a solution computationally?

(5) Finally, what is the impact of the specific structure of models — i.e. com-
positional behavior models — that we want to use in the context of our
application? I.e. can we exploit the ontological model layer during the
process of deriving a solution?

Each of these questions will be addressed in this thesis. In the following
sections, we investigate fundamental properties of induced distinctions concerning
the size of the search space for solutions, the complexity of finding a solution,
and the existence of unique solutions. This provides answers to the first four
issues that were raised above. We also shed more light on the relationship of
qualitative abstractions and concepts that have been developed in the field of

78 CHAPTER 5. TASK-DEPENDENT QUALITATIVE ABSTRACTION

constraint satisfaction, in particular, interchangeability. This will provide an
answer to the question how the characterization of T;,4 can be turned to a form
that is amenable for algorithmic computation. Thus, the results derived in the
following sections will serve as the basis for devising the computational solution
to task-dependent qualitative model abstraction that is presented in the next
chapter.

5.4 Task-dependent Abstraction as a Search Problem

The last sections provided us with a formal definition of task-dependent qual-
itative model abstraction. The solution to this problem has been captured by
induced distinctions that can be represented as a domain mapping T;nq4. In this
section, we characterize the search space for induced distinctions for the special
case of finite domains. If the domains of the variables in the model are finite,
there is only a finite number of possible domain abstractions, and consequently,
the problem of finding induced distinctions can be cast as a finite search problem.

5.4.1 Search Space for Induced Distinctions

The elements of the search space for a finite qualitative abstraction problem are
given by the possible sets of domain abstractions 7:

T = (71,72, -, Tn)-

A domain abstraction 7; corresponds to a domain partition ;. Hence, in
order to determine the size of the search space, we have to analyze the number
of possible partitions of a domain DOM (v;). For example, the domain

{1,2,3}

can be partitioned in the following five ways:

{{1}, {2}, {3}},
{{1},{2,3}},
{{2},{1,3}},
{{3},{1,2}},
{{1,2,3}}.
The number of ways a set of n elements can be partitioned into k disjoint,

non-empty subsets is called the Stirling number of the second kind ([And76]). It
is given by

5.4. TASK-DEPENDENT ABSTRACTION AS A SEARCH PROBLEM 79

where (}) denotes the binomial coefficient. The Stirling numbers can also be
generated recursively using the formula

S(n,k)=Sn—-1,k—1)+kS(n—1,k).

The number of ways a set of n elements can be partitioned is then equal to
the sum of the Stirling numbers for k =1,2,...,n:

Bn=>_S(n,k).
k=1

The B, are known as the Bell numbers ([And76]). Bell numbers can be
computed by the recurrence scheme

n n
By = Z By, (k)
k=0
or using the formula
2n n
S T A
Pn = {6 m§=:1 m!-‘ ’

where [z]| denotes the ceiling function. The first few Bell numbers for n =
1,2/ ... are

1,2,5,15,52, 203,877, 4140, 21147, 115975, . . .

For each of the domains DOM (v;), the partitions 7; can be chosen indepen-
dently. It follows that the search space for induced distinctions is equal to the
combinations of all domain partitions:

Proposition 5 Let QAP be a qualitative abstraction problem with finite domains
DOM (v) = DOM (v1) X ... x DOM((vy). Then the size of the search space for
induced distinctions Ting 15 equal to

HBSIZE(i) where SIZE(i) := |DOM (v;)|.
i=1

Because Bell numbers grow over-exponentially with the number of elements
in a set, it follows that the size of the search space for induced distinctions grows
over-exponentially with the size of the domains of the variables.

80 CHAPTER 5. TASK-DEPENDENT QUALITATIVE ABSTRACTION

5.5 Characterizing Induced Distinctions

We have seen that for a given qualitative abstraction problem, there always ex-
ists a domain abstraction that fulfills the definition of a distinguishing domain
abstraction. But, is there always a unique maximal distinguishing abstraction,
and, hence, a unique solution? Answers to this question are captured by the
propositions in this section.

It turns out that the existence of a unique solution to a qualitative modeling
problem QAP = (R, Tobs, Ttarg) depends on properties of the set of external
restrictions, minimality properties of R, and the relationship of observable and
target distinctions.

5.5.1 The Scope of External Restrictions

First, we turn to the influence of the considered set of external restrictions. A
qualitative abstraction problem is said to be complete if the set of possible external
restrictions to be considered in definition 34 comprises all relations at the level
of observable distinctions:

Definition 37 (Completeness of QAP) Let QAP = (R, Tobs, Ttarg) be a qual-
itative abstraction problem. QAP is complete, if each Rexzt C Tobs(DOM (v)) has
to be considered as a possible external restriction.

Note that QAP being complete does not imply that all variables in the model
are observable. Instead, it states that each relation on the level of observable
distinctions can occur as possible external restriction. The following proposition
shows that completeness of the set of external restriction influences the uniqueness
of a solution:

Proposition 6 (Non-unique Solution for Incomplete QAP) For a quali-
tative abstraction problem that is not complete, the maximal distinguishing ab-
straction Ting s in general not uniquely defined.

We prove this proposition indirectly by giving an example of an incomplete
qualitative abstraction problem that has more than one solution.

Example 9 (Non-unique Solution for Incomplete QAP) Let v = (v1,v2,
v3). Let DOM (v;) = {0,1} fori=1,2,3. Let R express equality between v1, vy
and vs, i.e.

R(v) = {(0,0,0),(1,1,1)}.

Let us assume that the non-trivial observable distinctions are

obs 1 = {{0}, {1}}, mobs,2 = {{0}, {1}}

and that the only non-trivial target distinction is to determine whether vs is zero
or not:

marg3 = {{0}, {1}}-

5.5. CHARACTERIZING INDUCED DISTINCTIONS 81

It follows that there are 16 possible external restrictions Reqgi. For the subset of
external restrictions

{{({0}, {0}, {0, 11)}, {({1}, {1}, {0, 1)}, {({0}, {1}, {0, 1}), ({1}, {0}, {0, 1})}},

there are two induced distinctions, given by the partitions

Tind,1 = {{0}, {1}}, ming2 = {{0,1}},
7Tgnd,l = {{07 1}}7 Wgnd,Q - {{O}a {1}}

The two maximal distinguishing abstractions in example 9 reflect the fact
that either v; or vy is not needed for determining the target distinction. The
reason is that for the given set of external restrictions, a coarse distinction for
one variable might be compensated by a fine distinction for another variable.

Consider the special case where observations are restricted to single tuples.
This might occur, for instance, in the case where for each of the observable
variables of a device, there is a fixed correspondence to measured sensor values.
Example 10 shows that also in this case, there might be more than one induced
distinction:

Example 10 (Non-unique Solution for Observations as Tuples) Let the
variables v, DOM (v), R(v), Tobs and Tiarg be given as in example 9. For
the set of external restrictions that comprises all tuples from Tops(DOM (v))

Reqt € Tobs(DOM (v))

there are two maximal induced abstractions, given by the partitions

Tind,1 = {{0}, {1}}, ming2 = {{0,1}},
Tind1 = 110,13}, Thao = {{0}, {1}}.

Like in example 9, the two solutions reflect the fact that either v or vy is not
needed for determining the target distinction for variable vs. In the following, we
concentrate on qualitative abstraction problems that are complete.

5.5.2 The Scope of the Model Relation

Next, we investigate the influence of the model relation R, in particular, effects
related to redundancy of domain values.

Definition 38 (Redundant Domain Value) A domain value val € DOM (v;)
is called redundant if it is not part of any tuple of the model relation, i.e.

val & 11, (R).

82 CHAPTER 5. TASK-DEPENDENT QUALITATIVE ABSTRACTION

The term redundant refers to the fact that such values can be removed from
the corresponding domain without affecting the tuples of the model relation (see
also [Tsa93)).

Definition 39 (Minimality of QAP) A qualitative abstraction problem QAP
is called minimal if none of the domains DOM (v;) contains redundant values.

Minimality is a precondition for a unique solution to a qualitative abstraction
problem. Otherwise, the maximal distinguishing abstraction is in general not
uniquely defined:

Proposition 7 (Non-unique Solution for Non-Minimal QAP) For a com-
plete and non-minimal qualitative abstraction problem, the maximal distinguish-
ing abstraction Tind is in general not uniquely defined.

The reason is that redundant parts of the domain of a variable can be allocated
to different partition elements of an induced distinction without affecting the
result of the abstraction. This is illustrated by the following example.

Example 11 (Non-unique Solution for Non-minimal QAP) Let v = (vy,
v2). Let DOM (v;) = {0,1,2,3} fori=1,2. Let R be given by

R(’U) = {(Oa 0)7 (Oa 1)) (17 2)) (17 3)}

Variable vi has two redundant domain values. Assume that the non-trivial
distinctions are given by the target distinction

Ttarg,1 = {{07 1}a {27 3}}a Ttarg,2 = {{Oa 1}7 {2a 3}}

and the observable distinction

Tobs,1 = {{Oa 2}7 {1’ 3}}

There are two induced distinctions which differ with respect to the partition
for variable vy :

Tind,1 = {{Oa 2}7 {17 3}}7 7Tgnd,l - {{07 1}7 {2a 3}}

a

5.5.3 The Scope of Target and Observable Distinctions

Next, we investigate the influence of the observable distinctions and target dis-
tinctions. The relationship between target and observable partitions affects the
granularity of the resulting abstraction. On the one hand, if the available ob-
servations are overly detailed for the given target distinctions, the model can be
simplified because not all observations have to be distinguished from each other.
If, on the other hand, there do not exist detailed enough observations to derive all

5.5. CHARACTERIZING INDUCED DISTINCTIONS 83

target distinctions, this can also give rise to abstractions. In this case, it would be
unnecessary to reflect the target distinctions in the model that cannot be derived
— in a sense “overriding” the inital desire to distinguish these solutions.

Hence, the situation where the target distinctions can indeed be distinguished
based on the model and the external restrictions is of particular interest. The view
we take here is that task-dependent abstraction is only adequate if the granularity
level of observable distinctions is detailed enough such that the target distinctions
actually come into effect. This case is captured by the following definition.

Definition 40 (Observability of QAP) Let QAP = (R, Tobs, Ttarg) be a qual-
itative abstraction problem. QAP is called observable, if

Vval € Tiarg(R(v)) : AReat C Tobs(DOM (v)) s.th. val = Tearg(R > Regt).

A special case of observable QAP is the class of problems where Tops IS a
refinement of T¢qrg. This occurs e.g. for the pedal position sensor in examples 5
and 6, for which the target distinctions where given for a subset of the observable
variables. It follows that for the pedal position sensor example, QAP is observ-
able. Of course, we later on expect that it is the program, rather than the user,
that tells us whether a specified QAP has this property. Observability is crucial
for the uniqueness of solutions to a qualitative abstraction problem, as stated by
the following proposition.

Proposition 8 (Non-unique Solution for Non-Observable QAP) For a
complete, minimal and non-observable qualitative abstraction problem, the maxi-
mal distinguishing abstraction Ting s in general not uniquely defined.

Example 12 (Non-unique Solution for Non-Observable QAP) Let v =
(v1,v2). Let DOM (v;) ={0,1,2}, i = 1,2. Let R be given by

R(v) = {(0,0),(0,1),(0,2),(1,1),(1,2),(2,1),(2,2)}.
Let us assume that the only non-trivial target distinction is to determine
whether vy is greater than one or not:

Trarg,1 = {{0,1}, {2}}.

For the observable distinctions

Tobs,1 — {{0}7 {L 2}}77%6872 - {{07 1, 2}}7

there are two induced distinctions, given by different partitions for vy:

Tind,1 = {{0}7 {17 2}}a 7Tgnd,l = {{Oa 1}7 {2}}

In example 12, the target partition for variable v; is not observable. Whenever
the target partition element P; » := {2} appears in a solution, the target partition
element P;; := {0,1} also appears in this solution. Hence, for the induced
distinctions, it is sufficient to distinguish the domain value 0 from the domain
value 2 for variable v;. The two maximal distinguishing abstractions m;54, wgnd
reflect the fact that this can be done in two ways.

84 CHAPTER 5. TASK-DEPENDENT QUALITATIVE ABSTRACTION

5.5.4 The Scope of the Problem Solving Task

In this section, we capture the influence of the problem solving task on the induced
distinctions. Chapter 3 introduced prediction and diagnosis as two basic model-
based problem solving tasks.

For prediction, the considered external restrictions are assumed to be consis-
tent with the model, and we are interested in deriving the resulting restrictions
for other variables. In contrast, for the task of diagnosis, it is possible that the
model is inconsistent with a given external restriction, such that it is necessary
to perform a revision of the model.

Definition 41 (Consistency of QAP) Let QAP = (R, Tobs, Ttarg) be a qual-
itative abstraction problem. QAP is consistent, if all external restrictions are
consistent with the model, i.e. Tops(R) = Tobs(DOM (v)).

The condition that QAP is consistent is not a restriction, for a given behavior
model can always be modified in such a way that all external restrictions are con-
sistent with the model. The principle is to turn a diagnostic problem solving task
into a prediction task by anticipating possible revisions in the model (see section
3.6.3), in the extreme case by adding unknown behavior modes that correspond
to unrestricted behavior of components.

5.6 Induced Distinctions and Interchangeability

In this section, it is shown how the problem of finding interchangeable values in
constraint satisfaction (section 4.6.1) is related to finding induced distinctions for
a qualitative abstraction problem. The following proposition states that inter-
changeability can be reconstructed as a special case of a QAP.

Proposition 9 (Interchangeability as Qualitative Abstraction Problem)
Let QAP = (R, Tobs, Ttarg) be a complete, minimal and observable qualitative
abstraction problem where Tobs = Tid, Ttarg = Ttriv. 1Lhen the mazimal distin-
guishing domain abstraction Timq for QAP is equal to TFI,R.

Proof. Because QAP is complete, the set of considered external restrictions
contains in particular each tuple of DOM (v) as possible R.;;. For each such
Ryt that is inconsistent with R, Tind(Reyt) must also remain inconsistent with
Tind(R), and for each Ry that is consistent with R, Tind(Rezt) must also remain
consistent with 7;,q4(R). It follows that 7,4 must preserve exactly the tuples of
R, and thus the distinctions in 777, g are necessary for T;nq to be distinguishing.
On the other hand, if two domain values for a variable v; are fully interchangeable,
then there does not exist an external restriction that would yield a different result
on the level of target distinctions if these domain values are not distinguished.
Thus the distinctions in Tgr, g are sufficient for 73,4 to be distinguishing. It
follows that T;ng is equal to 77, . O

5.7. DETERMINING INDUCED DISTINCTIONS 85

5.6.1 Complexity of Finding Induced Distinctions

Based on the results of the previous section, the following proposition states
that finding induced distinctions for compositional models is an inherently hard
problem.

Proposition 10 (Complexity of Finding Induced Distinctions) Let QAP
= (R, Tobs, Ttarg) be a qualitative abstraction problem for a compositional behav-

ior model R given by a system description. Then finding an induced distinction
Tind for QAP is NP-hard.

Proof. Consider again the case where Tops = Tid, Ttarg = Ttriv, and QAP
is complete, minimal and observable. From proposition 9, it follows that in
this situation, determining the induced distinctions is equal to the problem of
determining interchangeable values for the relation R defined by the constraint
network of the system description. Determining interchangeable values for a
constraint network is known to be a NP-hard problem ([WF97]). It follows that
finding an induced distinction T;,q for a qualitative abstraction problem is also
NP-hard. O

5.7 Determining Induced Distinctions

In this section, we describe how solutions can be obtained for a qualitative ab-
straction problem. In the following, we assume that for a given qualitative ab-
straction problem QAP = (R, Tobs, Ttarg), & solution Ting is given by the merge
of an abstraction Tops' of Tops and an abstraction Tearg’ of Trarg. It will be shown
that in this case, and under the preconditions identified in the previous sections,
a unique solution for QAP can be found.

First, in this situation, a maximal distinguishing domain abstraction contains
at least the distinctions given by T¢arg:

Theorem 1 (Decomposition of Induced Distinctions) Let QAP be a qual-
itative abstraction problem that is complete, minimal, and observable. If Ting is
a mazximal distinguishing domain abstraction for QAP, then Ting is a refinement
of Ttarg, i-€. Tind = MERGE(Tobs', Ttarg)-

Proof. Assume the contrary, i.e. for a variable v;, there is a partition
element in 7j,4; that contains values from more than one target partition el-
ement. Because QAP is observable, for each target partition element of v,
there exists at least one external restriction Re.; for which the projection of
Ttarg(R < Rezt) on w; is equal to the target partition element. For Ry, the
projection of Tiarg(Tind(R) > Tind(Rezt)) on v; contains more than one target
partition element. It follows that Tind(R) > Tind(Reszt) yields a different solution
at the level of target distinctions compared to R <1 Rer:. Hence, Ting cannot be
a maximal distinguishing domain abstraction. O

86 CHAPTER 5. TASK-DEPENDENT QUALITATIVE ABSTRACTION

5.7.1 Observation Partitions and Solution Partitions

Theorem 1 means that the target distinctions must be kept in the induced dis-
tinctions if QAP is observable. Hence, the source for abstraction of the induced
distinctions can only be an abstraction of the observable distinctions.

The space for external restrictions is given by Tops(DOM (v)). For each tuple
OBS) € Tobs(DOM (v)), define Rops, to be the join of the observation with
the model relation:

ROBS,k: = R OBSk.

If QAP is complete, i.e. each OBSy € Tops(DOM (v)) is considered, the
Rops, cover the model relation. Because the OBSy are mutually disjoint, the
Ropsx are mutually disjoint. It follows that the Rops form a partition of the
model relation R:

Definition 42 (Observation Partition) For a qualitative abstraction problem
QAP = (R, Tobs, Ttarg), the set

Q(R, Tobs) := | J{RoBsx}
%

s denoted observation partition.
Let further Rsor, » be the solution obtained for Ropg i at the level of Tiarg:

Rsork = Ttarg(RoOBS,k)-

Then the Rops that obtain the same solution, i.e. for which Rsoy, x is equal,
form a partition of the set (R, Tobs). Let Rsor,oBs,k be defined by

Rsor,oBsk = U RoBs,j-
J:Rsor,;j=Rsork

Then the elements of the set of all such relations Rsor, os,k define a partition
of the observation partition:

Definition 43 (Solution Partition) For a qualitative abstraction problem QAP
= (R? Tobs) Tta’r'g), the set

E(R; Tobs, Ttarg) = U{RSOL,OBS,k:}
k

s denoted solution partition.

In other words, (R, Tobs, Ttarg) defines a partition of the model relation that
is an abstraction of the partition of the model relation defined by (R, Tobs) (see
figure 5.7). The following example illustrates the above definitions.

5.7. DETERMINING INDUCED DISTINCTIONS 87

R(v) R(v)

Rsor, 0882

Rgsor,08s1
Rgor,08s 3

Figure 5.7: The elements of the observation partition (left) form a partition of
the model relation, while the elements of the solution partition (right) form an
abstraction of this partition

Example 13 (Equality) Letv = (vi,v2). Let DOM (v;) = {0,1,2} fori=1,2.
Let R express the behavior vi = v, i.e.

R(U) - {(07 0)7 (L 1)7 <2a 2)}

Assume that the only non-trival observable partition is a partition for vy

Tobs,1 — {{0}7 {1}’ {2}}’ Tobs,2 = {{0’ 1, 2}}

and that the only non-trival target partition is given by a partition for vy:

Ttarg,l = {{07 1, 2}}a Ttarg,2 = {{0}7 {L 2}}
Then the set Tops(DOM (v)) contains the elements
OBS; = ({0}7 {0’ L 2})7
OBS;y = ({1}7 {0’ L 2})7
OBSs = ({2},{0,1,2})
and the set QU(R, Tobs) contains the three elements
Rogs,1 = {(0,0)},
Rogs2 = {(1,1)},
Ropss = {(2,2)}.
Further,
Rsor,1 = {({0,1,2},{0})}, Rsor,oss,1 = {(0,0)},
RSOLQ = {({07 1, 2}’ {17 2})}7 RSOL7OBS72 = {()7 (2)}
RSOL73 = {({07 1, 2}’ {1’ 2})}’ RSOL7OBS,3 = {(1 1)7 ()}

and the set £(R, Tobs, Ttarg) contains the two elements (see also figure 5.8)

Rsor,ors1 = {(0,0)}, Rsor,oBs2 = {(1,1),(2,2)}.

88 CHAPTER 5. TASK-DEPENDENT QUALITATIVE ABSTRACTION

Uy
Lo
2 2 | &
1 2
o 1 §
> o,
0 1 2

Figure 5.8: The two elements Rsor,ops,1 and Rsor,ops2 of the partition
Y (R, Tobs, Ttarg) for example 13 (numbers denote the indices of the partition
elements)

5.7.2 Approximations to Induced Distinctions

The following theorem provides a sufficient, but not necessary condition for in-
duced distinctions.

Theorem 2 (Sufficient Condition) Let QAP be a qualitative abstraction prob-
lem that is complete and minimal. If Tiyng is a mazimal distinguishing do-
main abstraction for QAP, then Tinq; is a refinement of any domain partition
i ={P;i1, P2} given by

P; 1 = 1y, (Tobs(Rsor,0Bs)), Pi2 = DOM (v;)\P; 1, Rsor,oBs € X(R, Tobs, Ttarg)-

Proof. The case where either P;; = () or P;o = () is trivial. Now assume
the case where the partition elements P;; and P; o are both non-empty, and let
Tobs(Rsor,0Bs) be the element of X(R, Tobs, Ttarg) used to obtain m;. Consider
the two relations

/
Re:rt = R:,:l’ Req}t = R:,Q'

Rext and R, are at the level of granularity of the observable distinctions, and
because QAP is complete, Ry and R.,, can occur as possible external restric-
tions. Then Tiarg(R > Rext) =: SOL, i.e. the external restriction Reqs yields the
solution SOL at the level of the target distinctions. Likewise, T¢arg(R > RL,;) =:
SOL', i.e. the external restriction R, yields a solution SOL’. Because QAP is
minimal, both SOL # () and SOL' # (). Observe further that since P; 2 is incon-
sistent with Tops(Rsor,0Bs), the solution obtained for Rey; is different from the
solution obtained for R, i.e. SOL # SOL'. Assume that the domain partition
corresponding to Ting combines P; 1, P; 2 in one partition element. Then

Ttarg(Tind(R) > Tind(Rezt) 2 SOLU SOL',
Ttarg<7'ind(R) > Ti’nd<R/ext) 2 SOL'USOL.

5.7. DETERMINING INDUCED DISTINCTIONS 89

Because SOL # SOL' and SOL, SOL’ # (), it holds that SOLUSOL’ # SOL
or SOLUSOL’' # SOL'. Hence, for at least one of the external restrictions Reyy
or R..., Tind derives a different result on the level of target distinctions compared
to the base model relation. Therefore, T;,4 cannot be a distinguishing domain
abstraction, and it follows that any T;nq must spearate F;i from P;o, which
means that it is a refinement of the domain partition ;. O

Example 14 (Equality) Consider again example 13. By applying theorem 2,
the following partition elements are obtained for variable vy

P11, =1Ly, (Tobs(Rsor,0Bs,1)) = {0}, P21 := DOM (v1) \ P1,1,1 = {1,2},
P19 =11y, (Tobs(Rsor.0Bs,2)) = {1,2}, Pi22 := DOM (v1) \ Pi,1,2 = {0},

and the following partition elements are obtained for variable vy :

P11 =1Ly, (Tobs(Rsor,0Bs,1)) = {0,1,2}, P o1 := DOM (v1) \ Poi1 = 0,
Py 19 := 11, (Tobs(Rsor,0B5,2)) = {0,1,2}, Py oo := DOM (v1) \ P12 = 0.

By applying also theorem 1 (see also figure 5.9), it follows that a mazimal distin-
guishing domain abstraction Tind must be a refinement of

™ = {{0}’ {1’2}}77‘-2 = {{0}7 {172}}'

Uy
PR §
2 5
1
o1 5
> v vy
0 1 2

Figure 5.9: Projection of Rsor,ops, (left) and Rsor,0oBs,2 (right) on variable v;
yields a distinction between the domain values for example 14

For the example above, the distinctions derived by theorems 1 and 2 happened
to be sufficient and necessary in order to obtain a maximal distinguishing domain
abstraction. In contrast, the following example presents a qualitative abstraction
problem for which the approximation derives only necessary, but not sufficient
distinctions.

90 CHAPTER 5. TASK-DEPENDENT QUALITATIVE ABSTRACTION

Example 15 (Xor-Gate) Let v = (v1,v2,v3). Let DOM (v;) = {0,1} fori =
1,2,3. Let R express the behavior vs = XOR(v1,v2), i.e.
R(v) = {(0,0,0),(0,1,1),(1,0,1),(1,1,0)}.

Let us assume that a non-trivial observable distinction is given only for variables
v1 and ve whose granularity is equal to their base domain, and that the only
non-trivial target distinction is to determine whether v is zero or not:

mobs,1 = {{0}, {13}, Tobs,2 = {{0}, {1}}, mrarg,3 = {{0}, {1}}-
Then Tops(DOM (v)) has four elements, and the set (R, Tobs) contains the four

elements

Rogs,1 = {(0,0,0)},

Further,

Rsora ={({0,1},{0,1},0)}, Rsor,0ms,1 = {(0,0,0),(1,1,0)},
Rsor2 = {({0,1},{0,1}, 1)}, Rsor,0Bs,2 = {(0,1,1),(1,0,1)},
Rsors ={({0,1},{0,1},1)}, Rsor,0oBs,2 = {(0,1,1),(1,0,1)},
Rsora ={({0,1},{0,1},0)}, Rsor,08s,1 = {(0,0,0),(1,1,0)},

and, hence, the set X(R, Tobs, Ttarg) contains the two elements
Rsoross1 = {(0,0,0),(1,1,0)}, Rsor,0os,2 = {(0,1,1),(1,0,1)}.

The application of theorem 2 yields only the trivial partition as a lower bound
for the granularity of vi and vy (see also figure 5.10). However, the maximal
distinguishing domain abstraction for the example is given by the granularity of
the base domain:

Tind,1 — {{0}7 {1}}77Tind,2 - {{0}7 {1}}

5.7.3 Complete Solution to Induced Distinctions

The following theorem provides the complete solution for the problem of deriving
induced distinctions.

Theorem 3 (Sufficient and Necessary Condition) Let QAP be a qualita-
tive abstraction problem that is complete, minimal, observable and consistent.
Then Tind s equal to the merge of the target distinctions with any domain par-
tition m; given by

Trr,A where A := Tops(Rsor,0Bs), Rsor,oBs € X(R, Tobs, Ttarg)-

5.7. DETERMINING INDUCED DISTINCTIONS 91

’UQA ’UQA

1 1 1] 2

0] 1 0 2
0 1 0 1

Figure 5.10: Projection of Rsor.ops, (left) and Rsor.ops,2 (right) on variable
v1 yields no distinction for example 15

Proof. The construction is similar to the proof of theorem 2. Let Rsor,oBs
be an element of (R, Tobs, Ttarg) used to obtain m;. Let P; 1, P; 2 be two partition
elements of m;. Consider the two relations

Repy = o'viePi,l(Tobs(RSOL,OBS))a
Ry i= {val} x T\, (Rext) where val € P .

Reyt and R, are at the level of granularity of the observable distinctions. Be-
cause QAP is complete, Reyt and RL,, can occur as possible external restrictions.
Then Tiarg(R > Regt) =: SOL, i.e. the external restriction Reg; yields the so-
lution SOL at the level of the target distinctions. Likewise, T¢qrg(R > RL,,) =:
SOL', i.e. the external restriction R, yields a solution SOL’. Because QAP is
consistent, both SOL # () and SOL" # (). Now, because P;; is not fully inter-
changeable for P; o with respect to the relation Tops(Rsor,085), Rext N Riyy = 0,
and thus Req, RL,; yield different solutions, i.e. SOL # SOL'. Then similar to
the proof of theorem 2, a domain abstraction T;nq that combines P; 1, P; 2 in one

partition element yields

Ttarg (Tind(R) > T’ind(Remt) D SOLU SOL/,
Ttarg(Tind(R) > Tind(RLy) 2 SOL' U SOL.

ext

It holds that SOLUSOL’ # SOL or SOLUSOL' # SOL', which means that
for at least one of the external restrictions Reqt or R..,, Tina derives a different re-
sult on the level of target distinctions compared to the base model relation. Hence,
the distinctions in 7; are necessary for ;4 to be a distinguishing domain abstrac-
tion. Conversely, for values that are fully interchangeable for all Tops(Rsor,0Bs)
with Rsor,oBs € X(R, Tobs, Ttarg), then because X (R, Tobs, Ttarg) comprises all
possible external restrictions from Tops(DOM (v)), it follows that no external re-
striction exists that would yield a different solution if these values are abstracted.
Therefore, the distinctions given by the domain partitions m; and the target dis-

tinctions are sufficient for T;q to be a distinguishing domain abstraction. O

92 CHAPTER 5. TASK-DEPENDENT QUALITATIVE ABSTRACTION

Example 16 (Xor-Gate) Consider again example 15. Then for variable v1,

oy 03 (00, =0(Rsor,0B5,1)) =
oy 05 (00v=1(Rsor,0Bs,1)) = {
Ly, 05 (0v,=0(Rsor,0Bs,2)) =

Iy, 05 (0 =1(Rsor,0Bs,1)) = {(0,1)}.

By applying theorem 3, the following partition elements are obtained for variable

| — ({0}, {1}}.

Conversely, for variable vg,

My, 03 (0w,=0(Rsor,08s,1)) = {(0,0)}
Iy, v (00,=1(Rsor,0Bs,1)) = {(1,0)},
Iy, v (00y=0(Rsor,0Bs2)) = {(1,1)}
Iy, w5 (0w,=1(Rsor,0Bs,2)) = {(0,1)},

and the following partition elements are obtained for variable vy:

= {{o}, {1}}-

It follows that the mazimal distinguishing domain abstraction for this qualitative
abstraction problem 1is

Tind,1 = {{0}’ {1}}77Tind,2 = {{0}’ {1}}a7"ind,3 = {{0}’ {1}}

The previous sections have identified different properties whose absence can
lead to non-unique solutions of a qualitative abstraction problem. As a conse-
quence of theorem 3, it follows that these properties are complete in the sense
that if each of them holds, there is a unique solution to a qualitative abstraction
problem.

The approximation and the complete condition can be considered as extreme
positions in a spectrum of definitions that vary in the granularity the elements
of the solution partition are distinguished from each other. While theorem 2
considers only differences taking into account external restrictions that restrict
a single variable, theorem 3 considers differences taking into account external
restrictions that possibly restrict all of the variables. This coincides with the
intuitive idea that domain values have to be distinguished if either the domain
values themselves already lead to different solutions (corresponding to theorem
2), or the domain values lead to different solutions if combined with additional
restrictions for other variables (corresponding to theorem 3). The latter case is
more general, i.e. theorem 3 obtains at least the distinctions obtained by theorem
2. However, for a given QAP, theorem 2 does not require all external restrictions
to be consistent. Hence, it can be applied to more cases than theorem 3.

5.8. DISCUSSION 93

5.8 Discussion

Theorem 2 and theorem 3 capture the solution to our problem to derive task-
dependent qualitative values. If we accept the view that induced distinctions
capture much of the intuitive goal of deriving qualitative values, the results in
this section can be seen as principled solutions to the problem of qualitative
domain abstraction.

Chapter 4 has shown that in contrast, most approaches to qualitative rea-
soning assume a given level of abstraction, e.g. the sign domain. Sometimes, a
specific level of abstraction is even hard-wired into the reasoning process itself.
However, the results of this chapter illustrate that the characteristics of a prob-
lem solving task, in terms of what needs to be distinguished and what can be
distinguished, have a crucial influence on the required model granularity. Unless
such task-dependent requirements are made explicit, one can only resort to a
model granularity that must fit all purposes and thus tends to be of limited use
for a specific task.

There exist approaches in model-based reasoning, in particular in the field of
model-based diagnosis, that include a limited notion of observable distinctions by
assuming a separation of the system variables v; into variables that can be ob-
served — termed observables — and variables that cannot be observed — termed
non-observables (see e.g. [CDDT00]). The observable partitions introduced in
this chapter are a more general means to express such kind of knowledge about
the task: the above separation corresponds to a special case of an observable
partition 7p; that is equal to 7;4; for the observables and equal to 7., for
non-observables.

However, it should be pointed out that our notion of task requirements is still
limited in the sense that it does not cover all intuitive notions of observable and
target distinctions. In our framework, all distinctions have to be expressed in
terms of domain abstractions.

One could argue, in particular, whether this is adequate for the specification of
observable distinctions. For instance, for infinite domains, the observability of a
variable might rather be given as a certain environment around a measured value,
reflecting accuracy of the measurement. This does not correspond to a partition of
the domain values of the variable. However, at least in some situations, this case
could be handled by re-formulating the behavior model in terms of additional
variables that express the deviation of a variable from its absolute value (see
section 4.3.2) and stating observable distinctions for these deviations. But in
general, more work would be necessary to extend the notion of task requirements
to such cases.

Struss ([Str90]) presents a framework for analyzing properties of given qual-
itative reasoning methods, such as soundness and completeness (see chapter 4).
Compared to this work, task-dependent abstraction is an “inverse” approach that
aims at deriving abstractions that feature certain properties, such as being distin-
guishing and maximal. This constructive view allows us to analyze fundamental
properties of the problem of deriving qualitative distinctions, e.g. in terms of

94 CHAPTER 5. TASK-DEPENDENT QUALITATIVE ABSTRACTION

the existence of solutions. Whereas [Str90] focusses on interval-based represen-
tations, we are instead concerned with arbitrary domain abstractions. Another
difference is that [Str90] does not incorporate a notion corresponding to target
or observable distinctions and that it is considered only with the problem-solving
task of prediction.

An earlier approach to deriving induced distinctions, described in [SS99], did
not distinguish between the two different problem solving tasks of diagnosis vs.
behavior prediction, and the two different types of distinctions, target distinctions
vs. observable distinctions. As a consequence, it suffered from the problem that
the granularity of the derived distinctions was dominated by the diagnosis task,
for which it has been shown in section 5.6 that the resulting level of granularity
corresponds to interchangeability of domain values. This illustrates that the
separation of different problem solving tasks is essential, and that the separation
of observable and target distinctions is essential.

Proposition 9 and theorem 3 reveal fundamental relationships between qual-
itative reasoning and interchangeability as a technique originating in constraint
satisfaction to structure problems and compactly describe their solutions. How-
ever, note that interchageability is concerned only with possibilities for abstrac-
tion within a single CSP. In contrast, the motivation for task-dependent model
abstractions is different: we are concerned with possibilites for abstraction given
a set of CSPs that is implicitly defined by a model relation and set of external
restrictions, under a given observable and target granularity. As shown in section
5.0, interchangeability is subsumed as a special case of task-dependent qualitative
abstraction for which the observable distinction is equal to the base granularity,
and the target distinction is to determine only whether the result is consistent or
not.

Freuder and Choueiry ([Fre91], [FS95], and [CN98]) already observe that in-
terchangeability is related to abstraction and the formation of “semantic group-
ings” within the domains of variables. Freuder ([Fre91]) notes that interchange-
ability can be viewed as a “concept formation process” that creates equivalence
classes of values. The results of this chapter can be perceived as generalizing
these ideas and putting them onto a firmer ground.

The results of this chapter provide the starting point for computing task-
dependent model abstractions for a compositional behavior model. As has been
shown, the solution partition, corresponding to a 2-level partition of the model
relation, contains all the relevant information for deriving induced distinctions
for a qualitative abstraction problem. In the next chapter, we will develop an
algorithm that is able to exploit the ontological level of the behavior model in
order to determine the solution partition. This means that the complexity of
deriving a solution will be bound to structural features of the behavior model.
This will give an answer to the last question raised at the end of section 5.3.

5.9. SUMMARY 95

5.9 Summary

This chapter complemented the model-based reasoning framework that has been
developed in chapter 3 by incorporating two task-dependent sources of qualitative
abstraction: observable distinctions and target distinctions. The former reflects
distinctions that cannot be made due to the granularity of the given observations,
whereas the latter corresponds to distinctions that need not to be made due to
the granularity of the required solutions. This allowed us to formally characterize
our initial goal of deriving a qualitative model for a particular task as the prob-
lem of finding an abstraction level of a behavior model that incorporates only
the necessary and sufficient distinctions in the domains of variables. The solu-
tion to this qualitative abstraction problem is captured by the notion of induced
distinctions, which correspond to maximal distinguishing domain abstractions.

The second part of this chapter investigated fundamental properties of in-
duced distinctions, such as uniqueness, and the theoretical (worst-case) complex-
ity of deriving induced distinctions for a compositional behavior model. This
analysis revealed principled features of qualitative domain abstraction. It has
also been shown how the problem of determining interchangeability of values in
constraint satisfaction can be viewed as a special case of a qualitative abstraction
problem.

96 CHAPTER 5. TASK-DEPENDENT QUALITATIVE ABSTRACTION

Chapter 6

Computation of Qualitative
Model Abstractions

In this chapter, we describe how a solution to a qualitative abstraction problem
QAP can be computed, given a system description defining a compositional be-
havior model, and a description of the task in terms of observable and target
distinctions.

Chapter 5 has shown that under a number of preconditions for a QAP, in-
duced distinctions can be derived based on the solution partition X (R, Tobs, Ttarg)-
This chapter deals with the computation of the solution partition for the case of
finite domains, and checking (or establishing) the necessary preconditions in order
to apply theorems 1, 2 and 3.

An important part of the method is the representation of the model relation R.
This is accomplished by an acyclic, hierarchical data structure called SD Tree.
The SD Tree avoids representing the model relation for a system description
explicitly, while guaranteeing that tuples of the model relation can be found in
polynomial time in the size of the structure.

The computation of the solution partition is based on a propagation algorithm
that operates on the SD Tree. This is the basis for efficient computation of
induced distinctions for a compositional behavior model defined by a system
description. The worst-case complexity of computing the solution depends on
structural features of the model. More precisely, it allows to exploit the fact that
for engineered devices, it is typically the case that not every variable directly
constrains every other variable. This is important in order to scale the solution
up to real-world problems like the example that will be presented in chapter 8.

6.1 Building Blocks for the Computation of Induced
Distinctions

The sections of this chapter deal with the problem of how to compute induced
distinctions T;,q for a composed system description based on the theorems in
chapter 5. Considerable attention has to be paid to efficiency of solutions, as the

97

98 CHAPTER 6. COMPUTATION OF QUALITATIVE ABSTRACTIONS

base model defined in the system description can be very large in terms of the
number of variables and sizes of the domains. In particular, large domain sizes of
the base model can occur if the base model is derived from a real-valued behavior
model (see the examples in chapters 7 and 8). The computation of T;,q for a
qualitative abstraction problem involves the subproblems of

(1) constructing the model relation R,

(2) checking (or establishing) the preconditions for applying the theorems, i.e.
whether QAP is minimal, observable, and consistent in the case where a
complete solution is required,

(3) computing the solution partition (R, Tobs, Ttarg)-

We show how each step can be carried out based on efficient propagation
algorithms. Finally, we deal with the problem of applying the derived abstraction
Tind to the original model of the system in order to get a transformed system
description.

6.2 Computation of Model Relations

Determining the model relation can in principle be done by computing the join
of the relations RC; for the individual components C; in the system description,
i.e.

R(’U) = RCl > RCQ >X... X RCn.

However, v can contain hundreds of variables (see e.g. the example in chapter
8), and thus the model relation R(v) may be very large. The number of tuples
in R(v) grows, in worst case, exponentially with the number of the variables and
the size of the domains.

A basic representation for finite relations are ordered binary decision diagrams
(OBDDs, see [Bry92]). The principle is to encode and manipulate relations using
a symbolic representation of their characteristic function. Using OBDDs, it is of-
ten possible to obtain compact representations of constraint types, in particular
when the degree of “constrainedness” is low or high. However, as [Bry92| points
out, there are also examples of constraint types for which no compact representa-
tion as an ordered binary decision diagram can be found. It is an open research
problem how feasible types of constraints can be characterized.

E.g. for the example presented in chapter 8, we found in our experiments on
a PC with AMD Athlon with 700 MHz, 128 MB Ram, and Windows NT 4.0 that
building an OBDD representation of R lead to a memory overflow after the first
20-25 variables, which corresponds to a relation in the order of roughly 10 billion
tuples. While this number seems quite large, it still insufficient to represent the
base model in this example.

Thus, a basic requirement is to avoid having to represent the relation R
explicitly. Rather, we need a representation of R that is implicit, but still allows

6.2. COMPUTATION OF MODEL RELATIONS 99

to efficiently determine the elements of the solution partition and to check the
preconditions for applying the theorems of chapter 5, e.g. whether redundant
domain values occur for R. This has to be based on a systematic exploitation of
model-specific features, rather than a method that may “sometimes” lead to a
feasible representation.

6.2.1 Computation of Model Relations using Solution Synthesis
Methods

In this section, we describe an efficient method to implicitly represent a relation R
that is given by a system description. The representation is based on techniques
known as decomposition and solution synthesis in constraint satisfaction ([DP88,
Tsa93, Fre94, WF99]). The idea is to start with the space of all solutions, and
to prune it incrementally by considering successively larger subproblems of the
CSP. A subproblem of a CSP induced by a set of variables ([Fre91]) is the part
of the CSP that directly constrains the set of variables:

Definition 44 (Induced Subproblem of a CSP) Let S be a subset of the
variables (v1,va...,v,) of a CSP. The subproblem of the CSP induced by S con-
sists of all the constraints whose schemes intersect with S.

If all constraints have eventually been considered, the remaining solutions are
the solutions of the original CSP. The advantage of this method is that early
pruning of the search space — and therefore improvements in space and time —
can be achieved if suitable subproblems can be identified that rule out significant
portions of the solution space.

Decomposition of a CSP into subproblems is straightforward if its structure
corresponds to a tree. However, in the case of a CSP where each subproblem is
equal to the complete CSP, i.e. if each variable directly constrains each of the
other variables in the system, solution synthesis becomes equal again to explicit
determination of the solutions. Hence, a precondition for applying this method is
that the original problem can be decomposed into a set of subproblems relatively
easily.

For CSPs corresponding to system descriptions, subproblems can be inter-
preted as parts of the behavior model. For engineered devices, it is typical that
interactions will be mediated through several components, such as defined inter-
faces, buses, or supplies. It is typically not the case that every variable directly
affects each of the other variables. Hence, in a CSP corresponding to the behavior
model e.g. of an automotive system, subproblems that are significantly smaller
than the complete CSP can be expected to occur. Solution synthesis is especially
suited for compositional problem descriptions, as it allows to exploit their specific
structure in terms of subproblems and their interactions.

Exploitation of problem-specific features receives growing interest in the area
of constraint satisfaction ([Tsa93],[Fre94]). The structural restriction of CSPs
that each variable is constrained by a limited set of other variables only can be

100 CHAPTER 6. COMPUTATION OF QUALITATIVE ABSTRACTIONS

captured by the concept of nearly-acyclic CSPs. The basic idea is that nearly-
acyclic CSPs can be decomposed into acyclic (i.e. tree-structured) CSPs with
limited effort, making them efficiently solvable. This technique originates from
database theory, based on the fact that queries for relational databases can be
interpreted as constraint satisfaction problems ([GLS00]). Structural decompo-
sition has been studied mostly independent of the origin of the resulting CSP,
e.g. for randomly generated CSPs ([WF99]). Here, it is directly motivated by
the application domain of engineered devices.

6.2.2 Representing System Descriptions as Constraint Graphs

Applying decomposition and solution synthesis techniques to system descriptions
requires some notational prerequisites. They operate on a representation of a
CSP as a graph:

Definition 45 (Graph) A graph is a tuple G = (V, E) where V is a set of nodes
and E s a set of arcs that connect nodes. G is called a hypergraph if there exist
arcs in E that connect more than two nodes.

Graph representations for CSPs can be constructed in two ways, either as a
primal constraint graph or as a dual constraint graph. In a primal constraint
graph, nodes represent variables and arcs are associated with the sets of nodes
residing in the same constraint. A binary CSPs can be associated with a primal
constraint graph where arcs connect pairs of constrained variables. For a non-
binary CSP, the primal constraint graph corresponds to a hypergraph.

Conversely, a dual constraint graph represents each constraint by a node
(often termed meta-variable in this context) and associates a labeled arc with
any two nodes that share variables. The arcs are labeled by the shared vari-
ables. Thus, a dual constraint graph representation transforms any CSP to a
special type of binary CSP, where the domain of the meta-variables ranges over
all value combinations permitted by the corresponding constraint, and adjacent
meta-variables are restricted by equality constraints stating that their shared
variables must have the same values.

Definition 46 (Meta-Variable) A meta-variable corresponds to a subset S =
(Viy, Viy - - -, vi,,) of variables of a CSP. The domain values of the meta-variable
are tuples of the relation DOM (v;;) x DOM (vi,) X ... x DOM (v;,) that are
solutions of the subproblem induced by S.

A meta-variable can be viewed as an extension of the concept of a variable.
While the domain of a variable is given by a set of values, the domain of a meta-
variable is given by a relation, and while domain values of a variable are single
values, domain values of a meta-variable are tuples (also called compound labels
in [Tsa93]). Based on this analogy of meta-variables and relations, we will use
the terminology devised for relations also for meta-variables. In particular, the
scheme of a meta-variable denotes the set S of its variables.

6.2. COMPUTATION OF MODEL RELATIONS 101

A special type of dual constraint graph is the dual constraint graph that
represents a system description for a behavior model:

Definition 47 (SD Graph) An SD Graph is a dual constraint graph represen-
tation for a system description SD, where the constraints are given by the com-
ponent behavior descriptions RC; defined in SD, and the variables are given by
the variables defined in SD.

The advantages using dual constraint graphs to represent the CSPs corre-
sponding to system descriptions are two-fold. First, we can retain the problem-
specific topology of the system description in terms of components and their
connections. Second, we can employ methods developed for binary CSPs in or-
der to solve a non-binary CSP. In particular, if the constraint graph of a CSP is
equal to a tree, there exist efficient algorithms in order to obtain its solutions.
The first step in order to obtain the model relation R is therefore to build a dual
constraint graph representation for the system description. This is accomplished
by the following algorithm:

Algorithm (Transformation of System Description to SD Graph)

Step 1 For each component in the system description, build a meta-variable
involving all variables for this component (including mode variables, if nec-
essary).

Step 2 For each pair of variables in the system description that are identified
with each other, establish an arc between the meta-variables that contain
the two variables. The arc represents the binary constraint that the pair of
variables must be equal.

The result is a dual constraint graph representation for the system description.
Figure 6.1 shows an example of an SD Graph for the pedal position sensor model
presented in chapter 3.

I I

Pedal Potentiometer Switch

Node, Node,

Battery

Figure 6.1: SD Graph for Model of the Pedal Position Sensor

102 CHAPTER 6. COMPUTATION OF QUALITATIVE ABSTRACTIONS

6.2.3 Hierarchical Clustering of System Descriptions

The basic idea to derive solutions for a CSP representing a system description is
that for a tree-structured constraint graph, the set of solutions can be derived in
polynomial time using local constraint filtering techniques ([DP88]). Hence, the
aim is to transform the constraint graph into a tree representation, even if the
original constraint graph representation of the problem does not correspond to a
tree. For a dual constraint graph, this can be achieved by systematically forming
larger clusters (i.e. new meta-variables) from the original CSP and arranging
them hierarchically in the form of a tree. The obtained meta-variables can be
organized into a hierarchical structure that is called a synthesis tree (see [Fre78|,
[Tsa93]):

Definition 48 (Synthesis Tree) A synthesis tree of a CSP represented by a
constraint graph is a tree whose leaf nodes are the nodes of the constraint graph,
and the intermediate nodes are meta-variables corresponding to the combination
of their children. A synthesis tree is called minimal, iff each meta-variable rep-
resents only value combinations that are consistent with all constraints of the

CSP.

A special type of synthesis tree is the synthesis tree that is obtained for a CSP
derived from a system description. This synthesis tree will be called SD Tree:

Definition 49 (SD Tree) A SD Tree is the synthesis tree obtained from a SD
Graph.

In a SD Tree, the meta-variables can be interpreted as clusters (i.e. super-
components) formed from the ontological elements (i.e. components) of the orig-
inal system description. A minimal SD Tree implicitly represents the model
relation R for the corresponding system description.

Meta-variables in a synthesis tree have domains that are based on the do-
mains of the variables that constitute them. The domains of meta-variables thus
potentially grow in a combinatorial way with the number of ground variables in
the tree below them. Hence, the amount of information to be stored in order
to represent the meta-variables varies with the topology of the tree. For a given
system description, there may be many different possible SD Trees, correspond-
ing to different ways of forming super-components from the ontological elements.
Strategies for finding good synthesis tree topologies will be presented in section
6.2.5. Automatically building a SD Tree from a SD Graph involves two subprob-
lems: computation of the meta-variables in order to form the nodes of the SD
Tree, and constraint satisfaction based on the SD Tree in order to minimize it.
This will be described in the following two sections.

6.2.4 Building SD Trees

Clustering, i.e. the generation of a synthesis tree from a constraint graph, in-
volves to recursively determine subproblems in the constraint graph. This is ac-
complished by repeatedly identifying cliques in the constraint graph, and building

6.2. COMPUTATION OF MODEL RELATIONS 103

a new meta-variable for a clique by eliminating the arcs between the nodes in the
clique. The nodes of the clique then become the children of the new meta-variable
in the tree. This process is repeated until there are no more arcs left. For the
special case where the constraint graph is a SD Graph, the following algorithm
accomplishes the generation of the SD Tree:

Algorithm (Generation of SD Tree from SD Graph)

Step 1 Identify cliques in the SD Graph.

Step 2 Build a new meta-variable y for a selected clique 1, z2, . .., z; connected
by arcs labeled with the set of variables S. Specify the scheme of y as
the union of the schemes of the meta-variables in the clique without the
variables in S

scheme(y) = U scheme(xz;)\S.
=1,k

Specify the domain values of y as the tuples in the join of the domains of
the meta-variables in the clique, projected on the variables in scheme(y):

DOM(y) = Hscheme(y) (DOM(.%l) DI... X DOM(.%k))

The meta-variables z1,xa, ...,z of the clique become the children of y in
the SD Synthesis Tree.

Step 3 Replace the clique x1,x2, ..., 2 by y in the SD Graph.

Step 4 Proceed with step 1 until there are no more arcs left in the SD Graph.

The algorithm terminates, because there is only a finite number of arcs in the
SD Graph (corresponding to a finite number of variables in the system descrip-
tion), and during each iteration, a non-empty set of arcs is removed from the
graph in step (3) of the algorithm. The result of the algorithm is a SD Tree of
the CSP defined by the system description. However, as the system description
can consist of several unconnected portions, the result is in general a set of SD
Trees rather than a single SD Tree. For simplification, in the following we assume
that the result of the above algorithm is a single SD Tree. The extension to a set
of several SD Trees is then straightforward.

The number of meta-variables in the SD Tree is dependent on the number
of constraints in the SD graph, and thus the number of variables in the system
description. In the worst case, each clique is formed by just one arc labeled with
just one variable. In this case, if the number of variables in the system description
is n and the number of components in the system description is ¢, the number
of meta-variables in the SD Tree is ¢ + n (¢ meta-variables of the SD Graph
corresponding to leaf nodes, and n meta-variables corresponding to intermediate
nodes).

If the considered clique consists of only one node in the SD Graph, the corre-
sponding node in the SD Tree has only one child. Hence, in the SD Tree resulting

104 CHAPTER 6. COMPUTATION OF QUALITATIVE ABSTRACTIONS

from the above algorithm, the branch factor of a node can be equal to one. This
occurs when the variables S considered in step (2) of the algorithm are labels of
so-called self-arcs that refer to a single meta-variable. From the point of view of
the conceptual layer, these variables correspond to variables that are not shared
with other components, which means that are they are local to the component or
super-component. It is possible to optimize the SD Tree by representing nodes
that have a branch factor of one together with their child node within a single
meta-variable. This can be accomplished by attributing a node V both with a
meta-variable V' (z) and a meta-variable V(Zspareqd) With a reduced scheme com-
prising only the variables that are further shared with other meta-variables:

Algorithm (Generation of normalized SD Tree)

Step 1 For each node V in the SD Graph, let NS be the labels of any self-arcs
of MV. Call Reduce(V,NS). Remove self-arcs of V' in the SD Graph.

Step 2 Identify cliques in the SD Graph.

Step 3 Build a new meta-variable y for the clique Vi, V5, ..., Vi connected by
arcs labeled with the set of variables S. Specify the scheme of y as the
union of the schemes of the meta-variables in the clique:

scheme(y) = U scheme(V (x;))
=1,k

Specify the domain values of x as the tuples in the join of the domains of
the meta-variables Vj(Zgpared) in the clique:

DOM (y) = DOM (Vi(Zshared) X< - - . <4 DOM (Vi(Zshared))-
The nodes V1, Va, ..., Vi become the children of y in the SD Tree.
Step 4 Replace the clique Vi, Vs, ..., Vi by a node V for y in the SD Graph.
Step 5 Call procedure Reduce(V,S).

Step 6 Proceed with step 1 until there are no more arcs left in the SD Graph.

Procedure Reduce (V,NS)

Step 1 Attribute node V with a metavariable zgpareq. Specify the scheme of
Zshared t0 be the scheme of V (z) without the variables N S:

scheme(xspareq) = scheme(V (z)) \ NS.

Specify the domain values of Zgspereq as the tuples in the domain of the
meta-variable x, projected on the variables in scheme(Zspared):

DOM(mshm'ed) - Hscheme(:rshared)(DOM(V(‘T)))‘

6.2. COMPUTATION OF MODEL RELATIONS 105

The resulting normalized SD Tree has a branch factor greater than one. In a
normalized SD Tree, for each variable v; in the system description, there exists ex-
actly one meta-variable x = MV (v;) such that v; € scheme(x)\ scheme(Tshared)-
Generating a normalized SD Tree can thus be viewed as a method to transform
an arbitrary CSP corresponding to a system description to a new CSP whose
constraint graph is equal to a tree.

The number of meta-variables in the normalized SD Synthesis Tree is bound
by ¢ + ng, where ny; < n is the number of shared variables in the system de-
scription. The set of shared variables can be considerably smaller than the set of
all variables, as it does not involve internal variables and mode variables of the
components. Figure 6.2 shows an example of a SD Tree for the pedal position
sensor model.

X,
X3
N\
X, Node, X,
Node, Battery
Pedal Potentiometer Switch

Figure 6.2: An SD Tree for the Pedal Position Sensor

6.2.5 Heuristics for SD Tree Topologies

Which meta-variables (i.e. super-components) of an SD Tree are formed is de-
termined by the cliques in the SD Graph to be used for clustering. Thus, the
topology of the SD Tree is dependent on the choice of cliques in step (2) of the
algorithm. Since the complexity of subsequent steps, e.g. of minimizing the SD
Tree, is dependent on the domain size of the meta-variables, the goal is to choose
a topology for the synthesis tree that keeps the domain sizes of the meta-variables
as small as possible. This section presents heuristics in order to choose cliques
that lead to a resulting SD Tree that has small domain sizes of the meta-variables.
Note that any kind of clustering strategy affects only the efficiency of the com-
putation of the model relation R, but not its correctness. The domain size of the

106 CHAPTER 6. COMPUTATION OF QUALITATIVE ABSTRACTIONS

meta-variables corresponds to the number of the possible solutions of the sub-
problem induced by the variables in the scheme of the meta-variables. In worst
case, it is a combinatorial combination of the domain sizes of these variables. For
a small domain size of a meta-variable, it is necessary that either

(1) the number of constraints in the subproblem is maximized, such that a large
amount of combinations is removed, or

(2) the number of variables in the scheme is minimized, such that the number
of possible combinations is limited from the outset.

Following the first approach amounts to finding tightly constrained subprob-
lems in the constraint graph. A tightly constrained subproblem can be expected
if the number of constraints in the cluster is maximal. Identifying such sub-
problems can be conceived as a graph-theoretical optimization problem, where
the goal is to find a decomposition of a graph into clusters that minimize the
number of edges between the clusters. However, this is a NP-hard problem (see
[WF97],[WF99] and the discussion in section 6.6).

In the following, we introduce a simple heuristic for identifying subproblems
forming meta-variables that is based on the second approach instead. It consists
of selecting cliques in the SD Graph that have a minimum number of arcs to
the remaining elements of the SD Graph. In this case, the scheme of the meta-
variable involves a minimal number of variables from the system description, and
thus we can hope that the domain size of the meta-variable — which is limited
by the cross-product of the domains of the involved variables — is small. This
optimization is repeatedly applied for each clustering step. Compared to cluster-
ing heuristics that are based on identifying tightly constrained subproblems, it
can be viewed as a bottom-up heuristic. The algorithm for building the SD Tree
is thus refined as follows.

Step la From the set of cliques, choose a clique that has a minimum number of
arcs to the remaining elements of the SD Graph.

Figure 6.3 shows a SD Tree that is the result of applying this heuristic to the
model of the pedal position sensor. The heuristic does not guarantee an optimal
topology of the tree, because the true domain size of the meta-variables is not
only determined by the number of the involved variables, but also by the resulting
constraint type (i.e., its tightness). However, we found for the device models
we considered in our examples that the size of meta-variables could already be
kept reasonably small using the heuristics described above, meaning that it was
feasible to represent the resulting domain values of the meta-variables. E.g. for
the behavior model used in chapter 9, the scheme of the largest meta-variable
involves less than 8 percent of the model variables, despite the presence of several
feedback loops in the model. In general, the step of building the SD Tree and
the subsequent step of minimizing it (see section 6.2.6) did not present severe
difficulties and were possible for all of the considered examples.

6.2. COMPUTATION OF MODEL RELATIONS 107

X, Pedal

Switch

X,

Node,
Xy
\ Potentiometer

Battery Node,

Figure 6.3: SD Tree for the Pedal Position Sensor obtained by applying the
heuristic described in section 6.2.5

6.2.6 Minimizing SD Trees

A synthesis tree allows to establish consistency between the variables of the origi-
nal CSP by establishing consistency among the meta-variables. Thus, computing
the model relation R amounts to establishing consistency in the SD Tree.

Dechter and Pearl [DP88] observe that directional arc consistency (DAC) is
sufficient for determining global consistency in a tree-structured (acyclic) CSP.
DAC removes inconsistent domain values from a CSP by examining every arc
exactly once (see [Tsa93]). Since the SD Tree is acyclic, establishing directional
arc consistency between the meta-variables is a sufficient condition for consistency
among all variables in the system description. This provides the foundation for
the following algorithm to minimize a SD Tree by establishing DAC:

Algorithm (Minimization of SD Tree)
Step 1 Start with root node of the tree. Set it on the agenda.

Step 2 Choose a node from the agenda and remove it from the agenda. If the
node is a leaf, then goto step 5, else determine the children of the node.

Step 3 Establish directional arc consistency between the node and its children.
Step 4 Put all the children of the node on the agenda.

Step 5 If the agenda is non-empty, proceed with step 2.

108 CHAPTER 6. COMPUTATION OF QUALITATIVE ABSTRACTIONS

The complexity of achieving directional arc consistency in a synthesis tree is
O(mk?), where m is the number of nodes (i.e. meta-variables) in the tree, and k
the (maximum) number of domain values. After minimization, solutions for the
original CSP can be generated from the synthesis tree in a backtrack-free manner
with a complexity that is linear in the size of the tree. The basic procedure is
described in [WF99]. A minimal SD Tree implicitly represents all tuples of the
model relation R. It will be used as the basic representation to compute induced
distinctions for a model relation. In the following, when referring to a SD Tree
as a data structure, we mean a minimal, normalized SD Tree.

6.3 Basic Operations on Model Relations

The previous sections provided us with an implicit representation of the model
relation R corresponding to a system description. The computation is indepen-
dent of the particular task in terms of observable and target distinctions Teps and
Ttarg. Hence, in order to derive induced distinctions for several qualitative ab-
straction problems that involve the same behavior model, the corresponding SD
Tree can be re-used for different combinations of observable or target partitions.

In chapter 5, we have seen that the computation of induced distinctions for
a variable v; requires to determine the observation partition (R, Tops) and the
solution partition ¥(R, Tobs, Ttarg). The remaining sections of this chapter de-
scribe how these partitions can be computed efficiently for a representation of
the model relation as an SD Tree. To this end, in the following it is described
how basic operations necessary to compute Q(R, Tops) and X(R, Tobs, Ttarg) Can
be carried out efficiently using a SD Tree, without the need to refer to the base
model relation explicitly. The basic operations are

(1) to restrict an individual variable of the behavior model to a subset of its
domain, as required e.g. to compute the elements Ropgr of Q(R, Tops);

(2) to project the model relation onto an individual variable, as required e.g.
to determine redundant domain values of this variable;

(3) to abstract the model relation by applying a domain abstraction, as required
e.g. to compute the elements Rgor,0Bsk of X(R, Tobs, Ttarg)-
6.3.1 Projection of the Model Relation

The projection of the model relation represented by a SD Tree on an individual
variable v; can be computed by retrieving the meta-variable MV (v;) for v; and
projecting its domain on v;:

Function Project (v;)
Step 1 Retrieve the meta-variable z := MV (v;).

Step 2 Return II,,(DOM (x)).

6.3. BASIC OPERATIONS ON MODEL RELATIONS 109

The complexity of this operation is equal to the complexity of projecting the
relation DOM (z) on v;, i.e. O(k) if k is the size of this relation.

6.3.2 Restriction of the Model Relation

The restriction of a variable v; to a subset F;j of its domain for a model rela-
tion represented by a SD Tree can be computed by retrieving the meta-variable
MYV (v;), restricting it to the domain values consistent with P; ;, and establishing
consistency with the remaining meta-variables:

Function Restrict (v;, P, 1)
Step 1 Retrieve the meta-variable z := MV (v;).
Step 2 Restrict DOM () to oy,=p, , (DOM (x)).

Step 3 Return the minimized SD Tree.

The complexity of this operation is determined by the complexity for mini-
mizing the SD Tree, which is given by O(mk?) (see section 6.2.6).

6.3.3 Abstraction of the Model Relation

Determining the relation 7(R) for a domain abstraction 7 and a model relation
R represented by a SD Tree is not accomplished by applying 7 to every meta-
variable of the SD Tree. Instead, a variable can only be abstracted once it is
ensured that the variable is not further shared with other meta-variables of the
SD Tree. This principle leads to a bottom-up evaluation of the SD Tree. For
each meta-variable x in the SD Tree, let T,,s denote a domain abstraction such
that

o { Ti v; € scheme(x) \ scheme(Zshared)

Tns,i .
’ Tid,; otherwise

The domain abstraction 7,5 abstracts the variables in the scheme of x that
are not shared at all or only shared with meta-variables in the subtree induced by
. Based on this, the following function returns a relation that is the abstraction
of the subtree induced by node V:

Function Abstract (V, 1)
Step 1 If V is a leaf, return 7(DOM (V(z))) and exit.
Step 2 Let Vi, ..., Vi be the children of V. Return

Tns(Abstract(Vi, 7) b Abstract(Va,) pa ... >1 Abstract(Vg, 7).

The relation 7(R) is then obtained by calling the function Abstract(V,T)
with V being equal to the root of the SD Tree. The complexity of this oper-
ation is O((kq)™), where k, < k is the maximal size of the abstracted domain
T(DOM (z)) for a meta-variable z.

110 CHAPTER 6. COMPUTATION OF QUALITATIVE ABSTRACTIONS

6.4 Computing Induced Distinctions

In chapter 5, it was stated how induced distinctions for a qualitative abstraction
problem QAP can be determined from the observation partition Q(R, Tops) and
the solution partition (R, Tops, Ttarg). The following sections describe how ob-
servation partitions and solution partitions can be computed for a model relation
based on the operations described in section 6.3.

6.4.1 Determining Observation Partitions

The partition (R, Tops) consists of the subsets Rops i of R that are consistent
with different external restrictions OBS}). Assume we are given a tuple OBSy €
Tobs(DOM (v)). Then using the SD Tree representing R,

ROBS,k: = R OBSk

can be determined by restricting each variable v; to II,, (OBSy) and minimizing
the SD Tree (see section 6.3.2). However, since this must be repeated for each
OBSy € Tobs(DOM (v)) in order to obtain the elements of Q(R, Tops), this is
infeasible for large sets of possible external restrictions. Another problem is
that the number of tuples OBSy can be too large for representing the resulting
set (R, Tobs) by explicitly enumerating its elements. Fortunately, the implicit
representation of the model relation in the form a SD Tree can also provide the
basis for an implicit representation of partitions of the model relation. In the
following, we present an algorithm that

(1) represents the observation partition implicitly within the SD Tree,
(2) decomposes the computation of Ropg, for the individual variables v;.

The first technique is based on the idea that the relations Ropsx can be
represented within the SD Tree. Given a tuple OBSj, instead of removing the
domain values of each meta-variable that are inconsistent with OBS), and keep-
ing the domain values that are consistent, we can represent the consistency or
inconsistency of domain values with OBS}y as a partition for the meta-variables.

Definition 50 (Domain Partition of Meta-Variable) A domain partition
of a meta-variable x is partition of the set DOM (x).

By labeling the obtained partition elements of meta-variables as either consis-
tent or inconsistent with the given external restriction, we can keep track of the
information which meta-variable partition element belongs to which observation
partition element Rops k. Note that the domain of a meta-variable x corresponds
to a set of tuples, hence a partition element of a meta-variable corresponds to a
relation over the variables in scheme(x).

The implicit representation of Q(R, Tops) through partitions of meta-variables
in the SD Tree greatly reduces the overall number of partition elements that are

6.4. COMPUTING INDUCED DISTINCTIONS 111

needed to represent the observation partition. While the observation partition
can consist of as many partition elements as tuples in R, there are maximal m - k
partition elements in a SD Tree, where is m the number of meta-variables in the
SD Tree, and k the maximal domain size of a meta-variable.

The second technique is based on the idea that it is not necessary to iterate
over all OBSy, € Tobs(DOM (v)). Instead, the consistency or inconsistency with
external restrictions can be determined by successively considering the observable
partition elements P; ; € 7y of the individual variables v;. Given a qualitative
abstraction problem QAP with the model relation R represented as a SD Tree and
observable distinction Teops, the following algorithm determines the observation
partition:

Algorithm (Computation of Observation Partition)

Step 1 For each meta-variable x, set mq equal to the trivial partition { DOM (z)}.
Step 2 Choose a variable v; and an observable partition element P € Tops,i-

Step 3 Determine the restriction of R to v; = P;;. For each meta-variable z,
this yields a partition 7, = { Peons, Pincons } where Peons € DOM (x) denotes
domain values that are consistent and Pipcons € DOM (x) domain values
that are inconsistent with the restriction.

Step 4 For each meta-variable z, set 7o := M ERGE(mq, 7). For each partition
element of mg that is a subset of P..,s, label it as consistent with the
observation v; = P 1.

Step 5 Proceed with step 2 until all variables and all observable partition ele-
ments have been considered.

The result is an implicit representation of the observation partition through
partitions mq of the meta-variables in the SD Tree. Each partition element of a
meta-variable has a label representing the partition elements Rppgy it belongs
to.

Theorem 4 (Computation of Observation Partition) For a model relation
R given as an SD Tree, the partition Q(R, Tobs) can be computed in time polyno-
mial in n, o, m and k, where n is the number of variables, o the mazimal number
of elements in the domain partitions Teys;, m the number of meta-variables in
the SD Tree, and k the mazimal domain size of a meta-variable.

Proof. In the algorithm above, maximally n - o restrictions of R have to be
considered. Each such restriction can be computed in O(mk?). In step 3 of the
algorithm, maximally k partition elements of a meta-variable can occur. O

112 CHAPTER 6. COMPUTATION OF QUALITATIVE ABSTRACTIONS

6.4.2 Determining Solution Partitions

The elements of the partition (R, Tops, Ttarg) are formed by the elements Rops
of the observation partition that are consistent with the same tuples of the set
Ttarg(DOM (v)) (see section 5.7.1). In order to obtain the solution partition,
we have to determine, for each element Ropg i, of the observation partition, the
tuples of the set Tgarg(DOM (v)) that Rops, is consistent with. Assume we are
given a tuple SOL; € Tiarg(DOM (v)). Then the Ropsy that are consistent
with SOL; can be determined by restricting each variable v; to II,,(SOL;) and
minimizing the SD Tree. Hence, in principle, the solution partition can be de-
termined by iterating over the tuples SOL; and identifying the elements in the
observation partition that are consistent with different sets of SOL;.

We can apply the same principles as outlined in section 6.4.1 in order to rep-
resent the solution partition implicitly within the SD Tree and to decompose the
computation of the Rsor, oBs,i for individual variables v;. Again, the consistency
or inconsistency of parts of the model relation with a specific SOL; is reflected
in the form of partition elements for the meta-variables.

Given an observation partition Q(R, Tops) represented as partitions of meta-
variables in a SD Tree and a target distinction T¢qrg, the following algorithm
determines the solution partition. Here, DOMgq(z) denotes the elements of the
partition 7 of x:

Algorithm (Computation of Solution Partition)
Step 1 For each meta-variable z, set 7y equal to trivial partition {DOMq(x)}.
Step 2 Choose a variable v; and a target partition element P € myqrg,;i-

Step 3 Determine the restriction of R to v; = P; ;. For each meta-variable z,
this yields a partition 7y = {Prons, Pincons} of DOMgq(x) where Peons C
DOMgq(x) denotes elements that are consistent and Pipcons € DOMgq(z)
elements that are inconsistent with the restriction.

Step 4 For each meta-variable MV, set my, := M ERGE (75, 7). For each par-
tition element of mx: that is a subset of P,,,s, label it as consistent with the
solution v; = P .

Step 5 Proceed with step 2 until all variables and all target partition elements
have been considered.

The result is an implicit representation of the solution partition through par-
titions 7y of the meta-variables in the SD Tree. Each partition element of my is
labeled with tuples SOL € Tiarg(DOM (v)).

Theorem 5 (Computation of Solution Partition) For a model relation R
given as an SD Tree, the partition ¥(R, Tobs, Ttarg) can be computed in time poly-
nomial inn,s, m and k, where n is the number of variables, s the mazrimal number
of elements in the domain partitions Tiarg:, m the number of meta-variables in
the SD Tree, and k the mazximal domain size of a meta-variable.

6.4. COMPUTING INDUCED DISTINCTIONS 113

The proof is analog to the proof of theorem 4.

Example 17 (PPS Model) Consider the qualitative abstraction problem that
consists of the pedal position sensor model described in example 1, the observ-
able distinctions described in example 5, and the target distinction described in
example 6. For the SD Tree of the pedal position sensor model shown in figure
6.3, node X5 is associated with a meta-variable x that has a single variable in its
scheme:

scheme(x) = Pedal.position

Its domain consists of siz values:
val; = 0%, valy = 20%, vals = 40%, valy = 60%, vals = 80%, valg = 100%.

The partition wq for x consists of six partition elements that are consistent with
different sets of observations:

Po1 = {vali} with the observation vpor = [0V, 2V), vsyiten, = [0V, 2V),

e Pqoo = {vala} with the observations vper = [0V, 2V), Uswiter, = [0V, 2V) and
Upot = [2‘/; 4V); Vswitch = {OV, 2V)7

o Po3 = {vals} with the observations vpo; = [2V,4V), Vswiten = [0V, 2V) and
Upot = [4‘/; 6V); Vswitch = {OV, 2V)7

o Po4 = {valy} with the observations vpor = [4V,6V), vsyiten, = [8V,10V)
and Upot = [6V78V); Vswitch = [8‘/7 10V);

o Pos = {vals} with the observations vpor = [6V,8V), vsyiren, = [8V,10V)
and Upot = [SV, 10V); Uswitch = [8V7 10‘/);

e Pos = {valg} with the observation vy = [8V,10V), vgyiter, = [8V, 10V).
The partition wy for x consists of two partition elements:

o P51 ={Paa,Paz2, Pas} consistent with the solution vsyiwen = [0V, 2V),

e P59 ={Pau4,Pas,Pag} consistent with the solution vsyiten, = [8V,10V).

|

6.4.3 Verifying Properties of Qualitative Abstraction Problems

For the sections above, we have assumed that for a given qualitative abstrac-
tion problem QAP = (R, Tobs, Ttarg), the preconditions necessary for applying
theorems 2 and 3 in chapter 5 hold. In this section, we are concerned with the
problem of how to determine whether a given QAP fulfills these preconditions.
The preconditions to fulfill are minimality, observability, and consistency of QAP.
The latter is only necessary in the case where a complete solution is requested.
Using a representation of R as a SD Tree, these preconditions can be checked as
follows:

114

(1)

(3)

CHAPTER 6. COMPUTATION OF QUALITATIVE ABSTRACTIONS

checking minimality of QAP can be done after minimization of the SD Tree
by computing the projection of R on each variable v; in oder to determine
redundant domain values (alternatively, minimality can be established by
removing the redundant domain values from the domains);

checking observability of QAP corresponds to checking whether for each
target partition element P;j of a variable v;, there exists an element of
DOMq(MV (v;)) that is consistent with P; ;, and inconsistent with all other
target partition elements (this can be verified in step (4) of the algorithm
in section 6.4.2);

checking the consistency of QAP is equivalent to checking if the abstraction
of the model relation Tops(R) is equal to the space of external restrictions
Tobs(DOM (v)).

Figure 6.4 summarizes the computational steps necessary for solving a qualitative
abstraction problem.

Decompos. Compute 2 [€— T, Apply
Theorem
v 2/3
A
\4 QAP
Dual CSP Compute ¥ |€— Ty, consistent?

Sol. Partition

Uh

Figure 6.4: Computational Steps for Deriving Induced Distinctions

6.5 Transforming System Descriptions

The elements Rsor,0oBs,k of the solution partition can finally be used to com-
pute the induced distinctions. According to theorem 2 in chapter 5, an ab-
straction 7r§nd7i of Ting; can be derived by determining the projection of each
Tobs(Rsor,0Bs,k) on the variable v;. Theorem 3 in chapter 5 states that mj,q; is

6.5. TRANSFORMING SYSTEM DESCRIPTIONS 115

obtained by determining the interchangeable values for variable v; with respect
to each Tobs(RSOL,OBS,k)- As theorem 1 in chapter 5 states, the result has to be
merged with the target distinction T¢arg. The qualitative abstraction Tina(R) of
the behavior model can finally be obtained by applying the corresponding domain
abstraction T;nq4 to R (see section 6.3.3).

The induced distinctions Tjnpqg and the transformed behavior model T;,4(R)
constitute in principle the solution to the problem of automated qualitative ab-
straction. However, the employed model-based problem solving framework (see
section 7.1.1) is currently not able to process the transformed behavior model
Tind(R) directly due to the involved additional behavior constituents (i.e., super-
components). Instead, the result has to be mapped back to the original model
fragments of the system description. If 7;,4 has to be mapped back to the be-
havior model fragments of the system description, a problem arises since Tind
cannot be simply applied to each of the model fragments. This is illustrated by
the following example.

Example 18 (Cascaded Equality) Let v = (vq,v2,v3), DOM (v;) = {0,1,2}.
Let R express the behavior vi = vy = v3, t.e.

R(v) = {(0,0,0),(1,1,1),(2,2,2)}.
Assume that the only non-trivial observable partition is given for variable vy

Tlobs,1 — {{0}> {1}7 {2}}

and that the only non-trivial target distinction is to determine whether vs is zero
or not:

Ttarg,3 = {{0}, {17 2}}
Then the induced distinctions are

Tind,1 = {{0}7 {1’ 2}}7 Tind,2 = {{07 1, 2}}) Tind,3 = {{0}7 {17 2}}

Let the corresponding domains be DOM;y,q ;. Assume that R(v) has been com-
posed of two relations Ry and Ro

Ry (1)1, UQ) = {(07 0)7 (1’ 1)7 (2’ 2)}7
RQ(U% U3) = {(Oa 0)7 (L 1)7 (2a 2)}

Then applying Ting to the original relations Ry and Rg yields

Rll(vla UQ) = {({0}7 {07 L, 2})7 ({1’ 2}7 {0’ L 2})}
R/Q(UQa U3) = {({0’ L, 2}7 {0})7 ({0’ L, 2}7 {17 2})}

and composing the relation R again results in
1 X Ry = DOM;pg1 X DOM;ng1 X DOMipng.1,

i.e. the composed relation contains no restriction. O

116 CHAPTER 6. COMPUTATION OF QUALITATIVE ABSTRACTIONS

This illustrates that if the relation 7;nq(R) is to be decomposed into the
original behavior model fragments, possibly more distinctions are needed than
provided by the induced distinctions. The problem is related to representing an
n-ary relation as a set of relations with arity smaller than n. [RPD90] shows that
it is in principle possible to break down relations with higher arity into relations
with smaller arity without altering the set of solutions.

Below, we describe an approach to this problem that is based on the algo-
rithms already developed in this chapter. The idea is that all variables in the
model must have enough distinctions to represent any reduction of their domain
resulting from an external restriction. Accordingly, the approach to deriving the
additional distinctions for a compositional model is as follows:

Algorithm (Additional Distinctions for Compositional Model)

Step 1 Let Tops’ be the abstraction of Tops derived by theorems 2 and 3.
Step 2 Compute the observable partition Q(R, Tops')-

Step 3 Set the solution partition equal to the identical partition, i.e. each el-
ement of the observation partition constitutes a partition element of the
solution partition that needs to be distinguished.

Step 4 Compute the induced distinctions for the solution partition.

For the resulting domain abstraction, the transformed behavior model frag-
ments contain sufficient distinctions in order to obtain the same restrictions as
the transformed composed model in the case of orthogonal solutions (see section
3.6.1). For the example above, the additional partition {{0}, {1,2}} for variable
vy is derived.

6.6 Discussion

The methods described in this chapter are based on the SD Tree as a central
data structure that “compiles” the model relation R into a an implicit represen-
tation in order to avoid combinatorial explosion. It has been shown how such an
implicit representation can be used as a basis to efficiently derive task-dependent
qualitative abstractions of R. It is therefore worth to discuss in more detail under
which preconditions such a representation is feasible.

The SD Tree data structure is adapted from the method described in [WF99],
which is an extension of the tree clustering method described in [DP88]. Weigel
and Faltings already note that the synthesis tree is a data structure that is espe-
cially well-suited for repeated “queries”, because in this situation, the necessary
effort for compilation pays off. The approach presented in this chapter employs
this idea. However, there are many differences of the approach described in this
chapter to the work described in [WF99]. Weigel and Faltings represent the
domains of meta-variables explicitly by enumerating the respective tuples. They

6.6. DISCUSSION 117

use local (neighborhood) interchangeability to get a more compact representation
of the domains of meta-variables. This causes extra effort for computing inter-
changeable values, as meta-values must be updated during construction of the
synthesis tree. We use an OBDD representation for the domains of meta-variables
instead. Our experiments indicate that this leads to a far more efficient represen-
tation than representing the domains by enumerating their elements. Weigel and
Faltings are concerned only with the efficient representation of solutions to con-
straint satisfaction problems, and not with applying this representation within
the context of model abstraction.

The computational complexity of the operations on the SD Tree, hence the
complexity of all of the algorithms described in this chapter, is determined by
the factor k£ that denotes the maximal domain size of a meta-variable. Section
6.2.5 described a heuristic for optimizing the topology of the resulting SD Tree
with the goal to minimize k. Weigel and Faltings ([WF99]) present a top-down
heuristic for identifying subproblems in a CSP that is based on a decomposition
method called recursive spectral bisection. It applies a median cut procedure
that determines a partitioning of the variables in the constraint graph such that
the number of inter-partition edges is minimized. The results are used for a
bottom-up decomposition algorithm that heuristically finds cliques of variables
to be clustered into meta-variables. This heuristic is related to the maximum
degree variable ordering heuristic in backtrack search (see [Tsa93]), where the
node to be instantiated next is the one with the most constraints on the already
instantiated variables.

[GLS00] provides a comparison of different CSP decomposition methods based
on the classes of problems that are tractable, and presents a method called hy-
pertree decomposition that is optimal in the sense that its class subsumes those
of other known decomposition methods. It is also shown that for the special
case of binary CSPs (corresponding to a SD Graph), hypertree decomposition is
essentially equivalent to the tree clustering method ([DP8§]).

Using the SD Tree, the computational complexity of deriving task-dependent
qualitative abstraction can be bound to structural properties of the system de-
scription. This is the basis to identify tractable subsets of qualitative abstraction
problems. The principle is that if the maximal size of meta-variables is bound,
then the complexity of deriving task-dependent qualitative abstractions is poly-
nomial (see also the theorems 4 and 5).

Resistive networks ([Mau98], [Ran98]) are a special class of devices that can be
modeled by a class of component types describing the generation, transportation
and consumption of energy. [Ran98] observes that for clustering such component
types, the resulting super-components have the same relation types as the original
component relations. This means that the meta-variables correspond again to
components. [Ran98| calls this property the closure property of component types
describing resistive networks. This means that for behavior models describing
resistive networks, the maximal size k of meta-variables is constant and equal to
the size of the original component relations. Hence, resistive networks correspond
to a class of problems where task-dependent qualitative abstraction is tractable.

118 CHAPTER 6. COMPUTATION OF QUALITATIVE ABSTRACTIONS

The clustering step performed in building synthesis trees is related to the
compilation method described in [dK92]. In this paper, de Kleer proposes a com-
pilation step for structures in the system description called “modules” (which can
consist of a subset of components of the system). The compilation derives the
prime implicates of the respective constraints. Hence, for a given input-output
structure, boolean constraint propagation is sufficient to determine the result.
The problem with this approach is that the compiled device grows exponentially
in the size of inputs and outputs. De Kleer observes e.g. that for an example
involving a 20-bit multiplier, the approach becomes infeasible. De Kleer’s ap-
proach is equivalent to deriving the relation R explicitly for a subset of variables
corresponding to input and output terminals of the module. The method pre-
sented in this chapter also determines the relation R, but in contrast to de Kleer’s
algorithm, it provides no explicit representation for it.

The chapter was not concerned with the questions of what aspects of the
application problems outlined in chapter 2 can be addressed by the algorithms,
and how they fit into the general framework for model-based problem solving
outlined in chapter 3. This will be the topic of the next chapter.

6.7 Summary

This chapter put the computation of task-dependent qualitative model abstrac-
tions to work by developing efficient algorithms to compute induced distinctions
based on propagation of constraints. The algorithms use the SD Tree as a data
structure that represents the behavior model relation implicitly and can exploit
problem-specific features in order to avoid combinatorial explosion.

The complexity of deriving solutions to a qualitative abstraction problem is
thus bound to the problem-specific structure of the device model. This is the
basis to scale up to real-world problems (an example will be given in chapter
9). The implementation of these algorithms and their integration into a general
framework for model-based problem solving will be the topic of the next chapter.

Chapter 7

A Prototypic System for
Task-dependent Qualitative
Model Abstraction

This chapter describes how computer-supported qualitative model abstraction
can be embedded into — and extends — an existing framework for model-based
prediction and diagnosis.

The first section of this chapter outlines an existing model-based framework
and its basic software components and interfaces. Then, an enhanced framework
is proposed that incorporates three additional prototypic software components
that implement the methods developed in chapters 5 and 6.

One software component generates transformed system descriptions. It re-
ceives a base system description and a domain mapping for the variables, pro-
ducing as output an abstracted system description that is the result of applying
the domain mapping to the base system description.

A second software component computes task-dependent qualitative domain
abstractions. Given a qualitative abstraction problem, i.e. a system description
and a description of the task in terms of target and observable distinctions, it
computes a domain mapping corresponding to induced distinctions.

The third software component applies qualitative domain abstractions to real-
valued, time-varying data. Based on the domain mapping underlying the trans-
formed model, this component outputs observations (i.e., external restrictions)
that are at the level of granularity of the transformed model. The resulting quali-
tative observations can be used to perform model-based prediction and diagnosis
for the transformed model.

The second part of the chapter presents a number of principled examples
that illustrate how the enhanced framework can be used to support automated
modeling, and in particular the re-use of numerical models in the context of
model-based systems.

119

120 CHAPTER 7. PROTOTYPE FOR QUALITATIVE ABSTRACTION

7.1 Overview of Components and Interfaces

This section provides an overview of a prototypic system that implements auto-
mated, task-dependent qualitative model abstraction. The prototype builds on
components of an existing model-based reasoning framework that is described in
the following section.

7.1.1 Components of the Raz’r Framework

Raz’r (see http://www.occm.de) is a commercial framework for model-based
behavior prediction and diagnosis. Among others, it contains the following com-
ponents:

o a Constraint Type Editor that allows to define finite domains and constraint
types over these domains;

e a Development System that allows to define component types and device
structures in order to compose system descriptions;

e a Run-time System that implements consistency-based diagnosis (GDE, see
section 3.6.2) for a system description and a given set of observations.

Constraint types, component types and device structures are stored persis-
tently in a model library. The constraint system underlying Raz’r’s constraint
network generation and reasoning represents constraints as ordered binary deci-
sion diagrams (OBDDs) (see [Bry92]). Part of the constraint system is the con-
straint compiler, which allows to perform basic operations on constraints, such
as join or projection (see section 3.2.2). Figure 7.1 depicts the basic components
of the Raz’r framework.

7.1.2 Interfaces of the Raz’r Framework

The following types of files are exchanged between the components (all files are
given in Extensible Markup Language format (XML, see [XMLO00))):

Constraint Type Library.cll defines domains and constraint types that can
be used for building component types in the development system.

System Description.xml defines a behavior model of a device in terms of a
structural description and component types (see section 3.4).

Observation Description.xml contains observations (i.e. external restrictions
for variables in a system description) attributed with time points.

7.1. OVERVIEW OF COMPONENTS AND INTERFACES

Structure

Physical

Development |«
System and
Constraint SD

Type Editor

A

Model
Fragments

y

Model
Library

y

Run-time
System

System

Measurements

Figure 7.1: Basic components of the Raz’r framework

7.1.3 Components of the Enhanced Raz’r Framework

121

The ideas outlined in the previous chapters lead to the implementation of a
prototypic system termed AQUA (Automated Qualitative Abstraction). Its name
alludes to the vision of supporting a free “flow” between tasks requiring different
granularity of knowledge. In addition to the basic Raz’r components outlined in
section 7.1.1, it consists of the following three components:

e a component for the Computation of Induced Distinctions that determines
task-dependent qualitative abstractions based on the algorithms described

in chapter 6;

e a System Description Generator that applies a domain abstraction to a sys-
tem description in order to transform the system description (in particular,
the involved constraint types) to the granularity of the derived qualitative

values;

o a Signal Transformation Module that generates qualitative observations

based on real-valued, time-varying data.

Figure 7.2 depicts the components of the enhanced framework. Similar to the
original Raz’r components, the components of AQUA have been implemented in
Microsoft Visual Basic 5.0 under Windows NT 4.0, using Microsoft’s Component
Object Model (COM) technology to enable a modular design. In the following,
these additional components and their interfaces will be described in more detail.

122 CHAPTER 7. PROTOTYPE FOR QUALITATIVE ABSTRACTION

Structure Physical
Development |« System
System and
Constraint Tobs .
P Induced Dist. | ependent
Distinctions
A Ttarg
Tind
Measurements
»| Generate SD
Model Signals
Fragments Tina(SD)
A \
Model Run-time . 0BS Signal
Library System D Transform.

Figure 7.2: Software components of AQUA

7.1.4 Interfaces of the Enhanced Raz’r Framework

In addition to the file types present in the original Raz’r framework (section
7.1.2), AQUA uses the following file types (except for the measurement files, all
files are again given in XML format):

Partition Description.xml defines either a target partition, observable parti-
tion, or induced partition. For example, the following partition description
specifies a domain partition for v; that separates the values high and low
from the value medium:

<Partition VARIABLE_NAME="v1">
<PartitionElement>
<Value VALUE="high"/>
<Value VALUE="low"/>
</PartitionElement>
<PartitionElement>
<Value VALUE="medium"/>
</PartitionElement>
</Partition>

Domain Mapping.xml defines mappings from a base domain to an abstracted do-
main. If the base domain is finite, domain values of the abstracted domain
are specified by enumerating the respective domain values of the base do-
main, just as for a partition description. If the base domain is equal to
the real numbers, the domain values of the abstracted domain are specified

7.1. OVERVIEW OF COMPONENTS AND INTERFACES 123

by a set of extended intervals. A set of extended intervals is any finite
set of open, half-open or closed intervals over the domain of real numbers
extended by —oco and oco. For example, the domain mapping

B medium : vi =20
LN highoordow i vy € (—00,0) U (0, 00)
can be specified as

<Domain NAME="Dom"
BASEDOMAIN_NAME="Real Numbers">

<DomainValues>
<DomainValue VALUE="medium">
<PartitionElement>

<Interval LEFT_VALUE="0" LEFT_TYPE="closed"
RIGHT_VALUE="0" RIGHT_TYPE="closed"/>
</PartitionElement>
</DomainValue>
<DomainValue VALUE="high_or_low">
<PartitionElement>
<Interval LEFT_VALUE="MINF" LEFT_TYPE="open"
RIGHT_VALUE="0" RIGHT_TYPE="open"/>
<Interval LEFT_VALUE="0" LEFT_TYPE="open"
RIGHT_VALUE="INF" RIGHT_TYPE="open"/>
</PartitionElement>
</DomainValue>
</DomainValues>
</Domain>

Variable Mapping.xml defines a mapping between variables of a system descrip-
tion and domain mappings. The base domain of the domain mapping must
be equal to the domain of the variable as specified in the system description.

Parameter Description.xml defines values for parameters in a system descrip-
tion and additional (component-specific) constraint types, such as charac-
teristic maps. A parameter description provides a means to further spe-
cialize component types, e.g. a valve or an engine, for a specific device.
Parameters and constraint types in a parameter description can be speci-
fied based on the domain of real numbers, and therefore they can be adopted
more or less directly from numerical models or design specifications.

Signal Transformation Description.xml defines observations by specifying a
mapping between real-valued signals contained in a raw data file (see below)
and variables in a system description. The value for a variable at a point in
time is obtained by applying the corresponding domain mapping from real
numbers to its qualitative domain.

124 CHAPTER 7. PROTOTYPE FOR QUALITATIVE ABSTRACTION

Measurements. [xml|dat] contains numerical, time-varying measurements ob-
tained e.g. from a vehicle. The .dat format is a proprietary file format
of VS100, a measurement acquisition tool that is of wide-spread use in the
automotive industry (see also chapter 8). A single measurement file can
consist of several signals that have been recorded simultaneously.

7.1.5 Prototype for Generation of System Descriptions

This software component generates transformed system descriptions, i.e. device
models. On the one hand, a device model can be abstracted by applying domain
mappings for the variables occurring in the model. The base domain of a domain
mapping can be either the set of real numbers or a finite domain. On the other
hand, the software component can be used to further specialize device models by
applying parameter descriptions.

The software component consists of two parts. The first part is a file Real
Numbers Constraint Type Library.cll, which contains pre-defined unary, bi-
nary and ternary constraint types such as +, —, %, /, =, <, or < over a base
domain with the key word Real Numbers. These constraint types can be used
within the Development System and mixed with constraint types over other (fi-
nite) domains in order to define component types and system descriptions. The
real-valued constraints have no meaning for the original Raz’r constraint system,
and are basically treated as empty constraints over empty domains.

The second part is a tool that abstracts and specializes system descriptions,
in particular the constraint types contained in a system description. The input is
a system description, one or more domain mappings, one or more variable map-
pings, and possibly one or more parameter descriptions. The output is a modified
system description that is the result of restricting parameters and component-
specific constraint types through the parameter description, and abstracting the
domains of the system variables by the respective domain mappings. To this end,
the constraint types the variables are involved in have to be transformed and the
domains of the variables have to be replaced by the new domains. In the case of
a real-valued parameter or constraint type, the system description generator —
based on recognizing the key word Real Numbers — generates the corresponding
finite relation from the definition of domain values as sets of extended intervals.

The system description generator features a graphical user interface in order
to select input and output files and to inform the user about intermediate results,
such as the size of the generated constraints. It uses Raz’r’s interfaces to read,
manipulate, and write system descriptions. Figure 7.3 shows a screenshot of the
system description generator.

7.1.6 Prototype for Computation of Induced Distinctions

This software component is the central part of AQUA. It computes task-dependent
domain abstractions based on the algorithms described in chapter 6. The inputs
are a system description and partition descriptions for observable and target dis-

7.1. OVERVIEW OF COMPONENTS AND INTERFACES 125

. CTGen [_ O] x]

File Edit W[l

Report Level Short AI

LoadingVa | Bapat Level Medium ,
- replaced O = Level L \IE)
- replaced C + Repart Level Long Blue'

R ::E::gzg E Compile Clauses ta Canstraints
- replaced Domain for YWariable ‘adder2 TV.T1.Walue'

- replaced Domain for Wariable ‘Adder2 TV.T 2. W alue'

- replaced Domain for Wariable Multiplier]. TV R esult)\ slus’
Loaded Wariable Mapping.

Gererating Constraint Types...

- generated Constraint Type 'B0D0' [13 tuples)
- processed Part ‘Adder]’

- generated Constraint Type 'B0D0' [13 tuples)
- processed Part ‘Adder?

- generated Constraint Typs MULT' [9 tupleg]
- processed Part "Multiplier!
Generated Constraint Types.

[~

Figure 7.3: Screenshot of the System Description Generator (generating a system
description for the pedal position sensor)

tinctions. If no observable partition is specified, the finest possible granularity
will be assumed. The task-dependent observable or target distinctions can be
either read in as files, or interactively defined by the user through a built-in
graphical Partition Editor (see figure 7.5).

The software component builds an SD Tree for the model relation and uses
it, as described in chapter 6, to determine observation and solution partitions.
For each domain, domain values that are redundant will be put into a separate
partition element (alternatively, they could be removed from the domain). The
user can then choose between applying the incomplete algorithm (section 5.7.2)
or the complete algorithm (section 5.7.3) to derive induced distinctions.

As an output, first, a partition description defining the induced distinctions
can be generated. The resulting partition description can also be converted to
HTML format in order to inspect the results using a standard web browser.
Second, a domain mapping defining the mapping from the base domains to the
abstracted domains can be generated. Third, the domain mapping can also be
applied to the system description. Unlike the system description generator, how-
ever, the generated transformed system description does not retain the original
structure of constraint types in a behavior description, but instead it uses one
constraint per component (which corresponds to the dual constraint graph repre-
sentation). Variables in the model that are found to have no induced distinction
after computation (i.e. whose domain consists of one element only) can option-
ally be eliminated from the model. If all variables of a component have been
eliminated, this may eventually lead to the elimination of a component from the
model.

The component for the Computation of Induced Distinctions has a full-featured
graphical user interface that displays a graphical representation of the system
structure and intermediate results of the computation. In particular, the degree
of granularity of the transformed domains, relative to their base domains, will
be depicted. The software component and its implementation are described in

126 CHAPTER 7. PROTOTYPE FOR QUALITATIVE ABSTRACTION

&, Aqua =]

File Start Dptions

et wle s

Ficture years |

_I ---L
St

[& tuples, 8 wvariables) ;I
- identified 5 redundant domain values for wva:
- identified 3 redundant domain walues for wa:

»

position

Pedal Potentiometer

position

position

- minimized Part Switch
L - minimizing Aggregate Part Potentiometer
MNode { 11 tuples, 5 variables)
— minimized Part Potentiometer
- computed model relation.
OE .

0bservable partition deseription loaded.

Target partition description loaded.

—]

[[l ;I;“II Ll;‘

Figure 7.4: Screenshot of Computation of Induced Distinctions (deriving a task-
dependent qualitative abstraction of the pedal position sensor model)

more detail in [Kut00]. Figure 7.4 shows a screenshot of the prototype for the
computation of induced distinctions.

7.1.7 Prototype for Signal Transformation

This software component generates qualitative observations from real-valued,
time-varying data, e.g. measurements obtained from a vehicle. The input is
a measurement file specifying numerical data, a domain mapping from the real
numbers to domains occuring in the system description (as generated by the
component described in the previous section), and a signal transformation de-
scription.

The signal transformation component applies, at each time point, the domain
mapping to the signals to obtain a qualitative abstraction of the values. Only
qualitative states that are different from the previous one will be considered in the
resulting output. Thus, the amount of data is often greatly reduced compared to
the original numerical data (see also the examples in section 7.2 and chapter 9).
In addition, the signal transformation description allows to perform basic signal
preprocessing, such as specifying offsets for signals, combining several signals to
obtain derived ones (e.g., calculating the difference between a pressure signal and
the atmospheric pressure signal, or calculating the injection mass per time unit
from the injection mass per stroke and the engine speed), and applying simple
filtering methods such as smoothing.

7.2. PRINCIPLED USE FOR BUILDING MODEL-BASED SYSTEMS 127

. Partition Editor

— General
IPPS target partition IMarlin Sachenbacher

— Partitiohs

1. Yoltage N
ta

5 tage
Switch S Switchstat

e
Switch PV SwitchingPozition
Suitch MV Switch_left? 4

artition element

Save s | Clear | aK | Lancel |

Figure 7.5: Screenshot of the Partition Editor (defining target distinctions for
the pedal position sensor)

The signal transformation component supports the proprietary file format of
VS100, a standard tool-set of the automotive industry that is used for acquiring
and processing control unit data. Hence, it is the basis for utilizing the methods
within the application domain of automotive systems. Besides that, the signal
transformation component supports also an XML file format for specifying nu-
merical measurements. It is therefore possible to perform, if necessary, more
complex signal preprocessing outside this software component (e.g., using tools
like Matlab) and to feed the results back into the signal transformation compo-
nent. The output is an observation description that contains observations at the
level of granularity of the system description. This result can be used within Raz’r
to perform model-based prediction and diagnosis. Figure 7.6 shows a screenshot
of the prototype for signal transformation.

7.2 Principled Use for Modeling and Building Model-
based Systems

With AQUA, our prototypic system for task-dependent qualitative model ab-
straction, several tasks can be supported in the context of model-based problem
solving that up to now essentially had to be carried out manually. The following
section presents several examples, all taken from the automotive domain, that
illustrate principled applications of AQUA to support modeling and automated
reasoning about physical systems. Outputs shown in typewriter font have been
directly generated using AQUA. All results in this section have been obtained
using the incomplete algorithm (section 5.7.2). A larger example that illustrates
more of AQUA’s capabilities and makes use of the complete algorithm will be

128 CHAPTER 7. PROTOTYPE FOR QUALITATIVE ABSTRACTION

. Signal Transformation
File Edit Options

Figure 7.6: Screenshot of Signal Transformation Component (processing mea-
surements for the Volvo Demonstrator Car)

presented in chapter 8.

7.2.1 Determining Significant Distinctions

The most obvious use of automated domain abstraction is to determine “tailor-
made” distinctions for the magnitudes of variables in a model. This is illustrated
by the pedal position sensor example that has been introduced in chapter 1.

Pedal Position Sensor Example

Consider again the device shown in figure 1.1. As noted in section 1.1.1, we
would like to find a suitable domain for the voltage of v, that allows us to relate
the value of vy, with the value of vgyitcn, as required to perform tasks such as
on-board diagnosis (e.g., cross-checking the signals for plausibility). A generic
domain abstraction that distinguishes only between voltage gnd, between and
batt is not adequate for this task. The problem is that the distinctions in the
domain of v, must correspond to the switch-over point of the switch, hence they
cannot be anticipated in a generic model of the potentiometer. In the following,
we show how we can use the approach of task-dependent automated qualitative
modeling and the software components outlined in this chapter to automatically
derive the required granularity of vpe.
Like in example 1, the domains in the base model SDpy,. are

DOM = {[0V,2V),[2V,4V), [4V,6V), [6V,8V), [8V,10V)}
for variables involving voltage and

DOM = {0%,20%,40%, 60%, 80%, 100% }

7.2. PRINCIPLED USE FOR BUILDING MODEL-BASED SYSTEMS 129

for variables involving position.
The observable distinctions express the fact that the control unit can observe
the signal from the potentiometer and the signal from the switch:

T obs,vpot — {{[OV, QV)}’ {[2‘/7 4V)}7 {[4V7 6V)}7 {[GV’ 8V)}’ {[8‘/7 10V)}}7
Tobs v awiteh — {{[0V7 2V)}7 {[2V7 4V)}7 {[4V> GV)}a {[6V> 8V)}a {[8V7 10V)}}'

For the parameters in the model, i.e. the nominal voltage gnd and batt of the
battery and the switch-over parameter posswitching 0f the switch, it is specified
that

gnd = [0V, 2V),
batt — [8V, 10V),
POS switching = 40%.

The target distinctions are determined by the goal to distinguish between
the ground voltage, corresponding to partition element {[0V,2V)}, and battery
voltage, corresponding to the partition element {[8V,10V)}, for the domain of
the variable vgyiten:

Ttarg,vswitch — {{[0V7 2V}> {[2V> 4V)7 [4V> GV)a [GV, 8V)}7 {[8V> 10V)}}'

Based on these inputs, the component for computation of induced distinctions
determines a partition for vy, that consists of three partition elements (variable
Upot 1 denoted Potentiometer.TV.vpot.voltage in Raz’r’s system description):

<Partition VARIABLE_NAME="Potentiometer.TV.vpot.voltage"
<PartitionElement>
<Value VALUE="[8V,10V)"/>
<Value VALUE="[6V,8V)"/>
</PartitionElement>
<PartitionElement>
<Value VALUE="[4V,6V)"/>
</PartitionElement>
<PartitionElement>
<Value VALUE="[2V,4V)"/>
<Value VALUE="[OV,2V)"/>
</PartitionElement>
</Partition>

The first qualitative value {[0V, 2V), [2V,4V)} corresponds to situations where
Vswitch equals ground voltage, the third qualitative value {[6V,8V),[8V,10V)}
corresponds to situations where vgyien €quals battery voltage, and the second
qualitative value {[4V,6V)} corresponds to situations where the position of the
switch and, hence, the voltage of vgysten, 1S ambiguous. If the three qualitative

130 CHAPTER 7. PROTOTYPE FOR QUALITATIVE ABSTRACTION

values are denoted gnd_switch, switching and batt_switch, respectively, then the
domain abstraction for vy is described as

gnd_switch : woltage € [0V,4V)
Upot = switching : woltage € [4V,6V)
batt_switch : woltage € [6V,10V)

AQUA induces also the partition
{right}, {left}
for the state of the switch and
{60%, 80%, 100%},{0%, 20%, 40%}

for the domain of the pedal position. The resulting abstracted behavior model
SDirans form has a tuple space of 9216. The original model SDjy4se, in contrast,
had a tuple space of approximately 5.6 - 107. Compared to a generic model
SDgeneric that, as indicated in chapter 1, distinguishes only between the qualita-
tive values gnd, between and batt, i.e.

gnd : woltage € [0V, 2V)
Upot = § between : woltage € [2V,8V)
batt : woltage € [8V,10V)

the derived model SDyyqnsform uses the same domain size for vy (i.e. the
tuple space is equal), but it is more adequate in the context of the specified
task. To see the differences between the three models SDpgse, SDiransform and
SDgeneric, consider the following example of an on-board diagnosis situation.
Assume that the components of the pedal position sensor that can be faulty
are the potentiometer, the switch, and the two nodes. Assume further that the
control unit of the pedal position sensor receives a sequence of ten real-valued
sensor readings as shown below:

t | Upot Vswitch
024V 05V
1|23V 0.5V
225V 05V
3134V 04V
4156V 04V
568V 0.5V
6|81V 9.7V
7183V 9.6V
8|82V 98V
9|84V 9.7V

7.2. PRINCIPLED USE FOR BUILDING MODEL-BASED SYSTEMS 131

. Signal Transformation
Fil= Edit Options

IS[=] E3

Figure 7.7: Example of Measurements for the Pedal Position Sensor (darker line
shows signal of vpgs, brighter line shows signal of vsyten,)

The measurements reflect a delayed switch-over behavior of the switch com-
ponent (see figure 7.7), as caused e.g. by a mechanical failure of this component.
For the granularity of the base model SDpgse, the signal transformation com-
ponent yields four qualitative observations at time points ¢t = 0, 4, 5 and 6,
respectively:

14 ‘ Upot Vswitch

0| [2V,4V) oV, 2V)
4| [4v,6v) [oV,2V)
5| [6V,8V) ov,2V)
6 | [8V,10V) [8V,10V)

For time point ¢ = 5, the run-time system (RTS) detects an inconsistency
of the observations with the model SDjyqs.. The run-time for diagnosis is 0.455

seconds. It yields the conflict

{Potentiometer.ok, Switch.ok, Nodel.ok, Node2.ok}

Under the domain mapping corresponding to the model SDyyqns form, i.e. the
derived qualitative model, the signal transformation component also yields four
qualitative observations at the same time points:

t ‘ Upot Vswitch
0|0V, 4V) [oV,2V)
4| [4V,6V) [ov,2V)
5| [6V,107) [0V, 2V)
6 | [6V,10V) [8V,10V)

Model SDiransform also detects the fault for time point ¢ = 5, based on the
inconsistency between vpor = batt_switch and vsyiten = gnd_switch. The run-
time for diagnosis is 0.256 seconds, i.e. about 43% less than for the fine-grained

132 CHAPTER 7. PROTOTYPE FOR QUALITATIVE ABSTRACTION

model SDpgse, which corresponds roughly to the reduction of the domain size of
Vpot- S Diransform also yields the conflict

{Potentiometer.ok, Switch.ok, Nodel.ok, Node2.ok}

Finally, for the model SDgeneric, the signal transformation component derives
two qualitative observations at time points t = 0 and ¢ = 6:

t ‘ Upot Vswitch
0] 2V,8V) [0V,2V)
6 | [8V,10V) [8V,10V)

However, model SDgyeneric, though using the same number of qualitative val-
ues as SDpgse, does not reveal the fault (i.e., it detects no conflicts), because
the qualitative observation vy = between is consistent with the observation
Vswitch = gnd

This example illustrates AQUA’s ability to support the modeling problem of
determining qualitative values, i.e. distinctions in the domain of variables that
are essential for a certain task. In this case, the task involved distinctions for the
magnitudes of variables.

7.2.2 Determining Significant Deviations and Diagnostic Distinc-
tions

Another interesting application of automated domain abstraction is to support
the derivation of significant deviations. In some cases, what constitutes a signif-
icant distinction in a model of a component is not determined by the absolute
values of other variables, but by the fact whether or not it enforces a signifi-
cant deviation on them, regardless of what their specific value is. For instance,
a view often taken in FMEA is that the function of the overall device imposes
a certain “tolerance” on the output of this device, and its components are not
considered faulty unless their behavior causes a disturbance of the output beyond
the given tolerance. If we succeed to compute the tolerances of the parameters
of the component models starting from the given functional specification, we
can automatically generate qualitative models that reflect the particular device
and its function. Section 4.3.2 has outlined such deviation models that capture
deviations of the system behavior compared to some reference behavior.

The analysis of significant distinctions developed above can be applied to de-
viation models. We can specify what is considered to be a significant deviation
of some relevant variables by target distinctions for the respective deviation vari-
able. This will induce partitions for other deviation variables, but also for the
magnitudes of the variables.

Induced distinctions can also be used to properly model the “border” that
separates correct behavior from faulty behavior. The problem to be solved is
the following: Given a set of behavior modes for each component (correct modes
and faulty ones), what distinctions have to be made in the models to help dis-
criminate among the modes? One way to address this problem is to represent

7.2. PRINCIPLED USE FOR BUILDING MODEL-BASED SYSTEMS 133

the models by including mode variables in the model relation, as described in
section 3.6.3. The goal is then to determine the model granularity given target
distinctions for the mode variables that separate the different modes. Basically,
this means treating the behavior mode like a state variable whose values have to
be completely distinguished from each other.

The following example illustrates both aspects: specifying target distinctions
for modes, and deriving distinctions for variables that describe deviations.

Container Filling Example

Consider a simple container filling problem as illustrated in figure 7.8. The system
comprises a reservoir (which is assumed to be never empty and not shown in
the figure) filled with liquid with pressure pi,e¢. It is connected via a valve
with maximal diameter A, to an outlet pipe with pressure pyuuer that fills
a container with bottom area B and vertical walls. The level of liquid in the
container is denoted [. The task is to use a model in order to design the control
scheme that opens and closes the valve in order to fill the container up to a given
height h with a precision of Ah > 0. It is assumed that the control scheme is
binary, i.e. the valve can either be fully open or fully closed.

The example does not appear to be an application from the automotive do-
main at a first glance. However, consider it to be a simplification of a controlled
injector (i.e., the valve) that is to supply a certain amount of diesel fuel to the
combustion chamber (i.e., the container) of the car engine. Below h, the fuel
mixture in the combustion chamber will be too lean in order to burn properly.
Above Ah+ h, there will be too much fuel to burn it completely, a situation that
should be avoided in any case.

Valve

Plpe | Poutiet
>< I Ah

A

Pintet

max

Container

Figure 7.8: Filling a container

All the components in the system are fairly standard, and we can easily specify
their behavior models in order to compose a base model of the example system.
The container component has two states, one that captures the situation where
the container level is within the specified range and one that represents overflow:

over flow : 1 > h + Ah,
—over flow : 1 < h + Ah.

134 CHAPTER 7. PROTOTYPE FOR QUALITATIVE ABSTRACTION

The valve model associates the equations

closed : qygive = 0
open : Qualve = Ama:r * sgn(pinlet - poutlet) ‘pinlet - poutlet’

with the states open (A = Apqz) and closed (A = 0) of the valve, where guaive
denotes the flow through the valve. But what about the transitions between the
states? For the valve, the transition between open and closed is not instantaneous,
but it requires a certain amount of time (usually referred to as the “dead time” of
the valve), during which some amount of liquid vgeqq s pouring into the container:

ClOSing - Udead S At - Amax * Sgn(pinlet - poutlet) \/ ’pinlet - poutlet‘~

The question is whether or not we have to consider this delay in our model.
I.e., is it necessary to model the dead time of the valve, or can the behavior model
of the valve be formulated using instantaneous transitions between the states open
and closed, such that the duration of the closing operation is neglected?

Usually, such a modeling question will be decided ad hoc by a human mod-
eler, e.g. relying on the fact that the valve will be closing “reasonably fast”.
From a general and systematic point of view, however, the answer depends on
the targeted precision Ah and on the characteristics of the entire configuration,
namely Piniet, Poutiets Amaz, and B. For instance, perhaps the container is so large
that the increase of the height during closing of the valve is negligible. Perhaps,
the time required for closing the valve is quite significant, because the required
precision Ah is tight or because the pressure difference pipier — Poutier 1S high.

Given these contextual conditions of the task, a human modeler of the system
would be able to manually determine a threshold for durations of the opening that
determines the boundary between significance and insignificance with respect to
the required precision Ah. Based on the result, he could then decide whether
or not it is appropriate to approximate a continuous valve model by one with
discontinuous transitions. Note that the result is also influenced by the precision
of the inputs to the calculation. For instance, if it is just known that the diam-
eter is between zero and A, during opening of the valve, a boundary on the
duration is obtained which is smaller than the one calculated for an opening that
is described as linear within a certain tolerance. In the same way, the precision
of the pressure values influences the distinctions on the duration.

In the following, we present how our method can automatically derive such
distinctions for an instance of the container filling problem. The domain for
all pressure, flow and parameter variables in the base model is, for the sake
of simplicity, assumed to be the same 19-valued domain depicted below, which
consists of open intervals and points between them:

DOM = {(—o0, —4), —4, (—4,-3),-3,...,(3,4),4, (4,00)}.

We further assume that all variables are observable at the granularity of this
base domain. The model SDpy,se formulated in terms of this domain consists of

7.2. PRINCIPLED USE FOR BUILDING MODEL-BASED SYSTEMS

135

12 variables and 2 mode variables, which means it has a tuple space (i.e. size of
DOM (v)) of 19'2.2%2 2 8.9.10%. The target distinction for the example can be
stated by giving a distinction for the state variable of the container component:

Ttarg,Tank.mode — {{overflow}, {—|O’U67“fl0w}}.

What we are then after is an answer to the question whether or not we have
to include the transition delay At of the valve’s closing operation in the model
or not. The following result is obtained for parameters Amqz, Ah, B, pipier and

Poutlet 1VEN aS

Dinlet S {(27 3)7 37 (37 4)}7
Doutlet = 0.

After computation of the model relation for SDpgse, 21036 tuples remain

consistent for the valve component.

AQUA determines the following induced

distinction for the valve delay parameter At (denoted Valvel.PV.Delay in the

system description):

<Partition VARIABLE_NAME="Valvel.PV.Delay">

<PartitionElement>
<Value VALUE="(1,2)"/>
<Value VALUE="(4,inf)"/>
<Value VALUE="4"/>
<Value VALUE="(3,4)"/>
<Value VALUE="3"/>
<Value VALUE="(2,3)"/>
<Value VALUE="2"/>
</PartitionElement>
<PartitionElement>
<Value VALUE="(-inf,-4)"/>
<Value VALUE="1"/>
<Value VALUE="(0,1)"/>
<Value VALUE="0"/>
<Value VALUE="(-1,0)"/>
<Value VALUE="-1"/>
<Value VALUE="(-2,-1)"/>
<Value VALUE="-2"/>
<Value VALUE="(-3,-2)"/>
<Value VALUE="-3"/>
<Value VALUE="(-4,-3)"/>
<Value VALUE="-4"/>
</PartitionElement>

</Partition>

136 CHAPTER 7. PROTOTYPE FOR QUALITATIVE ABSTRACTION

The first partition element corresponds to situations where overflow of the
container is possible (though will not necessarily occur). The second partition
element corresponds to situations where overflow is not possible. This means
that all situations where the delay during closing the valve is part of the second
partition element, i.e. At < 1, are equivalent to zero delay, i.e. At = 0. In other
words, the dead time of the valve can be neglected in the behavior model of the
valve if it belongs to the second qualitative value, and must be considered in the
model if it belongs to the first qualitative value.

To give an idea of the problem size, a multiplication constraint that uses the
base domain consists of 713 tuples out of a tuple space of 19 = 6859, which
amounts to a ratio of 10.4 % consistent combinations of values. For a domain
that consists just of signs, the respective constraint would have 9 tuples out of a
tuple space of 33 = 27, i.e. a ratio of 33.3 % consistent tuples. The constraint
describing the valve equation, for instance, has 23075 tuples. Compared to a
tuple space of 8.9 - 10! for the base model SDpgse, the size of the tuple space
Tind(DOM (v) of the abstracted behavior model SDyyqps form is only 1.2 - 10%.

As a modification of the task, we can also start with a given parameter for the
delay and ask for a partition for the mode variable of the valve component, given
the same target distinction for the container. Depending on the magnitude of the
delay, it will turn out to be necessary or unnecessary to explicitly distinguish the
behavior modes “closing” and “closed” of the valve. For the given parameters,
we obtain the partition:

<Partition VARIABLE_NAME="Valvel mode">
<PartitionElement>
<Value VALUE="closing"/>
<Value VALUE="closed"/>
</PartitionElement>
<PartitionElement>
<Value VALUE="open"/>
</PartitionElement>
</Partition>

I.e. the distinction between the behavior modes becomes irrelevant, if and
only if the parameter for delay is restricted to the first qualitative value.

This example illustrates AQUA’s generality in the sense that it is not limited
to deriving distinctions for magnitudes of variables, but can also be applied to
modeling problems involving behavior modes and deviations of variables.

7.2.3 Supporting Diagnosability Analysis and Design

Another important task during the design of a physical system is diagnosability
analysis. Diagnosability analysis means to decide, for a given design of a physical
system, whether the available observations are sufficient in order to discriminate
between possible behaviors of the system, which is relevant e.g. for FMEA (see
chapter 2).

7.2. PRINCIPLED USE FOR BUILDING MODEL-BASED SYSTEMS 137

AQUA can also be useful for this task. Like in section 7.2.2, the basic principle
is that distinctions between possible behaviors can be treated as target distinc-
tions for the behavior modes or states of components. The problem can then
be cast as the question whether the granularity of the available observations is
sufficient for the target distinctions we want to make.

Consider the following modification of the container example presented in
section 7.2.2. Assume we know that the transition delay At of the valve lies
between zero and two:

0< At < 2.

Because we consider the distinction between overflow and non-overflow of the
container component (which, in the context of automotive systems, can be inter-
preted as complete vs. incomplete fuel combustion) to be of great importance,
we want to augment the system by a sensor that measures the pressure p;,e; of
the liquid in the reservoir. Based on this sensor signal, we then want to decide
whether overflow can occur or not. Assume that we have the option to use a
cheap but inaccurate sensor that can only determine if the pressure is below the
threshold value 3 or not:

Tobs,pintet — {{(_007 _4)7 R (27 3)}a {37) (4a OO)}}

The question is then whether this observable granularity is actually helpful
in order to decide whether the tank is overflowing or not. Using the terminology
of chapter 5, this question can be interpreted as the task of determining whether
the target distinction between the two states of the container is observable or
not.

We can use AQUA in order to answer this question. To this end, we have to
use the same target partition as specified in section 7.2.2, and use the partition
above as the only observable distinction. AQUA determines that the granular-
ity of the sensor as shown above is not sufficient in order to observe either an
overflowing or a non-overflowing container:

For variable ’Tankl mode’, the target partition
is not observable.

This means that for both of the possible sensor readings, either of the two
behaviors is consistent. Based on this result, we might decide to employ a more
accurate sensor instead. For instance, if we have a granularity of observations for
Pinter that distinguishes all positive elements of the base domain from each other,
it turns out that the target distinction becomes observable. This example, though
simple, illustrates that AQUA can also be helpful in supporting the evaluation
of possible design alternatives of a physical system.

7.2.4 Deriving Qualitative Abstractions of Real-valued Models

In the examples that we have considered up to now, the domains of the variables in
the base model were finite. However, this might not always be the case, especially

138 CHAPTER 7. PROTOTYPE FOR QUALITATIVE ABSTRACTION

in the context of industrial applications. Instead, as outlined in chapter 2, real-
valued models or so-called hybrid models that incorporate a continuous and a
discrete part are quite common in the automotive industry, e.g. in order to
perform behavior analysis through numerical simulation. Therefore, the question
of how to exploit real-valued behavior models or behavior model fragments in the
context of problem solving is of great practical importance.

In this section, we describe how AQUA can be used in order to make use
of real-valued behavioral knowledge for automated qualitative modeling. It was
already noted in section 7.1.5 that AQUA includes a software component for
the generation of system descriptions that can derive a model with finite do-
mains starting from a system description that includes real-valued constraint
types taken from a generic set of algebraic operators. Real-valued behavioral
information that is more specific and difficult to express in the form of algebraic
constraints, such as e.g. a characteristic map, can be provided in the form of a
real-valued parameter description (chapter 8 presents an example of a parameter
description corresponding to a characteristic map).

The basic approach to make base models including infinite domains amenable
to model-based reasoning is to automatically transform them, using AQUA, to a
finite model through an initial domain abstraction from the real numbers to some
finite domain with appropriate grain size. Model-based problem solving such as
behavior prediction or diagnosis can then be performed using this abstracted
model. This is illustrated in figure 7.9.

Development SD Tt
System and » Generate SD |[¢——
Constraint
Type Editor l Tinit(SD)

A
Final SD
Real-valued
Model
Fragments

Y

Model
Library

Figure 7.9: Abstracting real-valued base models using AQUA

However, this leaves one with the question of how to choose a domain mapping
with appropriate grain size that does the initial transformation from the real
numbers to finite domains. If the initial abstraction is too coarse, we might lose
some behavioral features of the original model that are essential for the task we

7.2. PRINCIPLED USE FOR BUILDING MODEL-BASED SYSTEMS 139

want to solve, and the transformed model will be of limited use. On the other
hand, if the initial abstraction is too fine-grained, we obtain a system description
that contains unnecessarily large domains and thus unnecessarily large constraint
types, potentially rendering the further steps of model-based problem solving with
this model cumbersome or even infeasible.

AQUA can be helpful in this context. For the latter case, i.e. a too fine-
grained initial model, it is obvious that we can use task-dependent qualitative
model transformation in order to get rid of any “useless” distinctions in the
model, just as we did for the examples in the previous sections. However, for
the first case, i.e. a too coarse initial model, we cannot solve the problem by
further abstracting the model, because the relevant information has already been
abstracted away, i.e. it is “lost” in the initial model. Hence, in this situation, the
initial domain mapping has to be further refined instead of further abstracted.

But also in this case, AQUA can be helpful. The algorithm presented in
chapter 6 derives information about the solutions at the level of target distinc-
tions that a certain domain element is consistent with. This information can be
exploited in order to decide which parts of the initial domain mapping should be
refined. For instance, if a domain element is consistent with a large number of
solutions, further refinement of this domain value can help to increase the pos-
sibilities of discriminating among the solutions. This idea leads to a scheme for
qualitative abstraction of real-valued models that is depicted in figure 7.10.

Development SD Tt
System and »| Generate SD |« Refine /
Constraint Abstract
Type Editor l Tinit(SD) A
A i
Stop? Final
SD
Real-valued
Model l Tind
Fragments Compute < Tobe
v Induced Dist. |[€—— Tiarg
Model
Library

Figure 7.10: Tterative domain refinement using AQUA

In the following, this approach is referred to as iterative domain refinement of
models with real-valued base domains. For the iteration steps, different strategies
are possible in order to refine the initial domain abstraction. In the following, we
present an instance of this strategy that is based on repeatedly bisecting domain
values that are consistent with a maximum number of solutions.

140 CHAPTER 7. PROTOTYPE FOR QUALITATIVE ABSTRACTION

Iterative Domain Refinement for the Pedal Position Sensor Example

We present an application of iterative domain refinement for the pedal position
sensor device that was presented in section 1.1.1. The base model SD;.¢q; for the
pedal position sensor consists of the model fragments as shown in section 3.4.
However, the domains of the variables are now interpreted as being equal to the
real numbers. As initial domain abstraction, we start with the same domains as
specified in section 7.2.1, i.e. the initial domain for vy is

DOMy = {[0V,2V), [2V,4V), [4V,6V), [6V,8V), [8V, 10V)}.

The resulting initial model, termed S Dy, is equal to S Dpgse defined in section
7.2.1. For simplicity of the presentation, in the following we concentrate on
refining the domain of vy only, and we assume that all variables are observable
at the granularity of their base domain. Based on the target distinction for vgyssen,
AQUA derives the following partition for v, (see figure 7.11a):

Tind,vpor — {{[0‘/7 2V), [2V, 4V)}7 {[4‘/7 6V)}7 {[6V7 8V), 8V, 10V)}}

The domain elements {[0V,2V),[2V,4V)} and {[6V,8V), [8V,10V)} are con-
sistent with one solution each, whereas the domain element {[4V,6V)} is con-
sistent with two solutions. Therefore, we decide to split the domain element
[4V,6V) of DOMj into two new domain elements [4V,5V') and [5V, 6V), whereas
we aggregate the other domain elements of DOMj according to the partition.
After this first step, the domain of v,,; becomes

DOM, = {[0V,4V), [4V,5V), [5V, 6V), 6V, 10V)}.

This modified domain abstraction leads to a modified model S D of the pedal
position sensor. Using SD; and the target distinction for vgyizen, AQUA derives
the following induced domain for v,y (see figure 7.11b):

Tind,vpor — {{[0‘/7 4V)}7 {[4V7 5V), 5V, 6V)}7 {[6V7 10V)}}

We observe that the partition element {[4V,5V), [5V,6V)} is consistent with
two solutions, hence each of the new domain values is consistent with a maximum
set of solutions. Therefore, we have to further split one of the two domain values
that where newly introduced in DOMj. As an arbitrary choice, we bisect [4V, 5V)
to obtain two new domain elements [4V,4.5V) and [4.5V,5V). After this second
step, the domain of vy, becomes

DOM, = {[0V,4V), [4V,4.5V), [4.5V,5V), [5V,6V), [6V,10V)}.
Running AQUA with the corresponding model SD; yields (see figure 7.11c)

Tinduper = 1110V54V), [4V,4.5V)},{[4.5V,5V), [5V,6V)}, {[6V,10V)}}.

7.2. PRINCIPLED USE FOR BUILDING MODEL-BASED SYSTEMS 141

a) | | DOM(vpot)
—/—) —
ov 4V (1% 10V

K I [
—— |) —

) ov 4V 5V (1% 10V

[[
— —//—

d) ov 4V 4.5V 5V (1% 10V

]
—]
(1)% 45V 5V 5.5V 6V 10V

Figure 7.11: Iterative domain refinement for the domain of vy, in the pedal
position sensor example (boxes indicate the partition elements derived by AQUA,
the height of a box indicates the number of solutions for the partition element)

If we further split the largest domain value [5V,6V') that is consistent with a
maximum number of solutions into [5V,5.5V) and [5.5V,6V"), we get the following
modified domain for vpe:

DOMs = {[0V,4.5V), [4.5V,5V), [5V, 5.5V, [5.5V, 6V), [6V, 10V)}.
Running AQUA with the corresponding model SDj yields (see figure 7.11d)
Tind,oper = 1110V, 4.5V}, {[4.5V,5V), [5V,5.5V)},{[5.5V,6V), [6V,10V)}}.

Let SDjterate denote the behavior model corresponding to this partition. In
SDiterate, the domain for vy consists of the following three values:

gnd_switch’ : woltage € [0V,4.5V)
Upot = switching' : woltage € [4.5V,5.5V)
batt_switch’ : woltage € [5.5V,10V)

Note that the size of the model in terms of the tuple space has not increased
during the iterative refinement, as for each of the steps, the domain of vy, did not
contain more than the original five elements. Thus, each iteration takes roughly
the same computation time for AQUA, independent of the current iteration stage.
Only the interpretation of the domain values, i.e. the mapping from real numbers
to the domain values, is changing. The model gets thus more and more adapted
to the task it is intended for, as specified by the target distinction for vgyzep. This

142 CHAPTER 7. PROTOTYPE FOR QUALITATIVE ABSTRACTION

can be evaluated using the diagnosis example outlined in section 7.2.1. For the
granularity of the model SDjserqte, the signal transformation component yields
three qualitative observations at time points ¢ = 0, 4 and 6:

14 ‘ Upot Vswitch

0 OV.45V) [0V,2V)
4| BEV,10V) OV, 2V)
6 | [5.5V,10V) [8V,10V)

For time point ¢t = 4, the run time system detects a discrepancy between the
observations for vyt and vgyiten, and the model SDiterate. The resulting conflict
is the same that has been derived for SDpy,. for time point t = 5. Hence, based
on the reduced ambiguity for the domain of vpo, SDjterate detects the same fault
for the pedal position sensor, but one time point earlier than the model S Dpgsge
and any abstractions thereof.

This example illustrates how AQUA offers a principled way to exploit real-
valued models, as e.g. developed by tools such as Matlab/Simulink or MatrixX,
in order to make them amenable to model-based reasoning methods. In this way,
AQUA can be seen as a contribution to bridging the gap between quantitative
and qualitative modeling, a problem that has been identified in chapter 2 as one
of the major roadblocks to a more wide-spread use of model-based reasoning
techniques.

This section is also meant to illustrate the flexibility of AQUA in the sense
that further extensions like iterative domain refinement can be designed and
implemented “on top” of the AQUA components. Currently, the iteration steps
(i.e., refining the domains based on the results of AQUA) have been performed
manually. An interesting direction for further work would be to automate this
process (see also chapter 9).

7.3 Discussion

The examples in this chapter have shown how AQUA can provide automated
support for a number of difficult tasks related to modeling and building model-
based systems, which previously had to be carried out manually or solved on
an ad hoc basis. The common and concise theoretical basis is to find suitable
domains for the variables in a model. However, in different contexts this basic
task can have different interpretations, depending on what the terms variable and
domain refer to, including magnitudes, modes of components, and deviations from
reference behaviors. The example in section 7.2.2 required to find an appropriate
granularity of time, which is related to the problem of time-scale abstraction
([Iwa92, Kui94], see also section 4.5.4). AQUA provides a general framework for
these different applications.

AQUA meets also important practical requirements. The existing Raz’r sys-
tem allows to define finite domains and constraint types to be used within a
behavior model. However, committing early to specific domains is problematic

7.3. DISCUSSION 143

since it is difficult to choose the right ones ad hoc, and there is no way of adapt-
ing them except for modifying their definition. An effect of automated domain
abstraction in this context is that it “hides” — at least to a certain extent —
the definition of domains from the user, thereby increasing the transparency of
the behavior models. AQUA can thus be viewed as an extension to Raz’r that
allows to pursue a more natural and more flexible way of modeling that removes
from the user some of the burden of thinking in terms of the constraint represen-
tation and instead allows him to concentrate more on the task and the available
knowledge. Ideally, as demonstrated in the last section, the ground domains do
not have to be fixed et all, i.e. they can be equal to the real numbers, which
constitutes the standard way how engineers formulate their models.

The software components that realize this functionality have been presented
in sections 7.1.5 through 7.1.7. Although equipped with full-featured GUIs and
making use of the Raz’r interfaces, they are still prototypic implementations.
For the generation of system descriptions (section 7.1.5), possible improvements
include the identification of constraint types within the generated model. Trans-
formed system descriptions currently consist only of instances of constraints in-
stead of constraint types. However, experiments indicate that for larger models,
the identification of types of constraints could be worthwhile. The component for
the computation of induced distinctions (section 7.1.6) rests on Raz’r’s constraint
compiler. The performance of this component could immediately benefit from im-
provements of the constraint compiler; currently, it uses only a non-optimized im-
plementation of OBDDs to represent and manipulate constraint types. Another
important direction for extending this component concerns the integration into
the model revision process. Currently, all behavior modes of a component that
are defined in the system description will be included in the SD Tree. In terms of
the spectrum defined in section 3.6.3, all possible model revisions are anticipated,
and consequently, the resulting model relation can be quite large. More flexibil-
ity (and, perhaps, increased performance) could be achieved by initially including
only some of the behavior modes, and performing the computation of induced
distinctions for the remaining modes only in the case where the corresponding
revisions are really necessary. Finally, the signal transformation component (sec-
tion 7.1.7) could be extended by including further import filters for additional
data file formats or augmenting the possibilities for signal preprocessing.

For the examples, the definitions of domain values frequently involved inter-
vals over the real numbers. This might lead to the impression that the obtained
results are essentially an application of — or could be reproduced by — interval
arithmetic. However, AQUA uses intervals only to specify domain mappings that
abstract the set of real numbers. Intervals are an intuitive and powerful means
to define subsets of the real numbers, and thus they are employed for this pur-
pose. Once the abstraction is done, however, further reasoning is based on the
abstracted model, which is independent of the definition of the domain mapping.
Therefore, well-known problems of interval-based arithmetic, such as cumulation
of interval “splitting” during propagation (see [RR84], [Str90]), do not occur in
this approach, as it never combines intervals with each other.

144 CHAPTER 7. PROTOTYPE FOR QUALITATIVE ABSTRACTION

7.4 Summary

This chapter described the implementation of task-dependent qualitative abstrac-
tion in the form of three software modules. It showed how they are integrated
into a general (commercial) framework for model-based reasoning and diagnosis.
A number of principled examples illustrated how the capabilities of this enhanced
framework can be used to support automated modeling and building of model-
based systems. The principled examples leave open the question whether the
solution scales up to the real-world applications that where described in chapter
2. Therefore, the next chapter will describe a real-world application from the
domain of on-board diagnosis for automotive systems.

Chapter 8

Real-world Application:
On-board Diagnosis of a
Passenger Vehicle

The purpose of this chapter is to demonstrate the application and integration of
the software framework AQUA in the context of a real-word application. The
application we consider in this chapter is the development of a prototype for
model-based on-board diagnosis of an electronic diesel control system of a pas-
senger vehicle. This system is part of the application domain that was outlined
in chapter 2.

The resulting prototype constitutes the first model-based diagnosis system
that runs on-board a passenger vehicle. It demonstrates the ability of the ap-
proach to support the generation of appropriate models for a typical automotive
system. Evaluation using measurements from a demonstrator car shows that the
prototype performs favorable compared to traditional on-board diagnostic ap-
proaches, as it allows to diagnose failures that are not diagnoseable or, at least,
hard to diagnose with the existing on-board diagnosis functionality of the ECU.

8.1 Background and Motivation

As outlined in chapter 2, increased environmental awareness poses stricter con-
straints on car manufacturers to develop clean cars and also to keep them clean
during their life cycle. These growing constraints are reflected in increased re-
quirements for on-board diagnosis development for passenger vehicles.

In response to this situation, several car manufacturers and suppliers joined
to launch the Brite-EuRam project VMBD (Vehicle Model Based Diagnosis) with
the intention to promote the transfer of model-based reasoning technology by the
challenge of applying it to diagnosis of series passenger cars.

Subgroups within the VMBD project have focused on different problems in
connection with vehicle diagnosis, such as off-line compilation of a model to use
it in an on-board environment and experimenting with additional sensors in the

145

146 CHAPTER 8. REAL-WORLD APPLICATION: VEHICLE DIAGNOSIS

diesel injection system ([CCGT99]), or using a numerical approach for off-board
diagnosis of faults in the hydraulic and mechanical parts of an automatic trans-
mission system ([BTC799]).

One subgroup involving Volvo Car Corporation, Robert Bosch GmbH and
OCC’M Software GmbH was formed in order to develop a prototype of a model-
based system that is capable of diagnosing problems related to increased carbon
emissions of diesel engines, a problem of significant importance with respect to
environmental impact and compliance with legal requirements. This system had
to make use of the sensor signals that are available on-board, transform them to
a qualitative level and exploit them for detecting and localizing faults based on a
model of the turbo control system of the diesel engine. The system was installed
on a Volvo demonstrator vehicle with a number of built-in faults.

8.1.1 Demonstrator Car

For the subgroup of the above-mentioned project, a Volvo 850 TDI demonstrator
car was made available for hands-on experimentation with the DTI application.
Failures were induced in the car during various operational conditions of the
engine with a measurement acquisition system running, which also allowed to
inspect the results of the conventional diagnostic capabilities of the control unit.
The various failures in the demonstrator car could be adjusted by potentiometers
and triggered by switchboards from inside the passenger compartment (see figures
8.1 and 8.2). A pneumatic leakage in a pipe, for example, was implemented by
additional valves that could be opened and closed by electrical switches.

For these experiments, additional interfaces and devices had to be installed in
the vehicle. At present, control units still have rather limited computing power
which prevents the integration of the model-based diagnosis system within the
ECU software. To circumvent this restriction, a so-called application control unit
was used in the demonstrator. Application control units are normally used for
calibration of ECU software for a specific vehicle type. They are equipped with
special dual-ported memory chips such that, in principle, all variables and signals
of the control unit are accessible in real-time, without interfering the normal
operation of the ECU. The data acquired from the vehicle was interfaced to the
model-based diagnosis prototype, which was running on a portable PC inside the
passenger compartment (see figure 8.3). In figure 8.3, ETK is a hardware interface
closely attached to the application ECU providing access to its controller bus.
MAC is a protocol conversion box which stores the information gathered from the
ETK, while VS100 (see also section 7.1.4) is a commercial tool that car suppliers
use for acquisition, storage, and display of control unit data. It runs on the same
portable PC as the on-board diagnostic prototype. The AD-Scan device and the
PC Tester allow to read in further signals (dotted lines) from additional sensors or
workshop equipment for the purpose of off-board diagnosis in the VMBD project.

Although this means that the model-based diagnostic software is not really
running embedded within the ECU, this solution was considered adequate for
the case studies since it provided all important constraints except the space and

8.1. BACKGROUND AND MOTIVATION 147

Figure 8.1: View of the Volvo Demonstrator Car showing the notebook connected
to the ECU

computing power limitations of the ECU. As noted in chapter 2, this latter aspect
is beginning to be more and more relaxed in practice, anyway.

8.1.2 Application System

The demonstrator vehicle used in the VMBD project was equipped with a so-
called distributor-type injection (DTT) system ([Bau96]). The DTT is an approved
system which has been on the market for many years. However, increased legisla-
tive and customer demands have lead to new requirements especially for aspects
related to emissions and performance of this system. Figure 8.4 shows part of
the system which is responsible for supplying air to the diesel engine. It can be
decomposed into the exhaust gas re-circulation (EGR) subsystem (upper part of
figure 8.4) and the turbo control subsystem (lower part of figure 8.4).

The purpose of the exhaust gas re-circulation system is to return a certain
amount of the exhaust gas to the intake air to decrease the oxygen rate of the
intake air and thus to reduce emission levels of the fuel combustion. Depending
on driving conditions, the ECU governs the EGR converter to achieve a certain
air pressure in a control pipe, which in turn sets the position of the exhaust gas
re-circulation valve. The position of this re-circulation valve then determines how
much of the exhaust gas is fed back to the air intake pipe.

The turbo control subsystem consists of a turbocharger turbine, which is
driven by the engine’s exhaust gas, for compressing — and thereby increasing the
mass of — the air taken into the engine. The ECU controls the boost pressure

148 CHAPTER 8. REAL-WORLD APPLICATION: VEHICLE DIAGNOSIS

Figure 8.2: The glove compartment of the Volvo Demonstrator Car which con-
tained the switchboard for controlling the built-in faults

(i.e., the pressure in the engine intake pipe) admitted in a certain driving situation
by opening or closing the turbo control valve, which determines the position of a
so-called wastegate valve. The position of this valve determines how much of the
exhaust gas drives the exhaust turbine of the turbocharger.

8.1.3 Diagnostic Scenarios

The particular interest of the involved car manufacturer concerned failures of
the DTI system that could not be captured or were found hard to capture by
traditional on-board diagnosis. A major class of such problems is characterized by
effects related to emissions and reduced engine performance due to an excessive
quantity of fuel injected or insufficient airflow to the engine. Such failures lead
to incomplete fuel combustion and increased carbon emissions due to non-burnt
particles, and are, therefore, often called “black smoke” problems.

For example, one scenario in the demonstrator car consisted of a leakage in
the air hose between the turbine outlet and the engine intake manifold. The
scenario was realized in the car by installing an electric motor opening a valve
to release pressure from the inter-cooler system via a 1.2 cm opening. If the
leakage is opened, air mass is lost after having passed the air mass sensor. The
fuel quantity calculated by the control unit based on this signal will therefore
be too high for the actual amount of oxygen in the combustion chamber. This
leads to incomplete combustion of the diesel fuel, which causes increased carbon
emissions in the exhaust gas and reduces the torque of the engine. This effect is

8.1. BACKGROUND AND MOTIVATION 149

PC Tester
B Multimeter

Figure 8.3: Architecture for data acquisition in the demonstrator car

perceivable for the driver as black smoke emerging from the exhaust system.

In another scenario, a wrong flow from the exhaust gas re-circulation system
occured due to a faulty signal or mechanical failure in the EGR valve. The real
fault installed in the car consisted of a switch used to control a magnetic valve that
allows ingress of atmospheric pressure in the EGR valve, thus causing it to open
outside its normal operating region. The rest of the installed scenarios involved
faults in the boost pressure sensor, airflow sensor and engine temperature sensor.
These faults were injected in the car by electrically manipulating the respective
signal to the control unit. Table 8.1 lists the failure scenarios that have been
installed in the demonstrator car.

8.1.4 Goals and Requirements

Black smoke presents a serious environmental problem for the DTI system, but
can also impair safety due to possible thermic overload of the engine. Currently,
the control unit of the DTI is equipped only with a restricted form of on-board
diagnostic capabilities in order to detect this class of failures. It continuously
monitors part of the sensor signals using predefined range and plausibility checks
(see section 2.2.2) and is able to detect a limited number of faults on this basis.
Quite often, however, it fails to discriminate among the different possible causes
that lead to a failure. In many cases, it cannot even detect it at first hand.

One way how engineers concerned with this system try to improve this situ-
ation is to exploit more of the interdependencies between the signals. But cur-
rently, this is not done in a general and systematic way, leading to non-optimal
solutions. The major reason for this is that faults related to black smoke are hard

150 CHAPTER 8. REAL-WORLD APPLICATION: VEHICLE DIAGNOSIS

EGR

valve

Turbo control
valve

Wastegate
valve

Boost pressure

LLE sensor
/ Air mass
Converter meter

Figure 8.4: Turbo Control and exhaust gas re-circulation subsystem of the DTI

to capture using local signal range checks only, since the fault typically involves a
wrong ratio of the inputs to the engine as reflected by the airflow signal, the boost
pressure signal, and the amount of fuel injected. This means that the magnitudes
of these signals are consistent for themselves, and detecting and localizing faults
requires to take into consideration the behavior of several different signals, and
therefore components of the system, at once. This motivates a model-based ap-
proach in order to exploit the analytic redundancy of the model in a systematical
and automated way. Hence, in accordance with the overall thrust of the project,
the goal was to

e develop a library of model fragments of the relevant components,

e generate, in a systematic way, a model of the DTI that is adequate for
diagnosing faults in the diesel engine based on the sensor signals that are
available to the ordinary ECU,

e perform model-based diagnosis with the resulting model, using real mea-
surements taken from the demonstrator vehicle,

e compare the results with the ordinary ECU diagnostic capabilities and as-
sess the real-time capabilities of this solution.

In the following sections, we describe how the behavior of the DTI system
can be described by composing model fragments and how a qualitative model of
the DTI can be obtained by applying qualitative model abstraction to this base
behavior model. The on-board diagnosis prototype itself then consists of the
module for transforming the raw sensor signals into qualitative observations (as

8.2. MODEL FRAGMENTS 151

Scenario Description Physical realization of failure in the car
1 Leakage in air intake Additional valve installed in the manifold
manifold that can be opened and closed through an
electric motor
2 Boost pressure sen- Electrical manipulation of the pressure sig-
sor signal too high nal by increasing the resistance of the sen-
sor through additional potentiometers
3 Airflow sensor signal Electrical manipulation of the airflow sig-
too high nal by increasing the resistance of the sen-
sor through additional potentiometers
4 EGR valve opening Additional magnetic valve installed in the
outside normal oper- EGR system that can be opened and closed
ating region through an electrical switch
5 Engine temperature Electrical manipulation of the temperature
signal too low signal by increasing the resistance of the

sensor through additional potentiometers

Table 8.1: Failure scenarios installed in the demonstrator car

presented in section 7.1.7) and the model-based run-time system (RTS) of Raz’r
that performs diagnosis for the derived model on the basis of these observations
(see section 7.1.1).

8.2 Model Fragments

In this section, we present model fragments that describe the behavior of com-
ponents occurring in the DTI air intake system. Since diesel engines are of
wide-spread use, there exists a considerable amount of work on modeling the
behavior of such components, e.g. [Hey88, Kea93, Sto97]. The model fragments
in this section more specifically build on numerical behavior models described in
[NN97, NN98| that originally have been developed for air intake components of a
gasoline engine. However, following the requirements outlined in chapters 3 and
4, care has to be taken in order to ensure that the behavior descriptions are local
to the component types, and that coverage of their physical behavior is achieved.

The presented behavior descriptions are based on a number of simplifying
assumptions. The first assumption is that an iso-thermic model of the air intake
system is sufficient. This means that temperature is not considered to be varying
in the model. For the air intake part of the system, this is justified by the fact
that the turbo charger component actually consists of a turbo charger turbine
and an intercooler which keeps the temperature of the intake air nearly constant.
The second assumption is that it is sufficient to capture the mean-cycle behavior
of the system. This means that in-cycle variations of the combustion engine
will not be considered in the model. The justification for this is that in-cycle
variations and the effects of the considered faults appear on very different time

152 CHAPTER 8. REAL-WORLD APPLICATION: VEHICLE DIAGNOSIS

scales. The time scale of in-cycle variations is in the order of milliseconds, while
the time scale of perceivable effects of the considered faults is in the order of
seconds or minutes. The third and perhaps most severe simplification we make
is that the effect of exhaust gas recirculation, i.e. variations in the oxygen rate
of the intake air, will not be considered in the model. This latter restriction is
due to the employed component-oriented ontology (see also section 3.3).

Since the DTI system is responsible for delivering air to the diesel engine,
the behavior of components in terms of pneumatics is of central interest. An
important physical law in this context is the ideal gas law ([Kea93, Bau96]),
which captures the relationship between pressure p, volume V, mass m, and
temperature T':

p-V=mRT

The constant R is a substance-specific constant which can be derived from the
universal gas constant. For air,

J
R =0.287——
9-K
Due to the assumption about iso-thermicity, the factor T' is kept constant. T is
specified as 298 K.

8.2.1 Engine Model

The engine model is the most complex part of the DTI behavior model. It con-
sist of three different parts that capture different behavioral aspects of the diesel
engine: its mechanical behavior, its combustion behavior, and its performance
behavior. The terminal variables of the engine component are given by the en-
gine’s crankshaft speed nepgine [1/min], inlet and outlet pressure piniet; Doutiet
[kPal, inlet and outlet air mass flow Ginet, Qoutier [8/s] and injected fuel mass

™M fuel [g/S} :

Mechanical Behavior

This constraint type of the engine model describes the mechanical behavior of the
engine in terms of the relationship between engine speed nepgine, the pressure at
the inlet piner, and the inlet air flow ¢;e:. The latter variable giper corresponds
to the amount of air that is available for fuel combustion.

Following [Nyb99], giniet can be described as a function

Qinlet = fmech (nengine’ pinlet)

of engine speed and pressure at the inlet that is monotonic at least for the stan-
dard driving situations. However, the function fi,ecn is highly non-linear. Because
it depends on factors such as the turbulence of the air flow and the geometry of
the engine, it is very hard to describe it in terms of mathematical equations. In
fact, there is no known analytical model for f,,ech-

8.2. MODEL FRAGMENTS 153

Thus, we take an approach similar to the one in [Nyb99]. The function fy,ech
is captured as a characteristic map that is obtained from a number of measure-
ments taken in different driving situations. There is a difficulty involved in these
measurements as without additional sensors, the variable g, can only be ob-
served indirectly. This was accomplished by choosing steady state operational
conditions for which the derivative of the manifold pressure diminishes and no
exhaust gas recirculation occurs. In this case, g becomes equal to the air
signal from the air mass meter.

Figure 8.5 shows the resulting map that was obtained by considering about 50
different measurement points. The measurements points have been interpolated.
Due to the necessary interpolation, one cannot assume that fi,c., corresponds
exactly to the obtained map. Assuming an accuracy of £1 percent seemed, ac-
cording to our experiments, sufficient to ensure that the true physical behavior
is covered. The function fiecn is thus described as a three-dimensional volume
that encompasses fiech. This volume was sampled into a finite relational repre-
sentation. It constitutes the ground mechanical behavior constraint type which
constrains the possible combinations of nengine; Pintets and Gipget-

inlet
s o
50 do
I . A e
IR ~ﬁ§g§§§{pi
=
20 T w&*
10 |

™ 4000
2000

1000 1000

Piniet nfinqinfi

Figure 8.5: Air flow into the engine as a function of engine speed and pressure
at the engine intake

154 CHAPTER 8. REAL-WORLD APPLICATION: VEHICLE DIAGNOSIS

Combustion Behavior

The combustion behavioral part of the engine model describes the chemical com-
bustion behavior of the engine in terms of the stoichiometric ratio between the
combustion ingredients.

The assumption we make here is that factors like the formation of the fuel
spray, the geometry of the combustion chamber, etc. are not relevant for the
combustion behavior. Following [Kea93, Bau96], the combustion process is then
determined solely by the air/fuel ratio, which is denoted A:

actual air quantity

theoretical air requirement

A fuel-lean mixture (A > 1) contains more air, while a fuel-rich mixture
(A <'1) contains less air. The ideal stoichiometric air/fuel ratio is described by

A=1

This condition is often referred to in the literature as “100 percent theoretical
air”. For diesel fuel, approximately 14.75 kg of air are required to burn 1 kg of
fuel completely ([Kea93)), i.e. its theoretical air requirement equals 14.75.

It is important to note that an actual chemical reaction having stoichiometric
air /fuel proportions of A = 1 will not actually produce complete combustion of the
fuel. Since actual oxidation reactions are incomplete, combustion systems have to
operate using excess air, i.e. using a fuel-lean mixture. Diesel engines can operate
on about 20 percent to 80 percent excess air, corresponding to A = 1.2...1.8
([Bau96]). Incomplete combustion and black smoke begins to occur when the
excess air is less than 40 percent, corresponding to A < 1.4. In the following, this
threshold will be referred to as Acpiticar- The normal combustion behavior of the
engine is then described by the following constraint on the inlet air mass flow and
the injected fuel mass:

Lintet _ 14 75 A,
™m fuel

Performance Behavior

The performance behavioral part of the engine model describes the performance
behavior of the engine in terms of the produced combustion outputs.

Again, we make the assumption that variations of the fuel spray etc. are not
relevant. Due to the assumption of iso-thermic conditions, the combustion prod-
ucts have to be mapped back to the same temperature level as the combustion
ingredients. The performance behavior of the engine describes a relationship be-
tween A, inlet air flow ginier and outlet air flow gouyer. According to [Bau96], the
exhaust gas temperature is greater than 800 Kelvin during normal operation of
the engine. By applying the ideal gas law (see above) to map the results back to
iso-thermic conditions, it follows that the outlet flow is at least 50 percent higher

8.2. MODEL FRAGMENTS 155

than the inlet flow. Thus, the following constraint captures the performance
behavior of the engine:

A 2 Acritical = 0.66 - Qoutier > 14.75 - M fuel-

8.2.2 Intake Manifold Model

The intake manifold is the volume between the engine inlet and the turbocharger
turbine outlet. It constrains the relationship between inlet pressure p;pier, inlet
air mass flow g;,1e; and turbine air mass flow quurpine. The behavior of the intake
manifold obeys the ideal gas law:

Dinlet * Vmanifold = Mg+ BT

Because T is constant, it follows for the behavior description of the intake mani-

fold that
(qturbine — q'mlet) -R-T

Vmam’ fold

pinlet -

For the demonstrator car, the parameter Vi,anifoiq lies between 0.03 and 0.04 m3.

8.2.3 Turbine Model

The intake turbine of the turbocharger compresses the intake air of the engine,
while the exhaust turbine of the turbocharger is driven by the exhaust gas from
the engine. The behavior description of a turbine relates its rotational speed to
flow and pressure. We first observe that a turbine conserves the mass of air:

Qinlet = Qoutlet-

Let Quurpine denote the flow rate of the turbine, i.e. the volume that it outputs
per one rotation, and ny,pine the rotational speed of the turbine. From the ideal
gas law, it follows that

outlet * R-T

Qturbine * Poutlet

Nturbine =

This relation constitutes the behavior description for a turbine. The parameter
Qturbine 18 known only imprecisely for each turbine and is approximately 0.3 liters.
The behavior model of the turbocharger axis states that the rotational speed of
the exhaust turbine equals the rotational speed of the intake turbine.

8.2.4 Turbo Control Valve Model

The turbo control valve is opened or closed by the control unit using an electrical
duty cycle signal Dpcy. No precise parameters were available for this component.
Hence, we could use only a coarse model stating that if the ECU commands the
turbo control valve to be fully open (corresponding to 90 percent duty cycle), the
control pressure peontror €quals the pressure at the inlet terminal of the TCV, and
else it is unknown:

DTC'V =09= Dcontrol = Pinlet

156 CHAPTER 8. REAL-WORLD APPLICATION: VEHICLE DIAGNOSIS

8.2.5 Wastegate Valve Model and Converter Model

Like for the turbo control valve, no precise parameters where given for the waste-
gate valve and the converter that controls it. We only express the knowledge that
when the control pressure in the pipe is equal to ambient pressure, the wastegate
valve will be fully closed

Peontrol = Patmosphere = Awastegate = 0;

and that otherwise, the opening area of the wastegate valve is positive:

Dcontrol > Patmosphere = Awastegate > 0.

8.2.6 Control Unit Model

Based on the signals it receives from the sensors, the control unit determines the
duty cycle of the turbo control valve and the amount of fuel that will be injected
into the engine. Due to the on-board situation, all the signals of the ECU are
available to the prototype, which means that this component is fully observed.
Diagnosis of this component therefore becomes a problem that is independent of
the rest of the device.

Hence, its behavior model can be removed from the DTI model without af-
fecting diagnosis of the remaining components. If we make the assumption that
the ECU can never be faulty, modeling it is not necessary for consistency-based
diagnosis. Note that this is an important difference compared to methods that are
based on performing simulation of the model and comparing the obtained results
with the observations in order to perform diagnosis. Such approaches would, in
contrast, require a model of (at least parts of) the control unit behavior in order
to carry out simulation.

8.2.7 Observations

For the DTI system, the following control unit signals are available: airflow meter
signal [mg/stroke], boost pressure sensor signal [hPa], engine speed sensor signal
[1/min], injected fuel mass [mg/stroke] and TCV control signal [percent duty].

The atmospheric pressure signal is not considered, as atmospheric pressure
is assumed to be constant in the model. The ECU reads in all signals from the
sensors simultaneously, i.e. an observation corresponds to a vector at a point in
time. The frequency at which the control unit reads in the signals varies with the
speed of the engine, therefore the observation vectors are not evenly distributed
over time. The on-board diagnosis prototype uses only these signals, i.e. it is
based on the same set of signals as the ordinary diagnostic procedures of the
ECU.

Note that the sensor signals come in units that are different from the vari-
ables used in the model. For instance, airflow is measured in terms of mass per
stroke of the engine instead of mass per unit of time. Thus, it depends on the
speed of the engine. Therefore, it is necessary to perform preprocessing of the

8.2. MODEL FRAGMENTS 157

signals. For instance, the airflow signal has to be transformed to grams per sec-
ond. Similarly, the injection signal (fuel mass per stroke) combines fuel mass
per time and engine speed. It requires a transformation to [g/s]. In the con-
sidered system, one revolution corresponds to one stroke of the engine. Thus,
in AQUA’s signal transformation component, the following conversion is defined
between the airflow meter signal (denoted armM_List), the engine speed sensor
signal (denoted dzmNmit), and the respective model variable (denoted Airflow
Sensor.TV.Signal in the system description):

<OBSERVATION>
<AGGREGATECHANNEL NAME="Airflow_per_sec" OPERATOR="MULT">
<CHANNEL NAME="armM_List" FILTER="Id4d"/>
<CHANNEL NAME="dzmNmit" FILTER="Id4"/>
<CONST VALUE="0.00001667"/>
</AGGREGATECHANNEL>
<VARIABLE NAME="Airflow Sensor.TV.Signal"
DOMAIN="AirflowDom" DOMAINLIBRARY="none"/>
</0BSERVATION>

Similarly, the following conversion is defined for m e, which is denoted
Engine.TV.Injection.Mass in the system description:

<0BSERVATION>
<AGGREGATECHANNEL NAME="Injection_per_sec" OPERATOR="MULT">
<CHANNEL NAME="mrmM_EAKT" FILTER="Id"/>
<CHANNEL NAME="dzmNmit" FILTER="I4"/>
<CONST VALUE="0.000016.67"/>
</AGGREGATECHANNEL>
<VARIABLE NAME="Engine.TV.Injection.Mass"
DOMAIN="FuelMassDom" DOMAINLIBRARY="none"/>
</0BSERVATION>

It might seem as if this preprocessing of observations assumed correctness of
the engine speed signal. However, it does not, as the engine speed signal is just
canceled out (later it will be seen that the speed sensor can also be involved in di-
agnostic hypotheses). In fact, the preprocessing step becomes necessary because
the control unit software implicitly assumes correctness of sensors (the speed sen-
sor, in this case). In terms of section 2.2.2, the original airflow meter signal and
the fuel mass signal of the ECU are so-called “virtual sensor” signals. However,
for model-based problem solving, we need to make the underlying assumptions
explicit, and thus we have to determine the respective physical signals. Tech-
nically speaking, the above signal transformation amounts to “breaking up” a
virtual sensor. The necessity for this illustrates that the current ECU software
is still oriented towards traditional approaches to monitoring and diagnosis, and
does not follow the concepts of model-based problem solving (see chapter 3).

158 CHAPTER 8. REAL-WORLD APPLICATION: VEHICLE DIAGNOSIS

Signal preprocessing is also necessary to derive the first derivative of the
pressure signal, piner. This step is feasible, as there is relatively few noise on the
pressure signal compared e.g. to the airflow signal or the engine speed signal. To
this end, following the approach of [Nyb99|, pinies is filtered with a low-pass filter
with a cut-off frequency of 2 Hz to eliminate the effect of in-cycle variations.

8.2.8 Properties of the Model

Before we proceed with the generation of a qualitative model for the D'TT system,
we will outline some properties of the behavior models as presented in the previous
sections and put them into perspective with other approaches to automotive
diagnosis, in particular the work of [Nyb99|. First, the model is compositional in
the sense that it is organized as a set of behavior fragments of components that
do not presume the presence of other components in the device. For instance,
the engine model — though its parameters are specific for the Volvo car — does
not presume the presence of a turbocharger. This an important difference to
the approach taken in [Nyb99], which uses equations that describe the combined
behavior of several components.

Second, the model is incomplete in that it does not contain precise numerical
values for each of its parameters. Many of the parameters in the system are not
known precisely, and the best type of knowledge available are ranges, such as
for the volume of the intake manifold, or the diameter of the wastegate valve.
[NN98, Nyb99] also use a characteristic map in order to describe the behavior
of the engine. However, the principled difference is that it corresponds to a
numerical function, and not a relation (constraint) as presented in section 8.2.1.
Therefore, the model described in [NN98, Nyb99] provides an approximation,
rather than an abstraction, of the engine’s physical behavior.

A third difference compared to [Nyb99] is that Nyberg focuses on the behavior
of the engine, using only an engine testbed instead of a complete car for experi-
mentation. Clearly, an actual demonstrator car bears more complexity in terms
of the different driving situations that can occur. Of course, the applicability
of our model to the real vehicle is still limited due to the modeling assumptions
which might by violated in real driving situations, particularly e.g. in the case of
exhaust gas re-circulation.

8.3 Generating a System Description

The key to provide the efficiency that enables to run model-based diagnosis in
an on-board environment is to avoid the computational complexity of numerical
modeling and simulation. The theoretical background and the software compo-
nents that have been developed in this thesis can be used in order to support
qualitative modeling of the DTT system. AQUA can be helpful in two respects:

(1) to turn the (real-valued) model to a ground system description, i.e. to
generate finite constraints for the behavior descriptions of the components
in the DTT model;

8.3. GENERATING A SYSTEM DESCRIPTION 159

Quantity Domain

Pressure p {10, 1610], (1610, 1770), [1770, 1860], (1860, 00) }
Air flow g {(—00,31.0], (31.0,37.5), [37.5,42.5], (42.5, 00)}
Fuel mass m {(—00,1.53),[1.53,1.68], (1.68,00)}

Engine speed n {(—00,2490), [2490, 2690], (2690, c0) }

Table 8.2: Ground domains for variables

(2) todetermine a level of granularity for the DTI model that is adequate for the
specific task we are after, namely diagnosing failures related to incomplete
combustion.

In the following, we describe results that have been achieved using the pro-
totypic implementation of AQUA as described in chapter 7 and a Windows PC
running NT 4.0 with AMD Athlon 700 MHz CPU and 128 MB Ram.

8.3.1 Ground Model

Using the model fragments outlined in section 8.2, a behavior model of the DTI
system has been composed within the Raz’r development system. The resulting
system description consists of 16 components, 146 variables and 60 constraints.

The parameters for the model and the characteristic map for the engine are
specified in a real-valued parameter description. The domains of the variables
have first to be turned to finite domains in order to make them amenable to
further model-based reasoning. As black smoke occurs only during high power
demands, we use domains that concentrate around typical values in full duty.
The maximum fuel consumption is about 1.70 grams per second, the maximum
airflow is about 45 grams per second, while the maximum boost pressure lies
around 2000 hPa. The domain for variables involving pressure, air flow, fuel
mass and engine speed were chosen as shown in table 8.2.

The domain for the derivative of pressure distinguishes values less than -10
from values greater than 10, and the domain for the turbo control valve duty cycle
distinguishes full duty (corresponding to 90 percent) from the rest of the values.
The domains for parameters in the model distinguish the parameter values from
the remaining real values.

Based on this, the System Description Generator component of AQUA can
be used to generate an initial model of the DTI system. The generation of
the respective constraint types takes about 2 seconds. The resulting system
description for the DTT has a size of approximately 100 KBytes.

8.3.2 Diagnostic Results

Using AQUA’s Signal Transformation component, the derived model can be used
for diagnosis using real measurements from the demonstrator car. In the follow-
ing, an example for a measurement of the Volvo demonstrator car is presented
that has been taken for the first scenario, which involved a leakage in the air

160 CHAPTER 8. REAL-WORLD APPLICATION: VEHICLE DIAGNOSIS

i, Signal Translormation 9= E3
File Edit Options

Figure 8.6: AQUA’s Signal Transformation Component showing measurements
for leakage scenario (the bars at the bottom of the window indicate the generated
qualitative observation vectors)

intake manifold. Figure 8.6 shows a screenshot of the Signal Transformation
component for this measurement file.

The measurement runs for 9.75 seconds. The leakage is opened about 3 sec-
onds after starting the measurement, and is closed again after approximately 8
seconds. The acquired measurement file consists of 1053 quantitative observation
vectors. Using the initial domain abstraction, the signal transformation compo-
nent generates 28 qualitative vectors at time points ¢; to teog. The run-time for
signal transformation is less than 1 second. The resulting observation file and
the system description can be fed into Raz’r’s run-time diagnosis system. Figure
8.7 shows a screenshot of the run-time system with the DTT model loaded.

The run-time system derives the following results. For the qualitative obser-
vation vector t19, which corresponds to real-time 3.84 seconds, a first conflict is
detected:

{Airflow Sensor.ok, Junctionl.ok, Intake Turbine.ok,
Junction2.0k, Junction3.ok, Manifold.ok, Pressure Sensor.ok,
Engine.ok, Speed Sensor.ok}

The physical explanation for this conflict is as follows. At t19, the pressure
sensor signal drops considerably, though remaining still within the normal region.
The airflow sensor signal remains unchanged. From the model of the intake mani-
fold, it follows that the air flow into the engine must be higher. Because the speed
sensor signal remains unchanged, it follows from the engine model (mechanical
behavior) that the boost pressure must have become considerably higher. How-
ever, the pressure sensor signal is still normal, which yields a discrepancy. That
is, the conflict arises because the pressure signal suddenly drops, but the airflow

8.3. GENERATING A SYSTEM DESCRIPTION

Haz'l Run Time System M= E3
File Abaut
Raz’
/\——J .
Enaine S [——
i EagheT ITH LT 25
e
Digr
0 (T (R
Components 16 o
Canstraints 52 =
Wariables 130 -
0bs Points] H
Time Paints kS i
Dbs Count 2 L g
Real Time 24612 —
- alrflow Benser |,
_
Diagnoses |
[Junction3 | .
[Speed Sensorl |
[Pressure Sensorl | 0.00s a00s
..] QTime] 97 [18 [19 | @ | 2 [
— RTime 300s| 3.00s| 300s| 3.00s| 3.00s 3.00s| 500s
Pressure Sensorl. TV.Signal Signal [1770.1€| (17701 €| (1 770,10 €] [177010€] 1770, 1€| (161017 13.0610)[13,
Pressure Sensorl. TV Signal_deriv.Signal (0.0 (00| FA00AINEAD] AL0HINEADAIMFAD[INI
iflow Sensorl. TV Signal Signal 13754237542 | [T 5.42 |37 542 (37 5.42 | [37.5.42 | 37 5.42 | 57
Enginel. T Injection.Mass [1.53.1.€|[1.53.1.E[[1.53.1.€| [1.53.1.E| [1.53.1 €| [1.53.1.E[[1.53.1.€|[1 &
Speed Sensor] . T%. Signal Signal [2430,2€| B30.INF)| [2490.2€) [2430.2€| [2490,2€) [2430.2€ | [2450.2€) [24
Turbo Cantrol Wakel. T4, DutyCycle Signal | AINF.30)) 4INF.90)| AINF 0] | 41MF.30)[AINF,50)| 4INF 90| 4IMF,50){ [30
I n I
Exit I \Ohservatlnns A Conflicts History 1 Statistics /

Figure 8.7: Screenshot of the run-time system for the leakage scenario

161

signal and the speed signal remain at their previous levels, which is inconsistent
with normal behavior. The boost pressure signal drops because due to the leak-
age in the manifold component, air is beginning to escape into the atmosphere.
The corresponding diagnosis consists solely of single faults:

{Airflow Sensor.ok}
{Engine.ok}
{Junction3.ok}
{Speed Sensor.ok}
{Junction2.ok}
{Junctionl.ok}
{Pressure Sensor.ok}
{Manifold.ok}
{Intake Turbine.ok}

At to9, which corresponds to real time 5.20 seconds, a second, smaller conflict

is detected:

{Engine.ok, Junction3.ok, Speed Sensor.ok, Pressure Sensor.ok,

Manifold.ok}

This can be explained as follows. At t99, the pressure sensor signal has become
low. However, the speed signal is still at its normal level, and also the amount of

162 CHAPTER 8. REAL-WORLD APPLICATION: VEHICLE DIAGNOSIS

fuel injected remains unchanged. From the engine model (combustion behavior),
it follows that the minimum airflow required for complete combustion of the
fuel is still at a certain high level. However, from the engine model (mechanical
behavior) it follows that due to the reduced pressure, the actual airflow must be
lower than this level. That is, the conflict arises because the boost pressure is too
low for the given engine speed and amount of fuel injected. The boost pressure
is low because due to the leak in the manifold, the intake manifold cannot build
up the required high pressure. The corresponding diagnosis which combines the
first and the second conflict consists of a smaller number of single faults than the
previous one:

{Engine.ok}
{Junction3.ok}
{Speed Sensor.ok}
{Pressure Sensor.ok}
{Manifold.ok}

Finally, at ta3, which corresponds to real time 5.23 seconds, two large conflicts
occur:

{Speed Sensor.ok, Manifold.ok, Axis.ok, Intake Turbine.ok,
Airflow Sensor.ok, Turbo Control Valve.ok, Junction2.ok,
Wastegate Valve.ok, Converter.ok, Junction3.ok, Engine.ok,
Exhaust Turbine.ok, Junctionl.ok, Nodel.ok, Node2.ok}

{Pressure Sensor.ok, Manifold.ok, Axis.ok, Intake Turbine.ok,
Airflow Sensor.ok, Turbo Control Valve.ok, Junction2.ok,
Wastegate Valve.ok, Converter.ok, Junction3.ok, Engine.ok,
Exhaust Turbine.ok, Junctionl.ok, Nodel.ok, Node2.ok}

The physical explanation is as follows. At ta3, the TCV duty cycle is equal to
full duty. From the TCV component it follows that the control pressure is equal
to the pressure at the air inlet (i.e. atmospheric pressure). From the converter
model and the wastegate valve model it follows that the wastegate valve is fully
closed, and that the flow across the exhaust turbine is equal to the airflow from
the engine outlet. From the engine model (combustion behavior) and the injection
signal being still unchanged it follows that the airflow into the engine must be at
least at a sufficient level, and from the engine model (performance behavior), a
certain minimum airflow from the engine outlet can be derived. From the exhaust
turbine model, it follows that the rotational speed of the axis is relatively high.
Thus, from the intake turbine model and the airflow signal being normal, it
follows that the boost pressure must be relatively low. This conflicts both with
the measured boost pressure and the minimum boost pressure derived from the
engine model (mechanical behavior) and the measured engine speed.

That is, for the observations at this time point, the airflow across the tur-
bocharger intake turbine is too low for the amount of fuel injected and the waste-
gate valve being fully closed. What actually happens in this situation is that the

8.3. GENERATING A SYSTEM DESCRIPTION 163

ECU commands the TCV to rise boost pressure (without noticing the failure,
though), which is not successful due to the leak in the intake manifold. The final
diagnosis which combines the three conflicts consists of three single faults and a
number of double faults:

{Engine.ok}

{Junction3.ok}

{Manifold.ok}

{Speed Sensor.ok, Node2.ok}

{Speed Sensor.ok, Nodel.ok}

{Speed Sensor.ok, Exhaust Turbine.ok}
{Speed Sensor.ok, Converter.ok}

{Speed Sensor.ok, Wastegate Valve.ok}
{Speed Sensor.ok, Turbo Control Valve.ok}
{Speed Sensor.ok, Intake Turbine.ok}
{Speed Sensor.ok, Airflow Sensor.ok}
{Speed Sensor.ok, Junction2.ok}

{Speed Sensor.ok, Junctionl.ok}

{Speed Sensor.ok, Axis.ok}

{Pressure Sensor.ok, Node2.ok}

{Pressure Sensor.ok, Nodel.ok}

{Pressure Sensor.ok, Exhaust Turbine.ok}
{Pressure Sensor.ok, Converter.ok}
{Pressure Sensor.ok, Wastegate Valve.ok}
{Pressure Sensor.ok, Turbo Control Valve.ok}
{Pressure Sensor.ok, Intake Turbine.ok}
{Pressure Sensor.ok, Airflow Sensor.ok}
{Pressure Sensor.ok, Junction2.ok}
{Pressure Sensor.ok, Junctionl.ok}
{Pressure Sensor.ok, Axis.ok}

{Pressure Sensor.ok, Speed Sensor.ok}

The run-time of the RTS is 2.79 seconds. This means that for this example,
the performance of the on-board prototype is in the order of magnitude of real-
time. Similar results where achieved for the rest of the scenarios. Table 8.3.2
summarizes the results. Scenario 5 was found to have no effects for the consid-
ered driving situations. Note that the current control unit software, based on the
same signals, is not able to detect any of the above failures. Because some fail-
ure effects are noticeable only during certain operating conditions, the diagnosis
system cannot always determine a unique diagnosis, but rather yields a number
of hypotheses as in the example above. E.g. for the scenario with the boost
pressure sensor out of tune, the diagnosis system yields two conflicts and outputs
a list of three single faults which contain the boost pressure sensor as one possible
candidate, but also other components that together could account for the same
symptoms. In these cases, knowledge about the behavior of faulty components,

164 CHAPTER 8. REAL-WORLD APPLICATION: VEHICLE DIAGNOSIS

Scenario Fault Single Real- Quantitative Qualitative Run-
detec. fault hyp. time obs. obs. time
1 yes 3 9.75 s 1053 28 2.79 s
2 yes 8 20.21s 1364 4 1.55 s
3 yes 8 25.35s 1711 23 2.63 s
4 no - 1448 s 1870 42 3.12 s
5 no - 7.95 s 537 1 1.33 s

Table 8.3: Diagnostic results for the DTI model

i.e. fault models, could be used to further constrain the set of diagnostic candi-
dates. So far, only models of correct behavior have been used for the diagnostic
experiments, because the current version of the run-time system cannot deal with
fault models. However, at least in some cases, there is evidence that fault models
could be useful to partially compensate for the limited observability and, thus,
to further restrict the diagnostic candidates.

8.4 Task-dependent Qualitative Abstraction

Providing the efficiency to run model-based diagnosis on-board requires to con-
sider only essential distinctions in the model. In the context of on-board diagno-
sis, using models that have a maximal, but still adequate level of granularity is
beneficial in two respects. First, the size of the model itself is reduced in terms
of the size of the involved constraints, hence its time and space requirements are
smaller. Second, fewer inputs in terms of observation vectors have to be consid-
ered, as the number of observations that are qualitatively different is decreased.
Both these effects are instrumental to meet the requirements of on-board diag-
nosis, in particular to provide the required response times. In this section, we
describe how AQUA can be used to derive a task-dependent model of the DTI
system.

8.4.1 Target Distinctions

Our goal is to distinguish the situations where combustion is incomplete — and
therefore black smoke occurs — from the normal situations where combustion is
complete. The latter situation could make it necessary for the ECU to take an
action in order to inform the driver (see [Cod93]). As noted in section 8.2.1, the
combustion process is determined by A and the critical threshold M.y jicq;- In our
framework, this modeling goal can thus be expressed as a target partition for A,
stating whether it is above or below the critical value Acpitical:

Targx = {(—00,1.4), [1.4,00)}.

8.4. TASK-DEPENDENT QUALITATIVE ABSTRACTION 165

8.4.2 Observable Distinctions

The fact that only certain variables in the DTI system are measured can be
expressed as an observable distinction for the variables in the system description.
It associates the identical domain mapping with variables that correspond to
ECU signals listed in section 8.2.7, and the trivial domain mapping with all the
other variables.

8.4.3 Transformed Model

We can then use AQUA’s component for Computation of Induced Distinctions
to derive induced distinctions for the DTI model. Building the SD Tree for
the system description of the DTI model and minimizing it takes approximately
12 seconds. The SD Tree contains 31 meta-variables. After minimization, the
metavariable corresponding to the engine component, for instance, has 1732 con-
sistent tuples out of a tuple space of 207360.

The largest intermediate metavariable in the SD Tree has 11 variables in
its scheme, i.e. less than 8 percent of all variables. The largest intermediate
metavariable has also less variables than the largest component model, which
means that during the construction of the SD Tree, no intermediate results occur
that would exceed the size of a component model.

We first run AQUA applying the incomplete condition captured in theorem
2. It turns out that this yields no distinctions for the variables. This implies that
it is only the combination of external restrictions for different variables that can
derive different solutions on the level of target distinctions, and we have to use
the complete condition (theorem 3) in order to derive induced distinctions.

Applying theorem 3 requires as a precondition that the set of external restric-
tions is consistent with the model.

AQUA determines that for the DTI model and the observable distinctions
corresponding to all sensor signals, not all of the external restrictions are consis-
tent with the model. This is due to the fact that there exist observations that
conflict with the model of a correct manifold.

As a result, we either have to change the observable distinctions or augment
our system description with a fault model of the manifold (see section 3.6.3). As
the RTS currently cannot process fault models, we choose to limit ourselves to a
subset of observations that readily fulfills the precondition for applying theorem
3 with the given model.

Consider the subset of observations consisting of the boost pressure sensor
signal (without its derivative), the mass airflow sensor signal, the engine speed
sensor signal and the fuel quantity injected.

With this reduced set of observations, of course, we cannot expect to get all
the conflicts as with the ground model. Given the respective observable distinc-
tions and the target distinctions for A as described above, it takes AQUA about
2 minutes to compute the solution partition X(R, Tobs, Ttarg) on the SD Tree.
AQUA derives the following induced partitions:

166 CHAPTER 8. REAL-WORLD APPLICATION: VEHICLE DIAGNOSIS

<Partition VARIABLE_NAME="Pressure Sensorl.TV.Signal.Signal">
<PartitionElement>
<Value VALUE="[0,1610]"/>
</PartitionElement>
<PartitionElement>
<Value VALUE="(1610,1770)"/>
</PartitionElement>
<PartitionElement>
<Value VALUE="[1770,1860]"/>
<Value VALUE="(1860,INF)"/>
</PartitionElement>
</Partition>

<Partition VARIABLE_NAME="Speed Sensorl.TV.Signal.Signal">
<PartitionElement>
<Value VALUE="(MINF,2490)"/>
</PartitionElement>
<PartitionElement>
<Value VALUE="[2490,2690]"/>
</PartitionElement>
<PartitionElement>
<Value VALUE="(2690,INF)"/>
</PartitionElement>
</Partition>

<Partition VARIABLE_NAME="Enginel.TV.Injection.Mass">
<PartitionElement>
<Value VALUE="(MINF,1.53)"/>
</PartitionElement>
<PartitionElement>
<Value VALUE="[1.53,1.68]"/>
</PartitionElement>
<PartitionElement>
<Value VALUE="(1.68,INF)"/>
</PartitionElement>
</Partition>

<Partition VARIABLE_NAME="Airflow Sensorl.TV.Signal.Signal">
<PartitionElement>
<Value VALUE="(MINF,31.0]"/>
<Value VALUE="(31.0,37.5)"/>
<Value VALUE="[37.5,42.5]"/>
<Value VALUE="(42.5,INF)"/>
</PartitionElement>
</Partition>

8.5. EVALUATION AND DISCUSSION 167

That is, AQUA determines that it is unnecessary to distinguish between values
for pressure that are equal to or above 1770 hPa, and that distinguishing values for
the airflow is not useful. The latter is due to the fact that because the derivative
of the pressure signal and the TCV command are not observed, the airflow signal
cannot be used to determine the airflow into the engine. AQUA also outputs a
domain mapping from the real numbers to the induced domain values that can
in turn be used for generating the corresponding abstracted system description
and for signal transformation of the measurements.

8.4.4 Diagnostic Results

For the same test case as presented in section 8.3.2, the signal transformation
component generates 12 qualitative observation vectors at ¢ to t12. Using these
observations and the transformed system description, the Raz’r run-time system
finds a conflict for t19, corresponding to real time 5.20 seconds:

{Engine.ok, Junction3.ok, Speed Sensor.ok, Pressure Sensor.ok,
Manifold.ok}

The conflict is the same as the one that has been found at t95 for the original
model of the DTI. The computing time required for the run-time system is 1.84
seconds as compared to 2.79 seconds for the original model.

8.5 Evaluation and Discussion

The demonstrator described in this chapter illustrates the feasibility of auto-
mated qualitative modeling in the automotive domain. Besides the results for
the diagnostic scenarios, also the way in which they have been achieved is impor-
tant. Note that the device under consideration, like many other automotive sys-
tems, comprises standard physical components whose behavior can be described
in terms of (differential) equations, but also elements like the engine for which no
rigorous mathematical model exists. Consequently, the behavior models of the
various parts are rather heterogenous, ranging from continuous-valued variables
for the physical part to discrete control signals and characteristic lines or maps
for components or parts of the system for which no algebraic relationships can
be devised.

As has been shown, automated domain abstraction supports the composition
and smooth integration of such independently developed, “hybrid” component
models, as it allows the modeler to express his knowledge about the physical
behavior of components of the system without being committed to a specific
abstraction level. It thus allows a defined way of modeling that is “incremental”
in the sense that adding more complete knowledge about the behavior of the
components leads to more accurate results. In contrast, qualitative models that
rely on a fixed abstraction level for the domains of variables (e.g., signs) often
face a built-in limit from which on additional knowledge (e.g., about the range
of parameters) can’t be exploited any more.

168 CHAPTER 8. REAL-WORLD APPLICATION: VEHICLE DIAGNOSIS

From the perspective of the potential users, modeling components and systems
by just writing down the equations and specifying the characteristics of the task
one is after appears more natural than having to define qualitative constraints.
Therefore, we argue that AQUA makes the process of modeling for model-based
problem solving more acceptable to engineers, less error-prone, and more cost-
effective due to automating steps that up to now had to be done by hand (see
also the discussion in chapter 7). Of course, one has to be aware that these
conclusions have to be validated and confirmed by further studies.

The approach by Nyberg and Nielsen ([NN98, Nyb99]) to diagnosis of leakages
and other faults in automotive systems is based on numerical methods. First of
all, it underlines that diagnosis of leaks in the air-intake system is indeed an
interesting application problem. Because the system they consider comprises
a gasoline (i.e. spark-ignition) engine instead of a diesel engine and includes
different components such as a throttle, the diagnostic results they report are
not directly comparable with ours.

[INN98, Nyb99] use the behavior models within a diagnosis framework that is
based on evaluating residuals. Compared to the consistency-based approach to
model-based diagnosis as outlined in chapter 3, there is no explicit notion of the
structure of the system; instead, it is implicitly coded within the residuals, which
have to be determined manually. A problem of this approach is that whenever
the structure of the model is changed (e.g., because additional components are
added), the residuals have to be determined again by hand.

To perform this step, however, seems particularly difficult for the type of
system considered in this chapter. Note that for the DTI, we could not derive
induced distinctions by considering the incomplete condition of theorem 2. The
interpretation for this is that if we want to determine — based on the sensor
signals as external restrictions — whether black smoke occurs or not, we have
to consider external restrictions that involve several variables at once. Hence,
the system, though it consists of a rather small set of components only, bears a
difficult analytic redundancy that goes beyond the separated evaluation of sensor
signals. This makes the determination of appropriate residuals complicated, and
is probably the main reason why the current on-board diagnostics of DTI cannot
diagnose the faults that have been installed in the demonstrator car. Instead,
model-based reasoning constitutes the foundation to do this systematically and
automatically.

Note also that explaining the results in terms of the annotations given in
section 8.3.2 is only made possible through an approach that breaks down the
behavior of the system into behavior of individual components. In a sense, the
results of task-dependent abstraction can be viewed as providing a “semantics”
for informal notions such as “normal”, “low”, “significantly higher”, etc. that
have been used to explain the physical behavior that lies behind each of the
conflicts.

Other possible applications of task-dependent automated qualitative abstrac-
tion to the DTI model would involve the definition of failure modes and recovery
actions. For example, if a failure model for the manifold component was defined

8.6. SUMMARY 169

that describes a leakage fault, we could specify a target distinction (i.e. thresh-
old) for the size of the leak. AQUA could then be used to derive a model whose
granularity is suited for diagnosing leakages of at least this size, while neglecting
smaller leakages.

Finally, an important application is to find a granularity of the model that is
tailored to the available recovery actions of the control unit. If we had a list of the
possible recovery actions together with their severity, a model could be derived
that has the necessary granularity for the ECU in order to decide which recovery
action to take. Actually, a subgroup within the VMBD project has experimented
with the automated selection of recovery actions based on a model of the diesel
injection subsystem ([CCG199]).

8.6 Summary

This section presented a model-based system that diagnoses problems related to
increased carbon emissions of diesel engines, a problem of significant importance
with respect to environmental impact and compliance with legal requirements.
The prototype transforms the sensor signals that are available to the standard
electronic control unit to a qualitative level and exploits them for detecting and
localizing faults based on a model of the system. It has been evaluated on a Volvo
demonstrator vehicle with a number of built-in faults.

The prototype illustrates the feasibility and the benefits of automated qualita-
tive abstraction in the automotive domain. It can provide a basis for a systematic
and cost-effective approach to creating diagnostics for car subsystems, and has
the potential to improve the quality of diagnostics by handling fault situations
that are not covered by current state-of-the-art on-board diagnostics. At the
same time, the outcomes represent a major step in the transfer of model-based
reasoning techniques to the automotive industry.

170 CHAPTER 8. REAL-WORLD APPLICATION: VEHICLE DIAGNOSIS

Chapter 9

Summary

This thesis deals with the general and important question: What to include in a
behavior model, and what to leave out? This question constitutes a core problem
of modeling physical systems, and it is of particular interest how answers to this
problem can be provided automatically.

To this end, we investigated a more specific subproblem: What distinctions
have to be included in the domains of variables of a behavior model, and what
distinctions can be abstracted away without affecting the result one is interested
in? This question is equal to finding qualitative values for the domains of variables
in a model that are adequate for a specific problem-solving task.

Hence, in a first part, we provided an explicit notion of task-dependency in
order to reason directly about such aspects as observable and desired distinctions,
necessary distinctions, and unnecessary distinctions in a model. The ability to
explicitly reason about task-dependency constitutes the prerequisite to automati-
cally finding qualitative abstractions of a model. The problem could be formalized
as finding so-called induced distinctions within the domains of variables that are
both necessary and sufficient, given a system description composed from a library,
a granularity of possible observations, and a granularity of the desired results. We
presented fundamental results regarding solutions to task-dependent qualitative
abstraction, and identified relationships between qualitative reasoning and con-
straint satisfaction techniques for structuring problems and compactly describing
their solutions.

The methods devised for computing qualitative domain abstractions are based
on the SD Tree as an implicit, hierarchical representation of the possible behav-
iors, which allows to exploit the specific structure of a device model in order to
avoid combinatorial explosion. Thus, the computational complexity of deriving
induced distinctions could be bound to structural properties of the system de-
scription. The resulting methods have been implemented in a prototypic system
called AQUA (Automated Qualitative Abstraction). AQUA’s software compo-
nents build on an existing model-based reasoning framework that allows to define
domains, constraint types and device structures for composing system descrip-
tions and to use them for performing behavior prediction and diagnosis. AQUA
automates the transformation of models to a level of abstraction adequate for

171

172 CHAPTER 9. SUMMARY

a specific structure and task, much like an engineer’s ability to come up with a
suitable representation when faced with a certain problem. Thus, AQUA sup-
ports several tasks in the context of model-based problem solving that up to now
essentially had to be carried out manually.

In a second part, we illustrated this using examples taken from the automotive
domain. One principled application is to turn real-valued models, as commonly
used in industry, into qualitative models to make them accessible to model-based
reasoning methods. As a major result, a prototype of a model-based on-board
diagnosis system for a passenger vehicle has been presented. The prototype is
shown to provide useful results for a number of emission-related failure scenarios
that were implemented on a Volvo demonstrator car. This demonstrates that
AQUA can greatly enhance the ability to use a behavior model of an engineered
device as a common basis to automatically support different tasks along its life
cycle.

9.1 Related Work

Approaches that are related to specific aspects of our work have been described
in the discussion sections of respective chapters. In this section, we highlight
differences to existing work that emerge from a broader, conceptual perspective.

Since qualitative modeling is important from an application point of view,
a considerable amount of literature deals with this topic (see [WdK90, FS92]
and section 4.5 in chapter 4). However, automating qualitative modeling rises
many scientific challenges, and there hardly exist any software systems that can
be readily used in the context of application problems. Research on automated
modeling has primarily focused on the question of how to compose a model from
a set of model fragments, and how to decide which model fragments have to be
included in the model.

Nayak ([Nay95], see also section 4.5.2) deals with the problem of automati-
cally composing an adequate model of a device by selecting appropriate model
fragments from a library. The specific problem-solving task pursued is to obtain
parsimonious causal explanations of device behavior, which can be formulated
as a user query about the interaction of certain variables in the model. The
model selection algorithm devised in [Nay95] ensures that a causal explanation
can still be derived from the resulting model, i.e. the model is suitable for the
pursued task, while it cannot be guaranteed that the obtained model indeed
leads to a most parsimonious causal explanation, i.e. the model is not necessarily
“optimal” with respect to the pursued task. Nayak deals with model fragments
formulated in terms of (differential) equations over the domain of real numbers,
and is not concerned with domain abstraction. In fact, domain abstraction does
not combine in a straightforward way with the underlying technique called causal
ordering, because due to the involved ambiguities, causal ordering will not work
in an analogous manner for qualitative constraints. Nayak assumes that model
fragments that can be combined to capture the essential aspects of behavior are

9.1. RELATED WORK 173

readily available in a library. In contrast, our method transforms model frag-
ments, hence the search space is different, consisting of possible transformations
of model fragments instead of possible selections of model fragments. A further
difference is that the notion of the task pursued in [Nay95] is of limited use re-
garding the aim to support basic problem-solving tasks of behavior prediction
and diagnosis that are pursued in this thesis. The fundamental reason is that
in [Nay95], the resulting model not necessarily covers the same physical behav-
iors as the base model, i.e. it is an approximation rather than an abstraction.
In contrast, AQUA’s domain abstractions are sound abstractions, guaranteeing
that the result covers the same physical situations as the base model. This turns
out to be an important precondition for problem solving based on the model.
Like AQUA, Williams’ MINIMA system ([Wil91], see section 4.5.5) also cap-
tures the idea of obtaining — starting from a base model — optimal information
with respect to a targeted level of distinctions. In MINIMA, the targeted dis-
tinctions are built-in and correspond to the signs of the variables, whereas the
base model is assumed to be real-valued. However, there is no notion that would
correspond to observable granularity. The core of MINIMA is a set of symbolic
transformation rules that allow to simplify and factorize algebraic expressions
composed of reals and a domain abstraction operator for signs, such that the
information about the sign of the result will be preserved as far as possible.
MINIMA can be run both in an incomplete mode where completeness of the re-
sults is traded for faster, local deductions, and a complete mode which comes at
the expense of potentially generating intractably large intermediate expressions.
Unlike MINIMA, the approach we presented is not limited to a fixed granularity
of the results corresponding to sign abstraction, but instead allows to specify
target distinctions in an arbitrary and explicit way. AQUA is also more general
as it is not restricted to algebraic constraints such as addition or multiplication.
E.g., in section 8.2.1, a constraint describing the mechanical behavior of a diesel
engine was described as a characteristic map. On the other hand, deriving in-
duced distinctions with AQUA requires a finite base granularity to start from, and
cannot exploit algebraic relationships that would sometimes allow to draw “obvi-
ous” results, such as for equality. Compared to MINIMA, qualitative abstraction
of real-valued models with AQUA more or less amounts to a “brute-force” ap-
proach of first generating finite constraint types, regardless of possible symbolic
simplifications, and then discarding any distinctions that turn out unnecessary.
QSIM ([Kui94], see also section 4.3.2) is a system for performing qualitative
simulation of device behavior over time, based on (incomplete) information about
initial magnitudes and directions of the variables in a device model composed of
qualitative differential equations (QDEs). QSIM incorporates methods for re-
fining the domains of variables, i.e. deriving new landmarks and corresponding
values, during simulation. However, except for signs, the mapping of the quali-
tative values to their base domain remains unknown. Instead, only information
on their ordinal relationship is provided, which is quite weak and for instance
not sufficient to simplify the constraints of the behavior model or to abstract
real-valued measurements as in AQUA. Q2 and Q3 ([Kui94, BK92]) are exten-

174 CHAPTER 9. SUMMARY

sions of QSIM that addresses these shortcomings and allow to perform so-called
semi-quantitative reasoning. The idea is to derive from the QDEs and qualitative
behaviors generated by QSIM algebraic constraints that involve the landmarks
as variables. The resulting CSP can then be solved using interval propagation
to derive numeric bounds on the landmark values. However, the techniques are
intrinsic to the specific context of simulating behavior over time. Another im-
portant difference to our work is that, as noted above, AQUA allows to process
arbitrary relations, and is not limited to pre-defined algebraic constraint types or
monotonic functions that can be represented as QDEs.

The thesis also revealed interesting relationships between qualitative rea-
soning and abstraction techniques originating in constraint satisfaction, notably
Freuder’s work on interchangeability (see [Fre91, FS95, WF99| and section 4.6.1).
Weigel and Faltings ([WF99]) analyze the theoretical limits of interchangeabil-
ity in constraint satisfaction problems. The intuition is that the larger the set
of possible solutions to a problem is, the larger should be the likelihood for in-
terchangeability to occur. Accordingly, a combinatorial increase in the number
of tuples of a relation should be compensated for by increasing possibilities to
represent these tuples more compactly. Weigel and Faltings provide theoretical
foundations for this intuition by means of the theory of error-correcting codes, and
give a bound for the number of solutions of a CSP that can exist without being
interchangeable. Since interchangeability corresponds to a special case of induced
distinctions for diagnosis (section 5.6), it follows that the required granularity of
a model used for diagnosis tends to decrease with the number of tuples that the
model relation permits. However, the analysis in [WF99] emanates from random
constraint satisfaction problems and does not take into account the specifity of
model relations describing physical devices.

9.2 Conclusions

9.2.1 Achievements from a Scientific Point of View

Qualitative reasoning is an active area of research. People who are less familiar
with the field sometimes find it difficult to identify a common “thread” as there
are many different directions pursued ([WdAK90]). One reason for this is that the
notion of qualitative values and qualitative models is inseparably related to the
task to be solved. As our fist contribution, the notion of a qualitative abstraction
problem (QAP) captures the essence of task-dependent qualitative abstraction
within a common relational framework, formalizing the problem and making it
amenable to further theoretical analysis. Our second contribution is to derive,
based on this formalization, a first-principles solution to task-dependent quali-
tative model abstraction in the form of induced distinctions and to characterize
various interesting properties of induced distinctions. Third, algorithms and data
structures have been devised that can be used as a basis for efficient computation
of solutions to the problem on a computer. Based on this, we were finally able to
identify principled applications of automated qualitative abstraction, such as de-

9.3. FUTURE WORK 175

riving suitable distinctions for model-based diagnosis. Overall, we have provided
a contribution to deriving a logic-level description of a problem from a physical
level in a systematic way, which in [Wal99] has been identified as one of the main
challenges in Al research.

9.2.2 Achievements from an Application Point of View

The increasing complexity of engineered devices, particularly — but not exclu-
sively — in the domain of automotive systems, leads to an increased demand
for computer-supported behavior prediction, diagnosis, and testing. Given the
increasing maturity and scale of model-based systems applications, the question
of how to re-use model fragments and to compose models from generic libraries
is of growing industrial interest.

In an ideal work process, an engineer would be able to specify a (real-valued)
ground behavior model, provide information about the goals and conditions of
the pursued task, and let an adequate model be generated automatically based
on this knowledge. AQUA represents a step towards this ideal. It implements
methods that enable to automatically transform a behavior model to a granular-
ity adequate for the task at hand, thus supporting the re-use of knowledge along
various tasks. Hence, AQUA can be seen as a contribution to bridging the gap be-
tween a traditional engineer’s way of thinking (which is mostly oriented towards
quantitative methods), and Al techniques (which have put forth qualitative ab-
straction), a problem that has been identified as one of the major roadblocks to
a more wide-spread industrial application of model-based reasoning methods.

A first application in this direction has been demonstrated in chapter 8, where
the output of AQUA was the basis for a prototype of a model-based diagnosis
system that runs on-board a real passenger vehicle with built-in faults. This
demonstrator provided useful diagnostic results for a set of failure scenarios and
exploited the devised methods in two respects: qualitative abstraction of the
model reduced the complexity of reasoning with the model, while qualitative
abstraction of the available observations reduced the number of points in time at
which this reasoning had to be initiated at all. These results are instrumental to
meet the stringent run-time and space requirements of on-board diagnosis.

AQUA thus provides a first approach for systematically capturing and ex-
ploiting the interrelationships between the granularity of a behavior model and
the distinctions that are available or required for the particular task that needs
to be solved.

9.3 Future Work

9.3.1 Directions for Scientific Work

It has been mentioned in section 9.1 that AQUA has no notion of algebraic rela-
tionships, but instead treats any behavioral information as a relation over some
(finite) domain. On the one hand, this captures the most general case and allows

176 CHAPTER 9. SUMMARY

to exploit knowledge that goes beyond pre-defined algebraic constraint types such
as addition or multiplication. On the other hand, it deprives AQUA from exploit-
ing algebraic relationships that would sometimes allow to draw “obvious” results
which hold independently from the granularity of the involved domains. Hence,
an interesting direction would be to combine AQUA with some form of algebraic
reasoning, e.g. in the sense that only at a point where the manipulation of al-
gebraic expressions becomes too complex, abstraction to finite relations comes
into effect. Currently, the approaches pursued in MINIMA and AQUA might
be regarded as two extremes in a spectrum of possible strategies that intertwine
algebraic and qualitative reasoning.

AQUA is a solution to the problem of qualitative abstraction that works for
arbitrary models specified in terms of relations, provided that the domains of
the involved variables are finite. The problem of finding qualitative abstractions
of real-valued base models has been approached only indirectly by applying an
“initial” domain abstraction that reduces the problem to this case. An important
question is therefore whether the methods can also be applied to real-valued
constraint types, or at least to restricted cases of real-valued constraints such
as monotonic functions or piecewise linear functions. For real-valued functions,
partition elements could be represented implicitly by interval borders. Note that
for the special case of real-valued monotonic functions and target distinctions
that can be expressed as landmarks, deriving induced distinctions becomes equal
to the problem of finding corresponding values for these landmarks. However,
it is clear that the general case involves problems similar to those occuring in
symbolic algebraic manipulation. It would be an interesting challenge to identify
problem subspaces for which task-dependent qualitative abstraction with real-
valued relation types is feasible. Specifically, an open problem in this context
is to indentify conditions under which the application of a domain abstraction
to a real-valued constraint can yield possibilities for qualitative abstraction (see
example 8 in chapter 5). More work would also be necessary to automate the
method for iterative domain abstraction that has been proposed in section 7.2.4.

Another issue concerns the identification of tractable classes of finite qualita-
tive abstraction problems. The theorems in chapter 6, which relate the complexity
of finding induced distinctions to the size of the largest meta-variable in a SD
Tree, constitute a principled starting point. E.g. in section 6.6, resistive net-
works have been identified as one “best-case” class of problems for which the size
of the meta-variables remains constant. Determining tractable classes of quali-
tative abstraction problems based on such structural properties of the behavior
model is related to the problem of identifying optimal structural decompositions
of constraint graphs (see [GLS00]).

The SD Tree as a data structure to efficiently represent a model relation al-
lows to derive qualitative abstractions, but it can also be useful for other tasks
involved in model-based problem solving. In particular, it can provide the basis
for performing sound and complete behavior prediction and diagnosis. The prin-
ciple is that external restrictions (i.e. observations) correspond to restrictions of
the SD Tree, while sets of components that are inconsistent with each other (i.e.,

9.3. FUTURE WORK 177

that form a conflict) correspond to meta-variables whose domain becomes empty
during minimization. [MS99] describes an approach to consistency-based diag-
nosis that is based on clustering behavior models. In fact, consistency checking
using the SD Tree has been applied to verify the diagnostic results presented in
chapter 8.

A problem we have not dealt with is the impact of specific solution algo-
rithms on task-dependent model abstraction. In particular, incomplete solution
algorithms for model-based problem solving — e.g. based on partial constraint
satisfaction methods — may not be able to exploit all derived distinctions, and,
consequently, they might offer further possibilities for abstraction of a behavior
model. However, since the ultimate reason for solution algorithms being in-
complete are efficiency considerations, the question is whether the extra effort
required for identifying such situations would be worthwhile.

9.3.2 Directions for Applications

A main direction for future work from an application point of view is the integra-
tion of the developed software tools into the current work process of engineers,
such as e.g. developers of vehicles. In fact, the results and the experience gained
during the VMBD project already provided a basis for positive decisions about
introducing model-based and qualitative reasoning technology by the industrial
users. A follow-up project again joins a number of car manufacturers, a supplier
of vehicle subsystems, a software supplier, and a number of research groups from
European universities. It aims explicitly at turning the technology into tools that
can be used in the current design process of on-board control systems, including
hardware and software. This appears to be a logical next step in deploying the
technology in the automotive industry in the near future.

178 CHAPTER 9. SUMMARY

Bibliography

[ACPY1]

[And76]

[Bau96]

[BK92]

[BKZYY6]

[Bry92]

[BTC+99]

[CCG+99]

[CDD*+00]

[CNOg)]

S. Addanki, R. Cremonini, and J. S. Penberthy. Graphs of models.
Artificial Intelligence, 51(1-3):145-177, 1991.

G. Andrews. The theory of partitions. In G.-C. Rota, editor, Ency-
clopedia of Mathematics and its Applications, volume 2. 1976.

H. Bauer, editor. Automotive Handbook. Robert Bosch GmbH,
Stuttgart, Germany, 4th edition, 1996.

D. Berleant and B. Kuipers. Qualitative-numeric simulation with Q3.
In B. Faltings and P. Struss, editors, Recent Advances in Qualitative
Physics, pages 3—16. MIT Press, Cambridge, MA, 1992.

C. Bailey-Kellogg, F. Zhao, and K. Yip. Spatial aggregation: Lan-
guage and applications. In Proceedings of the 14th National Confer-
ence on Artificial Intelligence (AAAI-96). AAAI Press, 1996.

R. Bryant. Symbolic boolean manipulation with ordered binary de-
cision diagrams. Technical Report CS-92-160, Carnegie Mellon Uni-
versity, School of Computer Science, 1992.

P. Bidian, M. Tatar, F. Cascio, D. Theseider-Dupré, M. Sachenbacher,
R. Weber, and C. Carlén. Powertrain diagnostics: A model-based ap-
proach. In Proceedings of ERA Vehicle Electronic Systems Conference,
Coventry, UK, 1999.

F. Cascio, L. Console, M. Guagliumi, M. Osella, A. Panati, S. Sottano,
and D. Theseider Dupré. Generating on-board diagnostics of dynamic
automotive systems based on qualitative models. AI Communications,
Special Issue on Model-Based Reasoning, 1999.

M.-O. Cordier, P. Dague, M. Dumas, F. Lévy, J. Montmain,
M. Staroswiecki, and L. Travé-Massuyés. A comparative analysis

of AI and control theory approaches to model-based diagnosis. In
Proceedings of ECAI’00, Berlin, Germany, 2000.

B. Y. Choueiry and G. Noubir. On the computation of local inter-
changeability in discrete constraint satisfaction problems. In Proceed-

179

180

[Cod93]

[Davg4]

[dJvR99)

[AKS6]

[dK92]

[dK93]

[dKB90]

[dKMRY2]

[AKW87]

[dKW89)

[DP8S]

[DS94]

BIBLIOGRAPHY

ings of the 15th National Conference on Artificial Intelligence (AAAI-
98), pages 326-333, Menlo Park, 1998. AAAT Press.

California Code of Regulations. Malfunction and diagnostic system re-
quirements for 1994 and subsequent model-year passenger cars, light-
duty trucks, and medium-duty vehicles and engines (OBD II), section
1968.1, title 13, 1993.

R. Davis. Diagnostic reasoning based on structure and behavior. Ar-
tificial Intelligence, 24:347-410, 1984.

Hidde de Jong and Frank van Raalte. Comparative envisionment
construction: A technique for the comparative analysis of dynamical
systems. Artificial Intelligence, 115(2), 1999.

J. de Kleer. An assumption-based TMS. Artificial Intelligence,
28:127-162, 1986.

J. de Kleer. Compiling devices: Locality in a TMS. In B. Faltings
and P. Struss, editors, Recent Advances in Qualitative Physics, pages
295-310. MIT Press, Cambridge, MA, 1992.

J. de Kleer. A view on qualitative physics. Artificial Intelligence,
59:105-114, 1993.

J. de Kleer and J. S. Brown. A qualitative physics based on conflu-
ences. In D. S. Weld and J. de Kleer, editors, Readings in Qualitative
Reasoning about Physical Systems, pages 88—-126. Kaufmann, San Ma-
teo, CA, 1990.

J. de Kleer, A. K. Mackworth, and R. Reiter. Characterizing diag-
noses and systems. Artificial Intelligence, 56:197-222, 1992.

J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artificial
Intelligence, 32:97-130, 1987.

J. de Kleer and B. C. Williams. Diagnosis with behavioral modes. In
Proceedings of the 11th IJCAI pages 1324-1330, Detroit, MI, 1989.

Rina Dechter and Judea Pearl. Network-based heuristics for
constraint-satisfaction problems. Artificial Intelligence, 34(1):1-38,
1988.

O. Dressler and P. Struss. Model-based diagnosis with the default-
based diagnosis engine: Effective control strategies that work in prac-
tice. In Proc. of the 11th ECAI, pages 677-681, Amsterdam, The
Netherlands, 1994.

BIBLIOGRAPHY 181

[DSTY3]

[El 98]

[FF92]

[FGN9O]

[For90)]

[Fre78|

[Fre91]

[Fre93|

[Fre94]

[FS92]

[FS95]

[GLS00]

[GW89)

J. L. H. Davenport, Y. Siret, and E. Tournier. Computer Algebra:
Systems and Algorithms for Algebraic Computation. Academic Press,
2nd edition, 1993.

Y. El Fattah. An elimination algorithm for model-based diagnosis.
In P. P. Nayak and B. C. Williams, editors, Working Papers of the
Ninth International Workshop on Principles of Diagnosis (DX’98),
Cape Cod, MA, 1998.

B. Falkenhainer and K. D. Forbus. Compositional modeling of physi-
cal systems. In B. Faltings and P. Struss, editors, Recent Advances in
Qualitative Physics, pages 33—48. MIT Press, Cambridge, MA, 1992.

G. Friedrich, G. Gottlob, and W. Nejdl. Physical impossibility instead
of fault models. In Proceedings of AAAI’90, pages 331-336, Boston,
MA, 1990.

K. D. Forbus. Qualitative process theory. In D. S. Weld and
J. de Kleer, editors, Readings in Qualitative Reasoning about Physical
Systems, pages 178-219. Kaufmann, San Mateo, CA, 1990.

E. C. Freuder. Synthesizing constraint expressions. Communications

of the ACM, 29(1):24-32, 1978.

E. C. Freuder. Eliminating interchangeable values in constraint sat-
isfaction problems. In Proc. of AAAI-91, pages 227-233, Anaheim,
CA, 1991.

B. Freitag. Datenbanken 1. Lecture script (in German), Technische
Universitat Miinchen, Germany, 1993.

E. C. Freuder. Exploiting structure in constraint satisfaction prob-
lems. In B. Mayoh, E. Tyugu, and J. Penjam, editors, Constraint
Programming, pages 51-74. Springer, Berlin, Heidelberg, 1994.

Boi Faltings and Peter Struss, editors. Recent Advances in Qualitative
Physics. The MIT Press, Cambridge, Massachusetts, 1992.

E. C. Freuder and D. Sabin. Interchangeability supports abstraction
and reformulation for constraint satisfaction. In Proceedings of Sympo-
stum on Abstraction, Reformulation and Approximation (SARA’95),
1995.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. A compari-
son of structural CSP decomposition methods. Artificial Intelligence,
124(2):243-282, 2000.

F. Giunchiglia and T. Walsh. Abstract theorem proving. In Proc. of
the 11th IJCAI pages 372-377, Detroit, MI, 1989.

182

[GW92]

[Hay90]

[Hel01]

[Hey88)]

[HS97]

[IFST95]

[1L.95]

[Twa92]

[Kea93|

[Kui86]

[Kui94]

[Kut00]

[LIM92]

BIBLIOGRAPHY

F. Giunchiglia and T. Walsh. A theory of abstraction. Artificial
Intelligence, 57:323-389, 1992.

P. J. Hayes. The second naive physics manifesto. In D. Weld and
J. de Kleer, editors, Readings in Qualitative Reasoning About Phys-
ical Systems, pages 46—63, San Mateo, CA, 1990. Morgan Kaufman
Publishers.

Ulrich Heller. Process-oriented Consistency-based Diagnosis — The-
ory, Implementation and Applications. Ph.d. thesis, Technische Uni-
versitdt Miinchen, 2001.

John B. Heywood. Internal Combustion Engine Fundamentals.
McGraw—Hill, 1988.

U. Heller and P. Struss. Conceptual modeling in the environmen-
tal domain. In Proceedings of the 15th IMACS World Congress on
Scientific Computation, pages 147-152, Berlin, Germany, 1997.

Y. Iwasaki, A. Farquhar, V. Saraswat, D. Bobrow, and V. Gupta.
Modeling time in hybrid systems: How fast is “instantaneous”? In
Proc. of the 14th IJCAI pages 17731780, Montreal, Canada, 1995.

Y. Iwasaki and A. Y. Levy. Automated model selection for simulation.
In Proc. of AAAI’9/, pages 1183-1190, Seattle, WA, 1995.

Y. Iwasaki. Reasoning with multiple abstraction models. In B. Falt-
ings and P. Struss, editors, Recent Advances in Qualitative Physics,
pages 67-82. MIT Press, Cambridge, MA, 1992.

Eugene L. Keating. Applied Combustion. Marcel Dekker Inc., New
York, 1993.

B. J. Kuipers. Qualitative simulation. Artificial Intelligence,
29(3):289-338, 1986.

Benjamin J. Kuipers. Qualitative Reasoning: Modeling and Simula-
tion with Incomplete Knowledge. MIT Press, Cambridge, MA, 1994.

A. Kutscha. Entwurf und Realisierung einer Komponente zur Ab-
straktion von Wertebereichen in qualitativen Modellen. Master’s
thesis, Department of Computer Science, Technische Universitét
Miinchen, 2000.

A. Levy, Y. Iwasaki, and H. Motoda. Relevance reasoning to guide
compositional modeling. In Workshop Notes of the 6th International
Workshop on Qualitative Reasoning (QR’92), pages 7-21, Edinburgh,
Scotland, 1992.

BIBLIOGRAPHY 183

[Lun96]

[Mac92]

[Mau98]

[MS99]

[Nay95]

INJA92]

[NN97]

[NN9g]

[Nyb99]

[Pla8l]

[Rai91]

[Ran9g]

[Rei80]

Monika Lundell. A qualitative model of physical fields. In Proceedings
of the Thirteenth National Conference on Artificial Intelligence and
the FEighth Innovative Applications of Artificial Intelligence Confer-
ence, pages 1016-1021, Menlo Park, August 4-8 1996. AAAT Press.

A. K. Mackworth. The logic of constraint satisfaction. Artificial In-
telligence, 58:3-20, 1992.

J. Mauss. Analyse kompositionaler Modelle durch Serien—Parallel-
Stern—Aggregation, volume DISKI-183. Infix—Verlag, 1998.

J. Mauss and M. Sachenbacher. Conflict-driven diagnosis using re-
lational aggregation. In Working Papers of the 10th International
Workshop on Principles of Diagnosis (DX-99), Loch Awe, Scotland,
1999.

P. Pandurang Nayak. Automated modeling of physical systems, volume
1003 of Lecture Notes in Artificial Intelligence and Lecture Notes in
Computer Science. Springer Verlag, New York, NY, USA, 1995.

P. Pandurang Nayak, Leo Joskowicz, and Sanjaya Addanki. Auto-
mated model selection using context-dependent behaviors. In Pro-
ceedings of the 10th National Conference on Artificial Intelligence,
pages 710-716, San Jose, CA, 1992. MIT Press.

M. Nyberg and L. Nielsen. Model based diagnosis for the air intake
system of the SI-engine. SAE paper 970209, Society of Automotive
Engineers, 1997.

M. Nyberg and L. Nielsen. Model based diagnosis of leaks in the
air-intake system of an Sl-engine. SAE paper 980514, Society of Au-
tomotive Engineers, 1998.

Mattias Nyberg. Model Based Fault Diagnosis: Methods, Theory,
and Automotive Engine Applications. Dissertation No. 591, Linkoping
University, 1999.

D. A. Plaisted. Theorem proving with abstraction. Artificial Intelli-
gence, 16:47-108, 1981.

O. Raiman. Order of magnitude reasoning. Artificial Intelligence,
51:11-38, 1991.

R. Ranon. The closure properties of functional flow-based approaches
and their relevance to diagnosis. In Proc. of the 13th ECAI Brighton,
UK, 1998.

R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81—
132, 1980.

184

[Rei87]

[RPY4]

[RPD9O0]

[RR84]

[SD8Y]

[SHOS]

S99

[SS00]

[SS01]

[SSC00a)]

[SSCOO0b]

BIBLIOGRAPHY

R. Reiter. A theory of diagnosis from first principles. Artificial Intel-
lrgence, 32:57-95, 1987.

J. Rickel and B. Porter. Automated modeling for answering prediction
questions: Selecting the time scale and system boundary. In Proc. of
AAAI-94, pages 1191-1198, Seattle, WA, 1994.

F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint
satisfaction problems. In Proc. of the 9th ECAI pages 550-556, Stock-
holm, Sweden, 1990.

H. Ratschek and J. Rokne. Computer Methods for the Range of Func-
tions. Ellis Horwood Ser.: Math. Appl. Ellis Horwood, 1984.

P. Struss and O. Dressler. “Physical negation”: Integrating fault mod-
els into the general diagnostic engine. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence (IJCAI-89),
pages 1318-1323, Detroit, MI, 1989.

P. Struss and U. Heller. Process-oriented modeling and diagnosis —
Revising and extending the theory of diagnosis from first principles.
In Working Papers of the 9th International Workshop on Principles
of Diagnosis (DX’98), pages 110-117, Cape Cod, MA, 1998.

P. Struss and M. Sachenbacher. Significant distinctions only: Context-
dependent automated qualitative modeling. In Working Papers of
the 13th International Workshop on Qualitative Reasoning (QR’99),
pages 203-211, Loch Awe, Scotland, 1999.

M. Sachenbacher and P. Struss. Automated qualitative model ab-
straction — Theoretical foundations and practical results. In Working
Papers of the 14th International Workshop on Qualitative Reasoning
(QR’00), Morélia, Mexico, 2000.

M. Sachenbacher and P. Struss. AQUA: A framework for automated
qualitative abstraction. In Working Papers of the 15th International
Workshop on Qualitative Reasoning (QR’01), San Antonio, Texas,
2001.

M. Sachenbacher, P. Struss, and C. Carlén. A prototype for model-
based on-board diagnosis of automotive systems. AI Communications,
13(2):83-97, 2000.

P. Struss, M. Sachenbacher, and C. Carlén. Insights from building a
prototype for model-based on-baord diagnosis of automotive systems.

In Working Papers of the 11th International Workshop on Qualitative
Reasoning (DX’00), Morélia, Mexico, 2000.

BIBLIOGRAPHY 185

[SSWOO]

[Sto97]

[Str90]

[Str92a]

[Str92b]

[Str00]

[Tsa93]

[U1189)]

[Wal99]

[WdK90]

[Wel88]

[Wel92]

[WF97]

M. Sachenbacher, P. Struss, and R. Weber. Advances in design and
implementation of OBD functions for diesel injection systems based

on a qualitative approach to diagnosis. In Society of Automotive FEn-
gineers (SAE) World Congress, Detroit, USA, 2000.

Richard Stone. Introduction to Internal Combustion Engines. Society
of Automotive Engineers, Warrendale, PA, second edition, 1997.

P. Struss. Problems of interval-based qualitative reasoning. In D. S.
Weld and J. de Kleer, editors, Readings in Qualitative Reasoning about
Physical Systems, pages 288—-305. Morgan Kaufmann, San Mateo, CA,
1990.

P. Struss. Diagnosis as a process. In L. Console W. Hamscher and
J. de Kleer, editors, Readings in Model-based Diagnosis., pages 408—
418, San Mateo, CA, 1992. Morgan Kaufmann.

P. Struss. What’s in SD? Towards a theory of modeling for diagnosis.
In L. Console W. Hamscher and J. de Kleer, editors, Readings in
Model-based Diagnosis, pages 419-450, San Mateo, CA, 1992. Morgan
Kaufmann.

P. Struss. Modellbasierte Systeme und qualitative Modellierung. In
C.-R. Rollinger G. Gorz and J. Schneeberger, editors, Handbuch der
Kiinstlichen Intelligenz, pages 431-490. Oldenbourg Wissenschaftsver-
lag, Miinchen, Germany, 2000.

E. Tsang. Foundations of Constraint Satisfaction. Academic Press,
1993.

J. D. Ullman. Principles of Database and Knowledge-Base Systems,
Volume 1: The New Technologies. Computer Science Press, New
York, 1989.

D. Waltz. The importance of importance. AI Magazine, 20(3), 1999.

D. Weld and J. de Kleer, editors. Readings in Qualitative Reasoning
about Physical Systems. Morgan Kaufmann, San Mateo, CA, 1990.

D. S. Weld. Comparative analysis. Artificial Intelligence, 36:333-374,
1988.

D. S. Weld. Reasoning about model accuracy. Artificial Intelligence,
56, 1992.

R. Weigel and B. Faltings. Structuring techniques for constraint satis-
faction problems. In Proc. of the 15th IJCAI pages 418-423, Nagoya,
Japan, 1997.

186

[WF99]

[Wil91]

[Wil92]

[XMLOO]

BIBLIOGRAPHY

R. Weigel and B. Faltings. Compiling constraint satisfaction problems.
Artificial Intelligence, 115(2):257-287, 1999.

B. C. Williams. A theory of interactions: Unifying qualitative and
quantitative algebraic reasoning. Artificial Intelligence, 51:39-94,
1991.

B. C. Williams. Interaction-based invention: Designing novel devices
from first principles. In B. Faltings and P. Struss, editors, Recent Ad-
vances in Qualitative Physics, pages 413-433. MIT Press, Cambridge,
MA, 1992.

Extensible markup language (XML) 1.0 (Second Edition), W3C rec-
ommendation, October 2000.

