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Abstract

As robots move into human-occupied environments, the need for effective mechanisms to
enable interactions with humans becomes vital. Natural language is a flexible, intuitive
medium that can enable such interactions, but language understanding requires robots to
learn representations of their environments that are compatible with the conceptual models
used by people. Current approaches to constructing such spatial-semantic representations
rely solely on traditional sensors to acquire knowledge of the environment, which restricts
robots to learning limited knowledge of their local surround. Furthermore, they can only
reason over the limited portion of the environment that is in the robot’s field-of-view. Natu-
ral language, on the other hand, allows people to share rich properties of their environment
with their robotic partners in a flexible, efficient manner. The ability to integrate such de-
scriptions can allow the robot to learn semantic properties such as colloquial names that are
difficult to infer using existing methods, and learn about the world outside its perception
range. The spatial and temporal disconnect between language descriptions and the robot’s
onboard sensors makes fusing the two sources of information challenging.

This thesis addresses the problem of fusing information contained in natural language
descriptions with the robot’s onboard sensors to construct spatial-semantic representations
useful for interacting with humans. The novelty lies in treating natural language descrip-
tions as another sensor observation that informs the robot about its environment. Towards
this end, we introduce the semantic graph, a spatial-semantic representation that provides
a common framework in which we integrate information that the user communicates (e.g.,
labels and spatial relations) with observations from the robot’s sensors. Our algorithm
efficiently maintains a factored distribution over semantic graphs based upon the stream
of natural language and low-level sensor information. We detail the means by which the
framework incorporates knowledge conveyed by the user’s descriptions, including the abil-
ity to reason over expressions that reference yet unknown regions in the environment. We
evaluate the algorithm’s ability to learn human-centric maps of several different environ-
ments and analyze the knowledge inferred from language and the utility of the learned
maps. The results demonstrate that the incorporation of information from free-form de-
scriptions increases the metric, topological and semantic accuracy of the recovered envi-
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ronment model.
Next, we outline an algorithm that enables robots to improve their spatial-semantic rep-

resentation of an environment by engaging users in dialog. The algorithm reasons over the
ambiguity of language descriptions provided by the user given the current map, and selects
information-gathering actions in the form of targeted questions about its local surroundings
and areas distant from the robot. Our algorithm balances the information-theoretic value of
candidate questions with a measure of cost associated with dialog. We demonstrate that by
asking deliberate questions of the user, the method significantly improves the accuracy of
the learned semantic map.

Finally, we introduce a learning framework that enables robots to successfully follow
natural language navigation instructions within previously unknown environments. The
algorithm utilizes information about the environment that the human conveys within the
command to learn a distribution over the spatial-semantic model of the environment. We
achieve this through a formulation of our semantic mapping algorithm that uses informa-
tion conveyed in the command to directly reason over unobserved spatial structure. The
framework then uses this distribution in place of the latent world model to interpret the
natural language instruction as a distribution over the intended actions. Next, a belief space
planner solves for the action that best satisfies the intent of the command. We apply this
towards following directions to objects and natural language route directions in unknown
environments. We evaluate this approach through simulation and physical experiments,
and demonstrate its ability to follow navigation commands with performance comparable
to that of a fully-known environment.

Thesis Supervisor: Professor Nicholas Roy
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

For decades robots have operated in environments such as factories, where their ability to

perform precise repeatable actions was valued above all else. However, such robots lacked

the ability to perceive and reason about their surroundings, could not handle uncertainty

in their environments, and were not able to interact safely with humans. Due to this, they

have often been separated from human occupants to ensure safety and confined to specially

prepared highly controlled environments to minimize uncertainty (see Figure 1-1).

With the advent of better sensors, such as lidars and RGB-D cameras, more powerful

computational resources, and more capable algorithms for mapping, localization, state-

(a) (b)

Figure 1-1: Robots operating in controlled environments. (a) Robots in automobile man-
ufacturing, (b) Kiva systems logistics robots operating in specially prepared factories
(reprinted with permission).
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(a) (b)

(c) (d) (e)

Figure 1-2: Robots operating with human partners. (a) A robot in a factory, (b) A forklift
robot, (c) A security robot, (d) A tele-presence robot in a hospital, (e) A delivery robot in
a hotel. Images (a), (c), (d), (e) are reprinted with permission from Rethink Robotics, Inc.,
©Knightscope, Inc. 2015 [39], iRobot Corporation, and Savioke, Inc. respectively.

estimation, manipulation, and planning under uncertainty, robots are better able to perceive

and interact with people in unstructured environments. These advances have enabled in-

creasing deployment of robots in populated environments, including homes, offices, and

hospitals, with the potential of having significant positive impact on peoples lives. Robots

capable of delivering items in offices and hotels [80] and medicine in hospitals [1, 97],

providing security and surveillance in buildings [39], enabling telepresence [36, 87] and

remote medicine [35], and assisting people in factories [75] are being deployed in increas-

ing numbers (see Figure 1-2).

However, for such robots to be deployed in large-scale, they must be capable of inter-

acting with and responding effectively to novice users. This requires effective methods for

untrained users to control complex robots, without the need for specialized interfaces or

extensive user training.

20



1.1 Enabling Behaviors with Natural Language

Natural language is one such mechanism that provide users with a flexible, intuitive medium

with which to communicate with robots, without extensive prior training. For example,

a voice-commandable wheelchair [30] can allow the mobility-impaired to independently

and safely navigate their surroundings simply by speaking to the chair, without the need

for traditional head-actuated switches or sip and puff arrays. Recognizing these advan-

tages, much attention has been paid of late to developing algorithms that enable robots

to interpret natural language expressions that provide route directions [53, 41, 8, 56], and

that command navigation and manipulation [88, 34]. These algorithms have either at-

tempted to parse free-form commands into their formal language equivalent, which a plan-

ner takes as input [82, 53, 19, 8, 58, 57] or infer the maximum likelihood mapping of free-

form utterances into their corresponding object and action referents in the robot’s world

model [41, 88, 89, 34].

Natural language interpretation becomes particularly challenging when the expression

references attributes of the environment unknown to the robot. Consider an example in

which a user of the voice-commandable wheelchair directs it to ”take me to the kitchen

down the hallway” when the wheelchair is in an unknown environment and the hallway

and kitchen are outside the field-of-view of its sensors. If the robot is unable to make

use of the information about the world contained in the command, it will be reduced to

following a blind exploration-based strategy until it happens upon the kitchen. However, if

it reasons about the constraints over the environment imposed by information contained in

the natural language command, it can take actions that follow the spoken directions more

efficiently.

To effectively respond to natural language commands, a robot needs to maintain shared

situational awareness with the human operator. Shared situational awareness can be de-

fined as a “shared perception of elements in the environment within a volume of time and

space, the comprehension of their meaning and the projection of their status in the near

future” [21].
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Building Shared Representations

In order to achieve shared situational awareness, robots need to maintain a representation

of the environment compatible with that of their human partners. Such spatial-semantic

representations consists of human compatible concepts of spatial entities (places or regions

in the world), their connectivity and associated spatial properties, such as their metric loca-

tions and spatial extent, coupled with semantic attributes that are relevant to and defined by

humans who inhabit the environment. These semantic attributes can range from the type of

each region (e.g., “hallway,” or “kitchen”), their colloquial names (e.g., “Mark’s office”),

the objects that they contain and types of activities that can be carried out at these places

(e.g., “eat lunch”).

Frameworks for constructing such representations [44, 24, 102, 40, 69] have tradition-

ally relied on using the robot’s onboard sensors to infer spatial and semantic properties of

its environment. However, even when robot sensors are combined with region appearance

models and object detectors, it is difficult to infer certain semantic properties, such as the

colloquial names of places. Additionally, in such frameworks, due to the spatially local

nature of robot sensors, the only manner in which to learn about a place in the environment

would be to visit the location and observe its semantic properties. These representations

are built in a bottom-up manner, where higher level concepts are inferred from lower level

properties, but high level information is not used to improve lower level properties (see

Figure 1-3). For example, knowing that the robot returned to the same “gym” area does not

Figure 1-3: Traditional semantic mapping frameworks (information flows from lower lay-
ers to higher layers)
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(a) (b)

Figure 1-4: Users providing descriptions to a robot. (a) A user providing natural language
directions to a robotic wheelchair. (b) A user giving a tour to a robotic wheelchair

improve the robot’s metric map.

However, a robot interpreting natural language commands might have little or no prior

knowledge of its environment. To correctly interpret such instructions, the robot needs

to reason over the parts of the environment that are relevant to understanding the instruc-

tions, but may not yet have been observed. Often during the course of commanding a robot

(Figure 1-4a) or while introducing the robot to a new environment (Figure 1-4b), the user

provides salient information regarding the environment through natural language descrip-

tions.

A robot with the ability to use information contained in natural language to augment its

spatial-semantic representation will be better able to respond to human instructions. Natu-

ral language can provide the robot with semantic information, such as colloquial names of

places, that would be difficult to infer from its onboard sensors. It can also provide the robot

information about spatial entities and their relationships outside the robot’s sensing range.

If the robot is able to fuse this information with its sensor observations in a meaningful

manner it will be able to learn a more complete representation of its environment.

Natural Language Descriptions as Sensor Observations

This thesis addresses the problem of fusing natural language descriptions of the environ-

ment with a robot’s onboard sensors to construct human compatible spatial-semantic rep-
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resentations useful for interacting with humans. Similar to how a robot’s sensors allows

it to make observations about the presence of spatial entities, their associated properties

and connectivity, natural language descriptions of the environment provided by human

users confers information about the environment useful to building a robot’s representa-

tion. These include information about the existence and semantic properties of places,

such as their colloquial names (e.g., “Matt’s office,” “Kiva conference room”), type of re-

gion (e.g., “kitchen”, “living room”), the objects that they contain, and the spatial layout of

the environment. As such, the key tenet of this thesis is the treatment of natural language

descriptions given to the robot as another form of sensor observation. Effective integration

of natural language descriptions with robot’s sensor stream can be challenging due to the

inherent differences in the two sources of information.

Robot sensors observe low-level properties of the robot’s local surround. Semantic

mapping frameworks typically infer semantic properties such as region type or presence of

objects with the use of region appearance models and object detectors respectively. Since

the robot typically extends its spatial representation when visiting a particular region in

the environment, the observations made by the robot’s sensors can be correctly associated

with the same location due to the spatial locality of the sensor observations. Coupled with

odometry measurements from the robot, spatial connectivity can be established allowing

the robot to infer the topology of the environment.

On the other hand, natural language descriptions are provided by humans who may

have additional knowledge of the robot’s environment. For example, they might be famil-

iar with the spatial layout of the environment or be able to perceive its properties more

effectively. Descriptions typically refer to human compatible spatial concepts and are am-

biguous with regard to their metric associations. Such descriptions can refer to the robot’s

current location (egocentric descriptions, e.g., “This is the gym”) or spatial relations and

labels that are associated with non-local, potentially distant regions in the environment (al-

locentric descriptions, e.g., “The exit is next to the cafeteria”). As such, the robot can no

longer assume that the referents in the description are the its immediate region, or that it

has even observed them (see Figure 1-5). This spatial and temporal disconnect between

language descriptions and the robot’s sensor observations makes fusing the two sources of
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Figure 1-5: Human describes a distant kitchen region that is “down from” the hallway,
neither of which have been visited by the robot (robot’s visible region is shown in gray)

information challenging.

Proper integration of natural language and robot sensors requires an approach that can

correctly identify and associate entities described by the user with the robot’s internal rep-

resentation, or even extend the representation depending on the description. While some

existing frameworks for constructing spatial-semantic representations account for certain

forms of natural language input, they are either limited to only inferring semantic infor-

mation about the robot’s immediate location [102, 69], or do so in a non-probabilistic

manner [100]. The algorithms outlined in this thesis allow robots to learn about seman-

tic properties of the robot’s immediate location but also informs it about the presence of

spatial entities and their relationships with each other, allowing the robot to learn more

complete and accurate spatial-semantic representations.

1.2 Problem Statement

This thesis addresses the problem of fusing information contained in natural language de-

scriptions with the robot’s onboard sensors to construct spatial-semantic representations

useful for human-robot interaction. To achieve this we tackle three key problems.
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First, we address the problem of defining a spatial-semantic representation that is ca-

pable of combining a robot’s sensor observations with descriptions of the environment

provided by a human, and how this representation could be learned efficiently. Second, we

address the problem of actively improving a robot’s representation of the environment by

taking actions, specifically by having the robot interact with a human by asking questions.

Third, we address how to use our formulation to enable a robot to respond to natural lan-

guage navigation commands in unknown environments. We investigate how the robot can

use the information contained in natural language instructions to learn a distribution over

the environment and then solve a policy given this distribution.

1.3 Thesis Contributions

This thesis makes three key contributions towards addressing the problems outlined in the

previous section.

Learning Semantic Maps from Natural Language and Scene

Appearance

We introduce the semantic graph, a representation that combines metric, topological, and

semantic models of the environment, that allows robots to efficiently learn human-centric

models of the environment from a narrated guided tour [30], by fusing knowledge in-

ferred from natural language descriptions with conventional low-level sensor data. We

outline a probabilistic algorithm (Chapter 3) that efficiently maintains the joint distribu-

tion over the semantic, topological and metric maps, conditioned on the language and

the metric observations from the robot’s proprioceptive and exteroceptive sensors using

a Rao-Blackwellized particle filter [15]. We maintain the distribution over topologies using

numerical sampling via particles, which are modified using spatial and semantic priors as

the robot receives new descriptions and sensor measurements. Figure 1-6 shows a single

particle of an environment with five places. We model the likelihood of natural language

utterances with the Generalized Grounding Graph (G3) framework [88] to infer the label
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Figure 1-6: Example semantic graph particle: circles denote vertices 𝑉𝑖’s and lines de-
note edges 𝐸𝑖’s in the topology, 𝑥𝑖’s denote the metric location and 𝑙𝑖’s denote the label
distribution.

distribution over places in the environment. We also provide mechanisms for handling de-

scriptions that refer to as yet unobserved regions. We evaluate the algorithm’s ability to

learn human-centric maps of several different environments, and demonstrate its ability to

incorporate information from language descriptions to improve the metric, topological and

semantic accuracy of the learned environment model.

Next, we extend our algorithm (Chapter 4) to learn semantic models of the environment

that reason over more semantic properties, such as the region’s type and appearance, by in-

tegrating semantic information inferred from the robot’s own sensor observations. We use

an improved spatial representation that is better reflective of the environment’s segmenta-

tion and layout, coupled with a richer semantic representation that incorporates information

extracted from the natural language descriptions with the robot’s own sensors (using laser

and camera appearance-based models) maintained as a factor graph. By modeling the re-

lation between an area’s type and its colloquial name, the algorithm can reason over both

region type and region label, even in the absence of speech. This enables more effective

grounding of allocentric user utterances.
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(a) (b)

Figure 1-7: How the robot can ask questions to resolve an ambiguous description: (a) The
user provides ambiguous description to a robot wheelchair (there are two potential regions
down the hallway that could be the kitchen). (b) The robot asks a question to resolve its
ambiguous grounding.

Improving Spatial-Semantic Representations

This thesis then outlines an information-theoretic algorithm that enables a robot to improve

its spatial-semantic representation of an environment by engaging users in dialog during

a guided tour. At each time step, the robot decides between actions that either follow

the guide or that ask a targeted question to improve its representation. We formulate the

decision process as a QMDP [48], where we evaluate actions as a Markov Decision Process

(MDP) for each possible configuration of the world (particle), and select the best action

using the QMDP heuristic. By modeling the value of the next state using an information

gain heuristic, we bias the algorithm to ask questions that are expected to help improve its

understanding of the descriptions provided by the guide. Figure 1-7 shows how the robot

reasons over the ambiguity over a language description as it learn about the environment,

and asks a question aimed at resolving its confusion. We demonstrate that, by asking

deliberate questions of the user, our algorithm results in less ambiguity over the descriptions

and semantic maps that are more accurate.
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Learning Models for Following Natural Language Instructions in Un-

known Environments

Next, we outline how to enable a robot to follow natural language navigation instruction-

sin completely unknown environments, by using an improved iteration of our semantic

mapping algorithm that uses natural language to learn the spatial layout of distant (as yet

unobserved) parts of the environment. This semantic mapping algorithm probabilistically

extends the robot’s representation by creating new spatial entities based on information im-

plicitly contained in the natural language instruction by treating language observations on

par with other sensor observations on a symbolic (or semantic) level. We use this distribu-

tion over the semantic graph to ground the actions and goals from the command, resulting

in a distribution over desired behaviors. We then solve for a policy that yields an action

most consistent with the command, under the current map and behavior distributions. As

the robot travels and senses new metric information, it updates its map prior and inferred

behavior distribution, and continues to plan until it satisfies the instruction (See Figure 1-8).

We apply our framework to enable robots to respond to natural language instructions in two

settings, firstly to execute free-form instructions that direct a robot to unknown objects [17],

and secondly to follow natural language directions in an indoor environment.
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Annotation 
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Figure 1-8: Behavior Inference Framework outline.
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1.4 Thesis Overview

This section provides an overview of the remainder of the thesis.

Chapter 2 outlines prior work carried out related to constructing semantic maps, taking

actions to improve robot representations and enabling robots to respond to natural language

commands. The rest of the thesis will explore our contributions in-depth.

Chapter 3 introduces our semantic graph representation and our algorithm for maintain-

ing these semantic maps using natural language descriptions and robot sensors. We use this

to learn semantic properties from natural language descriptions and subsequently improve

the spatial representations using this knowledge.

Chapter 4 describes several improvements to our approach outlined in the previous

chapter that allows us to learn improved spatial representation, and richer semantic models

by merging natural language with observations of semantic properties made by the robot’s

sensors.

Chapter 5 introduces an information theoretic framework that enables the robot to ask

questions about spatial entities described to it during a guided tour, allowing it to improve

its spatial-semantic representation.

Chapter 6 describes our approach to using natural language descriptions to enable a

robot to take effective actions in unknown environments. To enable this behavior, we intro-

duce an enhanced formulation of our spatial-semantic mapping framework that uses natural

language descriptions to directly extend the robot’s representation. We use our approach to

enable robots to follow navigation commands given in natural language, without any prior

knowledge of the environment.

Chapter 7 summarizes the contributions of this thesis and potential avenues of future

research towards enabling robots to learn from natural language descriptions provided by

human partners.
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Chapter 2

Related Work

2.1 Learning Spatial-Semantic Representations

Robots require accurate representations of their environment in order to operate effectively.

These representations are used to localize in the environment, to navigate and manipulate

objects, and to interpret user instructions. Over the last few decades, robotics has tackled

the problem of constructing useful spatial representations in both indoor and outdoor envi-

ronments, resulting in maps that contain metric and topological information [93]. Metric

maps capture the locations and geometry of objects in the environment, either in the form

of location-based maps or feature-based maps. Location-based maps such as occupancy

gridmaps [20] decompose the environment into an evenly spaced grid, where each location

in the grid is represented by a binary variable indicating whether the location is occupied

or not. Feature-based maps are composed of stable salient features or objects in the envi-

ronment detectable with the robot’s sensors such as lidar (e.g., corner or line features) or

cameras (image features such as SIFT [50]) and their metric locations. Topological maps

are coarser representations that define the environment as a graph, where vertices represent

salient places in the world and edges denote their connectivity. Section 2.1.1 provides an

overview of the approaches taken to construct such spatial representations.

More recent efforts have looked at constructing hybrid representations that in addi-

tion to maintaining topological and metric information, also capture higher level semantic

attributes relevant to and defined by humans who inhabit the environment. These spatial-
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semantic maps allow the robot to maintain shared situational awareness with its human

partners, and accomplish higher level tasks such as responding to natural language com-

mands that require reasoning about human defined concepts such as rooms, objects and

high-level actions. Section 2.1.2 outlines several key semantic mapping frameworks that

have contributed to the construction of these hybrid representations.

Our semantic graph algorithm introduced in this thesis also maintains a hybrid repre-

sentation that jointly models the metric, topological, and semantic properties of the envi-

ronment. The latter two layers are particularly useful for human-centric mapping as the se-

mantic map models properties useful in grounding natural language commands [88], while

the topology is consistent with the representation that humans use to model space [52]. We

also maintain a metric representation that denotes the metric locations of each vertex and

their associated spatial properties. We also infer occupancy gridmaps from these metric

properties using their associated laser scans to enable the robot to navigate in the environ-

ment.

2.1.1 Learning Spatial Representations

For a robot operating in an unknown environment, the ability to construct a map of this envi-

ronment while simultaneously determining its location within this map [16] is of paramount

importance. This is known as Simultaneous Localization and Mapping (SLAM), first ad-

dressed in the seminal work of Smith and Cheeseman [83].

Metric SLAM Solutions

A majority of the solutions to the SLAM problem have focused on constructing metric

maps that can aid robots to localize and navigate accurately in indoor and outdoor environ-

ments. Due to the inherent uncertainties in the robot’s sensor measurements and odometry,

the SLAM problem is often formulated probabilistically in the following manner. Having

defined the robot’s poses at time steps 𝑖 = 0, 1, ..., 𝑁 as 𝑋 = {𝑥𝑖}, the map 𝑀 as a col-

lection of landmarks {𝑚𝑗}, the odometry 𝑢𝑁 = {𝑢1, 𝑢2, .., 𝑢𝑁}, and sensor observations
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𝑧𝐾 = {𝑧1, 𝑧2, .., 𝑧𝐾}, the joint probability can be stated as:

𝑝(𝑋,𝑀, 𝑢𝑁 , 𝑧𝐾) ∝ 𝑝(𝑥0)
𝑁∏︁
𝑖=1

𝑝(𝑥𝑖|𝑥𝑖−1, 𝑢𝑖)
𝐾∏︁
𝑘=1

𝑝(𝑧𝑘|𝑥𝑖𝑘 ,𝑚𝑗𝑘), (2.1)

where 𝑝(𝑥0) is the prior over the initial pose, 𝑝(𝑥𝑖|𝑥𝑖−1, 𝑢𝑖) is the robot’s motion model and

𝑝(𝑧𝑘|𝑥𝑖𝑘 , 𝑙𝑗𝑘) is the measurement model with known correspondence between 𝑥𝑖𝑘 and the

landmark 𝑙𝑗𝑘 . Figure 2-1a shows the graphical model for the SLAM formulation.

The SLAM literature typically assumes the motion and measurement models to be

Gaussian. Thus the motion model can be defined as:

𝑥𝑖 = 𝑔𝑖(𝑥𝑖−1, 𝑢𝑖) + 𝑤𝑖, (2.2)

where 𝑤𝑖 is a normally distributed zero-mean process noise with a covariance matrix 𝑅𝑖.

The measurement model can be defined as:

𝑧𝑘 = ℎ𝑘(𝑥𝑖𝑘 ,𝑚𝑗𝑘) + 𝑣𝑘, (2.3)

where 𝑣𝑘 is a normally distributed zero-mean measurement noise with a covariance 𝑄𝑘.

When the robot revisits an area in the environment, it often observes previously seen

landmarks, allowing for loop-closures, which can be used to overcome accumulated odom-

etry errors. However, identifying correct loop-closures are especially difficult when the

robot has traveled a large distance in between.

The SLAM problem [93] can be stated as either the online SLAM problem, which in-

volves estimating the posterior over the current pose and the map:

𝑝(𝑥𝑡,𝑀 |𝑧𝐾 , 𝑢𝑁), (2.4)

or the full SLAM problem, which calculates the posterior over the entire robot path 𝑋 as

well as the map:

𝑝(𝑋,𝑀 |𝑧𝐾 , 𝑢𝑀). (2.5)
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Figure 2-1: Graphical model for SLAM (a) With the map 𝑀 = {𝑚𝑗} and the robot poses
𝑋 = {𝑥𝑖} (a) With only robot poses

Solutions ranging from Extended Kalman Filters [47, 13], Rao-Blackwellized Particle

Filters [61, 62] and Pose Graph optimizations [51, 90, 38] have been successfully applied

to construct large scale metric maps of both indoor and outdoor environments. Many chal-

lenges in SLAM have been addressed over the last decade, resulting in very accurate, ro-

bust, large-scale mapping frameworks that operate in real-time. Maps resulting from these

approaches are useful for a number of tasks, mostly geared toward autonomous navigation

by enabling robots to localize themselves, plan feasible paths to goal locations and avoid

obstacles.

Our semantic mapping algorithm also maintains the metric properties of the environ-

ment using a pose graph formulation, where each pose represents a place in the world, and

constraints denote the connectivity between these poses. Unlike EKF based solutions, the

pose graph optimization solves the full SLAM problem (2.5), which infers the maximum-

likelihood the map as well as all the robot poses up to the present time. Formulating the

SLAM problem as a pose graph optimization was first proposed by Lu and Milios [51], who

model the problem as a set of constraints between the robot’s poses at discrete time steps.

Over the years a number of approaches have proposed efficient solutions to this problem in

both batch and incremental form.

In pose graph SLAM [66], the measurement function is often encoded as a measure-

ment between two robot poses by scan-matching the robot’s laser observations at these
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poses:

𝑧𝑘 = ℎ𝑘(𝑥𝑖𝑘 , 𝑥𝑗𝑘) + 𝑣𝑘. (2.6)

This results in the joint probability:

𝑝(𝑋, 𝑢𝑁 , 𝑧𝐾) ∝ 𝑝(𝑥0)
𝑁∏︁
𝑖=1

𝑝(𝑥𝑖|𝑥𝑖−1, 𝑢𝑖)
𝐾∏︁
𝑘=1

𝑝(𝑧𝑘|𝑥𝑖𝑘 , 𝑥𝑗𝑘) (2.7)

Figure 2-1b shows the graphical model for this formulation. Equation 2.7 is posed as a least

squares optimization problem to infer the maximum a posteriori (MAP) estimate over the

robot’s full trajectory 𝑋 given the robot’s odometry 𝑈 and observations 𝑍. The MAP

estimate 𝑋* is obtained by minimizing the negative log likelihood of the joint probability

of 𝑝(𝑋,𝑈,𝑍) outlined in Equation 2.1.

𝑋* = arg min
𝑋

− log 𝑝(𝑋,𝑈,𝑍) (2.8)

Using the motion and measurement models this can be expanded to,

𝑋* = arg min
𝑋

{︃
𝑁∑︁
𝑖=1

||𝑔𝑖(𝑥𝑖−1, 𝑢𝑖)− 𝑥𝑖||2𝐺𝑖
+

𝐾∑︁
𝑘=1

||ℎ𝑘(𝑥𝑖𝑘 , 𝑥𝑗𝑘)− 𝑧𝑘||2𝑄𝑘

}︃
, (2.9)

where ||𝑒||2Σ = 𝑒𝑇Σ−1𝑒 denotes the Mahalanobis distance for a covariance Σ. For non-

linear motion and measurement models, calculating the solution involves linearizing the

above equation, thus converting the problem to a standard least-squared minimization prob-

lem of the form,

𝜃* = arg min
Θ

||𝐴𝜃 − 𝑏||2. (2.10)

This is then solved efficiently using approaches, such as Cholesky or QR factorization,

either in batch or incremental form. In our algorithm we make use of iSAM [38], which

solves this incrementally to derive the MAP estimate over the robot’s poses.
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Topological Mapping

However, for robots geared towards operating in human-occupied environments, metric

representations can prove limiting due to their lack of high level semantic information,

and their incompatibility with the way that humans reason about spaces. Depending on the

task at hand, robots operating in these domains require knowledge of semantic properties of

their environments, such as the types of region, the colloquial names used to refer to places,

the layout of unvisited places, and knowledge about the presence of objects. Topological

mapping frameworks address this situation to some degree, by representing the environ-

ment as a graph consisting of nodes that denote salient places in the environment and edges

that denote their connectivity. The focus of such frameworks is to learn accurate maps of

the world that the robot can use to localize and navigate [9, 2, 73]. While humans also rea-

son about spaces using topological representations, the spatial decompositions employed

by humans are often incompatible with topologies that are learned from these frameworks.

This is due to the fact that locations that are easily distinguishable to the robot’s sensors

might not correspond to human concepts of rooms or landmarks.

Distributions over Spatial Representations

Some frameworks [45, 94, 22, 73] maintain multiple hypothesis about the spatial layout

of the environment. Compared to typical SLAM approaches, these frameworks maintain

multiple hypothesis about potential loop-closures in the environment. As such, they are

robust to incorrect loop-closures that can occur in highly aliased environments.

Many mapping algorithms build local laser scan patches for each region and correlate

these patches to identify loop closures [25]. However, these techniques are prone to per-

ceptual aliasing when the local geometry is not distinctive, such as in the case of hallways.

More recent methods consider a region’s visual appearance as a more discriminative means

of performing place recognition [81, 11, 73]. Of particular note, Cummins and Newman

[11] learn a generative model of region appearance using a bag-of-words representation that

expresses the commonality of certain features. By effectively modeling this perceptual am-

biguity, the authors are able to reject invalid loop closures despite significant aliasing, while
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correctly recognizing valid loop closures. This and related approaches in effect choose the

maximum likelihood loop closure, relying on the assumption that the place model is suffi-

ciently descriptive that the resulting distribution over the space of loop closures is peaked

around the true correspondence. Our approach in Chapter 3 differs in that it uses semantic

information to maintain a distribution over the space of loop closures rather than only that

which is most likely.

Our formulation is somewhat inspired by Ranganathan and Dellaert [73], who propose

Probabilistic Topological Mapping (PTM), a probabilistic representation for constructing

topological maps. They make use of a Rao-Blackwellized particle filter formulation that

incrementally updates the posterior based on new measurements. However, their focus is

on constructing accurate spatial representations, and as such do not maintain any semantic

properties of the environment nor integrate any natural language descriptions. Compared

to Ranganathan and Dellaert, we are focused on modeling the semantic properties of the

environment as well as the spatial layout, and make use of semantic information derived

from natural language and robot’s sensors to propagate sample topologies. Additionally,

they only add new nodes into the topology when the robot visits a new region in the en-

vironment, while our approach in Chapter 6 actually extends the topology by adding new

spatial entities based on information extracted from natural language descriptions.

2.1.2 Semantic Mapping

Unlike the SLAM problem, semantic mapping [44, 24, 102, 40, 69] addresses the problem

of learning a human-compatible spatial-semantic representation of a robot’s environment.

The spatial representation consists of human salient places or regions, their connectivity

and associated spatial properties, such as their metric locations and spatial extent. For

each spatial entity in the environment, the robot also maintains semantic attributes that are

relevant to and defined by humans who inhabit the environment. These semantic attributes

can range from the type of each region (e.g., “hallway,” or “kitchen”), their colloquial

names (e.g., “Mark’s office”), the objects that they contain and types of activities that can be

carried out at these places (e.g., “eat lunch”). This information is useful for localization and
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navigation, but also facilitates human-robot interaction, including more efficient command

and control mechanisms, such as natural language understanding.

Early work in semantic mapping includes the Spatial Semantic Hierarchy (SSH) pro-

posed by Kuipers [44] that represents a robot’s spatial knowledge as a coupled hierarchy.

At the lowest level, the local environment is modeled as a collection of control laws, each

expressing the relationship between sensory input and motor output, that facilitate local-

ization and generating local geometric maps. Above the control level is the causal level,

which provides a discrete model of the actions that transition between each of the control

laws. The topological level represents the environment as a collection of regions, places,

and paths that abstract states and actions from the causal level. While the topology serves

as the primary global map of the environment, the local geometric maps from the control

level can be merged via the topology to formulate a global metric map.

Kuipers et al. [45] describe an extension to the SSH that employs a hybrid metric and

topological representation to better represent environments at both small and large scales.

The Hybrid SSH treats the environment as a collection of interconnected locations, each

being small in scale. The method employs metric maps to model the local geometry of

distinct regions from which they use local paths to induce a symbolic global topology that

describes the large-scale environment. By decoupling the map in this manner, this approach

more efficiently models ambiguities in large-scale loop closures with multiple compact

topologies, without requiring that the set of local metric maps be registered consistently

in a single global reference frame. This is a distinct benefit over submap approaches to

SLAM [46, 5] that similarly employ local metric maps but also seek to ensure that these

submaps are consistent in a global reference frame. The authors have shown [60, 3] that the

representation allows uncertainties to be handled more effectively by factoring them into

individual components that capture local metrical, global topological, and globally metrical

uncertainties.

The semantic mapping algorithms outlined in this thesis also consists of a hybrid metric

and topological representation and factors the joint distribution into separate metrical and

topological terms, employing different hypotheses over the topological map to represent

the distribution over the space of loop closures. However, we maintain a globally metric
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map of the environment with respect to a single frame of reference, which can make our

algorithm sensitive to global inconsistencies within large environments. Unlike our ap-

proach, however, the Hybrid SSH does not model the semantic labels or colloquial names

associated with different regions of the environment.

More recent efforts similarly take a hierarchical approach to representing semantic and

spatial properties of a robot’s environment. Many existing solutions [24, 55, 59, 96, 42,

102, 30, 69] build on the effectiveness of SLAM by augmenting a low-level metric map

with layers that encode the topological and semantic properties of the environment. Typi-

cally, an off-the-shelf SLAM implementation is used to build the metric layer. One level up

in the hierarchy is the topological map, taking the form of a graph, where vertices denote

different places in the environment and edges model their connectivity. Layered above the

topology is the semantic map that represents abstract properties associated with each place,

such as their type or the objects that they contain. In prior work, the flow of information is

strictly bottom-up, where the metric layer is used to infer a fixed topology, which is then

augmented with semantic information obtained from the robot’s sensors. Our formulation,

on the other hand, has a tight coupling between the spatial and semantic layers whereby

new information about semantic properties of the world leads to an improved spatial repre-

sentation (through new updates to the topology) as well as the other way around.

Galindo et al. [24] presents a multi-hierarchical approach to semantic mapping, where

they maintain two hierarchies, namely spatial and semantic. Relationships between the

spatial and semantic information are represented using anchoring, which connects the sym-

bolic representations with their corresponding spatial entities. The spatial hierarchy is com-

posed of local metric maps and camera images and the topology of the environment. The

semantic layer is constructed using standard AI languages, allowing the robot to perform

symbolic reasoning. However, there is no probabilistic representation of either hierarchy,

and the presence of objects remains the sole source of semantic information.

Zender et al. [102] introduce a similar framework that maintains a multi-layered rep-

resentation, consisting of a metric map that maintains the geometric structure of the envi-

ronment using line features, a navigation map that denotes free space and connectivity, a

topological map that clusters the free space into areas separated by doorways, and a concep-
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tual map that maintains an ontology of abstract concepts and their relationships and their

corresponding instances in the topology. Semantic information is inferred using object

detection, region type classification (room vs. hallway), and situated linguistic assertions

provided by a human during a guided tour phase. However, their framework is limited to

handling linguistic descriptions about the immediate space around the robot. They also do

not maintain a probabilistic representation of the spatial or semantic layers.

Pronobis and Jensfelt [69] propose an approach that combines a multi-layered spatial

representation with a probabilistic semantic representation using factor graphs. They utilize

a set of appearance-based classifiers and object detectors coupled with learned models of

relationships between types of regions and their appearance and the presence of objects.

Their approach is also limited to handle language descriptions of the robot’s immediate

environment. Their framework infers the topology from the metric layer and as such does

not maintain a distribution over the topology.

The semantic mapping algorithms outlined in this thesis differ from the existing state-

of-the-art in several fundamental ways. We employ a learned model of free-form utterances

to reason over expressions that are less constrained than those handled by other methods.

To be precise, we assume that these descriptions involve labels for and spatial relations

between one or two locations, though the structure of these expressions is only limited

by rules of grammar and the amount of training data. Existing methods that use natural

language information are mostly limited to learning the labels associated with the robot’s

immediate location. Our algorithms handle descriptions that refer to regions outside the

robot’s immediate location that may even be unobserved by the robot at the time of the

description. In Chapters 3 and 4, we use these descriptions to learn the labels of these

regions, while in Chapter 6 we use these to learn the spatial layout of as yet unobserved

regions. Existing methods allow updates to the metric layer to influence the topological and

semantic layers, but do not use information in the semantic layer improve the rest of the

hierarchy. By maintaining a joint distribution over the metric, topological, and semantic

properties of the environment, our algorithms use updates to any one layer to improve the

other layers in the hierarchy. For example, we show how the semantic layer can be used

to recognize loop closures, a fundamental problem in SLAM, and thereby add edges to the
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topology that, in turn, correct errors in the metric map.

Spatial Segmentation Strategies

Semantic mapping frameworks, and topological mapping in general employ a number of

strategies to segment the environment into different spatial entities. Thrun et al. [91], for

example, rely on a user to push a button each time the robot transitions to a new region.

However, such methods might not be feasible in some scenarios and would prove cumber-

some to any human partner. A straightforward automatic strategy is to segment regions

based upon distance, placing vertices at a fixed spacing as the robot travels in the environ-

ment, which is the method that we take in the work described in Chapter 3. However, this

method is not reflective of how humans model spaces. An alternative is to use heuristics,

such as door detections, to separate regions [102, 69], which yields segmentations that can

be more semantically meaningful within indoor environments. However, while doorways

provide a robust signal that the two regions should be separate, door detectors can have

false positives and negatives, and additionally different regions are not always separated

by doorways. Meanwhile others have segmented regions based upon geometric [6, 4], vi-

sual [71] or semantic similarity [55, 96]. Of particular relevance to this work, Ranganathan

and Dellaert [73] explore multiple methods to define regions, including manual segmen-

tation at the location of gateways (e.g., doorways, junctions) and automatic segmentation

based upon changes in visual appearance [72]. Our approach outlined in Chapter 4 makes

use of both door-detection and a laser-based spectral clustering method [4] to infer spatial

segmentations.

Sources of Semantic Information

The properties contained within the semantic map are most often inferred from the robot’s

sensor data (e.g., lidar scans and camera images), using appearance-based classifiers [55,

68] and object detectors [95, 40]. For example, Martínez Mozos et al. [55] use a com-

bination of boosted laser range features and image-based object detections to classify the

robot’s surround as it navigates, and show how this can be used to induce a topology for the

environment. Similarly, Meger et al. [59] layer a visual attention system and image-based
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Figure 2-2: A salient landmark, such as this question mark, which indicates the location of
the information desk in the Stata Center at MIT, would be difficult to detect using general-
purpose object detectors.

object recognition on top of a SLAM occupancy grid map to build semantic maps that en-

code the locations of objects of interest within the environment. Vasudevan and Siegwart

[96] describe a probabilistic framework that uses clustered object detections to learn con-

ceptual models of space that express their hierarchical structure (e.g., that an “office” may

include a “workspace” and “meeting area”) and the objects that they contain. They argue

that this model is amenable to a hierarchical metric-topological-semantic SLAM frame-

work, though they leave that for future work.

These solutions rely upon scene classifiers and object detectors to infer the proper-

ties that make up the semantic map. Some use non-probabilistic AI reasoning meth-

ods [24, 102], that capture relationships between objects and their presence in certain types
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of regions (e.g., finding a microwave in a kitchen). Others [40, 68] use probabilistic meth-

ods that make use of learned relationships between objects and spatial regions. The ef-

fectiveness of these approaches is a function of the richness of the training data. As such,

they perform best when the environments have similar appearance and regular geometry,

and when the objects are drawn from a common set. Even in structured settings, it is not

uncommon for the regions to be irregular and for the objects to be difficult to recognize,

either because they are out of context or are singletons (Figure 2-2). Furthermore, scene

classification does not provide a means to infer the specific labels that humans use for a

location, such as “Mark’s office” or the “Kiva conference room.”

Several semantic mapping frameworks are able to learn from natural language descrip-

tions of the environment provided by a human. Kruijff et al. [43] allows for assertions

about the immediate location as well as the presence of doorways that they use to aid seg-

mentation. Zender et al. [102] and Pronobis and Jensfelt [69] also integrate descriptions of

the robot’s immediate surround into the semantic representation. However, use of language

is limited to inferring semantic properties of the robot’s immediate surround. Williams

et al. [100] propose a framework that handles more complicated language descriptions,

where they extend the robot’s representation, by adding new (unknown) places based on

language. However, they do not maintain multiple hypotheses about the space nor do they

have any probabilistic reasoning regarding the grounding of language to the map. Their

evaluation is also limited to simulation environments.

Our approach outlined in Chapter 3 relies on natural language descriptions as the only

source of semantic information. However, unlike prior approaches that use natural lan-

guage, we are able to integrate semantic information from allocentric descriptions that ref-

erence areas outside the robot’s immediate surroundings as well as egocentric descriptions

that refer to the robot’s immediate surround. We extend this in Chapter 4 to make use of

appearance-based classifiers trained with geometric features [55] and image features [68]

in addition to language descriptions. While the algorithms in Chapters 3 and 4 only inte-

grate this semantic information once the robot observes the relevant region, in Chapter 6

we use language to reason about the presence and locations of regions and objects that are

yet to be observed.
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Acquiring Representations of the Environment

There is a spectrum of methods for robots to acquire representations of their environments.

On one side of the spectrum lies purely passive approaches where the robot is manually

driven around the environment, and a map is constructed either online or offline, and pos-

sibly annotated with high level information by an expert. While effective at acquiring

maps and even integrating high level information, such approaches are hard to scale to

large deployments especially with novice users. Additionally, certain platforms, such as a

quad-rotor or a robotic forklift, might require an expert operator. On the other end of the

spectrum lies fully autonomous approaches [101, 92, 86], where the robot uses an explo-

ration strategy (e.g., frontier-based exploration) to fully explore its environment. However,

such strategies can fail if parts of the environment are inaccessible without human inter-

vention (e.g., separated by a closed door) and any high-level information that is integrated

to the representation have to be inferred by the robot using its own sensors.

Semi-supervised methods [43, 102, 30] that fall in between these approaches combine

the advantages of both approaches. In such methods, a human conducts a narrated guided

tour of the new environment, describing salient locations and objects verbally as shown in

Figure 1-4b. The robot follows the guide through an environment, interpreting his spoken

utterances and the shared spatio-temporal context. These methods allow even non-expert

users to assist robots in building better models of the environments. This also allows the

human to impart knowledge about the environment using natural language, which can be

integrated to the robot’s representation. Additionally, the robot can also carry out dialog

interaction with the guide to improve its representations. Our approaches in Chapters 3,

4 and 5 are modeled on this guided tour concept, which allows the robot to receive a

stream of sensor observations and language descriptions. We use the algorithm outlined

in Hemachandra et al. [30] to enable the tour. This uses a laser-based person tracker cou-

pled with a socially-acceptable person following method to follow the guide through the

environment.
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2.2 Understanding Natural Language Utterances

There have been a number of efforts aimed at solving what Harnad [26] refers to as the

symbol grounding problem, the problem of mapping linguistic elements to their corre-

sponding manifestation in the external world, such as objects, spatial entities and actions.

In the robotics domain, the grounding problem has primarily been addressed in the context

of following route directions and other natural language commands.

Inferring a behavior such as a desired robot trajectory from natural language commands

can be formally defined as follows, where 𝑥(𝑡) is the required robot trajectory, Λ is the

language command and 𝑀 is the world model:

arg max
𝑥(𝑡)

𝑝(𝑥(𝑡)|Λ,𝑀) (2.11)

One class of solutions [82, 53, 19, 8, 58, 57] treats grounding as one of parsing free-

form commands into a formal control language equivalent, which a planner takes as input.

One such algorithm for following natural language directions by Matuszek et al. [57] solves

the grounding problem by learning a semantic parsing model that is used to define a distri-

bution over possible control sequences defined using a robot control language.

Another class of solutions [41, 88, 89, 34] function by mapping free-form utterances

into their corresponding object and action referents in the robot’s world model. These

approaches infer the maximum likelihood groundings (Γ) given language and the world

model using probabilistic models.

arg max
Γ

𝑝(Γ|Λ,𝑀) (2.12)

Groundings can be actions, paths, objects or locations in the robot’s world model. One

such work by Tellex et al. [88] introduces the Generalized Grounding Graph (G3), which is

a probabilistic graphical model with random variables representing linguistic components

and groundings in the world. Our work uses G3 to evaluate the groundings given language

descriptions to infer semantic properties. Howard et al. [34] introduce the Distributed Cor-

respondence Graph (DCG), which is a more efficient formulation that is used to infer the

45



most likely set of planning constraints given the language and the world model. Unlike

the G3 formulation which requires searching over sampled paths in the environment, DCG

searches over the planning constraints that satisfy the command. In Chapter 6, we use a

hierarchical formulation of DCG [33] to infer spatial-semantic information contained in

natural language instructions and infer behaviors based on the distribution over the maps

and language.

2.2.1 Following Natural Language Commands in Unknown Environ-

ments

With few exceptions, most techniques for understanding natural language commands re-

quire a priori knowledge of location, geometry, colloquial name, and type of all objects

and regions within the environment [41, 34, 88]. Without known world models, however,

interpreting free-form commands becomes much more difficult. Existing methods have

dealt with this by learning a parser that maps the natural language command directly to

plans [53, 8, 57]. Alternatively, Duvallet et al. [18] use imitation learning to train a policy

that reasons about uncertainty in the grounding and that is able to backtrack as necessary.

However, none of these approaches explicitly utilize the knowledge that the instruction

conveys to influence their models of the environment, nor do they reason about its uncer-

tainty.

In contrast, our approach outlined in Chapter 6 uses natural language information to

generate a prior over the possible configurations of landmarks by exploiting the informa-

tion implicitly contained in a given instruction. Information inferred from natural language

is used to create new spatial entities in the topology but also infer weak metric properties

based on spatial relationships. Unlike Williams et al. [100] who also use natural language

information to add new places to their map, our approach reasons about multiple possi-

ble configurations of the world and also reasons about metric information inferred by the

descriptions.

As we reason in the space of distributions over possible environments, we draw from

strategies in the belief-space planning literature. Most importantly, we represent our belief
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using samples from the distribution, similar to work by Platt et al. [67]. The problem

of learning a policy in partially observable environments can be modeled as a Partially-

Observable Markov Decision Process (POMDP) [85]. Approximate solutions to POMDP

problems include QMDP [48, 78], which assume the ability to fully observe the state after

one time step.

2.3 Taking Actions to Improving Representations

A number of efforts have endowed robots with the ability to take actions to improve their

representations or to better respond to human commands, either by taking physical actions

by exploring unknown regions in the environment during exploration [54, 86] or using

dialog to interact with human partners [43, 12]. Chapter 5 introduces an algorithm for

asking questions to improve the robot’s spatial-semantic representation during a guided

tour.

Several works have address the case where robots autonomously learn maps of their en-

vironment by taking physical exploration actions. Makarenko et al. [54] decide on the best

action by defining utility values for making new observations, navigation and localizabil-

ity for each potential exploration action, to build feature based maps. Stachniss et al. [86]

make use of the expected information gain and the cost of each action to decide the best

exploration-based motion action to reduce the expected entropy over the map. While we do

not consider physical exploration actions, we use somewhat similar expected information

gain based reasoning to decide on the best question to ask.

For robot systems that interact with human partners, question asking is another form of

interactions that can help improve their environment representations [43], aid in learning

new activities [76], better interpret a user’s commands [12, 14]. Kruijff et al. [43] ad-

dress this in the context of giving the robot a tour of its environment, where the robot asks

clarification questions from its human partner. These questions seek to learn about room

segmentation by asking about the existence of doorways, resolve inconsistencies between

the robot’s understanding of its surroundings and human assertions, and localization fail-

ures. However, they do not maintain a probabilistic spatial-semantic representation, nor do
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they carry out any probabilistic reasoning about receiving a particular answer.

More recently, Deits et al. [12] have looked at question asking from an information-

theoretic perspective for following natural language manipulation commands. They use an

information gain-based reasoning method to evaluate the best questions to ask in order to

reduce the entropy over the grounding for a given command. Their approach considers a

larger space of questions, ranging from yes/no questions seeking to confirm a correspon-

dence between a referent in the command and an entity in the environment (e.g., “Is this

the tire pallet?”), targeted questions that expect an open ended answer (e.g. “What does

’the box’ refer to?”) and reset questions which asks the user to restate the command. Our

approach in Chapter 5 only deals with yes/no type questions but questions may not neces-

sarily reflect only a particular grounding. Deits et al. [12] deal with resolving ambiguity

in a given natural language instruction for a known map, while our approach deals with re-

ducing ambiguity of natural language instructions as the robot learns the map of the world.

They do not need to reason over when to ask the questions, since they immediately follow

the corresponding command. However, in our approach, as the robot needs to ask questions

during the guided tour, it also needs to reason about when it is useful to asks a question.

While our approach outlined in Chapter 5 also uses an information gain metric simi-

lar to Stachniss et al. [86], and Deits et al. [12], we formulate the problem as a decision

problem, where the robot has to decide between continuing the tour or interrupting the

tour to ask a question. In our case, a question can simultaneously refer to areas that the

user described at distant points in time. This necessitates that we consider when it is most

meaningful to ask the question and that it be phrased in a manner that provides sufficient

context. As the robot maintains multiple hypothesis over the world, we use a QMDP for-

mulation [48, 78] to solve for the best one-step action.
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Chapter 3

Learning Semantic Maps from Natural

Language Descriptions

This chapter outlines our semantic mapping formulation described in [98, 99] that enables

robots to efficiently learn human-centric models of the environment from a narrated, guided

tour (Figure 3-1) by fusing knowledge inferred from natural language descriptions with

conventional low-level sensor data. Our method allows people to convey meaningful con-

cepts, including semantic labels and relations for both local and distant regions of the en-

vironment, simply by speaking to the robot. The advantage is that the robot can learn

concepts that people are arguably better-able to convey from its opportunistic interaction

with humans. The challenge lies in effectively combining these noisy, disparate sources of

information. A user’s descriptions convey concepts (e.g., “the second room on the right”)

that are ambiguous with regard to their metric associations: they may refer to the region that

the robot currently occupies, to more distant parts of the environment, or even to aspects of

the environment that the robot will never observe. In contrast, the sensors that robots com-

monly employ for mapping, such as cameras and lidars, yield metric observations arising

only from the robot’s immediate surroundings.

To handle ambiguity, we propose a representation referred to as the semantic graph that

combines metric, topological, and semantic models of the environment. The topological

layer consists of a graph in which vertices correspond to reachable regions of the environ-

ment, and edges denote pairwise spatial relations. The metric layer takes the form of a
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The kitchen is 
down the hall

Figure 3-1: A user gives a tour to a robotic wheelchair designed to assist residents in a
long-term care facility.

vector of poses for each region in the environment together with the resulting occupancy-

grid map that captures the perceived structure. The semantic layer contains the labels with

which people refer to these regions. This knowledge representation is well-suited to fusing

concepts from a user’s descriptions with the robot’s metric observations of its surroundings.

We estimate a joint distribution over the semantic, topological and metric maps, con-

ditioned on the language and the metric observations from the robot’s proprioceptive and

exteroceptive sensors. The space of semantic graphs, however, increases combinatorially

with the size of the environment. We use a Rao-Blackwellized particle filter [15] to effi-

ciently maintain the factored form of the joint distribution over semantic graphs. Specifi-

cally, we approximate the marginal over the space of topologies with a set of particles, and

analytically model conditional distributions over metric and semantic maps as Gaussian

and Dirichlet, respectively. The algorithm updates these distributions iteratively over time

using descriptions and sensor measurements as they arrive. We model the likelihood of

natural language utterances using the Generalized Grounding Graph (G3) framework [88].

Given a description, the G3 model induces a learned distribution over semantic labels for

the vertices in the semantic graph that we then use to update the Dirichlet distribution. The

algorithm uses the resulting semantic distribution to propose modifications to the graph,
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allowing semantic information to influence the metric and topological layers.

The approach outlined in this chapter was the result of joint work with Matthew R.

Walter and Stefanie Tellex.

3.1 The Semantic Graph Algorithm

This section presents our approach to maintaining a distribution over semantic graphs, our

environment representation that consists jointly of metric, topological, and semantic maps.

The metric map models information contained in the robot’s low-level sensor readings. The

topological map models the connectivity between regions that can be inferred from naviga-

tion as well as natural language descriptions. The semantic map represents categories that

the user conveys.

3.1.1 Semantic Graph Representation

We model the environment as a set of places, regions in the environment a fixed distance

apart1 that the robot has visited. We represent each place by its pose 𝑥𝑖 in a global reference

frame and a label 𝑙𝑖 (e.g., “gym,” “hallway”). More formally, we represent the environment

by the tuple {𝐺𝑡, 𝑋𝑡, 𝐿𝑡} that constitutes the semantic graph 𝑆𝑡. The graph 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡)

denotes the environment topology with a vertex 𝑉𝑡 = {𝑣1, 𝑣2, . . . , 𝑣𝑡} for each place that the

robot has visited, and undirected edges 𝐸𝑡 that signify observed relations between vertices,

based on metric or semantic information. The vector 𝑋𝑡 = [𝑥1,𝑥2, . . . ,𝑥𝑡] encodes the

pose associated with each vertex. The set 𝐿𝑡 = {𝑙1, 𝑙2, . . . , 𝑙𝑡} includes the semantic label

𝑙𝑖 associated with each vertex. The semantic graph grows as the robot moves through the

environment. Our method adds a new vertex 𝑣𝑡+1 to the topology after the robot travels

a specified distance, and augments the vector of poses and collection of labels with the

corresponding pose 𝑥𝑡+1 and labels 𝑙𝑡+1, respectively. This model resembles the pose

graph representation commonly employed by SLAM solutions [38]. Figure 3-2 shows an

example semantic graph.

1We use 5 m spacing for the results presented in this section.
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Figure 3-2: Example semantic graph particle: circles denote vertices 𝑉𝑖’s and lines de-
note edges 𝐸𝑖’s in the topology, 𝑥𝑖’s denote the metric location and 𝑙𝑖’s denote the label
distribution.

Our goal is to induce a distribution over the semantic graph, including the locations,

topology, and semantic labels given information about an environment obtained from a

robot’s range sensors, odometry readings, and the user’s descriptions of the environment.

3.1.2 Distribution Over Semantic Graphs

We estimate a joint distribution over the topology 𝐺𝑡, the vector of locations 𝑋𝑡, and the set

of labels 𝐿𝑡. Formally, we maintain this distribution over semantic graphs {𝐺𝑡, 𝑋𝑡, 𝐿𝑡} at

time 𝑡 conditioned upon the history of metric exteroceptive sensor data 𝑧𝑡 = {𝑧1, 𝑧2, . . . , 𝑧𝑡},

odometry 𝑢𝑡 = {𝑢1, 𝑢2, . . . , 𝑢𝑡}, and natural language descriptions Λ𝑡 = {Λ1,Λ2, . . . ,Λ𝑡}:

𝑝(𝐺𝑡, 𝑋𝑡, 𝐿𝑡|𝑧𝑡, 𝑢𝑡,Λ𝑡). (3.1)

Each language variable Λ𝑖 denotes a (possibly null) utterance, such as “This is the

kitchen,” or “The gym is down the hall.” Table 3.1 outlines our notation. We factor the

joint posterior into a distribution over the graphs and a conditional distribution over the
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Table 3.1: Semantic Graph Notation

Symbol Description

𝑆𝑡 = {𝐺𝑡, 𝑋𝑡, 𝐿𝑡}
Semantic Graph that combines the topological 𝐺𝑡, metric 𝑋𝑡, and
semantic 𝐿𝑡 representations.

𝐺𝑡 = (𝑉𝑡, 𝐸𝑡)
Graph representation of the topology at time 𝑡 that consists of a set
of vertices 𝑉𝑡 = {𝑣1, 𝑣2, . . . , 𝑣𝑡} connected by undirected edges 𝐸𝑡.

𝐿𝑡
Semantic information in the form of labels 𝑙𝑡,𝑗 associated with each
place 𝑣𝑗 at time 𝑡.

𝑙
(𝑖)
𝑡,𝑗 Label distribution for vertex 𝑗 in particle 𝑖 at time 𝑡.

Λ𝑡 Parsed natural language description of the environment at time 𝑡.

𝑋𝑡 Vector of landmark poses [𝑥1, ...,𝑥𝑡] at time 𝑡

𝑧𝑡 Observations made at time 𝑡 by sensors onboard the robot.

𝑢𝑡 Odometry reading at time 𝑡.

vertex poses and labels,

𝑝(𝐺𝑡, 𝑋𝑡, 𝐿𝑡|𝑧𝑡, 𝑢𝑡,Λ𝑡) = 𝑝(𝐿𝑡|𝑋𝑡, 𝐺𝑡, 𝑧
𝑡, 𝑢𝑡,Λ𝑡)

× 𝑝(𝑋𝑡|𝐺𝑡, 𝑧
𝑡, 𝑢𝑡,Λ𝑡)× 𝑝(𝐺𝑡|𝑧𝑡, 𝑢𝑡,Λ𝑡). (3.2)

The left-most expression in this factorization explicitly models the dependence of the labels

on the topology and the location of each region. The middle term encodes the conditional

distribution over the metric map given the topology and, in this way, mimics pose graph for-

mulations to SLAM, given the loop closure (i.e., the topology). The right-most expression

denotes the distribution over the graph conditioned upon the sensor history and language.

3.1.3 Space of Potential Topologies

In our representation of the topology, when the robot revisits a region 𝑣𝑖, a new vertex 𝑣𝑗

is still created, and an edge 𝑒𝑖𝑗 is added to denote that it is back in the same space. As

such when considering the distribution over the space of topologies, the number of vertices
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are deterministic. Therefore the space of possible graphs for that environment is spanned

by the potential allocation of edges between the vertices. The space of potential edges,

however, is exponential in the number of vertices. Hence, maintaining the full distribution

over graphs is intractable for all but trivially small environments. To overcome this com-

plexity, we assume as in Ranganathan and Dellaert [73] that the distribution over graphs is

dominated by a small subset of topologies consistent with the robot’s observations while

the likelihood associated with the majority of topologies is nearly zero. In general, this

assumption holds when the environment structure (e.g., indoor, man-made) or the robot

motion (e.g., exploration) limits connectivity [73]. In addition, conditioning the graph on

language descriptions results in a more peaked distribution, further increasing the valid-

ity of this assumption. This is due to the low-likelihood of topologies that contain edges

between nodes with inconsistent semantic information.

3.1.4 Maintaining the Posterior over the Semantic Graph

The assumption that the distribution is concentrated around a limited set of topologies sug-

gests the use of particle-based methods to represent the posterior over graphs, 𝑝(𝐺𝑡|𝑧𝑡, 𝑢𝑡,Λ𝑡).

Inspired by the derivation of Ranganathan and Dellaert [73] for topological SLAM, we

employ Rao-Blackwellization to model the factored formulation (3.2), whereby we ac-

company the sample-based distribution over graphs with analytic representations for the

conditional posteriors over the vertex locations and labels. Specifically, we represent the

posterior over the vertex poses 𝑝(𝑋𝑡|𝐺𝑡, 𝑧
𝑡, 𝑢𝑡,Λ𝑡) by a Gaussian, which we parametrize in

the canonical form. We maintain a Dirichlet distribution that models the posterior distribu-

tion over the set of vertex labels 𝑝(𝐿𝑡|𝑋𝑡, 𝐺𝑡, 𝑧
𝑡, 𝑢𝑡,Λ𝑡).

We represent the distribution over the semantic graph as a set of particles

𝑆𝑡 = {𝑆(1)
𝑡 , 𝑆

(2)
𝑡 , . . . , 𝑆

(𝑛)
𝑡 }. (3.3)

Each particle 𝑆
(𝑖)
𝑡 ∈ 𝑆𝑡 consists of the set

𝑆
(𝑖)
𝑡 =

{︁
𝐺

(𝑖)
𝑡 , 𝑋

(𝑖)
𝑡 , 𝐿

(𝑖)
𝑡 , 𝑤

(𝑖)
𝑡

}︁
, (3.4)
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Algorithm 1: Semantic Mapping Algorithm

Input: 𝑆𝑡−1 =
{︁
𝑆
(𝑖)
𝑡−1

}︁
, and (𝑢𝑡, 𝑧𝑡,Λ𝑡), where 𝑆

(𝑖)
𝑡−1 =

{︁
𝐺

(𝑖)
𝑡−1, 𝑋

(𝑖)
𝑡−1, 𝐿

(𝑖)
𝑡−1, 𝑤

(𝑖)
𝑡−1

}︁
Output: 𝑆𝑡 =

{︁
𝑆
(𝑖)
𝑡

}︁
for 𝑖 = 1 to 𝑛 do

1. Employ proposal distribution 𝑝(𝐺𝑡|𝐺(𝑖)
𝑡−1, 𝑧

𝑡−1, 𝑢𝑡,Λ𝑡) to propagate the graph
sample 𝐺

(𝑖)
𝑡−1 according to 𝑢𝑡 and current distributions over 𝐿(𝑖)

𝑡−1 and 𝑋
(𝑖)
𝑡−1.

2. Update the Gaussian distribution over the vertex poses 𝑋(𝑖)
𝑡 according to the

constraints induced by the newly-added graph edges.

3. Update the Dirichlet distribution over the current and adjacent vertices 𝐿(𝑖)
𝑡

according to the language Λ𝑡.

4. Compute the new particle weight 𝑤(𝑖)
𝑡 based upon the previous weight 𝑤(𝑖)

𝑡−1

and the metric data 𝑧𝑡.

end

Normalize weights and resample if needed.

where 𝐺
(𝑖)
𝑡 denotes the 𝑖’th sample in the space of graphs; 𝑋(𝑖)

𝑡 is the analytic distribution

over locations; 𝐿(𝑖)
𝑡 is the analytic distribution over labels; and 𝑤

(𝑖)
𝑡 is the weight of particle

𝑖.

3.2 Building Semantic Maps with Language

Algorithm 1 outlines the process by which we recursively update the distribution over

semantic graphs (3.2) to reflect the latest robot motion, metric sensor data, and utter-

ances. In the first step, we propagate each sample 𝐺
(𝑖)
𝑡−1, which represents the posterior

𝑝(𝐺𝑡−1|𝑧𝑡−1, 𝑢𝑡−1,Λ𝑡−1) at time 𝑡 − 1, by adding a vertex for the robot’s new pose (con-

nected by an edge to the previous vertex) and sampling modifications to the topology in the

form of additional edges according to the current metric and label distributions. This re-

sults in a sample-based estimate for the prior at time 𝑡, 𝑝(𝐺𝑡|𝑧𝑡−1, 𝑢𝑡,Λ𝑡). Next, we update

the Gaussian distribution over the vertex poses by incorporating the constraints induced by

the new loop-closure edges. We then proceed to update the Dirichlet distributions based
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upon the structure of the graph and parsed language Λ𝑡, if available. Finally, we update

the weight 𝑤(𝑖)
𝑡 according to the likelihood of new metric measurements 𝑧𝑡 and resample if

needed. We repeat these steps for each particle, yielding the particle set representation 𝑆𝑡 of

the new posterior distribution at time 𝑡, 𝑝(𝐺𝑡, 𝑋𝑡, 𝐿𝑡|𝑧𝑡, 𝑢𝑡,Λ𝑡). The following subsections

explain each step in detail.

3.2.1 Graph Augmentation using the Proposal Distribution

Given the posterior distribution over the semantic graph at time 𝑡− 1, we first compute the

prior distribution over the graph 𝐺𝑡. We do so by sampling from a proposal distribution

that is the predictive prior of the current graph given the previous graph and sensor data,

and the recent odometry and language:

𝐺
(𝑖)
𝑡 ∼ 𝑝(𝐺𝑡|𝐺(𝑖)

𝑡−1, 𝑧
𝑡−1, 𝑢𝑡,Λ𝑡) (3.5)

We formulate the proposal distribution by first augmenting the graph to reflect the robot’s

motion. Specifically, we add a vertex 𝑣𝑡 to the graph that corresponds to the robot’s cur-

rent pose with an edge to the previous vertex 𝑣𝑡−1 that represents the temporal constraint

between the two poses based on the robot’s motion. We denote this intermediate graph as

𝐺
−(𝑖)
𝑡 . Similarly, we add the new pose as predicted by the robot’s motion model to the vec-

tor of poses 𝑋−(𝑖)
𝑡 (according to the process outlined in Subsection 3.2.2) and the vertex’s

label to the label vector 𝐿−(𝑖)
𝑡 (according to the process described in Subsection 3.2.32).

Thus the new proposal distribution, which is conditioned on 𝐺
−(𝑖)
𝑡 is,

𝑝(𝐺𝑡|𝐺−(𝑖)
𝑡 , 𝑧𝑡−1, 𝑢𝑡,Λ𝑡). (3.6)

Sampling Graph Modifications

We sample the new graph particle 𝐺(𝑖)
𝑡 by sampling a set of modifications ∆𝐺𝑡 to the graph

conditioned on the intermediate graph 𝐺
−(𝑖)
𝑡 . In this work the modifications to the graph

are in the form of spatial constraints in the form of edges to the graph and corresponding

2The label update explains the presence of the latest language Λ𝑡.
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metric constraints.

𝑝(𝐺𝑡|𝐺−(𝑖)
𝑡 , 𝑧𝑡−1, 𝑢𝑡,Λ𝑡) = 𝑝(∆𝐺𝑡|𝐺−(𝑖)

𝑡 , 𝑧𝑡−1, 𝑢𝑡,Λ𝑡) (3.7)

We formulate the proposal distribution (3.7) in terms of the likelihood of adding edges

between vertices in this modified graph 𝐺
−(𝑖)
𝑡 . The system considers two forms of edges:

first, those suggested by the spatial distribution of vertices and second, by the semantic

distribution for each vertex.

Spatial Distribution-based Constraints

We first sample edges between the robot’s current vertex 𝑣𝑡 and others in the graph based

on a spatially biased proposal distribution as shown in Equation 3.8, where 𝐺𝑡𝑗
𝑡 denotes a

graph edge between the vertex 𝑣𝑡 and 𝑣𝑗 . Equation 3.8a reflects the assumption that addi-

tional edges expressing constraints involving the current vertex 𝑒𝑡𝑗 /∈ 𝐸− are conditionally

independent. This proposal distribution reflects the fact that vertices close in metric space

are more likely to have an edge between them. We achieve this by marginalizing over

the distances 𝑑𝑡𝑗 between vertex pairs, as shown in Equation 3.8c, where we omit the his-

tory of language observations Λ𝑡, metric measurements 𝑧𝑡−1, and odometry 𝑢𝑡 for brevity.

Equation 3.8c approximates the marginal in terms of the distance between the two vertices

associated with the additional edge.

𝑝𝑎(𝐺𝑡|𝐺−(𝑖)
𝑡 , 𝑧𝑡−1, 𝑢𝑡,Λ𝑡) =

∏︁
𝑗:𝑒𝑡𝑗 /∈𝐸−

𝑝(𝐺𝑡𝑗
𝑡 |𝐺

−(𝑖)
𝑡 ) (3.8a)

=
∏︁

𝑗:𝑒𝑡𝑗 /∈𝐸−

∫︁
𝑋−

𝑡

𝑝(𝐺𝑡𝑗
𝑡 |𝑋

−(𝑖)
𝑡 , 𝐺

−(𝑖)
𝑡 )𝑝(𝑋

−(𝑖)
𝑡 |𝐺−(𝑖)

𝑡 ) (3.8b)

≈
∏︁

𝑗:𝑒𝑡𝑗 /∈𝐸−

∫︁
𝑑
(𝑖)
𝑡𝑗

𝑝(𝐺𝑡𝑗
𝑡 |𝑑

(𝑖)
𝑡𝑗 , 𝐺

−(𝑖)
𝑡 )𝑝(𝑑

(𝑖)
𝑡𝑗 |𝐺

−(𝑖)
𝑡 ), (3.8c)

The conditional distribution 𝑝(𝐺𝑡𝑗
𝑡 |𝑑

(𝑖)
𝑡𝑗 , 𝐺

−(𝑖)
𝑡 , 𝑧𝑡−1, 𝑢𝑡,Λ𝑡) expresses the likelihood of

having an edge between vertices 𝑣𝑡 and 𝑣𝑗 based upon their spatial location. We represent

the distribution for a particular edge between vertices 𝑣𝑖 and 𝑣𝑗 a distance 𝑑𝑖𝑗 = |𝑥𝑖 − 𝑥𝑗|2

59



1.0

0.5

0.0
0 2 4 6 8 10

Distance (m)

P
ro

b
a
b
ili

ty

(a)

0.25

0.20

0.0
0 2 4 6 8 10

Distance (m)

P
ro

b
a
b

ili
ty

0.15

0.10

0.05

(b)

Figure 3-3: (a) Edge likelihood vs. distance between two vertices (b) Folded Gaussian
distribution for distance 𝑑𝑖𝑗 for a mean 3.0 m and standard deviation 2.0 m.

apart as

𝑝(𝐺𝑖𝑗
𝑡 |𝑑

(𝑖)
𝑖𝑗 , 𝐺

−(𝑖)
𝑡 , 𝑧𝑡−1, 𝑢𝑡,Λ𝑡) ∝ 1

1 + 𝛾𝑑
(𝑖)
𝑖𝑗

2 , (3.9)

where 𝛾 specifies distance bias. For the evaluations in this chapter, we use 𝛾 = 0.2. Fig-

ure 3-3a shows how the likelihood of an edge changes based on the distance between two

vertices. We approximate the distance prior 𝑝(𝑑
(𝑖)
𝑡𝑗 |𝐺

−(𝑖)
𝑡 , 𝑧𝑡−1, 𝑢𝑡,Λ𝑡) with a folded Gaus-

sian distribution,

𝑝(𝑑
(𝑖)
𝑖𝑗 ;𝜇, 𝜎) =

1

𝜎
√

2𝜋
exp

(︃
−

(−𝑑(𝑖)𝑖𝑗 − 𝜇)2

2𝜎2

)︃
+

1

𝜎
√

2𝜋
exp

(︃
−

(𝑑
(𝑖)
𝑖𝑗 − 𝜇)2

2𝜎2

)︃ (︁
𝑑
(𝑖)
𝑖𝑗 ≥ 0

)︁
(3.10)

where 𝜇 is the the mean and 𝜎 is the standard deviation, approximated based upon a lin-

earized model for the distance between the normally distributed positions 𝑥𝑖 and 𝑥𝑗 . The

probability is 0 for 𝑑(𝑖)𝑖𝑗 < 0. Figure 3-3b shows an example folded Gaussian distribution

based on the distance.

The algorithm samples from the proposal distribution (3.8) to identify candidate edges.

Before adding these to the graph, we use laser scans to build local maps around each vertex

and compare the maps associated with the two vertices using scan-matching (Figure 3-4).

The algorithm rejects edges that fail the scan-matching procedure, in order to eliminate
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(a) Rejected Edges (b) Rejected and Accepted Edges

Figure 3-4: In the proposal step, the algorithm hypothesizes the addition of new edges in
the graph based upon the estimated distance between vertices. Candidate edges are (a)
rejected (black) or (b) accepted (red) based upon scan-matching.

topology samples that have low-likelihood of being correct. Even when the scan-matching

is successful, it can still yield false positives for areas with ambiguous local geometry

(such as in long corridors). In order to reduce the effects of this perceptual aliasing, we

evaluate the likelihood of the scan-matched estimates of the inter-region transformations

under our distribution over the metric map. The algorithm retains edges according to their

Mahalanobis distance and adds edges deemed to be valid along with their estimated trans-

formations.

Semantic Map-based Constraints

A fundamental contribution of our method is the ability for the semantic map to influence

the metric and topological maps. This capability results from the use of the label distri-

butions to perform place recognition. The algorithm identifies loop closures by sampling

from a proposal distribution that expresses the semantic similarity between vertices. At

each time step, we only sample edges from a subset of possible edges for the graph. We

outline this process below.
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We define the subset S𝑡 that consists of the vertices that had semantic information in-

tegrated to them at time 𝑡. For each such vertex 𝑣𝑘 ∈ S𝑡 we define the set SΛ
𝑘 , containing

the indices of each language event that contributed to its label distribution. For each vertex

𝑣𝑘 ∈ S𝑡, we sample semantic edges from the valid set E𝑘, which is defined as:

E𝑘 =
{︀
𝑒𝑘,𝑗|SΛ

𝑘 ∩ SΛ
𝑗 = ∅, SΛ

𝑗 ̸= ∅, 𝑒𝑘𝑗 /∈ 𝐸−}︀ . (3.11)

Effectively we only sample semantic edges between a node that had semantic informa-

tion integrated at time 𝑡 from language Λ𝑘 and any nodes that already contain semantic

information from language descriptions other than Λ𝑘.

For each vertex 𝑣𝑘 ∈ S𝑡, we sample semantic edges based on the proposal distribution

defined below.

𝑝𝑠(𝐺𝑡|𝐺−(𝑖)
𝑡 , 𝑧𝑡−1, 𝑢𝑡,Λ𝑡) =

∏︁
𝑒𝑘𝑗∈E𝑘

𝑝(𝐺𝑘𝑗
𝑡 |𝐺

−(𝑖)
𝑡 ,Λ𝑡) (3.12a)

=
∏︁

𝑒𝑡𝑗∈E𝑘

∑︁
𝐿
−(𝑖)
𝑡

𝑝(𝐺𝑘𝑗
𝑡 |𝐿

−(𝑖)
𝑡 , 𝐺

−(𝑖)
𝑡 ,Λ𝑡)𝑝(𝐿

−(𝑖)
𝑡 |𝐺−(𝑖)

𝑡 ) (3.12b)

≈
∏︁

𝑒𝑘𝑗∈E𝑘

∑︁
𝑙−𝑡 ,𝑙−𝑗

𝑝(𝐺𝑘𝑗
𝑡 |𝑙−𝑘 , 𝑙

−
𝑗 , 𝐺

−(𝑖)
𝑡 )𝑝(𝑙−𝑘 , 𝑙

−
𝑗 |𝐺

−(𝑖)
𝑡 ), (3.12c)

where we have omitted the metric, odometry, and language inputs for clarity. The first line

follows from the assumption that additional edges 𝑒𝑘𝑗 ∈ E𝑘 that express constraints to the

vertex 𝑣𝑘 are conditionally independent. The second line represents the marginalization

over the space of labels, while the last line results from the assumption that the semantic

edge likelihoods depend only on the labels for the vertex pair.

We model the likelihood of edges between two vertices as non-zero for the same label

𝑝(𝐺𝑘𝑗
𝑡 |𝑙𝑘, 𝑙𝑗) =

⎧⎪⎨⎪⎩𝜃𝑙 if 𝑙𝑘 = 𝑙𝑗

0 if 𝑙𝑘 ̸= 𝑙𝑗

(3.13)

where 𝜃𝑙 denotes the label-dependent likelihood that edges exist between vertices with the

same label. Equation 3.12c then measures the cosine similarity between the label distri-
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(a) (b)

Figure 3-5: Semantic map-based constraint sampling (for a single particle): (a) When the
robot is at node D (described by the guide as an entrance) the algorithm samples edges
to three other nodes (A,B, and C) that were labeled as entrances (all nodes with a high-
likelihood for the label “entrance” are shown in pink). It rejects invalid edges that result
from ambiguous labels (black) and adds the edge (green) that denotes a valid loop closure.
(b) The resulting map after the accepted edge (between A and D) is added to the topology,
and their metric locations are updated based on the new constraint.

butions. This parameter expresses the fact that certain labels are more commonplace and

less likely to suggest that two regions are the same. For example, regions such as hallways

are pretty common in the environment, and as such the likelihood of an edge between two

hallways is less likely. In practice, we use a value of 0.2 for the label “hallway,” and 1.0 for

all other labels.

We sample from the proposal distribution (3.12) to hypothesize new semantic map-

based edges. As with distance-based edges, we validate proposed edges by building local

maps for each region and performing scan-matching between these maps. Figure 3-5 shows

several different edges sampled from the proposal distribution for a single particle at one

stage of a tour. Here, the algorithm identifies candidate loop closures between different

“entrances” in the environment and accepts those (shown in green) whose local laser scans

result in a valid scan-match. Note that some particles may add invalid edges (e.g., due to

perceptual or semantic aliasing), but their weights will decrease as subsequent measure-

ments become inconsistent with the hypothesis.
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Figure 3-6: The mean position and 1𝜎 uncertainty ellipse for each vertex, along with the
resulting occupancy grid map.

3.2.2 Updating the Metric Map Based on New Edges

The proposal step results in the addition, to each particle, of a new vertex at the current

robot pose, along with an edge representing its temporal relationship to the previous vertex.

The proposal step might also add additional loop-closure edges. Next, the algorithm incor-

porates these relative pose constraints into the Gaussian representation for the marginal

distribution over the map

𝑝(𝑋
(𝑖)
𝑡 |𝐺

(𝑖)
𝑡 , 𝑧𝑡, 𝑢𝑡,Λ𝑡) = 𝒩−1(𝑋

(𝑖)
𝑡 ; Σ−1

𝑡 , 𝜂𝑡), (3.14)

where Σ−1
𝑡 and 𝜂𝑡 are the information (inverse covariance) matrix and information vector

that parametrize the canonical form of the Gaussian. We utilize the iSAM algorithm [38] to

update the canonical form by iteratively solving for the QR factorization of the information

matrix. Figure 3-6 shows the resulting metric poses and their uncertainties.
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3.2.3 Updating the Semantic Map Based on Natural Language

Next, the algorithm updates the distribution over the current labels 𝐿(𝑖)
𝑡 = {𝑙𝑡,1, 𝑙𝑡,2, . . . , 𝑙𝑡,𝑡}

associated with each particle. This update reflects information regarding labels and spatial

relations conveyed by spoken descriptions, as well as semantic concepts that are suggested

by the addition of edges to the graph. In maintaining the label distribution, we make the

assumption that the vertex labels are conditionally independent given the topology and

vertex poses

𝑝(𝐿
(𝑖)
𝑡 |𝑋

(𝑖)
𝑡 , 𝐺

(𝑖)
𝑡 , 𝑧𝑡, 𝑢𝑡,Λ𝑡) =

𝑡∏︁
𝑖=1

𝑝(𝑙𝑡,𝑖|𝑋(𝑖)
𝑡 , 𝐺

(𝑖)
𝑡 , 𝑧𝑡, 𝑢𝑡,Λ𝑡). (3.15)

This assumption ignores dependencies between labels associated with nearby vertices, but

simplifies the form for the distribution over labels associated with a single vertex. We

model each vertex’s label distribution as a Dirichlet distribution of the form

𝑝(𝑙𝑡,𝑖|Λ1 . . .Λ𝑡) = 𝐷𝑖𝑟(𝑙𝑡,𝑖;𝛼1 . . . 𝛼𝐾)

=
Γ(
∑︀𝐾

1 𝛼𝑖)

Γ(𝛼1)× . . .× Γ(𝛼𝐾)

𝐾∏︁
𝑘=1

𝑙𝛼𝑘−1
𝑡,𝑖,𝑘 , (3.16)

where 𝑙𝑡,𝑖,𝑘 for 𝑘 ∈ {1, . . . , 𝐾} is the 𝑘th label associated with vertex 𝑖 at time 𝑡. We

initialize the parameters 𝛼1 . . . 𝛼𝐾 to 0.2, which results in a prior that is uniform over the

different labels. Given subsequent language input, this favors distributions that are peaked

around a single label.

We consider user-provided expressions that use spatial relations to describe one or two

locations in the environment. The first type are egocentric utterances (e.g., “This is the

gym”) describe the robot’s current location. A contribution of our work is the ability to

incorporate information from allocentric spatial language (e.g., “The kitchen is through

the cafeteria”) that expresses spatial relations and labels associated with non-local, poten-

tially distant regions in the environment. By interpreting these expressions, our framework

enables robots to learn rich semantic maps of their environment more efficiently.

Learning from allocentric expressions is challenging because their groundings can be
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Lobby!

Hallway!

? ?
?

?

Figure 3-7: The user utters the description “The gym is down the hall” when the robot is at
the location indicated by the triangle. (only nodes with non-uniform label distributions are
visualized)

ambiguous—the places to which the user refers are often not obvious. Consider the sce-

nario outlined in Figure 3-7. The semantic map includes an area that has a high likelihood

of being a “lobby” and a second believed to be a “hallway.” As the robot (triangle) con-

tinues to explore the environment, the user utters the description “The gym is down the

hall.” Descriptions like these are often ambiguous. For example, there may be multiple

“hall” regions in the map or it may be that the robot has yet to visit the region referred to

by the user, or if it has, it is not aware of its label. Similarly, several regions in the map are

candidates for being the “gym,” but the user may also be identifying a region that is not yet

in the map.
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Grounding Natural Language Descriptions with G3

In order to understand allocentric language in our framework, we make use of the G3 al-

gorithm, proposed by Tellex et al. [88]. We provide an overview of its functionality below

and how we apply it in our framework. Given natural language text Λ, G3 provides a dis-

tribution over the space of possible mappings between each word in the parsed description

and the corresponding groundings in the robot’s model of the world. This distribution takes

the general form

𝑝(Φ|Γ,Λ,𝑀), (3.17)

where Γ = {𝛾1, . . . , 𝛾𝑛} denotes the set of possible groundings and 𝑀 represents the

robot’s world model, which includes the robot’s pose and a map of the environment. The

correspondence variable Φ contains boolean-valued variables 𝜑 for each linguistic element

𝜆 ∈ Λ and grounding 𝛾 ∈ Γ, such that 𝜑 = True iff 𝛾 corresponds to 𝜆. In our application,

the groundings are the locations of the nodes in the semantic graph the paths between nodes

according to the metric map.

Taking advantage of the compositional, hierarchical structure of natural language [37],

G3 parses the utterance into a set of Spatial Description Clauses (SDCs). Each SDC is

assigned a type (event, object, place, or path) and consists of landmark 𝜆𝑙
𝑖, figure 𝜆𝑓

𝑖 , and

relation 𝜆𝑟
𝑖 phrases. For descriptions of the environment, G3 parses descriptions into place

and path SDCs using a learned grammar that includes possible labels and spatial relations.

G3 then factors the distribution (3.17) into individual terms, one for each linguistic element

𝑝(Φ|Γ,Λ,𝑀) =
∏︁
𝑖

𝑝(𝜑𝑖|𝜆𝑖,Γ,𝑀). (3.18)

This factored distribution is represented as a graphical model using a factor graph, such as

the one shown in Figure 3-8 for the “the gym is down the hall” utterance. The G3 algorithm

uses a log-linear model for each of the factors

𝑝(𝜑𝑖|𝜆𝑖,Γ,𝑀) ∝ exp

(︃∑︁
𝑗

𝜇𝑗𝑠𝑗(𝜑𝑖, 𝜆𝑖,Γ,𝑀)

)︃
, (3.19)
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Figure 3-8: The factor graph model for the utterance “The gym is down the hall” that is
used by the G3 algorithm.

where 𝜇𝑗 are weights and 𝑠𝑗 are features that encode the relationship between the linguistic

element 𝜆𝑖 and the groundings Γ. For example, one such feature relates the length of the

path through the map from the landmark grounding 𝛾𝑙
𝑖 and figure grounding 𝛾𝑓

𝑖 when the

relation 𝜆𝑟
𝑖 is “down from”

𝑠(𝛾𝑙
𝑖, 𝛾

𝑓
𝑖 , 𝜆

𝑟
𝑖 ) , |𝑥𝛾𝑙

𝑖
− 𝑥𝛾𝑓

𝑖
| ∧ (“down from” ∈ 𝜆𝑟

𝑖 ). (3.20)

Similarly, features for other relations express the consistency of the path between pairs of

nodes with the uttered relation. Additional features include the likelihood of the landmark

label 𝜆𝑙
𝑖 under the multinomial associated with the node’s 𝛾𝑙

𝑖 label distribution.

The G3 model learns the weights 𝜇𝑗 associated with each feature by training on a corpus

of SDCs from natural language descriptions and the known groundings Γ and correspon-

dences Φ. In particular, for this work, we trained the G3 model using a route directions

corpus [41] that includes a set spoken directions through an office building paired with

positive and negative examples of paths through the environment.

Given a particular spoken description, we use G3 to infer groundings for the different

parts of the utterance. In the case of the current example, the framework induces a proba-

bility distribution over vertices whose location is consistent with being “down from” each

of the conditioned landmark vertices, based upon the robot’s pose at the time the user offers
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the communication. In this manner, we make the assumption that the person is describing

the environment in the robot’s frame of reference. For egocentric language, the grounding

likelihood is simplified since the figure is implicitly the robot’s current location. In order

to understand an expression like “The gym is down the hall,” the system must first ground

the landmark phrase “the hall” (𝜆𝑙) to a specific entity in the environment. It must then

infer the figure entity in the environment that corresponds to the phrase “the gym” (𝜆𝑓 ),

given the spatial relation “down” (𝜆𝑟). One can no longer assume that the user is referring

to the current location as “the gym” (the figure3) or that the location of the “hall” (the land-

mark) is known (e.g., there are likely many “halls” in the environment). When considering

the implications of the natural language description, we make the assumption that both the

landmark and the figure region described by the user are already in the map (represented

in the topology as vertices). We relax this assumption shortly (as outlined in the next sec-

tion) to deal descriptions that may describe regions that the robot has not encountered yet.

We use the label distribution to reason over the possible vertices that denote the landmark.

To arrive at the distribution over the potential landmark groundings we normalize the like-

lihoods for candidate “hall” vertices as follows, where 𝑉𝑙 is the set of vertices within a

distance threshold from the robot with a 𝑝(𝑙𝑡,𝑘 = 𝜆𝑙) > 𝛽

𝑝(𝜑𝑙
𝑣𝑗

= T) =
𝑝(𝑙𝑡,𝑗 = 𝜆𝑙)∑︀

𝑘:𝑣𝑘∈𝑉𝑙

𝑝(𝑙𝑡,𝑘 = 𝜆𝑙)
(3.21)

denotes the likelihood of vertex 𝑣𝑗 being the described landmark.

We account for the uncertainty in the figure by formulating a distribution over the ver-

tices in the topology that expresses their likelihood of being the figure. Formally, we model

the likelihood that each vertex 𝑣𝑖 is the figure by marginalizing over the space of candidate

landmarks

𝑝(𝜑𝑓
𝑣𝑖

= T) =
∑︁
𝑣𝑗

𝑝(𝜑𝑓
𝑣𝑖

= T|𝜑𝑙
𝑣𝑗

= T, 𝜆𝑟) 𝑝(𝜑𝑙
𝑣𝑗

= T), (3.22)

where 𝜆𝑟 is the described spatial relation between the landmark and the figure region, 𝜑𝑙
𝑣𝑗

is

the binary-valued random variable that indicate that vertex 𝑣𝑗 is the landmark and 𝜑𝑓
𝑣𝑖

is the

3In spatial linguistic theory, this is often referred to as the trajector.

69



binary-valued random variable that indicate that vertex 𝑣𝑖 is the figure. We only consider

vertices within a certain distance threshold from the robot as valid potential figure regions.

We arrive at the conditional distribution 𝑝(𝜑𝑓
𝑣𝑖

= T|𝜑𝑙
𝑣𝑗

= T, 𝜆𝑟) using the G3 framework to

infer groundings.

𝑝(𝜑𝑓
𝑣𝑖

= T|𝜑𝑙
𝑣𝑗

= T, 𝜆𝑟) = 𝑝(𝜑𝑓
𝑣𝑖

= T|𝛾𝑓
𝑖 , 𝛾

𝑙
𝑗, 𝛾𝑝𝑖 , 𝜆

𝑟) (3.23)

We ground relational utterances 𝜆𝑟 by considering the shortest path 𝑝𝑖 that travels from the

robot’s pose at the time of the description through the pair of landmark 𝛾𝑙
𝑗 and figure 𝛾𝑓

𝑖

vertex groundings. We use the A* algorithm [79] to solve for the shortest path through

the semantic graph topology. We then use features over these paths (3.20) to evaluate their

consistency with the uttered relation (e.g., “down from,” “near,” and “through”).

For both types of expressions, the algorithm updates the semantic distribution according

to the rule

𝑝(𝑙𝑡,𝑖|Λ𝑡 = (𝑘, 𝑖), 𝑙𝑡−1,𝑖) =
Γ(

∑︀𝐾
1 𝛼𝑡−1

𝑖 +Δ𝛼)

Γ(𝛼𝑡−1
1 )×...×Γ(𝛼𝑡−1

𝑘 +Δ𝛼)×...×Γ(𝛼𝐾)

𝐾∏︁
𝑘=1

𝑙𝛼𝑘−1
𝑡,𝑖,𝑘 , (3.24)

where ∆𝛼 is the likelihood of the figure grounding. For allocentric descriptions, we set ∆𝛼

to the landmark likelihood computed via Equation 3.22.

In the case of egocentric language, when the robot’s position is implicitly the figure,

we set this likelihood to ∆𝛼 = 1 for the current vertex in the graph. Additionally we also

update the label distribution for a vertex when the proposal step adds an edge to another

vertex in the graph. These edges may correspond to temporal constraints that exist between

consecutive vertices, or they may denote loop closures based upon the spatial distance

between vertices that we infer from the metric map. Upon adding an edge to a vertex for

which we have previously incorporated a direct language observation, we propagate the

observed label to the newly connected vertex using a value of ∆𝛼 = 0.5.
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Handling Anticipatory Descriptions

An advantage of having a probabilistic model over the space of groundings is that it pro-

vides a means of recognizing when there is not enough information contained in the se-

mantic graph to ground the language. This allows us to recognize many of the situations

in which the user describes areas that either the robot has not yet visited or they reference

landmarks whose labels were never added to the map. For example, it is not uncommon

for the user to mention regions that are within sight but they have yet to reach (e.g., the

user may say “The lab is across the lobby,” but the robot has never been to the region being

referred to as “the lab.”). We refer to descriptions of this form as anticipatory.

We identify instances of anticipatory descriptions by using our distributions over the

landmark and figure locations to evaluate the likelihood that the landmark matches a la-

beled region in the graph and that there are one or mode candidate figure regions consistent

with the language. When the method is sufficiently confident in the ability to ground the

language (we use a threshold of 0.2), we update the label distributions as described above.

However, when the grounding likelihoods suggest an anticipatory description, the algo-

rithm adds the expression along with its timestamp to a per-particle queue of anticipatory

descriptions. As the robot proceeds through the environment and new vertices and seman-

tic information are added to the map, the algorithm periodically evaluates the grounding

likelihood (3.22) for the queued descriptions. The logic is that the description is most use-

ful when the robot has visited the regions to which the user refers and, thereby, the map

has regions whose labels and inter-region paths that are consistent with the expression. The

algorithm performs this process separately for each particle, which may result in some par-

ticles incorporating the description sooner than others depending on the topological and

metric information associated with each particle.

3.2.4 Updating the Particle Weights

Having proposed a new set of graphs {𝐺(𝑖)
𝑡 } and updated the analytic distributions over the

metric and semantic maps for each particle, we update their weights. The update follows

from the ratio between the target distribution over the graph and the proposal distribution,
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and can be shown to be

𝑤
(𝑖)
𝑡 =

Target distribution
Proposal distribution

(3.25a)

=
𝑝(𝐺

(𝑖)
𝑡 |𝑧𝑡, 𝑢𝑡,Λ𝑡)

𝑝(𝐺
(𝑖)
𝑡 |𝐺

(𝑖)
𝑡−1, 𝑧

𝑡−1, 𝑢𝑡,Λ𝑡)
𝑤

(𝑖)
𝑡−1 (3.25b)

=
𝑝(𝑧𝑡|𝐺(𝑖)

𝑡 , 𝑧𝑡−1, 𝑢𝑡,Λ𝑡)

𝑝(𝑧𝑡|𝑧𝑡−1)
· 𝑝(𝐺

(𝑖)
𝑡−1|𝑧𝑡−1, 𝑢𝑡,Λ𝑡) (3.25c)

∝ 𝑝(𝑧𝑡|𝐺(𝑖)
𝑡 , 𝑧𝑡−1, 𝑢𝑡,Λ𝑡) · 𝑝(𝐺

(𝑖)
𝑡−1|𝑧𝑡−1, 𝑢𝑡,Λ𝑡) (3.25d)

�̃�
(𝑖)
𝑡 = 𝑝(𝑧𝑡|𝐺(𝑖)

𝑡 , 𝑧𝑡−1, 𝑢𝑡,Λ𝑡) · 𝑤(𝑖)
𝑡−1, (3.25e)

where 𝑤(𝑖)
𝑡−1 is the weight of particle 𝑖 at time 𝑡−1 and �̃�

(𝑖)
𝑡 denotes the unnormalized weight

at time 𝑡. We evaluate the measurement likelihood (e.g., of lidar) by marginalizing over the

vertex poses

𝑝(𝑧𝑡|𝐺(𝑖)
𝑡 , 𝑧𝑡−1, 𝑢𝑡,Λ𝑡) =

∫︁
𝑋𝑡

𝑝(𝑧𝑡|𝑋(𝑖)
𝑡 , 𝐺

(𝑖)
𝑡 , 𝑧𝑡−1, 𝑢𝑡,Λ𝑡)

× 𝑝(𝑋
(𝑖)
𝑡 |𝐺

(𝑖)
𝑡 , 𝑧𝑡−1, 𝑢𝑡,Λ𝑡)𝑑𝑋𝑡, (3.26)

which allows us to utilize the conditional measurement model. In the experiments pre-

sented next, we model the measurement as an observed transformation between poses,

which we compute via scan-matching. We model this distribution (first term in the inte-

gral) as Gaussian, which we have empirically found to be accurate.

After calculating and normalizing the new importance weights, we periodically perform

resampling based upon the effective number of particles, as proposed by Liu [49],

𝑁𝑒𝑓𝑓 =
1

𝑁−1∑︀
𝑖=0

𝑤2
𝑖

. (3.27)

When the effective number of particles 𝑁𝑒𝑓𝑓 falls below the threshold 𝑁/2, where 𝑁 is the

number of particles, we resample using the algorithm described by Doucet et al. [15].
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3.3 Experimental Evaluation

This section evaluates the utility of the semantic mapping framework, specifically its ability

to learn semantic properties from natural language descriptions, and its ability to use this

semantic information to improve the spatial representation. We also evaluate the effective-

ness of the algorithm’s natural language grounding capabilities as well as its timing perfor-

mance. We evaluate our algorithm through six experiments that involve a human giving a

robotic wheelchair a narrated tour (Figure 1-4b) [30] of several buildings and courtyards

on the MIT campus. The robot was equipped with forward- and rearward-facing lidars,

wheel encoders, and an IMU. Speech was recorded using a wireless microphone worn

by the user. In the third experiment, the robot autonomously followed the human who

provided spoken descriptions, while in the others, the robot was manually driven while the

user interjected textual descriptions of the environment. Speech recognition was performed

manually. Throughout this chapter, we only visualize the semantic distribution for vertices

whose distribution is not uniform.

3.3.1 Indoor/Outdoor: Small Tour

The first experiment (Figure 3-9) took place on the first floor of the Stata Center at MIT,

which includes lecture halls, elevator lobbies, a gym, and a cafeteria, as well as the adjacent

courtyard. Starting at one of the elevator lobbies, the user proceeded to visit the gym,

exited the building and, after navigating the courtyard, returned to the gym and finished

at the elevator lobby. The user provided textual descriptions of the environment, twice

each for the elevator lobby and gym regions. We compare the performance of our method

based upon different forms of language input against a baseline algorithm that emulates

the current state-of-the-art in language-augmented semantic mapping. In all cases, the

algorithms were run with 10 particles to approximate the distribution over the space of

topologies. The final topology contained 137 vertices.
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Figure 3-9: Maximum likelihood semantic graphs for the small tour. In contrast to (a) the
baseline algorithm, our method incorporates key loop closures based upon (b) egocentric
and (c) allocentric descriptions that result in metric, topological, and semantic maps that are
noticeably more accurate. The dashed line denotes the approximate ground truth trajectory.
The inset presents a view of the semantic and topological maps near the gym region.
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No Language Constraints

We consider a baseline approach that directly labels vertices based upon egocentric lan-

guage, but does not propose edges based upon label distributions. It does, however, propose

loop closures based upon the distribution over the metric map (Section 3.2.1). The base-

line emulates typical solutions by augmenting a state-of-the-art iSAM metric map with a

semantic layer without allowing semantic information to influence the other layers.

Figure 3-9a presents the resulting metric, topological, and semantic maps that constitute

the semantic graph for the highest-weighted particle. The accumulation of odometry drift

results in significant errors in the estimate for the robot’s pose when revisiting the gym and

elevator lobby. Without using semantic information to propose new edges, the algorithm

is unable to detect valid loop closures. This results in significant errors in the metric and

topological maps as well as the semantic map, which hallucinates two separate elevator

lobbies (purple) and gyms (orange).

Egocentric Language

We evaluate our algorithm when the user provides descriptions in the form of egocentric

language, in which case there is no ambiguity in the landmark and figure that are implicitly

the robot’s current location.

Figure 3-9b presents the semantic graph corresponding to the highest-weighted particle

that our algorithm estimates. By considering the semantic map when proposing loop clo-

sures, the algorithm recognizes that the second region that the user labeled as “the gym”

is the same place that was labeled earlier in the tour. At the time of receiving the second

“gym” label, drift in the odometry has led to significant error in the gym’s location much

like the baseline result (Figure 3-9a). By proposing loop closure edges between the two

sets of regions with high likelihood of being a gym, the algorithm is able to correct this er-

ror. Without the use of semantic information, it would require searching a combinatorially

large space to infer the correct loop closures. The resulting maximum likelihood map is

topologically and semantically consistent throughout and metrically consistent for most of

the environment. The exception is the courtyard, where only odometry measurements were
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(a) Egocentric language (b) Allocentric language

Figure 3-10: Pie charts that compare the semantic map label distributions that result from
(a) the egocentric language description “This is the gym” with that of (b) the allocentric
language description “The gym is down the hall.”

available, causing drift in the pose estimate. Attesting to the model’s validity, topologies

consistent with the ground truth received 92.7% of the probability mass and, furthermore,

the top four particles were each consistent with the ground truth.

Allocentric Language

Next, we consider the algorithm’s performance when the figure and landmark regions that

the user’s descriptions reference can no longer be assumed to be the robot’s current po-

sition. Specifically, we replaced the initial labeling of the gym with an indirect reference

of the form “The gym is down the hallway,” with the hallway labeled through egocentric

language. The language inputs are otherwise identical to those employed for the egocentric

language scenario and the baseline evaluation.

The algorithm incorporates allocentric language into the semantic map using the G3

framework as described in Section 3.2.3 to infer the vertices in the graph that constitute the

figure (i.e., the “gym”) and the landmark (i.e., the “hallway”). This grounding attributes
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a non-zero likelihood to all vertices that exhibit the relation of being “down” from the

vertices identified as being the “hallway.” Figure 3-10 compares the label distributions that

result from this grounding with those from egocentric language. The algorithm attributes

the “gym” label to multiple vertices in the semantic graph as a result of the ambiguity in the

figure’s location as well as the G3 model, which yields high likelihoods for several paths

as being “down from” the landmark vertices. When the user later labels the region after

returning from the courtyard, the algorithm proposes a loop closure despite significant drift

in the estimate for the robot’s pose. As with the egocentric language scenario, this results

in a semantic graph for the environment that is accurate topologically, semantically, and

metrically (Figure 3-9c).

3.3.2 Indoor/Outdoor: Large Tour

The second experiment considers an extended tour of MIT’s Stata Center as well as two

neighboring buildings and their shared courtyard. In order to evaluate the algorithm’s abil-

ity to deal with ambiguity in the labels, the robot visited several places with the same se-

mantic attributes (e.g., elevator lobbies, entrances, and cafeterias) and visited some places

more than once (e.g., one cafeteria and the amphitheater). We accompanied the tour with

20 descriptions of the environment that took the form of both egocentric and allocentric lan-

guage. Figure 3-11 shows the ground truth path taken by the robot during the experiment

as well as the locations of all the described regions.

As with the smaller tour, we compare our method against the baseline semantic map-

ping algorithm. Figure 3-12a presents the baseline estimate for the environment’s semantic

graph. Without incorporating allocentric language or allowing semantic information to in-

fluence the topological and metric layers, the resulting semantic graph exhibits significant

errors in the metric map, an incorrect topology, and aliasing of the labeled places that the

robot revisited. In contrast, Figure 3-12b demonstrates that, by using semantic information

to propose constraints in the topology, our algorithm yields correct topological and seman-

tic maps, and metric maps with notably less error. Figure 3-13 presents the inset views for

the lobby and second cafeteria portion of the map that were labeled with allocentric de-
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Figure 3-11: The ground truth route taken during the large tour experiment and the labeled
regions.

scriptions. The resulting model assigns 93.5% of the probability mass to the ground truth

topology, with each of the top five particles being consistent with ground truth.

The results highlight the ability of our method to tolerate ambiguities in the labels

assigned to different regions of the environment. This is a direct consequence of the use

of semantic information, which allows the algorithm to significantly reduce the number of

candidate loop closures that is otherwise combinatorial in the size of the map. This enables

the particle filter to efficiently model the distribution over graphs. While some particles

may propose invalid loop closures due to ambiguity in the labels, the algorithm is able to

recover with a manageable number of particles. In this experiment, the algorithm employed

10 particles to approximate the distribution over topologies. The final topology contained

213 vertices.

For utterances with allocentric language, our algorithm was able to generate reasonable

groundings for the figure and landmark locations. However, due to the simplistic way in

which we define regions, groundings for “the lobby” were not entirely accurate due to the

sensitivity to the local metric structure of the environment when grounding paths that go
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Figure 3-12: Maximum likelihood semantic graphs for (a) The result of the baseline al-
gorithm with letter pairs that indicate map components that correspond to the same envi-
ronment region. (b) The result produced by our method based upon language descriptions,
with an indication of the loop closures recognized based upon the semantic map.
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(a) Lobby (b) Cafeteria

Figure 3-13: Inset views of the (a) lobby and (b) cafeteria portions of the semantic graph
for the large tour experiment (Figure 3-12b).

“through the entrance.” We discuss this in more detail in Section 3.3.10.

3.3.3 Indoor/Outdoor: Autonomous Tour

In the third experiment [31], the robot autonomously followed a user during a narrated

tour along a route similar to that of the first experiment. Using a headset microphone, the

user provided spoken descriptions of the environment that included ambiguous references

to regions with the same label (e.g., elevator lobbies, entrances). The utterances included

both egocentric and allocentric descriptions of the environment. The speech was recorded

as it was uttered in synchronization with the lidar and odometry data. The audio was later

manually transcribed into text that was inserted alongside the sensor observations according

to the time that the audio was initially recorded. In this manner, the algorithm handled the

text, lidar, and odometry data as they were received, emulating a scenario in which a speech

recognizer was used to parse the user’s utterances during the tour.

The algorithm operated in this fashion using 10 particles to approximate the distribu-

tion over the space of topologies. The final topology contained 135 vertices. Figure 3-14

presents the maximum likelihood semantic graph that our algorithm estimates. By incorpo-

rating information that the descriptions convey, the algorithm recognizes key loop closures

that result in accurate semantic maps. The resulting model assigns 82.9% of the probability
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Figure 3-14: Maximum likelihood semantic graph for the autonomous tour.

mass to the ground truth topology, with each of the top nine particles being consistent with

ground truth.

3.3.4 Stata Center Lab Tour

We consider an additional experiment in which the robot was driven throughout different

labs on the third floor of MIT’s Stata Center. The narrated tour involved both egocentric

and allocentric descriptions of the environment, the latter of which were anticipatory in

nature with the user referencing locations in the environment that the robot had not yet

visited. Figure 3-15 presents the maximum likelihood semantic map that our framework

learned from the narrated tour using a total of 10 particles. The final topology contained

71 vertices. The system correctly grounds each of the allocentric descriptions despite the
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Figure 3-15: Maximum likelihood semantic graph inferred from the narrated tour of the
Stata Center lab.

ambiguity that exists in the landmark and figure locations, as we discuss in more detail

shortly.

3.3.5 MIT 32-36-38 Tour

In order to verify the validity of the algorithm in different environments, we consider an ex-

tended tour of three connected buildings on the MIT campus (buildings 32, 36, and 38). The

robotic wheelchair was manually driven throughout the office-like environment, visiting of-

fices, elevator lobbies, conference rooms, and lab spaces whose appearance and structure

varied between each building. Text was added at several points throughout the tour to emu-

late recognized natural language descriptions. We provided both egocentric and allocentric

utterances, including several instances of anticipatory descriptions when the robot had not

yet visited the referenced portions of the environment (both the figure and the referent). We

ran our framework with 10 particles to model the distribution over topologies. The final

topology contained 148 vertices. Figure 3-16 denotes the maximum likelihood semantic

graph that resulted from our algorithm. The text indicates the allocentric descriptions that

were given to the system in the numbered order.
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Figure 3-16: Maximum likelihood semantic graph for the MIT 32-36-38 tour. The allocen-
tric descriptions are shown with numbers indicating their order.
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Figure 3-17: The maximum likelihood semantic graph that results from a tour of MIT’s
Killian Court.

3.3.6 Killian Court Tour

The final experiment considers a tour of Killian Court, a set of interconnected buildings on

MIT’s campus, which has served as a benchmark environment for previous mapping algo-

rithms. We consider this environment in an effort to see how the algorithm performs when

tasked with mapping larger spaces that involve significant geometric and semantic aliasing.

Specifically, this part of the MIT campus consists primarily of several long hallways with

nearly identical structure, including the so-called “infinite corridor” that serves as one of

the main hallways at MIT.

Starting in the north-east corner (Figure 3-17), we gave the robot a tour along the infinite

corridor that spans from left to right in the Figure. After entering one of the main lobbies

(upper-left), we proceeded through buildings 5 and 3 and then exited into the courtyard.

We took a U-shaped path outside, entered building 4, and then traveled through buildings

6, 6C, and 14 before returning to the start. We provided both egocentric and allocentric lan-

guage descriptions at different points during the tour to assign labels to and spatial relations
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between different regions. These descriptions took the form of text that was interjected in

synchronization with the lidar and odometry streams as the data was post-processed.

The algorithm learned a distribution over semantic maps from the stream of descrip-

tions, odometry, and lidar data, using 10 particles to hypothesize the different topologies.

The final topology contained 276 vertices. Figure 3-17 shows the resulting maximum likeli-

hood semantic graph overlaid on an approximately aligned map of the MIT campus. Qual-

itatively, the map is metrically, topologically, and semantically accurate with the exception

of the map of building 14 where a glass hallway between buildings 2 and 14 forced the

algorithm to use odometry for the inter-pose constraints. As with the previous evaluations,

we ran our framework without language-based constraints to emulate the current state-of-

the-art in language-augmented semantic mapping. While we omit the figure for space, we

note that the resulting map is significantly warped.

3.3.7 Computational Requirements

We analyze the computational cost of the algorithm by considering the delay between when

a vertex is first proposed (i.e., based on distance traveled) and the time at which it is added

to the map. This measure reflects the overall time required of the algorithm, since it will

not add vertices until it has finished incorporating the most recent description and pro-

posed loop closures. We consider the delay for the three longest datasets, namely the

indoor/outdoor large tour, the MIT 32-36-38 tour and the Killian Court tour. Table 3.2

summarizes the performance for each of these datasets. Note that the implementation has

not been optimized to run in real-time, and each particle is currently processed sequentially

Table 3.2: Average Delay in Adding Vertex

Dataset Average Standard

Delay (s) Deviation (s)

MIT 32-36-38 0.532 3.138

Killian Court Tour 0.682 2.726

Indoor/Outdoor Large Tour 2.186 4.670
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(i.e., particle updates are not parallelized). The variance in the delays is due to periods

of increased computation that correspond to instances when language annotations are pro-

cessed. This delay is dominated by two components of the algorithm. The first is the time

required to ground allocentric descriptions using the 𝐺3 framework for all particles. The

second is the time taken to scan-match the semantic-based loop closures that are subse-

quently proposed between vertices with updated label distributions. Allocentric language

grounding requires computational effort that is linear in the number of unique particles.

Similarly, the scan-match verification is linear in the number of vertices that are updated

with new label information, which is independent of the size of the map. The computational

requirements for verification are dominated by a scan-match procedure that is exhaustive

in its search due to the potentially large error in the prior pose-to-pose transform.

3.3.8 Semantic Accuracy

Table 3.3 outlines the accuracy of the resulting semantic maps for four datasets, where we

calculate the accuracy as follows. First, we select the regions for which language con-

tributed to their label distributions. We compute the ground truth label for each of these

regions and compute the cosine similarity between the ground truth multinomial (assumed

to have a likelihood of 1.0 for the true label) and that of the label distribution.

For the indoor/outdoor large tour and the Killian Court tour, we also compared the re-

sults for the maps that did not propose language edges. Since large segments of these maps

were metrically and topologically inaccurate, we assigned a minimum score for regions

that were significantly inaccurate. In effect, this corresponds to assigning these regions a

uniform multinomial over labels. As can be seen for the first two datasets, the use of our

approach improves the semantic accuracy of a number of regions. This improvement stems

both from the metric and topological accuracy of the learned maps as well as the algo-

rithm’s ability to integrate allocentric language. In the MIT 32-36-38 and the Stata Center

tours, we also achieve reasonable accuracy for most categories. We do note that in case

of allocentric language, some expressions can be ambiguous, either due to the presence of

multiple potential landmarks or due to the ambiguity in the expression. For example, given
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Table 3.3: Semantic Map Accuracy

Indoor/Outdoor Killian Court MIT 32-36-38 Stata Center

Large Tour Tour Tour Tour

Type Baseline SG Baseline SG SG SG

Cafeteria 20% 36% 23% 45% - -

Entrance 43% 46% 12% 47% - -

Elevator Lobby 46% 46% 49% 49% 34% 40%

Hallway 8% 8% 18% 19% 36% 30%

Lobby 8% 13% 34% 47% 29% 21%

Lab - - 0% 47% 42% 37%

Amphitheater 25% 53% - - - -

Courtyard 12% 47% - - - -

Office - - - - 53% 56%

Conference Room - - - - 51% 56%

Gym 33% 48% - - - -

the description “The lobby is down the hallway,” there may be multiple regions whose lo-

cation is consistent with being “down” the hallway, of which only one is the lobby. In

these situations, each of these regions will receive high likelihood of being the figure and

the label distributions for each will be updated accordingly. Additionally, we find that the

accuracy of the semantic maps is sensitive to our choice for region decomposition. For ex-

ample, hallways score fairly low under our fixed-size segmentation, which can significantly

underestimate their spatial extent. We see these issues as inherent to the definition of re-

gions used in this chapter that would be alleviated with a more sophisticated segmentation

strategy that takes into account local appearance [6, 72, 4], the presence of doorways [69]

and semantic [55] properties of the environment. Our approach outlined in the next chapter

addresses this by segmenting the regions based on the local appearance.
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3.3.9 Navigation Efficiency

A consequence of maintaining a joint distribution over each layer of the semantic graph is

that the framework is able to use knowledge of the semantic properties of the environment

to update the topology and metric map. This improves the accuracy of the resulting seman-

tic graph and, in turn, facilitates navigation. To better understand the effects on navigation

efficiency, we consider the task of finding the optimal path between two vertices in the

topology, as if the robot were asked to use the semantic graph to navigate from its current

location to a named region in the environment.

We examine the semantic graphs that we learned with and without language-based con-

straints for the two indoor/outdoor scenarios, the autonomous tour, and the Killian Court

dataset. For each, we randomly picked 1000 pairs of start and goal vertices in the graph and

used a graph search algorithm to find the shortest path through the topology, with equal cost

for each edge in the graph. The same vertex pairs were used for each of the semantic graphs

for a given environment. Table 3.4 compares the average optimal path length through the

graphs that result from our method and the baseline, which does not infer constraints from

the descriptions. The graphs that we estimate when language influences only the seman-

tic layer give rise to optimal paths that are noticeably longer than the paths reflected in

the graphs that we learn by jointly estimating the semantic graph. This difference stems

from the fact that our representation provides semantic-based edges that allow the planner

to identify shortcuts in the topology that are otherwise not suggested by the baseline map,

which mimics the current state-of-the-art in language-augmented semantic mapping.

Table 3.4: Average Length of the Optimal Path

Experiment Baseline SG

Small Indoor/Outdoor 41.59 m 23.50 m

Large Indoor/Outdoor 68.14 m 35.52 m

Autonomous 43.49 m 25.70 m

Killian Court 63.08 m 40.76 m
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(a) Description given (b) Landmark is added (c) Figure is grounded

Figure 3-18: A depiction of the process of learning from an anticipatory description. (a)
The user describes the “lobby” as being “down the hallway,” yet the hallway has not been
labeled and there is no vertex for the elevator lobby in the topology. (b) The user labels
the current region as the “hallway,” providing the landmark location. (c) Once vertices are
added that are consistent with the description, the algorithm updates the labels. The green
box indicates the actual location of the lobby.

3.3.10 Learning from Allocentric, Anticipatory Language

A contribution of our work is the use of natural language descriptions to produce consistent

semantic maps from spatial relations and labels inferred from language. The advantage of

this capability is that it allows robots to more efficiently acquire human-centric maps of

their environment. The challenge to learning from these expressions is that their ground-

ings are ambiguous—the user may refer to regions that may be distant from the robot and

outside the field-of-view of its sensors. Additionally, it may be that the descriptions are

anticipatory, when the robot has yet to visit the figure that the user is describing or the

landmark that they are referencing. Figure 3-18 depicts the process of learning from an an-

ticipatory description as part of the MIT 32-36-38 tour (Figure 3-16). Figure 3-18a shows

the robot traversing a hallway when the user states that “The elevator lobby is down the

hallway.” At this point, the semantic graph includes several vertices with a high likelihood
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of having the label “hallway.” However, the robot has yet to visit the specific hallway that

the person is using as the landmark and, as a result, the semantic graph does not include

vertices for this region. The graph also lacks vertices for the region that the user refers to as

the “elevator lobby.” The algorithm attempts to ground the description using the language

model as described in Section 3.2.3, which yields a likelihood for each pair of vertices as

being the landmark and the figure.

This algorithm performs this grounding process for each particle, and updates those for

which the likelihood of the top pair is sufficiently high (0.2). In this example, the likelihood

of the candidate groundings for most of the particles is low and the algorithm postpones

language integration. As the tour proceeds (Figure 3-18b), the guide labels the robot’s

position as being the “hallway,” which updates the label distribution for the adjacent ver-

tex. The algorithm again attempts to ground the language, this time using the newly added

hallway vertices as the landmark. However, paths that start at the pose from which the

description was first given and pass through the landmark to other vertices do not resemble

the learned model for the “down” relation. After the robot and user continue and more

vertices are added to the topology (Figure 3-18c), the framework again attempts to ground

the description, this time returning highly-confident estimates for the locations of the land-

mark and the figure, per the induced path. However, not all of the inferred locations are

correct, which is consistent with what we see with other allocentric expressions. In this

case, the system assigns “elevator lobby” labels to vertices that preceded the hallway as

well as several vertices beyond the true location of the lobby (green box). We attribute this

to the difficulty in dealing with frame-of-reference when grounding language as well as to

using features for the “down” relation that attempt to accommodate a wide range of scales

(i.e. the length of hallways differs significantly across the environments that we consider).

In an effort to better understand the accuracy with which the algorithm learns from en-

vironment descriptions, we consider regions whose semantic properties were inferred from

allocentric utterances. Figure 3-19 presents close-up views of the regions that were labeled

as part of the multi-building tour (Figure 3-16). The portion of the semantic graph shown

in Figure 3-19a results from two descriptions, “The lobby is down the hallway” and “The

elevator lobby is down the hallway,” which were uttered at the locations indicated by the
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Figure 3-19: Inset views for the MIT 32-36-38 tour (Figure 3-16) that demonstrate the
way in which the algorithm learns from allocentric descriptions (a) “The lobby is down the
hallway” (anticipatory, location 1) and “The elevator lobby is down the hallway” (location
2), (b) “The lobby is down the hallway” (anticipatory), (c) “The office is near the hallway”
(anticipatory, location 3) and “The elevator lobby is down the hallway” (location 5), and (d)
“The lab is down the hallway” (anticipatory). The dashed boxes denote the ground-truth
boundaries for the regions.

numbers “1” and “2,” respectively. The former utterance was anticipatory as the robot had

not yet visited the lobby area when the description was given. Nonetheless, the framework

successfully labels that region of the environment when the robot later visits it, without
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any aliasing effects. However, grounding the second utterance results in high likelihoods

associated with some vertices that are not actually in the elevator lobby, causing the label to

“bleed” into other areas. We attribute this to the ambiguity that results from not reasoning

over frame-of-reference without which the vertices are consistent with being “down” the

hallway. The performance improves for the anticipatory utterance in Figure 3-19d where

the algorithm waits to infer the location of the lab until it is visited. We see similar ef-

fects for the descriptions in Figure 3-19c where the system correctly infers the location

of another elevator lobby but attributes the “office” label to vertices that are actually in a

hallway. This results from a simple set of features that encode the “near” relation based

upon distance. Additionally, our algorithm uses a fixed separation to define regions and

does not reason over their geometry (e.g., the shape of hallways is typically distinct from

that of offices.) Meanwhile, Figure 3-13a depicts the semantic information inferred for the

utterance “The lobby is through the entrance” from the large indoor/outdoor tour where we

see that the algorithm correctly grounds the location of the lobby without any aliasing.

3.3.11 Robustness to Semantic Aliasing

When proposing edges to the topology based upon the label distributions, we perform ex-

haustive scan-matching to check the validity of each proposed loop closure. While this

helps to filter out the large majority of erroneous edges, the matching may yield false posi-

tives in regions that are perceptually aliased (Figure 3-20). However, since the hypothesis

space of potential language edges is large, the likelihood that all particles sample invalid

edges is low, confining such occurrences to a small subset of particles. Empirically, we

have found that the weight of these particles is quickly reduced as their metric maps are in-

consistent with subsequent sensor measurements. These particles then tend to be removed

during resampling.

3.4 Discussion

In this chapter we introduced our semantic mapping algorithm that estimates metrically ac-

curate spatial-semantic maps from a user’s natural language descriptions. The novelty lies
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in learning the joint distribution over the metric, topological, and semantic properties of the

environment, which enables the method to fuse the robot’s sensor stream with knowledge

inferred from the descriptions. We have presented results from several experimental eval-

uations that demonstrate the algorithm’s ability to infer accurate metric, topological, and

semantic maps. However, there are several limitations to our current approach.

A known issue with sample-based methods such as ours is the problem of particle

depletion [15] whereby a majority of samples evolve to support regions of the distribution

with negligible likelihood. This results in a poor approximation to the target distribution

and can cause the filter to diverge. Resampling the particles based upon a measure of the

(a) Incorrect loop closure added

(b) No incorrect loop closures

Figure 3-20: A demonstration of the effects of perceptual aliasing for the MIT 32-36-38
tour (Figure 3-16) in which (a) the algorithm accepts an invalid edge between different
regions that have similar geometry for one particle. However, the majority of the particles
did not propose erroneous edges and the weight of this map soon decreases to 1/10𝑡ℎ of
that of the correct particle and is removed upon resampling.
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variance in their weights, as we do, reduces the likelihood of particle depletion. In practice,

we have not found depletion to occur, as suggested by the results. We partially attribute

this to using the distribution over the semantic map as part of the proposal, which reduces

the frequency of erroneous samples. Nonetheless, particle depletion may occur and can be

mitigated by adding additional particles to hypothesize new topologies in the event that the

distribution appears to misrepresent the target distribution, for example, as suggested by

the particle weights [23].

The performance of the algorithm is mainly dependent on two factors, namely the num-

ber of particles and the number of nodes in the topology. Increasing the number of particles

will increase the computation linearly in the worst case. This is due to the fact that adding

a new particle will increase the total number of edges sampled across all particles. How-

ever, because our implementation reuses the results of scan-matching procedures carried

out for each sampled edge, if an edge between two nodes had already been sampled by

another particle (using the same metric prior), we are able to reuse the previous result, sav-

ing significant computation. Because we create a new node every time the robot visits a

region, the size of the graph grows with time, even if the robot revisits previous regions.

This impacts the performance of the metric update that we make using the pose graph. It

also increases the computation required to ground language, because revisited regions are

represented with more than one node in the graph, leading to duplicated computation.

The algorithm described in this chapter relies exclusively on descriptions from the user

to learn semantic information. This means that the algorithm can only model a region’s

label if it was specifically referenced by the user. Further, it precludes the method from

incorporating allocentric descriptions for which the user never labels the landmark. For ex-

ample, the algorithm can not learn from the description “The gym is down the hall” unless

the user identifies the location of the hallway. The next chapter outlines our approach that

alleviates this requirement by also using geometric- and appearance-based scene classifiers

to infer semantic information from lidar and vision. This new algorithm allows us to use

the relationship between a region’s appearance and labels to induce a prior over the label

distribution, allowing for better integration of language.

In this work, we instantiate regions in the environment at fixed distance intervals along
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the robot’s trajectory. This can result in regions that are not semantically meaningful, with

multiple regions being used to model the same area. In this topology, when the robot

revisits a region, the algorithm creates a new vertex and adds an edge to the old vertex.

This can result in more than one vertex created to represent the same physical region. This

can result in added complexity to the topology and additional ambiguity to the natural

language grounding process. We address this in the next chapter by proposing an improved

spatial representation.

In summary, we described an approach to learning human-centric maps of an environ-

ment from user-provided natural language descriptions. The novelty lies in fusing high-

level information conveyed by a user’s speech with low-level observations from traditional

sensors. By jointly estimating the environment’s metric, topological, and semantic struc-

ture, we demonstrated that the algorithm yields accurate representations of its environment.
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Chapter 4

Semantic Maps from Natural Language

and Scene Classification

In the previous chapter we described an algorithm that allows the robot to learn a spatial-

semantic representation from natural language and its sensor observations. It uses natural

language descriptions provided by a human to learn about semantic properties of the en-

vironment, and exploits this knowledge about the semantics of its environment to also

improve its spatial representation.

In this chapter we outline an enhanced algorithm described in [27] that addresses several

shortcomings in our previous approach. We introduce a more compact spatial representa-

tion better reflective of the local decomposition of the world. We also integrate additional

sources of semantic information and improve the semantic representation to maintain a

richer model. We use these improvements in the spatial and semantic representations to

learn more effectively with natural language descriptions.

Improved Spatial Representation

Our previous algorithm decomposed the environment into a collection of fixed, uniformly-

sized regions. This has the potential to result in a topology that is inconsistent with human

concepts of space. Consequently, the representation may not model the spatial extent of

regions referred to by the user’s descriptions, leading to incorrect language groundings.
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Figure 4-1: Maximum likelihood semantic graph particle of the 6th floor of Stata building
(pie charts denote the likelihood of different region categories).

To overcome this, we integrate a laser-based spectral clustering approach to provide more

accurate decomposition of spatial regions. We use this method to probabilistically reason

over possible segmentations of regions in our environment in addition to its connectivity.

More accurate spatial decompositions results in a more human-compatible representation

suitable for learning from natural language.

Additionally, our prior approach models revisiting a region by creating a new vertex

and adding an edge to the node created during the earlier visit. This leads to a topology that

maintains multiple vertices to represent the same spatial region in the environment, where

ideally it should use one vertex. This can result in unnecessarily large graphs leading to

added complexity. It can also lead to suboptimal grounding of natural language due to the

presence of aliased landmark regions that might be described by the user. The algorithm

outlined in this chapter will merge the robot’s current region with a previous region if it

detects that they are the same region. This results in a more compact topology that only

grows as the robot encounters previously unvisited parts of the environment.
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Semantic Reasoning over Natural Language and Scene Classification

The semantic information in our prior approach was limited to user-provided colloquial

names and did not provide a means to reason over properties such as region type that can

be inferred from lidars, cameras, or other onboard sensors. Our new formulation integrates

additional sources of semantic information, specifically, region appearance observations

made using laser and image based appearance classifiers. By modeling the relation be-

tween an area’s type and its colloquial name, the algorithm can reason over both region

type and region label, even in the absence of speech. We also introduce a factor graph

mechanism to maintain the semantic information, allowing us to reason about multiple

semantic properties of each spatial entity, resulting in a richer learned model.

Enhanced Natural Language Integration

With the integration of additional sources of semantic information, the algorithm is capable

of better grounding natural language descriptions by using the prior over spatial entities,

unlike the earlier formulation which required even common landmarks to be described be-

fore hand. As our new spatial representation is more compact (no duplication of spatial

entities to represent the same region in the environment) and more reflective of the spatial

layout of the environment (due to our use of spectral clustering), the resulting natural lan-

guage grounding is also more accurate as it arguably reasons over the correct set of spatial

entities in the world.

4.1 Semantic Graph Representation

In the previous chapter, we introduced the semantic graph 𝑆𝑡, which contained topological

𝑇𝑡, metric 𝑋𝑡 and semantic 𝐿𝑡 representations of the environment. In this chapter, we in-

troduce several enhancements to the semantic graph that allows us to learn a more accurate

spatial and semantic representations. The following paragraphs outline our new topological

and semantic representations.

The topology 𝐺𝑡 is composed of nodes 𝑛𝑖 that denote the robot’s trajectory through the
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environment (sampled at 1 m distances), node connectivity, and node region assignments.

We associate with each node a set of observations that include laser scans 𝑧𝑖, semantic ap-

pearance observations 𝑎𝑖 based on laser 𝑙𝑖 and camera 𝑖𝑖 models, and available language

observations Λ𝑖. We assign nodes to regions 𝑅𝛼 = {𝑛1, .., 𝑛𝑚} that represent spatially

coherent areas in the environment compatible with human concepts (e.g., rooms and hall-

ways). Undirected edges exist between node pairs in this graph, denoting traversability.

Edges between regions are inferred based on the edges between nodes in the graph. A re-

gion edge exists between two regions if at least one graph edge connects a node from one

region to a node in the other. The topological layer consists of the nodes, edges, and the

region assignments for the nodes. A region 𝑅𝑖 in this topology is equivalent to a vertex 𝑣𝑖

in our previous definition in Chapter 3. However, now we reason about the extent of these

regions by explicitly modeling their constituent nodes.

The pose 𝑥𝑖 of each node 𝑛𝑖 is represented in a global reference frame. The metric

layer is induced by the topology, where edges in the topology also include metric con-

straints between the corresponding node poses. Metric constraints are calculated by scan-

matching the corresponding laser observations of each region. A pose graph representation

is employed to maintain the distribution over the pose of each node, conditioned on these

constraints. Occupancy maps can be constructed based on the node poses and their corre-

sponding laser observations. Figure 4-2 shows an example semantic graph particle for a

trivial environment. As shown in the figure, semantic information is also conditioned on

the topology. The semantic layer consists of a factor graph with variables that represent

the type 𝐶𝑅𝑖
and labels 𝑙𝑅𝑖

for each region 𝑅𝑖, properties that can be observed at each node

(in each region), and factors that denote the joint likelihood of these variables (e.g., the

likelihood of observing a label given a particular room type). Observations of these region

properties are made using laser- and image-based scene classifiers and by grounding human

descriptions of the environment.
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4.1.1 Distribution Over Semantic Graphs

We maintain the joint distribution over the topology 𝐺𝑡, the vector of locations 𝑋𝑡, and

the set of semantic properties 𝐿𝑡. Formally, we maintain this distribution over semantic

graphs {𝐺𝑡, 𝑋𝑡, 𝐿𝑡} at time 𝑡 conditioned upon the history of metric exteroceptive sensor

data 𝑧𝑡 = {𝑧1, 𝑧2, . . . , 𝑧𝑡}, odometry 𝑢𝑡 = {𝑢1, 𝑢2, . . . , 𝑢𝑡}, scene appearance observations

𝑎𝑡 = {𝑎1, 𝑎2, . . . , 𝑎𝑡}, and natural language descriptions Λ𝑡 = {Λ1,Λ2, . . . ,Λ𝑡},

𝑝(𝐺𝑡, 𝑋𝑡, 𝐿𝑡|𝑧𝑡, 𝑢𝑡, 𝑎𝑡,Λ𝑡). (4.1)

Each variable Λ𝑖 denotes a (possibly null) utterance, such as “This is the kitchen,” or “The

gym is down the hall.” In the work outlined in this chapter, the scene appearance observa-

tion 𝑎𝑡 = {𝑎𝑙𝑡, 𝑎𝑖𝑡} is made up of image appearance 𝑎𝑖𝑡 and laser appearance 𝑎𝑙𝑡. We describe

this in detail in Section 4.2.3.

We factor the joint posterior into a distribution over the graphs and a conditional distri-

Figure 4-2: Example of a semantic graph particle: Two regions 𝑅1 and 𝑅2 and their con-
stituent nodes 𝑛𝑖’s; distributions over node poses 𝑥𝑖; and the corresponding factor graph.
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bution over the node poses and labels,

𝑝(𝐺𝑡, 𝑋𝑡, 𝐿𝑡|𝑧𝑡, 𝑎𝑡, 𝑢𝑡,Λ𝑡) = 𝑝(𝐿𝑡|𝑋𝑡, 𝐺𝑡, 𝑧
𝑡, 𝑎𝑡, 𝑢𝑡,Λ𝑡)

× 𝑝(𝑋𝑡|𝐺𝑡, 𝑧
𝑡, 𝑎𝑡, 𝑢𝑡,Λ𝑡)× 𝑝(𝐺𝑡|𝑧𝑡, 𝑎𝑡, 𝑢𝑡,Λ𝑡) (4.2)

As with our original framework outlined in the previous chapter, we maintain this factored

distribution using a Rao-Blackwellized particle filter. However, this distribution is now

conditioned on additional types of robot observations.

We represent the joint distribution over the topology, node locations, and labels as a set

of particles.

𝑆𝑡 = {𝑆(1)
𝑡 , 𝑆

(2)
𝑡 , . . . , 𝑆

(𝑛)
𝑡 }. (4.3)

Each particle 𝑆
(𝑖)
𝑡 ∈ 𝑆𝑡 consists of the set

𝑆
(𝑖)
𝑡 =

{︁
𝐺

(𝑖)
𝑡 , 𝑋

(𝑖)
𝑡 , 𝐿

(𝑖)
𝑡 , 𝑤

(𝑖)
𝑡

}︁
, (4.4)

where 𝐺
(𝑖)
𝑡 denotes a sample from the space of topologies, 𝑋(𝑖)

𝑡 is the analytic distribution

over locations, 𝐿(𝑖)
𝑡 is the distribution over semantic properties, and 𝑤

(𝑖)
𝑡 is its weight.

4.2 Semantic Mapping Algorithm

Algorithm 2 outlines the process by which the method recursively updates the distribution

over semantic graphs (4.2) to reflect the latest robot motion, metric sensor data, laser-

and image-based scene classifications, and the natural language utterances. The following

sections explain each step in detail.

4.2.1 The Proposal Distribution

We define the prior distribution over the topology 𝐺𝑡, given the posterior distribution at

time step 𝑡− 1. Each new topology particle 𝐺(𝑖)
𝑡 is sampled from this proposal distribution,

which is a predictive prior over the current graph given the previous graph particle, sensor
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Algorithm 2: Semantic Mapping Algorithm

Input: 𝑆𝑡−1 =
{︁
𝑆
(𝑖)
𝑡−1

}︁
, and (𝑢𝑡, 𝑧𝑡, 𝑎𝑡,Λ𝑡), where 𝑆

(𝑖)
𝑡−1 =

{︁
𝐺

(𝑖)
𝑡−1, 𝑋

(𝑖)
𝑡−1, 𝐿

(𝑖)
𝑡−1, 𝑤

(𝑖)
𝑡−1

}︁
Output: 𝑆𝑡 =

{︁
𝑆
(𝑖)
𝑡

}︁
for 𝑖 = 1 to 𝑛 do

1. Propagate the graph sample based on 𝑢𝑡, Λ𝑡 and 𝑎𝑡 using the proposal
distribution.

(a) Sample region allocation

(b) Sample region edges

(c) Merge newly connected regions

2. Update the Gaussian distribution over the node poses 𝑋(𝑖)
𝑡 conditioned on

topology.

3. Update the factor graph representing semantic properties for the topology
based on appearance observations (𝑎𝑙𝑡 and 𝑎𝑖𝑡) and language Λ𝑡.

4. Compute the new particle weight 𝑤(𝑖)
𝑡 based upon the previous weight 𝑤(𝑖)

𝑡−1

and the metric data 𝑧𝑡.

end

Normalize weights and resample if needed.

data (excluding the current time step), appearance data, odometry, and language,

𝐺
(𝑖)
𝑡 ∼ 𝑝(𝐺𝑡|𝐺(𝑖)

𝑡−1, 𝑧
𝑡−1, 𝑎𝑡, 𝑢𝑡,Λ𝑡). (4.5)

First we augment the topology 𝐺
(𝑖)
𝑡−1 to reflect the robot’s motion by adding a node 𝑛𝑡 to to

the current region 𝑅𝑐 in the topology and an edge to the previous node 𝑛𝑡−1, resulting in

an intermediate graph 𝐺
−(𝑖)
𝑡 . This represents the robot’s current pose and the connectivity

to its previous pose. This yields an updated vector of poses 𝑋−(𝑖)
𝑡 and semantic properties

𝐿
−(𝑖)
𝑡 .

Then we sample modifications to each topology sample in three steps. Firstly, the algo-

rithm samples a segmentation to the current region. If the current region was segmented,

it then samples new edges between the latest segmented region and previously created re-
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gions. Finally based on the newly created edges, the algorithm considers merging the last

segmented region with the best matching connected region.

Creation of New Regions

We probabilistically bisect the current region 𝑅𝑐 using the spectral clustering method pro-

posed by Blanco et al. [4]. We construct the similarity matrix using the laser point overlap

between each pair of nodes in the region. Equation 4.6 defines the likelihood of bisecting

the region, which is based on the normalized cut value 𝑁𝑐 of the graph involving the pro-

posed segments. The likelihood of accepting a proposed segmentation rises as the 𝑁𝑐 value

decreases, i.e., as the separation of the two segments improves (minimizing the inter-region

similarity),

𝑃 (𝑠/𝑁𝑐𝑢𝑡) =
1

(1 + 𝛼𝑁3
𝑐 )
. (4.6)

This results in more spatially distinct areas in the world having a higher likelihood of being

distinct regions, leading to more particles modeling these areas as separate regions. If a

particle segments the current region, a new region 𝑅𝑖 is created that does not include the

newly added node. This method can however result in over-segmenting an environment

when the local spatial layout is significantly cluttered.

Edge Proposals

When a new region 𝑅𝑖 is created, the algorithm proposes edges between this region, and

other regions in the topology, excluding the current region 𝑅𝑐.

The algorithm samples inter-region edges from a spatial-semantic proposal distribution

that incorporates the semantic similarity of regions, as well as the spatial distributions of

its constituent nodes. This reflects the notion that regions that are nearby and semantically

similar are more likely to be connected. We measure semantic similarity based upon the
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Figure 4-3: Example of region edges being proposed (black lines represents rejected edge
proposals; the red line represents an accepted edge).

label distribution associated with each region. The resulting likelihood has the form

𝑝𝑎(𝐺𝑡|𝐺−(𝑖)
𝑡 , 𝑧𝑡−1, 𝑢𝑡, 𝑎𝑡,Λ𝑡) =

∏︁
𝑗:𝑒𝑖𝑗 /∈𝐸−

𝑝(𝐺𝑖𝑗
𝑡 |𝐺

−(𝑖)
𝑡 ) (4.7a)

∝
∏︁

𝑗:𝑒𝑖𝑗 /∈𝐸−

𝑝𝑥(𝐺𝑖𝑗
𝑡 |𝐺

−(𝑖)
𝑡 )𝑝𝑠(𝐺

𝑖𝑗
𝑡 |𝐺

−(𝑖)
𝑡 ), (4.7b)

where we have omitted the history of language observations Λ𝑡, metric measurements 𝑧𝑡−1,

appearance measurements 𝑎𝑡, and odometry 𝑢𝑡 for brevity. Equation 4.7a reflects the as-

sumption that additional edges that express constraints involving the current node 𝑒𝑖𝑗 /∈ 𝐸−

are conditionally independent. While 𝑝𝑥(𝐺𝑖𝑗
𝑡 |𝐺−

𝑡 ) encodes the likelihood of the edge based

on the spatial properties of the two regions, 𝑝𝑠(𝐺
𝑖𝑗
𝑡 |𝐺−

𝑡 ) describes the edge likelihood based

on the regions’ semantic similarity. Equation 4.7b reflects the assumed conditional inde-

pendence between the spatial- and the semantic-based edges.

For the spatial distribution prior, we consider the distance 𝑑𝑖𝑗 between the mean nodes

of the two regions, where the mean node is that with its pose closest to the region’s average
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pose

𝑝𝑥(𝐺𝑖𝑗
𝑡 |𝐺

−(𝑖)
𝑡 ) =

∫︁
𝑋

−(𝑖)
𝑡

𝑝(𝐺𝑖𝑗
𝑡 |𝑋

−(𝑖)
𝑡 , 𝐺

−(𝑖)
𝑡 , 𝑢𝑡)𝑝(𝑋

−(𝑖)
𝑡 |𝐺−(𝑖)

𝑡 ) (4.8a)

=

∫︁
𝑑𝑖𝑗

𝑝(𝐺𝑖𝑗
𝑡 |𝑑𝑖𝑗, 𝐺

−(𝑖)
𝑡 )𝑝(𝑑𝑖𝑗|𝐺−(𝑖)

𝑡 ). (4.8b)

The conditional distribution 𝑝(𝐺𝑖𝑗
𝑡 |𝑑𝑖𝑗, 𝐺𝑡−1, 𝑧

𝑡−1, 𝑢𝑡) expresses the likelihood of adding

an edge between regions 𝑅𝑡 and 𝑅𝑗 based upon the location of their mean nodes. We

represent the distribution for a particular edge between regions 𝑅𝑖 and 𝑅𝑗 with distance

𝑑𝑖𝑗 = |�̄�𝑅𝑖
− �̄�𝑅𝑗

|2 as

𝑝(𝐺𝑖𝑗
𝑡 |𝑑𝑖𝑗, 𝐺−

𝑡 , 𝑧
𝑡−1, 𝑢𝑡) ∝ 1

1 + 𝛾𝑑2𝑖𝑗
, (4.9)

where 𝛾 specifies a distance bias. For the evaluations in this chapter, we use 𝛾 = 0.3. We

approximate the distance prior 𝑝(𝑑𝑖𝑗|𝐺−
𝑡 , 𝑧

𝑡−1, 𝑢𝑡) with a folded Gaussian distribution.

The semantic prior expresses the increased likelihood that edges exist between regions

with similar distributions over labels 𝑙. The label distributions for the regions are modeled

in the semantic layer,

𝑝𝑠(𝐺
𝑖𝑗
𝑡 |𝐺−

𝑡 ) =
∑︁
𝐿−
𝑡

𝑝(𝐺𝑖𝑗
𝑡 |𝐿−

𝑡 , 𝐺
−
𝑡 )𝑝(𝐿−

𝑡 |𝐺−
𝑡 ) (4.10a)

=
∑︁
𝑙−𝑖 ,𝑙−𝑗

𝑝(𝐺𝑖𝑗
𝑡 |𝑙−𝑖 , 𝑙−𝑗 , 𝐺−

𝑡 )𝑝(𝑙−𝑖 , 𝑙
−
𝑗 |𝐺−

𝑡 ). (4.10b)

Equation 4.11 expresses the likelihood of an edge existing between two regions, given

the value of the regions’ respective label values

𝑝(𝐺𝑖𝑗
𝑡 |𝑙𝑖, 𝑙𝑗) =

⎧⎪⎨⎪⎩𝜃𝑙𝑖 if 𝑙𝑖 = 𝑙𝑗

0 if 𝑙𝑖 ̸= 𝑙𝑗

, (4.11)

where 𝜃𝑙𝑖 denotes the likelihood that edges exist between nodes with the same label. In

practice, we assume a uniform saliency prior for each label. Equation 4.10b measures the
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cosine similarity between the label distributions.

After a region edge is sampled from the spatial-semantic prior, a scan-match procedure

attempts to find the best alignment between the two regions. Upon convergence of the

scan-match routine, the edge is accepted and is used to update the topology.

Region Merges

After a new region 𝑅𝑖 has been created and edges to other regions have been checked and

added, the algorithm determines whether it is possible to merge with one of the newly con-

nected regions. The newly-created region is merged with an existing (connected) region if

the observations associated with the smaller of the two regions can be adequately explained

by the larger region. This results in regions being merged when the robot visits a location

already represented in the graph.

The merge process is designed to ensure that each particle maintains a single region

entity to represent each spatial region, thus ensuring that the complexity of the topology

increases only when the robot explores new areas, leading to more efficient region edge

proposals as well as more accurate language groundings.

4.2.2 Updating the Metric Map Based on New Edges

The algorithm then updates the spatial distribution over the node poses 𝑋𝑡 conditioned on

the proposed topology,

𝑝(𝑋
(𝑖)
𝑡 |𝐺

(𝑖)
𝑡 , 𝑧𝑡, 𝑎𝑡, 𝑢𝑡,Λ𝑡) = 𝒩−1(𝑋

(𝑖)
𝑡 ; Σ−1

𝑡 , 𝜂𝑡), (4.12)

where we parametrize the Gaussian in the canonical form in terms of the information matrix

Σ−1
𝑡 and information vector 𝜂𝑡. As in the previous chapter, we make use of the iSAM

algorithm [38] to incrementally update this distribution for each particle.
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4.2.3 Updating the Semantic Layer

Compared with our original formulation in the previous chapter, our updated representation

maintains a distribution over a larger set of semantic properties associated with the envi-

ronment. The distribution over the semantic layer is maintained using a factor graph [63]

that is conditioned on the topology for each particle. As Figure 4-4 shows, the semantic

layer maintains two variables associated with each region 𝑅𝑖, namely the region category

(or type) 𝐶𝑅𝑖
(e.g., hallway, conference room) and the label that can be used to describe the

region 𝑙𝑅𝑖
.

Figure 4-4: Semantic Layer (plate representation) for a region

We model the relation between a region’s category 𝐶𝑅𝑖
and its label 𝑙𝑅𝑖

to account for

the fact that people describe certain region categories more often with particular labels.

For example, while a person might describe a region of type conference room with a label

“meeting room” or “conference room,” it is unlikely that they will describe it as a “kitchen.”

The factor that joins these two variables represents the likelihood of each room category

generating a particular label. In this implementation, we identified a limited subset of labels

associated with each region category in our representation (e.g., the hallway category can

generate “hall,” “hallway,” or “corridor”). When building the factor between the label and

room category variables, we assigned higher likelihoods to labels associated with each

category and lower likelihoods to the other labels (capturing the likelihood of generating

these labels given a particular room category). Ideally this factor should be learned using

data regarding labels people use to describe different types of regions.

At each node 𝑛 within a region, the robot can observe one or more of these semantic
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properties, either directly or indirectly. We make the assumption that these observations

are conditionally independent. The robot learns about the region label 𝑙𝑅𝑖
when it grounds

a phrase 𝜆𝑘 that the person used to describe that region (Φ𝑘 is a correspondence variable

that denotes whether 𝜆𝑘 actually references that region). The robot learns about the region

category 𝐶𝑅𝑖
indirectly, by observing the region appearance 𝑎𝑛 at each node in a region.

The region appearance can be one of three broad appearance classes, room, hallway, and

open area. These are observed using the robot’s lidar 𝑎𝑙𝑛 and camera 𝑎𝑖𝑛 (with the use of

trained appearance models) at each node in the region. For each particle, we update the

distributions over the region label and category variables by running belief propagation at

each time step as new variables and factors are added.

Scene Appearance Observations

Each node has an appearance variable 𝑎𝑛 that is related to its region category. We consider

three general appearance classes, room, hallway, or open area. The factor that connects a

region category variable 𝐶𝑅𝑖
to an appearance variable 𝑎𝑛 encodes the fact that a region of

a particular type often has a distinctive appearance. For example, a region of type office

has a high-likelihood of having a room appearance. The category-to-appearance factor was

learned from annotated data from several other floors of the Stata building.

The robot makes two observations of the region’s appearance 𝑎𝑛 at node 𝑛 using its

lidar and rgb-camera combined with pre-trained appearance models.

1. Laser Appearance (𝑎𝑙𝑛): The laser appearance model uses geometric features derived

from the laser observations similar to those outlined in Mozos et al. [64].

2. Image Appearance (𝑎𝑖𝑛): The image appearance model uses Composed Receptive

Field Histograms (CRFH) [70].

We train these appearance models using Support Vector Machines [7] to carry out multi-

class classification with probability estimates. Laser and camera appearance variables 𝑎𝑙𝑛

and 𝑎𝑖𝑛 are connected to the node’s appearance 𝑎𝑛 using factors built from the confusion

matrix for the two trained models. The classification results for the two sensors provide

a distribution representing the likelihood of the observations being generated from each
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appearance category. The classifier outputs are integrated to the factor graph as factors

attached to variables 𝑎𝑙𝑛 and 𝑎𝑖𝑛.

Natural Language Descriptions

Each region in the topology has a label variable 𝑙𝑅𝑖
that represent how people refer to

that region (e.g., “meeting room”). We learn the distribution over the labels by integrating

the user’s descriptions about the environment. These are either ego-centric descriptions

that describe the robot’s immediate location (e.g., “I am at the kitchen”) or allocentric

descriptions that refer to spatially distant regions (e.g., “The kitchen is down the hall”).

A region can have zero, one, or multiple label observations depending on the number

of descriptions made by the user about that region. We represent each relevant observation

of the region’s label with 𝜆𝑘 and a correspondence variable Φ𝑘. The variable 𝜆𝑘 denotes

the label used by the user in the description when referring to the region. The variable

Φ𝑘 is a binary-valued variable specifying whether or not 𝜆𝑘 describes the region. If the

label does not correspond to that region (Φ𝑘 = 0), the observation 𝜆𝑘 is uninformative

about the region’s label, and will have equal likelihood for each label value. However,

when the correspondence holds (Φ𝑘 = 1), the factor encodes the likely co-occurrences be-

tween different labels. For example, if the robot heard the label “conference room” with

a high likelihood of Φ𝑘 = 1, it will result in other labels that often co-occur with “con-

ference room” (e.g., “meeting room”) as having high likelihoods as well. Currently, high

co-occurrence is added for words that are synonyms (e.g., “hallway” and “corridor”). In

this way, we use the correspondence variable to handle the ambiguity inherent in grounding

natural language descriptions. When a label is grounded to a region, we create a label ob-

servation 𝜆𝑘 and correspondence variable Φ𝑘, and connect it to the associated region’s label

variable 𝑙𝑅𝑖
using a co-occurrence factor. We integrate the correspondence observation Φ𝑘

by attaching a factor encoding this likelihood. We treat the observed label as having no

uncertainty, as our current model does not model errors arising from speech recognition.

We derive the factor denoting the observation of Φ𝑘 based on the type of description

given by the user. If the user describes the current location (e.g., “I am at the living room”),

we have higher correspondence with spatially local nodes. For such descriptions, we al-
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locate a high likelihood of correspondence with the current region , i.e., 𝑝(Φ𝑘 = 1) = 0.8.

For allocentric descriptions (e.g., “the kitchen is down the hallway”, where the user de-

scribes the location of the referent “kitchen” with relation to the landmark “hallway”), we

use the 𝐺3 framework [88] to calculate the correspondence likelihood given the potential

landmarks. We marginalize the landmarks to arrive at correspondence likelihood of each

referent region in a manner similar to our previous approach.

𝑝(𝜑ℱ
𝑅𝑖

= T) = 𝜂
∑︁
𝑅𝑗

𝑝(𝜑ℱ
𝑅𝑖

= T|𝛾ℒ = 𝑅𝑗, 𝛾𝑝𝑖 , 𝜆
𝑟) 𝑝(𝛾ℒ = 𝑅𝑗), (4.13)

where 𝜑ℱ
𝑅𝑖

is the correspondence variable for the figure, 𝜂 is the normalization factor and

𝛾𝑝𝑖 represents the shortest path 𝑝𝑖 that the robot can take from the location of the description

through the pair of landmark 𝛾𝑙
𝑗 and figure 𝛾𝑓

𝑖 vertex groundings. As before, we use the A*

algorithm [79] to solve for the shortest path through the topology.

However, unlike our approach outlined in the previous chapter (see Section 3.2.3), we

normalize all valid figure groundings to arrive at the observation of the correspondence

variable Φ𝑘 = 1. This reflects the fact that there should only be one correct spatial en-

tity that is referred to by the description on the assumption that the topology represents an

accurate decomposition of the world. We did not enforce this normalization in our prior ap-

proach due to two reasons. Firstly, due to the fixed spatial segmentation that we employed

in the prior approach, there was a higher likelihood that the correct spatial segmentation

might not be reflected in the topology. Secondly, due to the fact that we created new nodes

when the robot revisits regions, if we applied the normalization, only one of the valid re-

gion nodes would receive the probability of the figure, even though they both are the correct

figure region. But with our new more compact and semantically accurate spatial represen-

tation, we feel is fair to assume that there should ideally be one valid figure region referred

to by the user when providing the description. Admittedly, it is possible that in cluttered

environments for a region to be over-segmented resulting in more than one spatial entity

being created.

Compared to our approach outlined in the previous chapter, we make several improve-

ments in integrating semantic information from allocentric language to our representation.
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Figure 4-5: Maximum likelihood semantic graph of a multi-building environment on the
MIT campus.

The grounding is more efficient due to the more compact topology and more accurate be-

cause the spatial regions are arguably closer to what the human thinks of as regions. By

using the richer semantic representation, we are also able to induce a prior over the set

of landmarks and figures even in the absence of language. For example, we can identify

landmark regions such as hallways which provide visually distinct cues for laser and image

classifiers, even in the absence of explicit descriptions. The presence of visual appearance

observations also acts as a prior over the label distributions.

4.2.4 Updating the Particle Weights and Resampling

We update the particle weights and resample in the same manner as in Section 3.2.4.

4.3 Results

We evaluate our algorithm through four experiments in which a human gives a robotic

wheelchair [30] narrated guided tours of different floors in the Stata Center (S3, S4, S6)

as well as a multi-building indoor tour (MF) on the MIT campus. The robot was equipped

with a forward-facing lidar, a camera, wheel encoders, and a microphone. In these exper-

iments we drove the robot using a joystick, and provided it with textual natural language

descriptions at specific salient locations.
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Figure 4-6: Maximum likelihood semantic map of the 3rd floor of the Stata building (pie
charts denote the likelihood of different region categories).

We evaluate the resulting semantic maps with regards to their topological accuracy,

compactness, segmentation accuracy, and semantic accuracy. All experiments were run

with 10 particles. The results show that our framework produces more compact and more

accurate semantic graphs than our previous approach. They also demonstrate the improve-

ment in semantic accuracy due to language descriptions. We also show the ability of our

framework to ground allocentric language even in the absence of previous labels for the

referent (e.g., it handles the expression “the lobby is down the hall” even when the hall has

not been labeled).

4.3.1 Topological Accuracy

We compare the topological accuracy, conditioned upon the resulting segmentation, by

comparing the maximum likelihood map with the ground truth topology. We define a

topology as matching ground truth if node pairs that are spatially close (1 m) in a metrically

accurate alignment are at most one region hop away. This avoids penalizing occasional

regions that do not contain valid edges as long as a nearby region was accurately connected
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(and possibly merged with the nodes from a prior visit). This can happen when an edge

was not sampled or when scan-matching failed to converge.

The percentage of close node pairs that were more than one region hop away from

each other for the third, fourth and sixth floor were 2.8%, 3.7%, and 3.8%, respectively.

Most region-matching errors occurred in areas with significant clutter which caused over-

segmented spatial regions, which do not look similar enough to each other. Metric maps

derived from the maximum likelihood particles were accurate for all three floors.

4.3.2 Topological Compactness

We compare the allocation of nodes to regions in the current framework to the previous

method. In the previous approach, the topology update did not merge regions even when

the robot revisited a region; it simply created an edge between the regions. The redundancy

of the regions has several negative implications. Firstly, it unnecessarily increases the hy-

pothesis space of possible region edges, reducing the likelihood of a sample proposing valid

region edges. Secondly, it increases the hypothesis space for grounding language, forcing

the framework to consider more region pairs as possible groundings for user descriptions.

We measure the duplicity of the region allocation as

C = 𝑁𝑠/𝑁𝑡, (4.14)

where 𝑁𝑠 is the number of close node pairs (< 1𝑚) assigned to the same region and 𝑁𝑡

is the total number of close node pairs. If the topology is efficient at allocating regions,

this ratio should be high, as only nodes near region boundaries should belong to different

regions. Table 4.1 compares these scores for three different floors. The new method scores

significantly higher in all three experiments. The difference is more pronounced when the

robot revisits more regions. Since the sixth floor dataset did not have too many revisited

regions, the scores for the two approaches are closer.
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Table 4.1: Region allocation efficiency (C)

Floor New Framework Old Framework

Stata Floor 3 (S3) .67 .29
Stata Floor 4 (S4) .77 .37
Stata Floor 6 (S6) .69 .52

Table 4.2: Region Segmentation and Semantic Accuracy

Region Segmentation Semantic Accuracy

Type Accuracy Without Lang With Lang

S3 MF S3 MF S3 MF

Conference room 80.0 81.7 8.8 15.1 48.5 58.7
Elevator lobby 59.7 72.8 18.8 12.8 64.1 46.4
Hallway 49.4 55.7 44.5 58.5 44.4 58.0
Lab 52.8 30.1 11.8 27.2 14.2 30.6
Lounge 42.9 39.4 28.6 36.6 62.0 40.5
Office 62.5 76.1 78.1 45.6 98.6 60.2

4.3.3 Segmentation Accuracy

Table 4.2 outlines the segmentation accuracy for the maximum likelihood particle for two

datasets, outlined according to region type. We picked the best matches based on the Jac-

card index (number of intersecting nodes divided by the number of union nodes) for each

ground truth annotated region and the resulting segmented region. Since our segmentation

method depends on the similarity of laser observations, large cluttered region types, such

as lab spaces and lounges, tend to be over-segmented. Additionally long hallways tend to

be over-segmented by our method, which is reflected in the lower scores for hallways.

4.3.4 Inference of Semantic Properties

Table 4.2 also outlines the semantic accuracy for the maximum likelihood particle for two

datasets. Semantic accuracy was calculated for each ground truth region by assigning each

constituent node with its parent region’s category distribution and taking the cosine sim-

ilarity. We observe that the semantic accuracy with language is higher for most region

types, with the exception of hallways that show minimal improvement since they were
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(a) Appearance only (b) With language

Figure 4-7: Region category distribution (a) for a region with only appearance informa-
tion and (b) and with both appearance and language “the lounge is behind us”. (category
“lounge”: yellow).

rarely described by users. Some regions, such as labs, which were labeled with egocentric

descriptions, have low scores because the regions are over-segmented and the language is

attributed only to the current region. In these experiments the hallway regions were not

labeled through language but were inferred based on scene appearance observations from

the robot’s sensors. Figure 4-7 compares the region category properties with and without

language. In the absence of language (Figure 4-7a), the appearance of the region gives

equal likelihood for both “elevator lobby” and “lounge.” In Figure 4-7b, the region was

grounded with the label “lounge” and the framework inferred a higher likelihood of the

region category being a lounge.

4.3.5 Grounding Allocentric Language Descriptions

We also tested our framework with allocentric language descriptions. When handling

phrases that include a landmark and a referent (e.g., “the gym is down the hall”), our

earlier framework required the landmark to have already been labeled before describing

the referent location. With our new framework, the robot is able to ground language when

the landmark corresponds to locations that may not have been labeled, but can be inferred

from other semantic cues (e.g., appearance classification). We tested this situation using

several instances in our dataset.

Figure 4-8 shows instances in which allocentric language utterances were grounded into
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(a) (b)

Figure 4-8: Resulting category distribution for allocentric language phrases (a) “the eleva-
tor lobby is down the hall” and (b) “the lounge is down the hall” (“elevator lobby”: purple,
“lounge”: yellow, “hall”: green). The “hall” regions were inferred using scene appearance
to learn the location of the “elevator lobby” and the “lounge” respectively.

the semantic graph. As the label distributions for the surrounding regions demonstrate, the

framework is able to ground the referent with a high degree of accuracy, even though the

landmark was never explicitly labeled. However, since there is more uncertainty about the

landmark region, the information derived from the allocentric language has less influence

on the semantic properties on the region (since we marginalize the landmark likelihood

when calculating the grounding likelihood Φ).

4.4 Discussion

In this chapter, we described an enhanced semantic mapping algorithm that learns spatial-

semantic representations of environments from natural language descriptions and scene

classifications. This results in more compact spatial representations that are closer to how

humans perceive environments and richer semantic maps that are more conducive to learn-

ing semantic properties from natural language.

Because the algorithm outlined in this Chapter samples different possible segmenta-

tions in each particle, its performance increase is somewhat poorer than the approach in

Chapter 3. This is due to the fact that different particles in this approach can have differing
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numbers of regions as well as edges, where the regions across particles are no longer the

same. Thus we are no longer able to share the results of scan-matching across different

particles, leading to somewhat worse scaling.

The algorithms outlined in this Chapter and Chapter 3 have made use of natural lan-

guage to learn labels by reasoning about the information contained in natural language.

However, both these methods require the robot to visit the referred regions before it can

learn from language. In Chapter 6 we use natural language to directly extend the robot’s

spatial representation by creating regions (as yet unvisited by the robot) based on natural

language descriptions and inferring weak metric constraints based on spatial relations.

These algorithms model the scenario of a guided tour, where a human guide provides

a tour of the environment. However, up to now the robot has been a passive participant in

how it learns about the world. In the next chapter, we introduce a mechanism with which

the robot reasons about the ambiguity of the natural language descriptions provided by the

user and its current semantic map, and then ask questions from the user to improve its

representation.
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Chapter 5

Information Theoretic Question Asking

to Improve Semantic Maps

In the previous chapters we outlined our algorithms that allowed a robot to learn a spatial-

semantic representation from natural language and its sensors during a guided tour provided

by a human. While the robot would autonomously follow the human while exploring the

environment, the higher-level decision of which areas would be explored was decided by

the human. The robot was a passive partner when any natural language description was

provided, only confirming the description before integrating it to the representation.

One challenge to learning from natural language descriptions is the higher level of

ambiguity that such descriptions presents. The user’s descriptions can often be ambiguous,

with several possible interpretations for a particular environment. For example, the user

may describe the location of the kitchen as being “down the hall,” yet there may be several

hallways nearby, each leading to a number of different rooms.

Rather than try to passively resolve the ambiguity in the inferred map, the robot can

actively take information-gathering action that can improve its representation. These could

be in the form of physical exploration of the environment to validate the presence and

location of spatial entities described by the human, or by asking targeted questions from

the user. In this chapter we take the latter approach, by enabling the robot to ask questions

that disambiguate its uncertainty over the implications of natural language descriptions

provided by the guide. Figure 5-1 shows such a situation where the guide provides an
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(a) (b)

Figure 5-1: A user gives a tour to a robotic wheelchair designed to assist residents in a
long-term care facility. (a) The guide provides an ambiguous description of the kitchen’s
location. (b) When the robot is near one of the likely locations, it asks the guide a question
to resolve ambiguity.

ambiguous description, which the robot clarifies by asking a question at a later time.

Challenges

In order for this approach to be useful it needs to balance the robot’s need to follow the tour

without unnecessary interruptions, and the need to improve the robot’s representation by

asking questions. To achieve this, the algorithm needs to decide what is the best question

to ask and when is the best time to ask a question. It needs to overcome several challenges

in order to reason about questions successfully.

The robot needs ask questions that provide enough context to the guide. Questions

that query the user about the robot’s current location can provide a lot of context but are
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of limited use. Firstly, there is limited opportunity to ask these questions about relevant

regions. Secondly asking the question is most useful if the robot expects to receive a yes

answer, because a no answer often provides minimal information about any other region.

Thus it is useful to ask questions about temporally and spatially distant regions. However,

asking such questions requires the robot to provide sufficient context for the human to

comprehend and provide a meaningful answer. This context can be provided with the

use of spatial relations that refer to non-immediate part of the environment (e.g., “Is the

kitchen in front of me?”) , or by referring to salient landmarks in the environment (e.g., “Is

the lounge near the conference room?”).

The robot also needs to balance the utility of asking a questions with following the tour

with minimal interruptions. However, the robot is forced to evaluate the utility of asking a

question based on a possibly incomplete map of its environment. To calculate the utility of

asking a question would require reasoning over how the user might respond to the question,

and the likelihood of receiving a particular response. This also needs to model the cost of

asking questions that can be burdensome to the human, for example by frequently asking

questions.

To address this, in this chapter we formulate a guided tour model as a decision process

which decides between following the human and asking questions to improve its represen-

tation [32, 29]. During the tour, the robot maintains a distribution over the semantic graph

representation that we introduced in the previous chapter. The algorithm reasons over the

natural language descriptions and the current learned map to identify potential questions

that best reduces ambiguity in the map. The algorithm considers egocentric and allocen-

tric binary (yes/no) questions that consist of spatial relations between pairs of regions.

These regions may be local to the robot in the case of situated dialog (e.g., “Are we in the

kitchen?”, “Is the lab on my right?”) or distant in the case of non-situated dialog (e.g., “Is

the lounge next to the conference room?”). We evaluate this approach over its ability to

resolve ambiguity using two experiments and demonstrate that the resulting semantic maps

are more accurate than the current state-of-the-art.
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5.1 Semantic Mapping Algorithm

During the guided tour the robot constructs a spatial-semantic representation based on the

algorithm we outlined in the previous chapter. The representation we employ is identi-

cal to the one outlined in the previous chapter. However, unlike in the previous chapter

where each particle sampled a segmentation using spectral clustering (as outlined in Sec-

tion 4.2.1), in this work we deterministically infer region transitions using a threshold on

the spectral clustering method, resulting in all particles having the same region boundaries.

In the following section we reiterate the mechanism that we use to integrate natural lan-

guage descriptions to our representation, and highlight how ambiguity in the descriptions

can affect the utility of the information inferred from natural language. Next, we outline an

improved natural language evaluation process that efficiently reevaluates the implications

of each utterance as relevant parts of the environment are visited during the tour.

5.1.1 Grounding Natural Language Descriptions

We consider two broad types of natural language descriptions provided by the guide. Ego-

centric descriptions that involve the robot’s immediate surround are directly grounded to

the robot’s current region when the description was provided. Allocentric descriptions that

provide information about distant regions require more careful handling.

We parse each natural language command into its corresponding Spatial Description

Clauses (SDCs), a structured language representation that includes a figure, a spatial rela-

tion and possibly a landmark [88]. For example, the allocentric description “the lounge is

down the hallway,” results in an SDC in which the figure is the “lounge,” the spatial rela-

tion is “down from,” and the landmark is the “hallway”. With egocentric descriptions, the

landmark is implicitly the robot’s current position. Thus we treat each language description

as containing a figure region 𝛾ℱ , spatial relation and a potential landmark region 𝛾ℒ.

In order to ground each expression, the algorithm first identifies regions in the map that

may correspond to the grounding based upon their semantic label likelihood. We normalize
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these likelihoods to compute the landmark grounding probability for each of these regions

𝑝(𝛾ℒ = 𝑅𝑗) =
𝑝(𝜑ℒ

𝑅𝑗
= T)∑︀

𝑅𝑗

𝑝(𝜑ℒ
𝑅𝑗

= T)
, (5.1)

where 𝛾ℒ is the landmark region grounding and 𝜑𝑙
𝑅𝑗

denotes the binary correspondence

variable that specifies whether region 𝑅𝑗 is the landmark. For each potential landmark

region, the algorithm then calculates the likelihood that each region in the map corresponds

to the figure based on a model for the spatial relation 𝑟. We arrive at the overall figure

grounding likelihood by marginalizing over the landmarks

𝑝(𝜑ℱ
𝑅𝑖

= T) =
∑︁
𝑅𝑗

𝑝(𝜑ℱ
𝑅𝑖

= T|𝛾ℒ = 𝑅𝑗, 𝑟𝑘) 𝑝(𝛾ℒ = 𝑅𝑗), (5.2)

where 𝜑ℱ
𝑅𝑖

is the correspondence variable for the figure. We normalize these likelihoods for

each potential figure region

𝑝(𝛾ℱ = 𝑅𝑖) =
𝑝(𝜑ℱ

𝑅𝑖
= T)∑︀

𝑅𝑖

𝑝(𝜑ℱ
𝑅𝑖

= T)
. (5.3)

This expresses the likelihood of the correspondence variable being true for each figure

region 𝑅𝑗 in the factor graph in the semantic layer.

However, when there is uncertainty over the landmark or figure grounding, the likeli-

hood of the label associated with the figure region can become diluted. Thus, the utility

of information contained in each natural language description is dependent on the level of

ambiguity in the expression.

5.1.2 Continuous Evaluation of Natural Language Descriptions

The challenge with fusing information inferred from natural language descriptions with a

representation built using the robot’s own sensors is the potential spatial and temporal dis-

connect between the two sources of information. In the previous chapters, we handled the

temporal disconnect between natural language descriptions and robot’s sensor observations
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by attempting to ground the language immediately, and if this fails, deferring the language

grounding to a later time (where it reevaluates the groundings periodically as more parts of

the environment are explored until a valid grounding is found).

However, due to the potential ambiguity associated with such descriptions, there could

be multiple valid potential groundings for a particular description. If the algorithm makes a

hard decision to conclude evaluating a particular description, there is no guarantee that the

correct grounding has been found. However, a naive implementation where the language is

evaluated on the entire map as it is updated will be too inefficient. To address this, we en-

hance the natural language understanding process to reevaluate the descriptions efficiently

as the robot encounters new relevant regions in the environment. We make use of the se-

mantic prior provided by the robot’s own sensors to identify potential new landmarks and

any relevant extensions to the spatial model, and reevaluate the descriptions on the relevant

modifications.

For each particle when the topology is extended by adding a new region or edge, for

each language description received by the robot, we identify any differences in the space

of grounding variables. These differences can be:

• A different shortest path (due to an update in the metric/topological information, such

as an addition of a loop closure edge).

• The addition of a new potential landmark or figure region.

• The removal of an existing figure or landmark region (due to the region merging with

another region).

Depending on the type of change, we evaluate the relevant grounding pairs, and recalculate

the correspondence variables for the figure regions. We reconstruct the factor graph with

the relevant information, and rerun belief propagation to update the semantic information.

5.2 Action Selection Algorithm

The approach that we present in this chapter is modeled on a robot that is following a

narrated guided tour [30]. Our approach models the problem as a decision process, where at
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each time step the robot reasons over two sets of high-level actions, to follow the guide and

continue with the tour or ask a question that reduces its uncertainty over its representation.

The algorithm reasons over the natural language descriptions and the current learned

map to identify potential questions that best reduces ambiguity in the map. The algorithm

considers egocentric and allocentric binary (yes/no) questions that consist of spatial rela-

tions between pairs of regions. These regions may be local to the robot in the case of

situated dialog (e.g., “Are we in the kitchen?”, “Is the lab on my right?”) or distant in the

case of non-situated dialog (e.g., “Is the lounge next to the conference room?”).

Algorithm 3: Semantic Mapping and Action Selection

Input: 𝑆𝑡−1 =
{︁
𝑆
(𝑖)
𝑡−1

}︁
, and

(︀
𝑢𝑡, 𝑧𝑡, 𝑎𝑡,𝒜𝑡−1, 𝑧

𝒜
𝑡 ,Λ𝑡

)︀
, where

𝑆
(𝑖)
𝑡−1 =

{︁
𝐺

(𝑖)
𝑡−1, 𝑋

(𝑖)
𝑡−1, 𝐿

(𝑖)
𝑡−1, 𝑤

(𝑖)
𝑡−1

}︁
Output:

{︁
𝒜𝑡, 𝑆𝑡 =

{︁
𝑆
(𝑖)
𝑡

}︁}︁
1) Update Distribution with odometry and sensor data and language.

for 𝑖 = 1 to 𝑛 do

1. Employ proposal distribution to propagate the graph sample 𝐺
(𝑖)
𝑡 based on

𝑢𝑡, Λ𝑡 and 𝑎𝑡.

2. Update the Gaussian distribution over the node poses 𝑋(𝑖)
𝑡 conditioned on

the topology.

3. If 𝐴𝑡−1 was a question, add
{︀
𝐴𝑡−1, 𝑧

𝒜
𝑡

}︀
to the corresponding description.

4. Reevaluate language descriptions and update the semantic layer 𝐿(𝑖)
𝑡 .

5. Update particle weights.

end

Normalize weights and resample if needed.

2.) Evaluate action costs and select minimum cost action 𝒜𝑡.

𝒜*
𝑡 = arg max

𝒜𝑡

∑︀
𝑆
(𝑖)
𝑡

𝑝(𝑆
(𝑖)
𝑡 )𝑄(𝑆

(𝑖)
𝑡 ,𝒜𝑡)

Algorithm 3 outlines the process by which the robot updates its representation and

chooses the optimal action 𝐴*
𝑡 . At each time step, the method integrates new odometry
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and sensor information to update the distribution over the semantic graph. This includes

reevaluating the language descriptions and the guide’s answers to questions. Then, the

algorithm evaluates the value and cost of each valid dialog action, and executes the best

action. Next we elaborate on the action selection procedure.

We formulate the guided tour as a decision process where the robot selects an action at

every time step. These actions include following the person, and asking a particular ques-

tion. For each allocentric description provided by the guide, we define a set of actions that

ask a question from the guide. We model the value of the robot’s next state using an infor-

mation gain heuristic, such that the robot values asking useful questions. The information

gain is defined as the reduction in entropy in the groundings for the natural language de-

scription based on the asked question and a received answer. We introduce a cost function

for these question-asking actions to model the social cost of asking a question.

We define the current state as the robot’s current representation over the world, i.e.,

the semantic graph 𝑆𝑡. If the robot asks a question and receives an answer, the semantic

graph 𝑆𝑡 will be updated based on the
{︀
𝒜𝑡, 𝑧

𝒜
𝑡+1

}︀
tuple, which we represent as 𝑆𝑡+1. When

the robot selects a question-asking action, it will stop before asking the question and only

resume following once the answer is received (or after a timeout). As such, the next state

𝑆𝑡+1 is only dependent on 𝑆𝑡, the robot’s question, and the guide’s response. Since each

question that the robot asks refers to the location of the figure region described in a given

natural language description, the update to the semantic graph will only modify the dis-

tribution over this grounding. If the robot takes the following action, the semantic graph

would be modified due to new observations and possible descriptions. In this work we do

not model this change in state for following the person as this requires us to reason over the

unobserved part of the world.

As we maintain the distribution over the semantic graph using a Rao-Blackwellized

particle filter, the robot’s state 𝑆𝑡 =
{︁
𝑆
(𝑖)
𝑡

}︁
is a collection of weighted particles. Thus, we

solve this for each particle 𝑆
(𝑖)
𝑡 and infer the optimal action given the distribution over the

semantic graph using the QMDP heuristic [48].
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For a single particle 𝑆
(𝑖)
𝑡 , we define the Q value as,

𝑄(𝑆
(𝑖)
𝑡 ,𝒜𝑡) =

∑︁
𝑆
(𝑖)
𝑡+1

𝛾𝑉 (𝑆
(𝑖)
𝑡+1)× 𝑝(𝑆

(𝑖)
𝑡+1|𝑆

(𝑖)
𝑡 ,𝒜𝑡)− 𝒞(𝒜𝑡). (5.4)

We define the value of each possible next state 𝑆
(𝑖)
𝑡+1 for the particle 𝑆

(𝑖)
𝑡 as a function of

the information gain associated with improving the grounding of a particular language de-

scription by taking a question-asking action and receiving a given answer. Specifically,

we model this by calculating the reduction in entropy for the distribution over the figure

grounding 𝛾ℱ for a given natural language description, by asking a question about the loca-

tion of that figure region and receiving a particular answer. The information gain heuristic

biases the decision process to value actions that on expectation reduce the uncertainty over

the language groundings in the semantic graph. We also model the cost of each action 𝒜𝑡.

We use a discounting factor 𝛾 = 1.

At each time step, the robot takes the best action 𝒜*
𝑡 from the available set of actions

using the QMDP heuristic, as the robot maintains a distribution over the state of the world.

𝒜*
𝑡 = arg max

𝒜𝑡

∑︁
𝑆
(𝑖)
𝑡

𝑝(𝑆
(𝑖)
𝑡 )𝑄(𝑆

(𝑖)
𝑡 ,𝒜𝑡), (5.5)

where 𝑝(𝑆𝑡) is the particle weight 𝑤(𝑖)
𝑡 .

The following paragraphs explain this process in detail.

5.2.1 Action Set

The action set consists of the “Follow Person” action 𝐴ℱ , and the valid set of question-

asking actions. The “Follow Person” action 𝐴ℱ is available at all times except when the

robot is waiting for an answer to a question, when the robot stops and waits for an answer

(or the question to timeout). We derive our questions from a templated set for each ground-

ing entity in a natural language description. These templates can be categorized into two

basic types.

I Immediate Questions: This template takes a spatial relation from the set of spatial
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relations (at, near, away, in front, behind, left of, right of) and a grounding variable

to create a question of the type “Is the kitchen in front of me?”. For such questions,

the possible answers are “yes,” “no,” and “invalid” (for questions that do not make

sense given a spatial entity). For this work, we define questions about the figure

groundings.

II Landmark Questions: This template defines questions in terms of spatial relations

between non-local locations in the environment. If the robot is highly confident of

the semantic label of a particular location, it could generate a question about regions

close to that entity to resolve uncertainty. For example, when the robot is uncertain

about the location of the “lounge,” but thinks one possibility is the space next to

the “conference room,” while several are not, it could ask “Is the lounge next to the

conference room?”. This allows the robot to ask questions about regions outside the

robot’s immediate area.

The robot can only use questions of the first type to ask about spatial regions in its

immediate vicinity. As such, the ability to receive useful information is limited to instances

when the robot is near a potential hypothesized location. Questions of the second type

allow the robot to reduce its uncertainty even when a hypothesized location is not within

its immediate vicinity. However, this may place a higher mental burden on the user who

must then reason about spatial entities outside their immediate perception range.

5.2.2 Value Function

As we define the current state as the semantic graph at time 𝑡, the next state 𝑆𝑡+1 is depen-

dent on 𝑆𝑡 coupled with the question and answer pair. For a single particle, the next state

is defined as:

𝑆
(𝑖)
𝑡+1 =

{︁
𝑆
(𝑖)
𝑡 ,𝒜, 𝑧𝒜

}︁
(5.6)

Since the robot will be stopped from the time the question is asked to the time the

answer is received, there will be no change to the spatial representation. Thus the only

change will be to the groundings of the natural language description for which the question
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was asked. Receiving the answer would ideally reduce the entropy over the groundings.

Thus, for a semantic graph particle 𝑆(𝑖)
𝑡 , the set of next potential 𝑆(𝑖)

𝑡+1 are limited by the set

of question and answer pairs.

We define the value of the next state using an information gain based heuristic. The

information gain is calculated for the language grounding from which each question is

defined. Since the addition of a question and answer pair can only effect the language

grounding for which it is defined, we only calculate the information gain for the relevant

language grounding.

𝑉 (𝑆
(𝑖)
𝑡+1) = ℱ(𝐼(𝒜𝑡, 𝑧

𝐴
𝑡+1)). (5.7)

Information Gain

The information gain 𝐼(𝒜, 𝑧𝒜) for action 𝒜, as shown in Equation 5.8 is defined as the re-

duction in entropy by taking action 𝒜 and receiving observation 𝑧𝒜. In our framework, the

entropy is over a grounding variable 𝛾ℱ created for a natural language description provided

by the guide. Calculating the exact entropy is infeasible since the map might not yet be

complete and also because it is inefficient to calculate the likelihood of spatial regions that

are too far outside the local area. Therefore, we approximate the distribution based on the

spatial regions considered during the language grounding step for the language description

Λ𝑘.

𝐼(𝒜, 𝑧𝒜) = 𝐻(𝛾ℱ |Λ𝑘)−𝐻(𝛾ℱ |Λ𝑘,𝒜, 𝑧𝒜) (5.8)

In this work, our focus is on questions that have a predefined set of answers, which

allows us to model the information gain for each question and answer pair, as well as

reason over the likelihood of receiving each answer given the question. This allows us to

calculate the Q value for each state 𝑆
(𝑖)
𝑡 and action 𝒜𝑡 as outlined in equation 5.4.

Given the answer, we evaluate the change it has on the distribution over the particular

grounding variable. For most spatial relations (excluding near and at), we define a valid

range from the robot, over which a particular question can be applied in a meaningful

manner. In our experiments, we used a valid range of 20 𝑚 when evaluating a question. As

such, we limit the entropy calculation to the regions for which the question is expected to
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be meaningful.

𝑝(𝛾ℱ = 𝑅𝑗|Λ𝑘,𝒜, 𝑧𝒜) =
𝑝(𝑧𝒜|𝒜, 𝑅𝑗)× 𝑝(𝛾ℱ = 𝑅𝑗|Λ𝑘)∑︀

𝑅𝑗

𝑝(𝑧𝒜|𝒜, 𝑅𝑗)× 𝑝(𝛾ℱ = 𝑅𝑗|Λ𝑘)
(5.9)

For the action 𝐴ℱ , we assume that there is no change in the entropy as we are not

modeling the expected change in the language groundings based on spatial exploration.

Thus, the Q value for 𝐴ℱ is only the cost of the action.

5.2.3 Transition Likelihood

The transition function for a single particle 𝑝(𝑆
(𝑖)
𝑡+1|𝑆

(𝑖)
𝑡 ,𝒜𝑡) is equivalent to the likelihood

of receiving each answer given the state and the question-asking action. Using our spatial

relation models we are able to calculate 𝑝(𝑧𝒜|𝑆(𝑖)
𝑡 , 𝑅𝑗,𝒜), which is the likelihood of receiv-

ing a particular answer given the question and the correct grounding is 𝑅𝑗 . We calculate the

overall likelihood of receiving each answer by marginalizing out the grounding variable.

𝑝(𝑧𝒜|𝑆(𝑖)
𝑡 ,𝒜) =

∑︁
𝑅𝑗

𝑝(𝑧𝒜|𝑆(𝑖)
𝑡 , 𝑅𝑗,𝒜)× 𝑝(𝑅𝑗|Λ𝑘) (5.10)

This results in a higher expected likelihood of receiving a particular answer if there were

spatial regions that had a high a priori likelihood of being the grounding and also fit the

spatial relation in the question.

5.2.4 Cost Function Definition

We define a hand-crafted cost function that encodes the desirability of each robot action.

𝒞(𝒜𝑡) = ℱ(𝑓(𝒜𝑡)) (5.11)

For question-asking actions, this is a function of several relevant features. For this imple-

mentation, we have used the following:

i Time since last question asked
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ii Time since last question asked about grounding

iii Number of questions asked about entity

In our current implementation, we use a linear combination of these features to arrive

at a reasonable cost function. The weights have been set such that they result in negligible

burden on the user and do not impeded the conducting of the tour. Ideally, these weights

would be learned from user preferences based upon human trials.

For the person following action 𝐴ℱ , we assign a fixed (negative) cost such that only a

reasonably high expected information gain will result in a question being asked. The value

was set empirically to achieve a reasonable level of questions.

5.2.5 Integrating Answers to the Representation

We couple each of the user’s answers with the original question defined for a language

description Λ𝑘 to arrive at an equivalent natural language description of the environment.

As such, each new answer modifies the distribution over that grounding variable, and any

informative answer improves the robot’s representation. However, since the question is tied

to a particular spatial entity, we treat the question and answer pair together with the original

description, according to Equation 5.9. However, unlike in the entropy calculations, we

consider all potential groundings, including regions outside the meaningful area for the

question.

To arrive at the 𝑝(𝑧𝒜|𝒜, 𝑅𝑖), we factor the likelihood as,

𝑝(𝑧𝒜|𝒜, 𝑅𝑖) =
𝑇∑︁

𝑣=𝐹

𝑝(𝑧𝒜|𝑣, 𝑎, 𝑅𝑖)× 𝑝(𝑣|𝑎,𝑅𝑖), (5.12)

where 𝑣 = 𝑡 implies the question is valid for 𝑅𝑖 and 𝑣 = 𝑓 implies the question is invalid,

and marginalize over 𝑣. The 𝑝(𝑣 = 𝑡|𝒜, 𝑅𝑖) is high only for 𝑅𝑖 within the valid range of

the robot’s location (when the question was asked). When the question is invalid for 𝑅𝑖,

the 𝑝(𝑧𝒜 = “no”|𝑣,𝒜, 𝑅𝑖) has a high likelihood. 𝑧𝒜 = “no”.

When new valid grounding regions are added, we reevaluate both the original descrip-

tion as well as the likelihood of generating the received answer for each new region, and
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update the language grounding. Figure 5-2 shows the grounding likelihoods before and

after asking three questions.

5.3 Experimental Evaluations

We evaluate our algorithm on two indoor datasets modeled on a human giving a robotic

wheelchair a narrated guided tour (Figure 5-1). The datasets are from two different floors of

MIT’s Stata Center building. For this experiment, we injected natural language descriptions

at locations where the descriptions are ambiguous. We ran the algorithm on the datasets

(played back at real time) and a human provided answers to the questions asked by the

system. We ran two experiments, where in experiment I the robot was allowed to ask both

immediate and landmark-based questions, while in experiment II we only allowed the robot

to ask landmark-based questions. All experiments were run with two particles.

We quantify the results using two metrics, the reduction of entropy over the figure

groundings for each language utterance, and the improvement in the accuracy of the lan-

guage grounding. Table 5.1 outlines the entropy over the figure groundings with and with-

out questions. As can be seen in all cases, the entropy over the groundings decreases

significantly with question asking.

In order to calculate the accuracy of each grounding 𝑘, we annotated the ground truth

region referred to by each annotation, and then calculated the overlap of each grounded

figure region (O𝑅𝑖
) with the ground truth annotation. The overlap ratios were weighted

with the grounding likelihood and summed to arrive at the accuracy score S𝑘.

S𝑘 =
∑︁
𝑅𝑖

O𝑅𝑖
× 𝑝(𝛾ℱ = 𝑅𝑖|Λ𝑘, {𝒜, 𝑧𝒜}) (5.13)

The accuracy score penalizes situations where the groundings are assigned to regions out-

side the ground truth region, and also when some grounded regions only contain a part of

the ground truth region (due to improper segmentation).
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The lounge is down 
the hallway

Elevator lobby
Office
Lab

Conference Room
Kitchen
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Q1

Q2

94% (14%)

 0% (19%)

 0% (13%)

 0% (13%)  0% (20%)
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Figure 5-2: Experiment I: Language groundings for the expression “The lounge is down
the hall”. Grounding likelihood with questions is in black and without questions in red.
Questions asked (and answers), Q1: “Is the lounge near me?” (“No”); Q2: “Am I at the
lounge?” (“Yes”). The ground truth region boundary is in red. Pie charts centered in each
region denote its type while path color denotes different regions.

5.3.1 Experiment I: Immediate and Landmark-Based Questions

As can be seen in Table 5.1, the semantic maps that result from integrating the answers

received from the guide have much less uncertainty (and lower entropy) over the figure

groundings. For all descriptions, the robot was able to significantly reduce the entropy over

the figure groundings by asking questions. They also have significantly improved accuracy

over the figure groundings compared to the approach without questions. On average there

was a 78% reduction in the entropy over the figures and a 347% improvement in the accu-

racy over the grounding. The impact of question asking is dependent on the ambiguity of

each description as well as the available set of questions along the path taken by the guide.

In this experiment, the robot never asked any landmark based questions, owning to the fact

that the path taken involved travel close to the ambiguous figure regions, allowing it to ask

immediate questions that better resolved the ambiguity.

Dataset I contains seven descriptions of the robot’s location that the algorithm grounds
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Table 5.1: Experiment I: Entropy over figure groundings with and without questions

Entropy Accuracy

Utterance NQ Q NQ Q # Q

(A) “The lounge is down the hallway” (Figure 5-2) 1.911 0.237 17.3% 90.6% 2

(B) “The elevator lobby is down the hallway” 1.574 0.566 35.8% 70.9% 2

(C) “The lounge is behind you” 0.403 0.095 87.2% 98.4% 1

(D) “The lab is down the hall” (Figure 5-3) 2.041 0.310 14.6% 91.6% 3

(E) “The conference room is down the hallway” 2.061 0.664 6.5% 65.5% 8

(F) “The lounge is in front of us” 1.053 0.107 20.6% 43.8% 2

Dataset I has utterances A, B and C, and Dataset II has utterances D, E and F. NQ: Method
without Questions, Q: Method with Questions, # Q: Number of questions

to the current region, and three allocentric expressions that describe regions with relation

to either landmarks in the environment (e.g., “the elevator lobby is down the hall”) or to

the robot (e.g., “the lounge is behind you”). The robot asked a total of five questions of the

guide, all in relation to itself.

Dataset II contains one descriptions of the robot’s location that the algorithm grounds

to the current region, and three allocentric expressions that describe regions with relation to

either landmarks in the environment or to the robot. The robot asked a total of 13 questions

of the guide, all of which were in relation to itself. In this dataset, one of the descriptions

(“the conference room is down the hallway”) was highly ambiguous due to the presence

of multiple landmarks close to the described location, resulting in multiple potential valid

groundings. Therefore the robot required 8 questions to reduce the ambiguity in the figure

grounding. The large number of questions were due to the fact that there were no questions

that could immediately disambiguate between the two most likely regions, given the route

taken by the guide.

5.3.2 Experiment II: Landmark-Based Questions Only

We also reran the first dataset while only allowing the system to ask questions based on

landmarks. Due to the path taken in the dataset, the robot traveled close to the potential fig-
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Figure 5-3: Experiment I: Language groundings for the expression “The lab is down the
hall”. Grounding likelihood with questions is shown in black and without questions in red.
Question asked (and answer), Q1: “Is the lab near me?” (“No”); Q2: “Am I at the lab?”
(“Yes”); Q3: “Am I at the lab?” (“No”). The ground truth region is outlined in red.

ure regions, and as such was able to resolve its ambiguity better by asking questions relative

to itself. By only allowing the robot to ask landmark questions, we demonstrate the poten-

tial to reduce the ambiguity even when the robot does not revisit the locations it is uncertain

about. However, the reduction in the entropy is conditioned on the presence of salient land-

Table 5.2: Entropy over figure groundings with immediate and landmark questions

Entropy Accuracy

Utterance Immediate Landmark Immediate Landmark

Questions Questions Questions Questions

(A) 0.237 (2) 2.001 (1) 90.6% 27.0%

(B) 0.566 (2) 0.000 (1) 70.9% 96.6%

(C) 0.095 (1) 0.441 (0) 98.4% 79.8%

Number of questions asked in each method are shown in brackets in their respective entropy
columns.
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The elevator lobby  
is down the hallway

84%(21%)

Q1

0% (30%)

16% (14%)

Lab

0% (12%)
0% (23%)

Figure 5-4: Experiment II: Language groundings for the expression “The elevator lobby
is down the hallway”. Grounding likelihood with questions is shown in black and without
questions in red. Question asked (and answer), Q1: “Is the elevator lobby near the lab?”
(“No”). The ground truth region is outlined in red.

marks (which in this experiment came from language annotations). Table 5.2 compares the

performance of asking landmark-based questions with asking immediate questions. The

robot is still able to reduce the ambiguity but not to the level that it achieves with asking

immediate questions. The reasons are two fold; firstly, there are only a few salient land-

marks that could be used to generate valid questions; secondly, landmark questions can

only be asked using the “near” spatial relation. Thus the available set of useful questions

are limited. Figure 5-4 shows the resulting grounding likelihoods for the utterance “the

elevator lobby is down the hallway”.

5.4 Discussion

We outlined a framework that enables a robot to engage a human in dialog in order to

improve its learned semantic map during a guided tour. We enabled this behavior by con-

tinuously regrounding natural language descriptions as new parts of the environment are

encountered by the robot. We also outlined two experiments conducted to evaluate the

benefits of asking questions to improve the robot’s semantic map.
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The current approach is capable of both reducing the entropy over the figure groundings

and increasing the accuracy of the grounded region. This entropy is calculated based on

the distribution over the potential set of groundings for the figure region that is described

in a natural language description. However, if the correct figure region is over-segmented

in the robot’s learned map, this will cause the robot over-estimating the level of ambiguity

for that description, resulting in incorrect questions being asked.

As our algorithm does not reason over possibly unvisited parts of the environment, the

measure of ambiguity is based on a partially known map. This can result in an incorrectly

low measure of ambiguity at a location (and time) where asking a question would result in

the most improvement to the learned map. A more comprehensive approach would be to

model the likelihood that figure references ground to unvisited regions in the environment,

and evaluate the affect of the questions on these regions as well.

Additionally, because we depend on spectral clustering to segment the environment,

there is a delay to when the robot learns that it has transitioned in to a new region. This can

also lead to an incorrectly low measure of ambiguity at a time when a useful question could

be asked from the user. Thus, better techniques for reasoning about spatial decomposition,

especially ones that allow for the robot to learn of a region transition with less delay would

lead to improved reasoning about the utility of asking questions allowing for more accurate

learned maps.
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Chapter 6

Inferring Maps and Behaviors from

Natural Language Instructions

Natural language instructions offer an effective means for untrained users to control com-

plex robots, without requiring specialized interfaces or extensive user training. However,

with few exceptions, existing techniques in language understanding require the robot to

posses a priori knowledge of location, geometry, colloquial name, and type of all objects

and regions within the environment [41, 34, 88]. Without known world models, interpret-

ing free-form commands becomes much more difficult. Existing methods have dealt with

this by learning a parser that maps the natural language commands into a formal control

language equivalent [53, 8, 57]. Alternatively, Duvallet et al. [18] use imitation learning to

train a policy that reasons about uncertainty in the grounding and that is able to backtrack

as necessary.

Oftentimes, the command itself provides information about the environment that can be

used to hypothesize suitable world models, which can then be used to generate the correct

robot actions. For example, Figure 6-1 shows a user in a robotic wheelchair instructs the

robot to “navigate to the kitchen that is down the hallway,” where the hallway and the

kitchen are outside the robot’s field-of-view. While the robot has no a priori information

about the environment, the instruction conveys the knowledge that there is a “kitchen” that

is “down” a “hallway.” A robot capable of reasoning about this information will be able

better respond to the command (e.g., reason over the presence and location of a kitchen
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Go to the kitchen 
that is down 
the hallway

Figure 6-1: A user commanding a robotic wheelchair using natural language that contains
information about the environment.

when it observes a hallway).

Joint Inference over Maps and Behaviors

In this chapter, we use our semantic mapping algorithm to induce a distribution over the

world based on information contained in natural language, explicitly reasoning over unob-

served parts of the environment that have been specified in the command. We then use this

distribution over the world to solve for a policy that is consistent with the command, which

is then executed by the robot. The robot updates its internal representation of the world

as it makes new metric observations (such as the location of perceived landmarks) and up-

dates its policy appropriately. This approach enables robots to interpret and execute natural

language commands that refer to unknown regions and objects in the robot’s environment.

By reasoning and planning in the space of beliefs over the presence and location of objects

and regions that are not initially observed, we are able to robustly follow natural language

navigation instructions given by a human operator.

The semantic mapping algorithm introduced in this chapter uses information contained
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in a natural language command to reason about the spatial structure of the environment,

possibly unknown to the robot at the moment. For example, in Figure 6-2a the robot infers

the presence of a hydrant (unobserved) behind the cone (observed) based on the command

“go to the hydrant behind the cone”. The mapping algorithm hypothesizes the presence of

a hydrant and also reasons about its metric location based on the spatial relation “behind”.

This is in contrast to our mapping algorithms outlined in the previous chapters, where

we used language to inform us of semantic information about entities only once they are

observed by the robot using its own sensors.

In the following section, we describe our probabilistic framework that first extracts an-

notations from a natural language instruction (Figure 6-2a). These annotations describe

facts about robot’s environment implicitly contained in natural language instructions that

specify the existence of and spatial relations between objects and regions relevant to ex-

ecuting the command. It then treats these annotations as noisy sensor observations in a

“go to the hydrant behind the cone”

cone
��

Utterance:

(a) First, we receive a verbal instruction from the
operator.

∃ 𝑜𝑐𝑜𝑛𝑒 ∈ 𝑂

∃ 𝑜ℎ𝑦𝑑𝑟𝑎𝑛𝑡 ∈ 𝑂

∃ 𝑟𝑏𝑎𝑐𝑘
(︀
𝑜𝑐𝑜𝑛𝑒, 𝑜ℎ𝑦𝑑𝑟𝑎𝑛𝑡

)︀
∈ 𝑅

Annotations:

@I hydrant
samples

(b) Next, we infer the map distribution from the ut-
terance and prior observations.

action@I

(c) We then take an action (green), using the map
and behavior distributions.

actual hydrant pose

@R

(d) This process repeats as the robot acquires new
observations, refining its belief.

Figure 6-2: Visualization of one run for the command “go to the hydrant behind the cone,”
showing the evolution of the robot’s beliefs (over the possible locations of the hydrant). The
robot begins with the cone in its field of view, but does not know the hydrant’s location.
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mapping framework, and uses them to generate a distribution over a semantic model of the

environment that also incorporates observations from the robot’s sensor streams (Figure 6-

2b). This prior is used to ground the actions and goals within the command, resulting in

a distribution over desired behaviors. This is then used to solve for a policy that yields

an action that is most consistent with the command, under the map distribution so far (Fig-

ure 6-2c). As the robot travels and observes new parts of the environment, it updates its map

prior and inferred behavior distribution, and continues to plan until it reaches its destination

(Figure 6-2d).

The approach outlined in this chapter is the result of joint work with Felix Duvallet,

Thomas M. Howard and Matthew R. Walter. We apply the joint behavior and map infer-

ence framework to following natural language navigation instructions in the two following

scenarios.

Following Object-Relative Navigation Commands

We apply this approach to allow a robot to execute free-form instructions that direct it to

unknown objects [17]. In these experiments, a human operator issues natural language

commands in the form of text that directs the robot to navigate to an object in the envi-

ronment. These commands also contain information about the environment, describing

the presence of objects (e.g., “go to the hydrant”) and spatial relations between objects

(e.g., “go to the hydrant behind the cone”). We evaluate our framework through a series of

simulation-based and physical experiments on two mobile robots that demonstrate its ef-

fectiveness at carrying out navigation commands, as well as highlight the conditions under

which it fails.

Following Natural Language Directions in Indoor Environments

We use this approach to enable a robot to follow natural language route directions in un-

known indoor environments [28]. We consider directions that reference regions in the

environment. We evaluate this both in simulation and physical experiments on a robotic

wheelchair platform.
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6.1 Technical Approach Overview

We define the problem of following natural language commands as one of inferring the

robot’s trajectory 𝑥𝑡+1:𝑇 up to time horizon 𝑇 that is most likely, given the history of natural

language commands Λ𝑡,

arg max
𝑥𝑡+1:𝑇 ∈ℜ𝑛

𝑝
(︀
𝑥𝑡+1:𝑇 |Λ𝑡, 𝑧𝑡, 𝑢𝑡

)︀
. (6.1)

where 𝑧𝑡 and 𝑢𝑡 are the history of sensor observations and odometry data, respectively.

Inferring the maximum a posteriori trajectory (6.1) for a given natural language utterance

is challenging without knowledge of the environment for all but trivial applications. We

address this by introducing a latent random variable 𝑆𝑡 that represents the world model as a

semantic map. The semantic map encodes the location, geometry, topology and type of the

spatial entities, such as objects or regions, within the environment. This representation is

derived from the work outlined in the previous chapters, although we introduce several key

modifications to the representation and the inference process to allow us to reason about

unobserved spatial entities described in language. We then interpret the natural language

command in terms of the latent world model, which results in a distribution over behaviors

𝛽𝑡. We then solve the inference problem (6.1) by marginalizing over the latent world model

and behaviors:

arg max
𝑥𝑡+1:𝑇 ∈ℜ𝑛

∫︁
𝛽𝑡

∫︁
𝑆𝑡

𝑝(𝑥𝑡+1:𝑇 |𝛽𝑡, 𝑆𝑡,Λ
𝑡) · 𝑝(𝛽𝑡|𝑆𝑡,Λ

𝑡) · 𝑝(𝑆𝑡|Λ𝑡, 𝑧𝑡, 𝑢𝑡) 𝑑𝑆𝑡 𝑑𝛽𝑡. (6.2)

We maintain the distribution over the semantic maps using numerical sampling with

particles (similar to the previous chapters) and infer a discrete set of behavior groundings

for each semantic map particle, resulting in:

arg max
𝑥𝑡+1:𝑇 ∈ℜ𝑛

∑︁
𝛽
(𝑗)
𝑡

∑︁
𝑆
(𝑖)
𝑡

𝑝(𝑥𝑡+1:𝑇 |𝛽(𝑗)
𝑡 , 𝑆

(𝑖)
𝑡 ,Λ𝑡) · 𝑝(𝛽

(𝑗)
𝑡 |𝑆

(𝑖)
𝑡 ,Λ𝑡) · 𝑝(𝑆

(𝑖)
𝑡 |Λ𝑡, 𝑧𝑡, 𝑢𝑡), (6.3)

where each semantic map particle 𝑆
(𝑖)
𝑡 maintains a possible configuration over the envi-

ronment by modeling the objects, the regions and their locations, and each behavior 𝛽(𝑗)
𝑡

specifies a set of actions defined for a semantic map particle.
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Figure 6-3: Framework outline.

By structuring the problem in this way, we are able to treat inference as three coupled

learning problems. Figure 6-3 shows the overall framework that we use to follow natu-

ral language commands. The framework first converts the natural language instructions

into a set of environment annotations using learned language grounding models (Annota-

tion Inference). It then treats these annotations as observations of the environment (i.e.,

the existence, name, and relative location of rooms and objects) that it uses together with

data from the robot’s onboard sensors to learn a distribution over possible semantic maps

(Semantic Mapping). Our framework then infers a distribution over behaviors conditioned

upon the world model and the command (Behavior Inference). We then solve for the navi-

gation actions that are consistent with this behavior distribution using a learned belief space

policy (Policy Planner). As the robot executes this action, we update the world model dis-

tribution based upon new utterances and sensor observations, and subsequently select an

updated action according to the policy. This process repeats until the policy selects the stop

action. The following sections outline each component in detail.
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6.2 Natural Language Understanding

Our framework relies on learned models to identify the existence of annotations and behav-

iors conveyed by free-form language and to convert these into a form suitable for semantic

mapping and the belief space planner. This is a challenge because of the diversity of natural

language instructions, annotations, and behaviors. We perform this translation using the Hi-

erarchical Distributed Correspondence Graph (HDCG) model [33], which is an extension

of the Distributed Correspondence Graph (DCG) [34] that offers improved efficiency. The

DCG exploits the grammatical structure of language to formulate a probabilistic graphical

model that expresses the correspondence 𝜑 ∈ Φ between linguistic elements from the com-

mand and their corresponding constituents (groundings) 𝛾 ∈ Γ. The factors 𝑓 in the DCG

are represented by log-linear models with feature weights that are learned from a training

corpus. The task of grounding a given expression then becomes a problem of inference on

the DCG model. Since no world model is assumed when inferring linguistic annotations

from an utterance, the DCG considers the grounding space of symbols to be the possible

object and region types in the world. When inferring behaviors for each map particle, the

space of groundings is limited to the set of (observed or hypothesized) objects and regions

each particle.

The HDCG model employs DCG models in a hierarchical fashion, by inferring rules R

to construct the space of groundings for lower levels in the hierarchy. At any one level, the

algorithm constructs the space of groundings based upon a distribution over the rules from

the previous level:

Γ→ Γ (R) . (6.4)

The HDCG model treats these rules and, in turn, the structure of the graph, as latent vari-

ables. Language understanding then proceeds by performing inference on the marginalized

models:

arg max
Φ

∫︁
R

𝑝 (Φ|R,Γ (R) ,Λ,Ψ)×𝑝 (R|Γ (R) ,Λ,Ψ) (6.5a)

arg max
Φ

∫︁
R

∏︁
𝑖

∏︁
𝑗

𝑓
(︀
Φ𝑖𝑗 ,Γ𝑖𝑗 (R) ,Λ𝑖,Ψ, R

)︀
×
∏︁
𝑖

∏︁
𝑗

𝑓
(︀
R,Λ𝑖,Ψ,Γ𝑖𝑗 (R)

)︀
. (6.5b)
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6.2.1 Annotation Inference

We define an annotation as a statement of the existence of and relationships between one

or more spatial entities. A spatial entity is either a region (e.g., “kitchen” or “lounge”)

or an object (e.g., “trashcan”, “fire hydrant”). An area is a portion of state-space that is

typically associated with a relationship to some spatial entity (e.g., “in front of the fire

hydrant”, “down the hallway”). Relations are a particular type of association between a

pair of objects or regions (e.g., front, back, near, far). Since any set of spatial entities,

areas, and relations may be inferred as part of symbol grounding, the size of the space of

groundings for map inference grows as the power set of the sum of these symbols. We

use the trained HDCG model to infer a set of annotations 𝛼𝑡 from the positively expressed

groundings at the root of the parse tree. Figure 6-4 illustrates the model for the direction

“go to the kitchen that is down the hall”. At the root of the sentence the symbols for a

“down” spatial relation between a “kitchen” and “hallway” region are sent to the semantic

map to fuse with other observations. The semantic mapping method, which is outlined

in Section 6.3, utilizes these annotations and observations to learn a distribution over the

environment map.

go to the
kitchen

that is down the
hall

VP PP NP NP SBAR WHNP S VP ADVP NP

𝛾4 𝛾4 𝛾4

𝛾3 𝛾3 𝛾3 𝛾3 𝛾1 𝛾1 𝛾1 𝛾1 𝛾2𝛾3 𝛾3𝛾3 𝛾3

𝛾1=area(hallway,down)
𝛾2=spatial_entity(hallway)
𝛾3=spatial_entity(kitchen)
𝛾4=relation(down,kitchen,hallway)

Figure 6-4: The active groundings in annotation inference for the direction “go to the
kitchen that is down the hall”. The two symbols at the root of the sentence (𝛾3,𝛾4) are sent
to the semantic map to fuse with other observations.
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6.2.2 Behavior Inference

Given the utterance and the semantic map distribution, we now infer a distribution over

robot behaviors. The space of symbols used to represent the meaning of phrases in behavior

inference is composed of spatial entities, areas, actions, and goals. Spatial entities and areas

are defined in the same manner as in annotation inference, though the presence of a spatial

entity is a function of the inferred map. Actions and goals specify to the planner how the

robot should perform a behavior. Since any set of actions and goals can be expressed to the

planner, the space of groundings also grows as the power set of the sum of these symbols.

For the experiments discussed in Section 6.5, we assume a number of spatial entities, areas,

actions, and goals that are proportional to the number of objects in the hypothesized world

model. We use the trained HDCG model to infer a distribution of behaviors 𝛽(𝑗)
𝑡 from the

positively expressed groundings at the root of the parse tree. As we maintain a distribution

go to the
kitchen

that is down the
hall

VP PP NP NP SBAR WHNP S VP ADVP NP

𝛾8 𝛾7 𝛾7 𝛾7 𝛾5 𝛾5 𝛾5 𝛾5 𝛾6𝛾8 𝛾7

𝑅1(kitchen)

𝑅3(elevator lobby)

𝑅2(hallway)

𝑅4(lab space)

robot

𝛾5=area(𝑅2,down)

𝛾6=𝑅2

𝛾7=𝑅1

𝛾8=action(navigate,𝑅1)

Figure 6-5: The active groundings in behavior inference for the direction “go to the kitchen
that is down the hall” in the context of a inferred map with 4 objects. In this example a
navigate action with a goal relative to 𝑅1 would be sent to the policy planner.
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(a) (b)

Figure 6-6: Behavior groundings for the command “go to the hydrant behind the cone” for
two semantic map samples, where the destination object is circled in red.

over the semantic map in sample form, we infer behaviors for each sampled semantic graph

𝑆
(𝑖)
𝑡 . The joint likelihood of each behavior and semantic map sample is defined as:

𝑝(𝛽
(𝑗)
𝑡 , 𝑆

(𝑖)
𝑡 ) = 𝑝(𝛽

(𝑗)
𝑡 |𝑆

(𝑖)
𝑡 )𝑝(𝑆

(𝑖)
𝑡 ). (6.6)

Figure 6-6 shows the behavior groundings for two different semantic map samples. The

belief space policy planner outlined in Section 6.4 uses this set of behaviors {𝛽(𝑗)
𝑡 } and

semantic map samples {𝑆(𝑖)
𝑡 } to infer a policy consistent with the command.

6.3 Semantic Mapping Algorithm

In this section, we introduce our algorithm to learn the distribution over the semantic map

𝑆𝑡 = {𝐺𝑡, 𝑋𝑡} from the set of annotations 𝛼𝑡 inferred from the language command, the
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robot’s odometry 𝑢𝑡, and sensor observations 𝑧𝑡.

𝑝(𝑆𝑡|Λ𝑡, 𝑧𝑡, 𝑢𝑡) ≈ 𝑝(𝑆𝑡|𝛼𝑡, 𝑧𝑡, 𝑢𝑡) (6.7a)

= 𝑝(𝐺𝑡, 𝑋𝑡|𝛼𝑡, 𝑧𝑡, 𝑢𝑡) (6.7b)

= 𝑝(𝑋𝑡|𝐺𝑡, 𝛼
𝑡, 𝑧𝑡, 𝑢𝑡)𝑝(𝐺𝑡|𝛼𝑡, 𝑧𝑡, 𝑢𝑡), (6.7c)

where the last line expresses the factorization into a distribution over the environment topol-

ogy (graph 𝐺𝑡) and a conditional distribution over the metric map (𝑋𝑡). Unlike our prior

approaches, we do not maintain a distribution over the semantic properties, as we assume

the ability to directly observe the semantic labels of spatial entities (the type of object or

region). We employ a sample-based approximation to maintain the distribution over the

topology similar to the approaches outlined in the previous chapters. In this manner, each

particle 𝑆
(𝑖)
𝑡 = {𝐺(𝑖)

𝑡 , 𝑋
(𝑖)
𝑡 , 𝑤

(𝑖)
𝑡 } consists of a sampled topology 𝐺

(𝑖)
𝑡 , a Gaussian distribu-

tion over the poses 𝑋(𝑖)
𝑡 , and a weight 𝑤(𝑖)

𝑡 .

The semantic mapping algorithm outlined in this section has several differences from

the algorithms outlined in Chapters 3 and 4 in the way we represent the world, and the way

we learn from natural language information. We explain them in detail in the following

sections.

Representation

The topology 𝐺𝑡 consists of two layers. The higher-level topology consists of spatial en-

tities ℰ𝑖 that are either regions 𝑅𝑖 or objects 𝑂𝑖. These entities are either observed by the

robot or hypothesized based on language. The location of an object is observed by the robot

using its cameras and the location and spatial extent of a region is observed when the robot

drives through the area. Each entity also has an associated semantic label denoting the type

of object (e.g., “cone”, “trash can”) or region (e.g., “kitchen”, “office”). Since we assume

that the robot can directly observe this semantic label, we do not maintain the semantic in-

formation as a distribution (unlike our representations in the previous chapters). In physical

experiments we enable this by augmenting the environment using AprilTag fiducials [65],

which are added to the relevant objects and regions. We also assume the ability to detect
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Figure 6-7: Example of a semantic map sample: Nodes are represented using circles while
regions (in blue) and objects (green) are shown with rectangles. Hypothesized entities (𝑂1

and 𝑅2) are shaded and sampled edges are shown with dashed lines.

when the robot makes a transition from one region to another.

The locations of these spatial entities are represented using nodes 𝑛𝑖 belonging to the

lower-level topology. We associate a pose 𝑥𝑖 with each node 𝑛𝑖, the vector of which con-

stitutes the metric map 𝑋𝑡. An observed region is composed of a set of nodes denoting

the area traversed by the robot, while a region hypothesized based on language is repre-

sented by a single placeholder node. The location of an object that is either observed or

hypothesized based on language is represented by a single node. An edge in the lower-

level topology denotes a spatial relationship between two nodes and contains an associated

metric constraint. An edge is added either when the robot navigates from one location to

another (based on odometry), when it revisits an old region (by scan-matching laser ob-

servations), when it observes an object or when hypothesizing a region or object based on

language (based on spatial relations). Figure 6-7 shows an example semantic map sample.

Compared to our representation outlined in Chapter 4, the key differences in this repre-

sentation are the inclusion of objects and the presence of hypothesized spatial entities and

the direct observability of semantic labels.
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Algorithm Overview

To efficiently maintain the semantic map distribution over time as the robot receives new

annotations and observations during execution, we use a Rao-Blackwellized particle filter

similar to our prior approaches. This filtering process has three key steps: First, the al-

gorithm propagates the topology of each particle by sampling modifications to the graph

upon receiving new sensor observations 𝑧𝑡 or annotations 𝛼𝑡 inferred from the utterance.

The algorithm uses these observations to infer the location of regions and objects. Second,

the algorithm uses the proposed topology to perform a Bayesian update to the Gaussian

distribution over the node poses. Third, we update the weight of each particle based on the

likelihood of generating the given observations, and resample as needed to avoid particle

depletion. We perform this process at each time step.

The key difference from our prior approaches is how we use information inferred from

natural language to inform the robot’s representation. In our previous works, we used lan-

guage that often described parts of the world distant from the robot to learn about semantic

properties, such as region labels. We utilized learned models of spatial relations to iden-

tify these regions referred to in the descriptions. However, we relied on the robot to visit

these regions before we added them to the topology and only then did we infer any relevant

semantic properties about them from language. In this work, we use language directly to

infer the presence and layout of regions outside the robot’s immediate location by using

language in a very similar manner to other sensor observations. This key insight allows us

to induce a distribution over the world even in the absence of concrete observations from

the robot, and thus plan useful actions to accomplish the user’s command. This is achieved

by the introduction of a new proposal step that samples modifications to each topology

based on natural language. The following sections provide details of this process.

Sampling Graph Modifications from a Proposal Distribution

During the proposal step, we first augment each sample topology with an additional node

𝑛𝑡 and edge that model the robot’s motion 𝑢𝑡, resulting in a new topology 𝐺
(𝑖)−
𝑡 . We

then sample modifications to the graph ∆
(𝑖)
𝑡 = {∆(𝑖)

𝛼𝑡 ,∆
(𝑖)
𝑧𝑡 } based upon the most recent
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annotations 𝛼𝑡 and sensor observations 𝑧𝑡:

𝑝(𝐺
(𝑖)
𝑡 |𝐺

(𝑖)
𝑡−1, 𝛼𝑡, 𝑧𝑡, 𝑢𝑡) = 𝑝(∆(𝑖)

𝛼𝑡
|𝐺(𝑖)−

𝑡 , 𝛼𝑡) 𝑝(∆(𝑖)
𝑧𝑡 |𝐺

(𝑖)−
𝑡 , 𝑧𝑡) 𝑝(𝐺

(𝑖)−
𝑡 |𝐺(𝑖)

𝑡−1, 𝑢𝑡), (6.8)

where ∆
(𝑖)
𝛼𝑡 are the modifications based on natural language and ∆

(𝑖)
𝑧𝑡 are the modifications

based on the robot’s sensor observations. This updates the proposed graph topology 𝐺
(𝑖)−
𝑡

with the graph modifications ∆
(𝑖)
𝑡 to yield the new semantic map 𝐺

(𝑖)
𝑡 .

These modifications can result in the addition or removal of regions, objects, and new

edges into the topology. We sample the graph modifications by first sampling a grounding

for each sensor observation or annotation, and depending on the resultant grounding, de-

terministically selecting the required graph modification. Sampling a grounding involves

selecting a spatial entity that could explain the observation or annotation. For example, for

a language annotation that describes the presence of a kitchen, if we were unable to sample

a grounding to an existing region, we would create a hypothesized kitchen region, and also

sample a spatial constraint based on information contained in the annotation.

We make use of a Dirichlet Process model to sample these groundings. This allows

us to model the likelihood of a new region being responsible for a language annotation

by taking into account the current layout of the world. Where we define the valid set of

existing grounding entities 𝛾𝑖 and their weights 𝑤𝑖 is defined as S𝛾,𝑤 = {𝛾𝑖, 𝑤𝑖}, and 𝜃new

is a parameter that controls grounding to a new entity 𝛾new, the likelihood of sampling a

grounding entity is:

𝑝(𝛾* = 𝛾𝑖) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑤𝑖∑︀

𝑤𝑖∈S𝛾,𝑤
𝑤𝑖+𝜃new

, if 𝛾𝑖 ∈ S𝛾,𝑤

𝜃new∑︀
𝑤𝑖∈S𝛾,𝑤

𝑤𝑖+𝜃new
, if 𝛾new

(6.9)

In our algorithm, the valid set of groundings are either spatial entities (regions 𝑅𝑖 or objects

𝑂𝑖) or pairs of entities with an associated spatial relation. Depending on the scenario, the

value used for the weights 𝑤𝑖 will also change.

Next we explain how these graph modifications are sampled from natural language

annotations and robot observations.
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6.3.1 Graph Modification Based on Natural Language

When the algorithm receives a set of annotations 𝛼𝑡 = {𝛼𝑡,𝑗}, it samples a modification to

the graph for each particle:

𝑝(∆(𝑖)
𝛼𝑡
|𝐺(𝑖)−

𝑡 , 𝛼𝑡) (6.10)

Each annotation 𝛼𝑡,𝑗 can imply the presence of spatial entities and the presence of spatial

relationships between these entities. Conceptually, the algorithm handles these annotations

by grounding the specified spatial entities in to its representation. The grounding process is

different depending on the information contained in the annotation. This treatment of lan-

guage is different from the approaches we outlined in the previous chapters. Previously, we

maintained the distribution over the space of groundings for an annotation in each particle.

In this, by sampling a grounding for each annotation in each particle, we are selecting one

possible configuration of the world that could account for the annotation. The following

paragraphs explain this process in detail, for descriptions that involve regions and their re-

lationships. The process is similar for descriptions that reference objects. This process is

carried out for each annotation 𝛼𝑡,𝑗 ∈ 𝛼𝑡.

An annotation 𝛼𝑡,𝑗 can describe the existence of a figure region or object in the envi-

ronment. Specifically, for a figure region 𝑅ℱ with a label 𝑙ℱ , the annotation implies:

∃𝑅ℱ : 𝑙𝑅ℱ = 𝑙ℱ . (6.11)

For example, the command “go to the kitchen” describes the presence of a region 𝑅ℱ ,

where the label 𝑙ℱ is the “kitchen”. For such an annotation, we sample a grounding for the

described figure region 𝑅ℱ using a Dirichlet Process as follows:

𝑝(𝑅ℱ = 𝑅𝑖) =

⎧⎪⎨⎪⎩
1

𝑛𝑙ℱ+𝜃𝑙ℱ
, if 𝑅𝑖 ∈ S𝑙ℱ

𝜃𝑙ℱ
𝑛𝑙ℱ+𝜃𝑙ℱ

𝑅𝑖 = new
(6.12)

where 𝑙𝑅𝑖
is the label associated with region 𝑅𝑖, S𝑙ℱ = {𝑅𝑖|𝑙𝑅𝑖

= 𝑙ℱ}, 𝑛𝑙 = |S𝑙ℱ |, and 𝜃𝑙ℱ

biases the likelihood of the grounding towards a new region. This is an instantiation of the

Equation 6.9, where the groundings are regions, and the weights are 1 for any valid region.

153



With this distribution, as the number of existing regions of the same type increases, the

likelihood of creating a new region decreases. If this grounds to an existing region, there

would be no modification to the graph particle. If it grounds to a new region, we add a new

region to the topology, as well as an accompanying placeholder node and an edge from

the current node 𝑛𝑡 to this node. We also sample a metric constraint associated with this

edge. The sampling method is explained at the end of this section. We sample the location

of this new hypothesized region to be near the frontier locations in the environment. We

follow the same procedure for objects, except we bias the sampling of the object’s location

towards areas unobserved by the robot (by taking account the robot’s field-of-view and

places already visited).

Alternatively, an annotation can express a relationship between two spatial entities.

Specifically, the existence of a landmark region 𝑅ℒ with a label 𝑙ℒ, a figure region 𝑅ℱ with

a label 𝑙ℱ , and a spatial relation 𝑟:

∃𝑅ℱ : 𝑙𝑅ℱ = 𝑙ℱ , (6.13a)

∃𝑅ℒ : 𝑙𝑅ℒ = 𝑙ℒ, (6.13b)

∃𝑟(𝑅ℱ , 𝑅ℒ). (6.13c)

For example, the command “go to the lobby through the hallway” describes the presence

of a figure region (𝑅ℱ ) with label “lobby” (𝑙ℱ ), a landmark region (𝑅ℒ) with label “hall-

way” (𝑙ℒ), and the spatial relation “through” (𝑟(𝑅ℱ , 𝑅ℒ)) that exists between them. For

annotations of this type, we employ a two-stage sampling process to find the ground-

ings. We attempt to ground the figure and landmark regions specified in the annotation

to an existing pair of regions (with correct labels) in each particle’s topology. We define

Sℱ ,ℒ = {𝑅𝑖, 𝑅𝑗|𝑙𝑅𝑖
= 𝑙ℱ , 𝑙𝑅𝑗

= 𝑙ℒ}, where 𝑝𝑟(𝑅𝑖,𝑅𝑗) is the likelihood of a pair of regions

{𝑅𝑖, 𝑅𝑗} ∈ Sℱ ,ℒ conforming to the spatial relation 𝑟, and 𝜃ℱ ,ℒ as a parameter that biases

the grounding to at least one new region. The probability of a pair of groundings is given

154



by the distribution:

𝑝(𝑅ℱ = 𝑅𝑖, 𝑅ℒ = 𝑅𝑗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝𝑟(𝑅𝑖,𝑅𝑗)∑︀

{𝑅𝑖,𝑅𝑗}∈Sℱ,ℒ
𝑝𝑟(𝑅𝑖,𝑅𝑗)

+𝜃ℱ,ℒ
, if {𝑅𝑖, 𝑅𝑗} ∈ Sℱ ,ℒ

𝜃ℱ,ℒ∑︀
{𝑅𝑖,𝑅𝑗}∈Sℱ,ℒ

𝑝𝑟(𝑅𝑖,𝑅𝑗)
+𝜃ℱ,ℒ

𝑅𝑖 = new or 𝑅𝑗 = new
(6.14)

This is an instantiation of Equation 6.9, where the groundings are pairs of regions, and

the weights 𝑤𝑖’s are the likelihood of these region pairs conforming to the given spatial

relation. If sampling using the above equation results in two existing regions, there will be

no modification to the sample topology. Otherwise, we apply the following procedure;

1. First, sample a grounding for the landmark region 𝑅ℒ using Equation 6.12. If this

results in an existing region, we create a new (hypothesized) region with label 𝑙ℱ

to represent the figure, sample a constraint consistent with 𝑟 and add these to the

topology.

2. If the above step results in a new region for 𝑅ℒ, we sample a grounding for the figure

region 𝑅ℱ using Equation 6.12. If this results in an existing region, we create a new

(hypothesized) region with label 𝑙ℒ to represent the landmark, sample a constraint

consistent with 𝑟 and add these to the topology.

3. If both of the above steps result in new region groundings for 𝑅ℒ and 𝑅ℱ , then we

create a new (hypothesized) landmark region and a (hypothesized) figure region with

labels 𝑙ℒ and 𝑙ℱ respectively.

When the above process results in at least one hypothesized region, we add the pair of

regions and the corresponding relation 𝑟 to an outstanding set of annotations S𝛼. We follow

the same procedure for annotations describing objects.

In this section we outlined how we sample modifications to the graph based on Next

we outline how the algorithm samples the spatial constraints described above.
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Sampling Spatial Relation Constraints

When sampling a constraint based on a specified spatial relation, we use a set of models

trained from a natural language corpus [88]. These models employ features that describe

the locations of the regions or objects, the region boundaries and the location of the robot at

the time of the utterance. We make use of the set of features outlined in Tellex et al. [88] to

learn this distribution. When sampling the constraint given the spatial relation, we use the

location of one region (observed or hypothesized) and the robot’s location, and sample a

set of possible locations for the second region (within a area that bound the maximum size

of the environment) and evaluate the likelihoods of the resulting constraints. We then select

the sampled location which resulted in the maximum likelihood for the spatial relation, and

use the corresponding metric constraint.

Sampling Object Locations without a Spatial Relation

We keep track of the area that has been observed based on the locations visited by the robot

and the field-of-view of its sensors. When we sample a new object based on natural lan-

guage, we need to ensure that the new sampled object is not in an area already visited by the

robot (as this should already have been observed assuming perfect sensing). Thus we limit

the sampling of the constraint to sample only from unobserved areas in the environment.

Sampling Region Locations without a Spatial Relation

We keep track of frontier areas in the environment that could be traversable by the robot

using the robot’s lidar observations. When sampling new regions based on language, we

sample locations near these frontier regions.

In this section we outlined how the algorithm samples modifications to each semantic

map sample based on a sequence of annotations inferred from the natural language com-

mand. Each annotation contains information about the presence of regions or objects and

specify any spatial relations between them. We use these to sample new regions and ob-

jects and also infer weak metric constraints. Next we outline how graph modifications are

sampled based on observations made by the robot using its onboard sensors.
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6.3.2 Graph Modification Based on Robot Observations

This section details how we sample modifications to the topology based on the robot’s

observations of new objects and regions.

𝑝(∆(𝑖)
𝑧𝑡 |𝐺

(𝑖)−
𝑡 , 𝑧𝑡) =

∏︁
𝑗

𝑝(∆(𝑖)
𝑧𝑡,𝑗
|𝐺(𝑖)−

𝑡 , 𝑧𝑡,𝑗). (6.15)

We make use of two types of observations made by the robot: observations of region

transitions (𝑧𝑅𝑡 ) made at node 𝑛𝑡 and the location and types of objects in the environment

(𝑧𝑜𝑡 ). The algorithm uses a region transition to infer that the robot has moved to a differ-

ent region, and attempts to associate this newly observed region with one of the existing

regions, or with a new region. Conceptually this is similar to what we do with language

annotations, but the robot’s observations of a region provide more precise information es-

pecially about its connectivity, metric location and spatial extent. While a similar process is

carried out for object observations, unlike a new region observation, the robot can observe

the presence and location of multiple objects at a single instant.

Next two sections outline how this sampling is carried out based on observations of the

regions and objects respectively.

Graph Modification Based on Region Transitions

As the robot traverses the environment attempting to satisfy the language command, it

travels through new regions in the environment. In this chapter, we assume that the robot

is immediately aware when it travels from one region to another. This is in contrast to

the spectral clustering method we used in Chapter 4, which will only detect a transition

sometime after entering a new region. We achieve this in the physical experiments using

AprilTag fiducials [65] to mark the entrance of each region. We trigger a region transition

when the robot observes a new AprilTag that conflicts with the current region’s label. We

also use the fiducials as an observation of the region label

If the robot does not observe a region transition, the algorithm adds the new node 𝑛𝑡

to the current region, modifying its spatial extent. If there are any hypothesized regions

that have a constraint from the current region based on a spatial relation, the algorithm
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(a) (b)

Figure 6-8: Assignment of the current node (shown in red) (a) to a previously visited region
𝑅𝑗 (b) to a new region 𝑅𝑖+1.

evaluates the sampled constraint and re-samples it if the likelihood has changed. This is

done because some of the features that are used to calculate the likelihood of a constraint

are dependent on the region’s spatial extent, which grows as the robot observes more of the

region.

If however, a region transition is observed, the new node 𝑛𝑡 is assigned to a new or

existing region using the following steps.

• Grounding to an Existing Observed Region:

First we check if this new region is one that was previously visited by the robot as

shown in Figure 6-8a. In this implementation, we deterministically assign this to an

existing (visited) region of the same type if the distance from the new node to any

node in this region is below a distance threshold. Otherwise we create a new region

to represent visiting a new part of the environment as shown in Figure 6-8b. This

new region is given the observed label and associated with the current node 𝑛𝑡 as its

only node.

• Grounding to an Existing Hypothesized Region:

If the above step resulted in the creation of a new region 𝑅𝑛, we then attempt to

ground this region to any existing hypothesized regions in the particle (of the same

type). This is done using a similar process to how language grounding is carried out.

158



However, unlike annotation groundings, we select a grounding for the new region 𝑅𝑛

from the set of hypothesized regions. This is done in a two-step process.

1. We select from the ungrounded set S𝛼, the set of region pairs where the only

hypothesized region is the one that has the same label as 𝑙𝑅𝑛 . If this set is not

empty we sample a grounding to one of the hypothesized regions using a similar

Dirichlet distribution as outlined Equation 6.9. In this scenario, the weight 𝑤𝑖’s

are the likelihood of the spatial relation when replacing the hypothesized region

with the current region. This biases us to sample the hypothesized region that

when replaced will best conform to the associated spatial relation. If this results

in a valid grounding to a hypothesized region, we remove the associated set

of regions and relation from the ungrounded set S𝛼, remove the hypothesized

region and the constraint.

2. If the above procedure did not result in a hypothesized region being grounded

to the newly observed region, we consider the wider set of hypothesized re-

gions that match the labels (except for the ones considered above). We sample

a grounding to one of these hypothesized regions using a similar distribution

to Equation 6.12. This set includes regions in the ungrounded set S𝛼 where

both regions are hypothesized and regions created based on annotations that

described the existence of a region (equation 6.11).

Next we outline how the algorithm samples modifications to the graph based on new

object observations.

Graph Modification Based on Object Observations

When the robot makes observations of objects in the environment at node 𝑛𝑡, it also results

in several possible modifications to the graph. The observation includes the location and

the type of object. We sample modifications to the topology based on each observation

using the following steps.

• Grounding to an Existing Observed Object:

First, the algorithm samples a grounding to a previously observed object (of the same
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type). We use an observation model defined based on the sensor’s range and field-of-

view to calculate the likelihood of each existing object generating the given obser-

vation. When calculating this likelihood, we account for the uncertainty associated

with the object’s relative location to the robot. If this sampling results in a grounding

to an existing object, we create a new edge between 𝑛𝑡 and the existing object’s node.

This edge encodes the metric constraint observed using the robot’s camera.

• Grounding to an Existing Hypothesized Object:

If the above step did not result in grounding to an existing observed object, the al-

gorithm samples a grounding to an object hypothesized based on language. This

follows the same two step process outlined above for grounding the new region to an

existing hypothesized region.

• Ground to a New Object:

If both steps fail to ground this observation to an existing (observed or hypothesized)

object, we create a new object, and a node to represent its location and an edge

between 𝑛𝑡 and this node that express the metric constraint.

This section described how the algorithm uses sensor observations to sample modifica-

tions each semantic map particle. We treat these sensor observations to infer the presence

of regions and objects in the environment, and then sample modifications based on whether

they were previously observed by the robot or described by language.

6.3.3 Update the Metric Information

After proposing modifications to each particle, we perform a Bayesian update to its Gaus-

sian distribution similar to the approach in Chapter 4.2.2. The nodes and edges in the

lower-level topology of each particle are used to induce a pose graph, which allows us to

maintain the distribution over the metric locations.
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6.3.4 Re-weighting Particles

We then re-weight each particle by taking into account the likelihood of generating lan-

guage annotations, and robot observations.

𝑤
(𝑖)
𝑡 = 𝑝(𝑧𝑡, 𝛼𝑡|𝐺(𝑖)

𝑡−1)𝑤
(𝑖)
𝑡−1 = 𝑝(𝛼𝑡|𝐺(𝑖)

𝑡−1) 𝑝(𝑧𝑡|𝐺(𝑖)
𝑡−1)𝑤

(𝑖)
𝑡−1. (6.16)

The re-weighting step accounts for the differences between the proposal distributions that

we employed to sample the modifications to the graph and the distribution which resulted

in the observations.

Language Observation Model

For annotations, we use the natural language grounding likelihood under the map at the

previous time step. As such a particle with an existing pair of regions conforming to a

specified language constraint will be weighted higher than one without. This likelihood is

calculated by evaluating the probability of the matching object pair for the spatial relation

specified in the annotation.

Region Observation Model

For region observations, we model the observation likelihood such that it down weights

particles that have hypothesized regions on top of areas that the robot has already observed

as being of a different region type (by traversing through these areas). Since the robot is

able to observe the region type of its current location (which is part of our assumptions that

is enabled with the placement of AprilTags in the experiments) we evaluate the likelihood

of each hypothesized regions generating this region type observation.

This function is modeled such that only hypothesized regions that are spatially very

close to the robot’s current location can influence the region type observation. For each

hypothesized region 𝑅𝑖, we model its ability to influence the observed region type at the

current location using a binary latent variable 𝑣. The likelihood 𝑝(𝑣|𝑅𝑖) is high when

the distance to the region from the current location is below a distance threshold. We then

define a likelihood function 𝑝(𝑧𝑡|𝑣,𝑅𝑖) for generating a given region type observation given
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𝑣 and its type. This function encodes the high correlation between the region’s type and the

observed type when 𝑣 is True.

Then for each particle, the likelihood generating the current observation is:

𝑝(𝑧𝑡|𝐺(𝑖)
𝑡−1) =

∏︁
𝑅𝑖∈𝑅𝑢

(︃ ∑︁
𝑣∈𝑇𝑟𝑢𝑒,𝐹𝑎𝑙𝑠𝑒

𝑝(𝑧𝑡|𝑣,𝑅𝑖)× 𝑝(𝑣|𝑅𝑖)

)︃
, (6.17)

where where 𝑅𝑢 is the set of unobserved regions in particle 𝑆
(𝑖)
𝑡−1.

Object Observation Model

For each particle 𝑆
(𝑖)
𝑡−1, we use both the positive and negative information in the observa-

tions.

For positive observations of objects, we evaluate the likelihood of generating each ob-

served object given each topological sample 𝐺
(𝑖)
𝑡−1. This assigns the observation to an ex-

isting object in the topology (that provides the maximum likelihood) and calculates the

likelihood of observing the object at the given location. This likelihood is defined using

the observed relative constraint of the object compared to the relative constraint of the ob-

ject’s current location in the map to the robot. Since the location of objects observed by the

robot’s sensor are the same in each particle, the difference between the particles are based

on having a hypothesized region near where an actual object (of the same type) is observed.

For each existing object that did not generate a matched observation, we calculated the

likelihood of not generating an observation given the relative location of the object to the

robot. This also makes use of the sensor’s field-of-view and the uncertainty over the pose

of the object relative to the robot.

We define this negative likelihood function as:

𝑝(𝑧𝑖𝑛|𝑜𝑖) =

∫︁
𝑥𝑛𝑡

∫︁
𝑥𝑜𝑖

𝑝(𝑧𝑛|𝑥𝑛𝑡 , 𝑥𝑜𝑖)𝑑𝑥𝑛𝑡𝑑𝑥𝑜𝑖 (6.18a)

=

∫︁
𝑟𝑜𝑖

∫︁
𝜃𝑜𝑖

𝑝(𝑧𝑛|𝑟𝑜𝑖 , 𝜃𝑜𝑖)𝑑𝑟𝑜𝑖𝑑𝜃𝑜𝑖 , (6.18b)

where 𝑧𝑖𝑛 denotes not observing object 𝑖 in the topology, 𝑥𝑛𝑡 is the robot’s current pose, 𝑥𝑜𝑖
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is the object’s current pose, and 𝑟𝑜𝑖 and 𝜃𝑜𝑖 denote the relative range and heading of object

𝑜𝑖 from the robot’s pose.

We employ a simplified observation model for our sensor that assigns the likelihood of

observing an object to be 1.0 if the relative range and heading of the object to the robot falls

within the sensor’s modeled range and field-of-view. The complement is used to calculate

the likelihood of a negative observation. This results in objects that fall within the sensor’s

sensing range and field-of-view with high confidence to have a low-likelihood of generat-

ing a negative observation. Since the only variability of objects between each particle is

the hypothesized objects, this results in sampled topologies with objects in locations incon-

sistent with the actual layout world having lower weight as the robot observes the relevant

areas.

6.3.5 Resampling

When the particle weights fall below a threshold, we resample particles to avoid parti-

cle depletion [15]. When an existing particle is duplicated in this sampling process, any

edges that were created based a spatial constraint specified by a language annotation is

re-sampled.

The semantic mapping algorithm outlined here is used to infer a distribution over the

robot’s environment. By treating information inferred by language on par with sensor

observations, we are able to learn about regions and objects in the world that is relevant

to accomplishing the user’s command. By inferring spatial layout information from these

annotations, we induce a prior over the semantic map that is refined as the robot observes

the world with its own sensors as it performs actions. This allows the robot to refine its

behavior over time as its distribution over the environment improves.

6.4 Learning Belief Space Policies

Searching for the complete trajectory that is optimal in the distribution of maps would be

intractable. Instead, we treat the task of following natural language commands as sequential

decision making under uncertainty, where a policy 𝜋 minimizes a single step of the cost
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function 𝑐 over the available actions 𝑎 ∈ 𝐴𝑡 from state 𝑥:

𝜋 (𝑥, 𝑆𝑡, 𝛽𝑡) = arg min
𝑎∈𝐴𝑡

𝑐 (𝑥, 𝑎, 𝑆𝑡, 𝛽𝑡) , (6.19)

where 𝛽𝑡 is the behavior provided by the Behavior Inference 6.2.2. After taking the action

and updating the map distribution, we repeat this process until the policy declares it has

completed following the direction.

As the robot travels in the environment, it keeps track of the nodes it has visited 𝒱 and

frontiers ℱ which lie at the edge of explored space. The action set 𝐴𝑡 consists of paths to

nodes in the graph. We only consider paths that terminate at a node in ℱ in order to bias

exploration towards unknown areas and prevent repeatedly visiting areas. An additional

action 𝑎stop declares that the policy has completed following the direction. Intuitively, an

action represents a single step along the path that takes the robot to its destination. Each

action may explore new parts of the environment (for example continuing to travel down a

hallway) or backtrack if the policy has made a mistake (for example, traveling to a room in

a different part of the environment).

The following sections explain how the policy reasons in belief space, and the novel

imitation learning formulation to train the policy from demonstrations of correct behavior.

6.4.1 Belief Space Reasoning using Distribution Embedding

The semantic map 𝑆𝑡 provides a distribution over the possible locations of landmarks in

the world, while 𝛽𝑡 specifies which landmarks are relevant to the command currently being

followed, as inferred via Behavior Inference described in Section 6.2.2. The policy 𝜋 must

reason about the distribution of relevant landmarks when computing the cost of any action

𝑎. We accomplish this through a kernel embedding of the semantic map distribution [84],

using the first 𝐾 moments of the features computed with respect to each map sample 𝑆
(𝑖)
𝑡
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𝑎1

𝑎2

Kitchen

Kitchen Start

𝜑(𝑎1, 𝑆
1), 𝜑(𝑎1, 𝑆

2)

𝜑(𝑎2, 𝑆
1), 𝜑(𝑎2, 𝑆

2)

Figure 6-9: Simplified illustration of computing feature moments in the space of hypoth-
esized landmarks (two kitchens in this case). For each action, we aggregate the features
across all hypothesized kitchens. These are then used to compute moment statistics.

and behavior 𝛽(𝑗)
𝑡 :

Φ̂1 (𝑥, 𝑎, 𝑆𝑡, 𝛽𝑡) =
∑︁

𝑆
(𝑖)
𝑡 ,𝛽

(𝑗)
𝑡

𝑝(𝛽
(𝑗)
𝑡 , 𝑆

(𝑖)
𝑡 ) 𝜑

(︁
𝑥, 𝑎, 𝑆

(𝑖)
𝑡 , 𝛽

(𝑗)
𝑡

)︁
(6.20)

Φ̂2 (𝑥, 𝑎, 𝑆𝑡, 𝛽𝑡) =
∑︁

𝑆
(𝑖)
𝑡 ,𝛽

(𝑗)
𝑡

𝑝(𝛽
(𝑗)
𝑡 , 𝑆

(𝑖)
𝑡 )

(︁
𝜑
(︁
𝑥, 𝑎, 𝑆

(𝑖)
𝑡 , 𝛽

(𝑗)
𝑡

)︁
− Φ̂1

)︁2
(6.21)

. . .

Φ̂𝑘 (𝑥, 𝑎, 𝑆𝑡, 𝛽𝑡) =
∑︁

𝑆
(𝑖)
𝑡 ,𝛽

(𝑗)
𝑡

𝑝(𝛽
(𝑗)
𝑡 , 𝑆

(𝑖)
𝑡 )

(︁
𝜑
(︁
𝑥, 𝑎, 𝑆

(𝑖)
𝑡 , 𝛽

(𝑗)
𝑡

)︁
− Φ̂1

)︁𝑘
(6.22)

Intuitively, this computes features for the action and all relevant (observed or hypothesized)

landmarks individually, aggregates these feature vectors, and then computes moments of

the feature vector distribution (mean, variance, and higher order statistics). Each inferred

behavior 𝛽(𝑗)
𝑡 specifies the relevant landmarks for a given 𝑆

(𝑖)
𝑡 . A simplified illustration is

shown in Figure 6-9, for a command that goes to an unknown kitchen (with two possible

hypothesized locations).

The cost function in (6.19) is modeled as a weighted sum of the first 𝐾 moments of the

feature distribution:

𝑐 (𝑥, 𝑎, 𝑆𝑡) =
𝐾∑︁
𝑖=1

𝑤𝑇
𝑖 Φ̂𝑖 (𝑥, 𝑎, 𝑆𝑡, 𝛽𝑡) . (6.23)

By concatenating the weights and moments into respective column vectors 𝑊 := [𝑤1; . . . ;𝑤𝑘]

and 𝐹 := [Φ̂1; . . . ; Φ̂𝑘], we can rewrite the policy in (6.19) as minimizing a weighted sum
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(a) 𝑡 = 0 (b) 𝑡 = 4 (c) 𝑡 = 8

Figure 6-10: Visualization of the value function over time for the command “go to the
hydrant behind the cone,” where the triangle denotes the robot, squares denote observed
cones, and circles denote hydrants that are sampled (empty) and observed (filled). The
robot starts off having observed the two cones, and hypothesizes possible hydrants that are
consistent with the command (a). The robot first moves towards the left cluster, but after
not observing the hydrant, the map distribution peaks at the right cluster (b). The robot
then moves right and observes the actual hydrant (c).

of the feature moments 𝐹𝑎 for action 𝑎:

𝜋 (𝑥, 𝑆𝑡) = arg min
𝑎∈𝐴𝑡

𝑊 𝑇𝐹𝑎. (6.24)

The vector 𝜑(𝑥, 𝑎, 𝑆
(𝑖)
𝑡 , 𝛽

(𝑗)
𝑡 ) computes features of the action and a single landmark in

𝑆
(𝑖)
𝑡 as specified in 𝛽

(𝑗)
𝑡 . It contains geometric features describing the shape of the action

(e.g., the cumulative change in angle), the geometry of the landmark (e.g., the area of the

landmark), and the relationship between the action and landmark (e.g., the difference be-

tween the ending and starting distances to the landmark). See Duvallet et al. [18] for more

details. Figure 6-10 shows the evolution of this value function in one of our experiments.

6.4.2 Imitation Learning Formulation

The policy is trained using imitation learning, by treating action prediction as a multi-class

classification problem. Given an expert demonstration, we wish to correctly predict the ex-

pert’s action out of all possible actions from the same state. Although prior work introduced

imitation learning for training a policy to follow directions, it operated in partially known
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environments [18]. In this work, we train the policy using a distribution of hypothesized

maps to learn a belief space policy.

We assume the expert’s policy 𝜋* minimizes the unknown immediate cost 𝐶(𝑥, 𝑎*, 𝑆𝑡)

of performing the demonstrated action 𝑎* from state 𝑥, under the current belief distribution

𝑆𝑡. However, since we cannot directly observe the true costs of the expert’s policy, we must

instead minimize a surrogate loss that penalizes disagreements between the expert’s action

𝑎* and the policy’s action 𝑎, using the multi-class hinge loss [10]:

ℓ (𝑥, 𝑎*, 𝑐, 𝑆𝑡)=max

(︂
0, 1+𝑐 (𝑥, 𝑎*, 𝑆𝑡)−min

�̸�=𝑎*
[𝑐 (𝑥, 𝑎, 𝑆𝑡)]

)︂
. (6.25)

The minimum of this loss occurs when the cost of the expert’s action is lower than the cost

of all other actions, with a margin of one. This loss can be re-written and combined with

equation 6.24 to yield:

ℓ (𝑥, 𝑎*,𝑊, 𝑆𝑡) = 𝑊 𝑇𝐹𝑎* −min
𝑎

[︀
𝑊 𝑇𝐹𝑎 − 𝑙𝑥𝑎

]︀
, (6.26)

where 𝑙𝑥𝑎 = 0 if 𝑎 = 𝑎* and 1 otherwise. This ensures that the expert’s action is better

than all other actions by a margin [74]. Adding a regularization term 𝜆 to (6.26) yields our

complete optimization loss:

ℓ (𝑥, 𝑎*,𝑊, 𝑆𝑡)=
𝜆

2
‖𝑊‖2 + 𝑊 𝑇𝐹𝑎* −min

𝑎

[︀
𝑊 𝑇𝐹𝑎 − 𝑙𝑥𝑎

]︀
. (6.27)

Although this loss function is convex, it is not differentiable. However, we can optimize

it efficiently by taking the subgradient of (6.27) and computing action predictions for the

loss-augmented policy [74]:

𝜕ℓ

𝜕𝑊
= 𝜆𝑊 + 𝐹𝑎* − 𝐹𝑎′ , (6.28)

for the best loss-augmented action 𝑎′ at state s:

𝑎′ = arg min
𝑎

[︀
𝑊 𝑇𝐹𝑎 − 𝑙𝑥𝑎

]︀
. (6.29)
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Note that 𝑎′ is simply the solution to our policy using a loss-augmented cost. This leads to

the update rule for 𝑊 :

𝑊𝑡+1 ← 𝑊𝑡 − 𝛼
𝜕ℓ

𝜕𝑊
(6.30)

with a learning rate 𝛼 ∝ 1/𝑡𝛾 . Intuitively, if the current policy disagrees with the ex-

pert’s demonstration, (6.30) decreases the weight (and thus the cost) for the features of the

demonstrated action 𝐹𝑎* , and increases the weight for the features of the planned action 𝐹𝑎.

If the policy produces actions which agree with the expert’s demonstration, the update will

only be for the regularization term.

We train the policy using the DAGGER (Dataset Aggregation) algorithm [77], which

learns a policy by iterating between collecting data (using the current policy) and applying

expert corrections to the decisions that were made (using the expert’s demonstrated policy).

Key to this approach is that we collect training information from all states visited by the

policy, not just states that were in the demonstration [18]. This enables us to learn a policy

that does well on the distribution of states induced by the learned policy, instead of only

the distribution of states that were visited by the expert.

Treating direction following in the space of possible semantic maps as a problem of

sequential decision making under uncertainty provides an efficient approximate solution

to the belief space planning problem. By using a kernel embedding of the distribution

of features for a given action, we still reason about the distribution of landmarks in the

semantic map. Using imitation learning for training the policy is simple, elegant, and

requires no complex engineering of components or tuning of parameters.

6.5 Experimental Evaluation

In this section we outline the experimental evaluation of our framework to follow object

relative navigation commands and natural language route directions.
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6.5.1 Following Object-Relative Navigation Commands

This section outlines the application of our approach to follow directions to objects in

unknown environments. Since the directions considered for this application were limited

to references to objects, our semantic maps do not reason about different regions in the

environment. As such, the trajectory traversed by the robot belong to a single region.

We analyze the effectiveness of our end-to-end framework through simulations that

consider environments and commands of varying complexity, and different amounts of

prior knowledge. We then demonstrate the utility of our approach in practice using exper-

iments run on two mobile robot platforms. These experiments provide insights into our

algorithm’s ability to infer the correct behavior in the presence of unknown and ambiguous

environments.

Monte Carlo Simulations

First, we evaluate the entire framework through an extended set of simulations in order to

understand how the performance varies with the environment configuration and the com-

mand. We consider four environment templates, with different numbers of figures (hy-

drants) and landmarks (cones). Figure 6-11 shows two of the templates used for these

experiments. For each configuration, we sample ten environments, each with different ob-

ject poses. For these environments, we issued three natural language instructions “go to

the hydrant,” “go to the hydrant behind the cone,” and “go to the hydrant nearest to the

cone,” which were not part of the corpus used to train the HDCG model. For each sampled

environment, we ran 10 trials for each language command, resulting in 100 trials for each

combination of environment template and language instruction. We considered a trial to be

successful if the planner stops within 1.5 m of the intended goal.

Table 6.1 presents the success rate and distance traveled by the robot for these trials.

We also provide the results for each command where the planner used a completely known

world model as a ground-truth baseline for these environments.

We compare the performance of our method for commands that contained useful infor-

mation about the environment (“go to the hydrant behind the cone” and “go to the hydrant
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(a) 1C, 1H (b) 2C, 1H

Figure 6-11: Templates used to sample environments for the instruction “go to the hy-
drant behind the cone”: Locations for the objects and robot were sampled to be within the
specified region boundaries

nearest to the cone”) against the commands that did not contain information about the envi-

ronment (“go to the hydrant”). The results demonstrate that our algorithm achieves greater

success compared to the uninformed language commands in all the environments. In two

of the environments, it also results in more efficient paths with shorter distances on average.

However, for environments with one hydrant and two cones (1H, 2C) our method performs

worse on average when using the information from language. But it should also be noted

that this also results in a higher standard deviation for the distance traveled. This result is

due to the ambiguity in the environment, where there are two cones in the environment. In

Table 6.1: Monte Carlo simulation results with 1𝜎 confidence intervals (Hydrant, Cone).

Success Rate (%) Distance (m)

World Range (m) Relation Known Ours Known Ours

1H, 1C 3.0 null 100.0 93.9 8.75 (1.69) 16.78 (7.90)
1H, 1C 3.0 “behind” 100.0 98.3 8.75 (1.69) 13.43 (7.02)
1H, 2C 3.0 null 100.0 100.0 11.18 (1.38) 32.54 (18.50)
1H, 2C 3.0 “behind” 100.0 99.5 11.18 (1.38) 40.02 (29.66)
2H, 1C 3.0 null 100.0 54.4 10.49 (1.81) 21.56 (10.32)
2H, 1C 3.0 “behind” 100.0 67.4 10.38 (1.86) 18.72 (10.23)
2H, 1C 5.0 “nearest” 100.0 46.2 9.19 (1.54) 12.05 (5.76)
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Figure 6-12: Simulation results for distance traveled (top) and success rate (bottom) as a
function of the sensor range for the command “go to the hydrant behind the cone” with
an unknown map, compared against the performance with a fully-known map and when
given an uninformative command “go to the hydrant” (with an unknown map): (a) World
contains 1 cone and 1 hydrant (b) World contains 1 cone and 2 hydrants.

instances where the robot first travels behind the cone that actually has the hydrant behind

it, the distance traveled is significantly smaller. But, in instances where it selects the other

cone, the robot ends up navigating behind the wrong cone until the belief in those particles

are down-weighted enough. This results in a longer distance in the second scenario. This

increases the average distance value.

One interesting failure case is when the robot is instructed to “go to the hydrant nearest

to the cone” in an environment with two hydrants. In instances where the robot sees a hy-

drant first, it hypothesizes the location of the cone, and then identifies the observed hydrants

and hypothesized cones as being consistent with the command. Since the robot never actu-

ally confirms the existence of the cone in the real world, this results in the incorrect hydrant

being labeled as the goal.

Next, we evaluate the how different sensing ranges affect the performance our frame-

work, both in terms of the distance traveled and the success rate. We ran approximately 100

experiments each, with six different settings for the robot’s sensing range (2 m, 3 m, 5 m,
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Figure 6-13: Simulation results for distance traveled (top) and success rate (bottom) as
a function of the sensor range for the command “go to the hydrant nearest to the cone”
with an unknown map, compared against the performance with a fully-known map. (world
contains 1 cone and 2 hydrants)

10 m, 15 m, and 20 m) for the language instructions “go to the hydrant behind the cone”

and “go to the hydrant nearest to the cone”. Figure 6-12 outlines the change in performance

for the command “go to the hydrant behind the cone” for two environments. We compare

them to the baseline scenario where the command did not include information about the

layout of the environment (“go to the hydrant”) as well as the ground-truth baseline with

a completely known map (ten runs each). Figure 6-12 shows how success rate increases

and distance traveled decreases as the robot’s sensing range increases, quickly approaching

the performance of the system when it begins with a completely known map of the envi-

ronment. It also illustrates that the robot’s performance is poorer when the command does

not contain information about the world. As the sensor’s range increases, the robot is able

to observe the relevant parts of with a smaller number of traversals, resulting in improving

performance that approach the ground-truth baseline. We can also see that the gap between

the performance of our approach and the baseline approach decreases as the sensing range

increases. This reflects the fact that with increasing sensing ranges, there is diminishing

benefit to learn about unobserved parts of the environment through language. Figure 6-13

shows the performance of the robot for the instruction “go to the hydrant nearest to the

cone”. There is significant improvement in the success rate with the increase in the sensing

range. This is due to the fact that the robot is more likely to observe both hydrants as well

as the cone with a larger sensing range, resulting in improved performance.
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Physical Experiments

We applied our approach to two mobile robots, a Husky A200 mobile robot (Figure 6-14a)

and an autonomous robotic wheelchair [30] (Figure 6-14b). The use of both platforms

demonstrates the application of our algorithm to mobile robots with different vehicle con-

figurations, underlying motion planners, and sensor configurations. The actions determined

by the planner are translated into lists of waypoints that are handled by each robot’s motion

planner. We used AprilTag fiducials [65] to detect and estimate the relative pose of objects

in the environment, subject to self-imposed angular and range restrictions.

In each experiment, a human operator issues natural language commands in the form

of text that expresses (possibly null) spatial relations between one or two objects. The

results that follow involve the commands “go to the hydrant,” “go to the hydrant behind

the cone,” and “go to the hydrant nearest to the cone.” As with the simulation-based ex-

periments, these instructions did not match those from our training set. For each of these

commands, we consider different environments by varying the number and position of the

cones and hydrants and by changing the robot’s sensing range. For each configuration of

the environment, command, and sensing range, we perform ten trials with our algorithm.

For a ground-truth baseline, we perform an additional run with a completely known world

model. We consider a run to be a success when the robot’s final destination is within 1.5 m

of the intended goal.

Table 6.2 presents the success rate and distance traveled by the wheelchair for these

experiments. Compared to the scenario in which the command does not provide a relation

Table 6.2: Experimental results with 1𝜎 confidence intervals (Hydrant, Cone).

Success Rate (%) Distance (m)

World Range (m) Relation Known Ours Known Ours

1H, 1C 2.5 null 100.0 100.0 4.69 16.56 (7.20)
1H, 1C 2.5 “behind” 100.0 100.0 4.69 9.91 (3.41)
1H, 2C 3.0 “behind” 100.0 100.0 4.58 7.64 (2.08)
2H, 1C 2.5 “behind” 100.0 80.0 5.29 6.00 (1.38)
2H, 1C 4.0 “nearest” 100.0 100.0 4.09 4.95 (0.39)
2H, 1C 3.0 “nearest” 100.0 50.0 6.30 7.05 (0.58)

173



(a) Husky (b) Wheelchair

Figure 6-14: The setup for the experiments with the (a) Husky and (b) wheelchair plat-
forms.

(i.e., “go to the hydrant”), we find that our algorithm is able to take advantage of available

relations (“go to the hydrant behind the cone”) to yield behaviors closer to that of ground

truth. The results are similar for the Husky platform, which resulted in an 83.3% success

rate when commanded to “go to the hydrant behind the cone” in an environment with

one cone and one hydrant. These results demonstrate the usefulness of utilizing all of the

information contained in the instruction, such as the relation between various landmarks in

the environment, that can be helpful during navigation.

The robot trials exhibited a similar failure mode as the simulation experiments: if the

environment contains two figures (hydrants) and the robot only detects one, the semantic

map distribution then hypothesizes the existence of a landmark (cone) in front of the hy-

drant, which leads to a behavior distribution peaked around this goal and plans that do not

look for the possibility of another hydrant in the environment. As expected, this effect is

most pronounced with shorter sensing ranges (e.g., a 3 m sensing range for the command

“go to the hydrant nearest to the cone” resulted in the robot reaching the goal in only half

of the trials compared to a 4 m sensing range).
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6.5.2 Following Natural Language Directions

In this section we outline the application of our framework to following natural language

route directions in unknown indoor environments. In our experiments, we only considered

directions that reference the presence of regions. As such, the representation did not include

any objects.

We evaluate the performance both in simulation and through physical experiments on

the robotic wheelchair platform. We compare our framework against two other methods.

One emulates the previous state-of-the-art and uses a known map of the environment in

order to infer the actions consistent with the route direction. The second method assumes

no prior knowledge of the environment (as with ours), but does not use language to modify

the map. The language models were trained from a parallel corpus of 54 fully labeled

examples.

Monte Carlo Simulations

In simulation, we created a world comprised of an office, hallway and a kitchen, with the

robot starting off in the office. We commanded the robot to execute the instruction “go

to the kitchen that is down the hallway.” Our method achieved comparable results to the

known map method while outperforming the method without language (Table 6.3). Each

method was run ten times.

Physical Experiments

We implemented the algorithm on our voice-commandable wheelchair (Figure 6-1), which

is equipped with three forward-facing cameras with a collective field-of-view of 120 de-

Table 6.3: Direction following efficiency in simulation

Distance (m) Time (s)

Algorithm Mean Std Dev Mean Std Dev

Known Map 12.88 0.06 18.32 3.54
With Language 16.64 6.84 82.78 10.56

Without Language 25.28 12.99 85.57 17.80
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Table 6.4: Direction following efficiency on the robot

Distance (m) Time (s)

Algorithm Mean Std Dev Mean Std Dev

Known Map 13.10 0.67 62.48 16.61
With Language 12.62 0.62 122.14 32.48
No Language 24.91 13.55 210.35 97.73

(a) 𝑡 = 3 (b) 𝑡 = 4 (c) 𝑡 = 8

Figure 6-15: Visualization of one run on the robot, depicting the evolution of the semantic
map over time for the command “go to the kitchen that is down the hallway.” Sampled
regions are drawn as small circles and visited regions are shown with the area filled in (lab:
green, hallway: yellow, kitchen: blue). The robot first samples possible locations of the
kitchen and moves towards them (a), then observes the hallway and refines its estimate
using the “down” relation provided by the user (b). Finally, the robot reaches the actual
kitchen (c) and declares it has finished following the direction.

grees, and forward- and rear- facing lidars. We set up an experiment in which the wheelchair

was placed in a lobby within MIT’s Stata Center, with several hallways, offices, and lab

spaces, as well as a kitchen on the same floor. As scene understanding is not the focus of

this chapter, we placed AprilTag fiducials [65] that identified the different regions in the

environment.

We then directed the wheelchair to execute the instruction “go to the kitchen that is

down the hallway.” We performed six runs with our algorithm, three runs with the known

map method, and five with the method that does not use language, all of which were suc-

cessful. Table 6.4 compares the total distance traveled and total execution time when using

the three different methods. Our algorithm resulted in paths whose lengths were close to

those of the known map, and significantly outperformed the method that did not use lan-

guage. Our framework did require significantly more time to follow the directions than the

known map method, due to the fact that it repeats the three steps of the algorithm when new
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sensor data arrives. Figure 6-15 shows a visualization of the semantic maps over several

time steps in one successful run on the robot.

6.6 Discussion

Enabling robots to reason about parts of the environment that have not yet been visited

solely from a natural language description serves as one step towards effective and natural

collaboration in human-robot teams. By treating language as a sensor that informs the

robot about the spatial structure of areas outside the robot’s immediate field-of-view, we

are able to paint a rough picture of what the unvisited parts of the environment could look

like. We utilize this information during planning, and update our belief with actual sensor

information during task execution.

Our approach exploits the information implicitly contained in language to infer the ex-

istence of relationship between objects and regions that may not be initially observable. By

learning a distribution over the map, we generate a useful prior that enables the robot to

sample possible hypotheses, representing different environment possibilities that are con-

sistent with both the language and the available sensor data. Learning a policy that reasons

in the belief space of these samples achieves a level of performance that approaches that of

an a priori known environment.

A key component of usefully reasoning about the environment using natural language

is the ability to hypothesize configurations of the world suggested by the currently ob-

served spatial structure. While our approach reasons about observed parts of the environ-

ment when sampling hypothesized locations in the world, it makes simplifying assumptions

about the observability of the objects due to the use of Apriltags. We also assume a sim-

ple observation model for the object detection, with a range and a field-of-view, which

would not necessarily translate to actual object detectors. Additionally, when sampling un-

observed regions in the world based on language, we make use of frontiers in the world

observed using lidar. This method can be noisy and may fail to detect parts of the world

behind doorways etc. This can lead to failures where no particle contains valid hypothe-

sis in the correct areas. In the direction following, we also assumed the ability to observe
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region type and transitions immediately. In an actual real world scenario, this would not

be possible. There is uncertainty around the segmentation of regions, and also uncertainty

about the region type that can be inferred using the robot’s sensors. This would require

us to reason over the distribution of region labels for each region, which would require a

larger number of particles.

Also, while we reason over the distribution over the world given natural language, our

belief space planning framework does not explicitly reason over potential information gath-

ering actions. More comprehensive approaches that also reason over information gathering

actions as well as actions that satisfy the command might result in better performance.
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Chapter 7

Conclusion

For robots to effectively interact with humans, they require the ability to learn representa-

tions of their environments that are compatible with the conceptual models used by peo-

ple. Current approaches to constructing such spatial-semantic representations rely predom-

inantly on traditional sensors to acquire knowledge of the environment, which restricts

robots to learning limited knowledge of their local surround. In contrast, natural language

descriptions allow people to share rich information about their environments with their

robot partners in a flexible, efficient manner that allows robots to observe spatial and se-

mantic properties that are beyond the range and capabilities of traditional sensors.

This thesis has addressed the problem of fusing information contained in natural lan-

guage descriptions with the robot’s onboard sensors to construct spatial-semantic represen-

tations useful for human-robot interaction. The novelty of the thesis lies in its treatment of

natural language as another sensor observation that can inform the robot about its environ-

ment. Towards this end, we have introduced algorithms that allow the robot to learn from

natural language descriptions that describe spatial entities, such as regions and objects that

may be unknown to the robot and outside its field-of-view. Our algorithms use information

contained in such descriptions to learn hard-to-perceive semantic properties of the world

and the spatial structure of unvisited parts of the environment. We then use these learned

models to enable robots to interact more effectively with human partners.
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7.1 Contributions

We summarize the key contributions made in this thesis towards learning spatial-semantic

representations from natural language descriptions.

Learning Representations from Natural Language and Scene Appearance

We introduced the semantic graph, a novel representation that combines metric, topolog-

ical, and semantic models of the environment, and a probabilistic algorithm (Chapter 3)

that efficiently maintains the joint distribution over this representation, conditioned on the

language and the metric observations from the robot’s proprioceptive and exteroceptive

sensors during a narrated guided tour. We demonstrated the algorithm’s ability to learn se-

mantic properties of the environment from natural language descriptions about distant parts

of the environment, including the ability to handle descriptions that refer to yet-unvisited

parts of the world. We showed how this semantic information can be used to improve the

spatial representation in a number of large-scale environments.

We also presented an extension to this algorithm (Chapter 4) that introduced a more

spatially accurate and compact representation, and the ability to merge natural language

with other sources of semantic information inferred from the robot’s own sensors to create

semantic models that allow for better natural language integration.

The two aforementioned algorithms wait till the robot visits a referenced location before

incorporating knowledge conveyed by language. In our final semantic mapping algorithm

(Chapter 6) the robot uses information contained in natural language instructions to directly

learn about the spatial properties about unvisited regions in the world. The algorithm prob-

abilistically reasons over the presence of and spatial relations between regions and objects

specified by language to directly extend its spatial representation.

Improving Spatial-Semantic Representations

We introduced a mechanism that allows the robot to reason over the ambiguity of natural

language descriptions and to ask questions from the user during the course of a guided tour.

Our mechanism balances expected information gain of asking a question with a cost that
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measures the burden on the user. We showed how this approach results in less ambiguity

over the descriptions and semantic maps that are more accurate.

Learning Models for Following Natural Language Instructions in Unknown

Environments

Next, we outlined a novel approach that enables a robot to follow natural language navi-

gation instructions in completely unknown environments by using our semantic mapping

algorithm to learn a prior over the spatial layout of distant (as yet unobserved) parts of the

environment using information contained in the instruction. Our algorithm then uses this

distribution over the world to solve for a policy consistent with the language instruction

and to then take an action. As the robot observes the world while executing its actions, the

algorithm improves the semantic map distribution, which leads to more accurate behav-

ior that ultimately satisfies the command. We demonstrated its effectiveness at following

directions to unknown objects and following natural language route directions.

7.2 Future Work

One key challenge to learning from natural language descriptions is that they convey human-

level concepts, which are often difficult to fuse with observations made from robot sensors,

such as lidars and cameras. For example, we rely on spectral clustering to segment the en-

vironment into spatially coherent regions in the world. However, a human’s model of space

is often hierarchical. For example, several rooms could be called “offices” but they could

collectively be called a “lab.” Our representation, even accounting for accurate segmen-

tation, is still represents the world as a flat spatial structure, which can result in language

being incorrectly associated with the robot’s spatial model (e.g., only part of the map being

labeled “lab”). Learning a hierarchical spatial model would allow for the ability to better

integrate language, but would require reasoning about different possible hierarchies.

The semantic properties that we learned from natural language are labels that could be

used to describe these locations. Because we assumed a fixed set of possible labels for these

regions, the algorithm only learns a distribution over this known set of labels. Approaches
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that can extend the set of labels during operation would prove useful. Additionally, the

ability to perceive additional social cues provided by users, such as gaze and pointing ges-

tures, can allow for better integration of natural language. For example, learning from a

description “the kitchen is down that hallway” accompanied by a pointing gesture towards

the “hallway” is less ambiguous than only learning from the description. In addition, infor-

mation that we are currently able to infer from a user’s descriptions is limited to a region’s

colloquial name and its relation to another region in the environment. Our method does not

support a user’s ability to convey general properties of the environment, such as “You can

find computers in offices,” or “nurses’ stations tend to be located near elevator lobbies.”

Learning from such expressions can allow the robot to model a prior over the world.

Additionally, our approaches only relied on language and appearance models to infer

semantic properties. The ability to perceive salient objects and to reason about their rela-

tionship with region types and labels is a strong source of semantic information. Models

that include object detections in addition to language would allow the robot to learn more

useful spatial-semantic representations. Another source of useful semantic information is

signage (textual and symbolic) present throughout human environments.

Our approach outlined in Chapter 5 focused on asking questions of the user to improve

the learned representation. It considered questions about spatial entities described by the

user and reasoned over the ambiguity of the statements based on the current representation.

Because the robot is only able to reason over the ambiguity given a partial map of the

world, the robot can fail to ask useful questions. Calculating ambiguity that takes unvisited

regions into account would improve this process. We also used several simple features to

model the cost of a question-asking action. A more principled modeling of cost together

with training and validation through human dialog experiments would result in a more

meaningful cost metric. This approach only considers questions that reduce the entropy

over language groundings. Allowing the robot to ask questions even in the absence of

language descriptions based on semantic information it observes using onboard sensors

would allow the robot more opportunities to improve its learned model. For example, upon

observing a computer monitor, it could ask whether it is in an office.

Increasing the space of questions would also prove beneficial. Our approach was lim-
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ited to questions that provide a yes or no answer, which limit the potential information

content in the answer. A trivial extension would be to ask questions that provide several

known options (e.g., “Is the kitchen on my right or my left?”), which would prove more

useful. Open ended questions would be another avenue but would require a different mech-

anism to reason about the best question to ask, as our current method requires an a priori

distribution over the answers. Another extension would be for the robot to take physical

exploration actions (by searching for a location that the user referenced) or by asking the

user to visit the location.

Our approach in Chapter 6 demonstrated work that enables a robot to understand and

follow natural language navigation instructions in unknown environments by using our se-

mantic mapping algorithm to reason over unobserved parts of the environment. We used

natural language to directly extend the robot’s representation by reasoning over the pres-

ence of and spatial relationships between regions and objects. We made simplifying as-

sumptions about the robot’s ability to perceive semantic properties of the environment from

its own sensors with the use of AprilTag fiducials. Approaches that exploit vision-based

object detection and scene classification would remove this assumption. We also made as-

sumptions about the likelihood of encountering new spatial entities in environments when

we used the Dirichlet process prior. Learning this from training data would provide for

more robust direction following.

Our approach only considered executing the inferred behaviors, and did not explic-

itly reason over information gathering actions. Any new observations that allowed for the

robot to improve its representation was incidental to following the instructions. Explicit

reasoning over exploratory behaviors that take information gathering actions to resolve un-

certainty in the map would provide better performance.

A key component of our approach in Chapter 6 was the inference of weak metric in-

formation based on spatial relations. In sampling these metric constraints from spatial

relations, we made assumptions about the scale of the environment (maximum area from

which to sample potential locations), which might reduce the generality of the approach to

environments of different scale.

This approach assumed that the human provides an initial natural language instruction
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and allows the robot to carry out the instruction without further assistance. If we allow

the robot to learn from additional instructions from the user, especially about the validity

of the current action, it would lead to more effective behaviors. For example, if a robot

responding to the command “go to the hydrant behind the cone” in an environment with

multiple cones starts to go behind the wrong hydrant, the user could indicate that this is the

wrong action. This would require the algorithm to reason over the validity of its current

action as implied by the human and how this is impacted by its current belief. Treating this

as an additional observation about the environment would allow it to modify the map such

that it reduces the invalid hypotheses about the world that lead to the current invalid action.

Such reasoning would require tight coupling between the mapping and policy inference,

which does not exist in the current approach.

In conclusion, we believe that using natural language to inform the robot about its

environment will result in robots that are better able to interact with human partners. This

thesis has outlined several approaches that take robots towards this goal. Better spatial

representations and better natural language understanding capabilities, coupled with richer

semantic perception capabilities, will result in more accurate and useful ways for robots to

learn about their environments.
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