
Noise-Aware Dynamical System Compilation for

Analog Devices with Legno

Sara Achour
MIT EECS & CSAIL

sachour@csail.mit.edu

Martin Rinard
MIT EECS & CSAIL
rinard@lcs.mit.edu

Abstract

Reconfigurable analog devices are a powerful new com-
puting substrate especially appropriate for executing com-
putationally intensive dynamical system computations in an
energy efficient manner. We present Legno, a compilation
toolchain for programmable analog devices. Legno targets
the HCDCv2, a programmable analog device designed to exe-
cute general nonlinear dynamical systems. To the best of our
knowledge, Legno is the first compiler to successfully target
a physical (as opposed to simulated) programmable analog
device for dynamical systems and this paper is the first to
present experimental results for any compiled computation
executing on any physical programmable analog device of
this class. The Legno compiler synthesizes analog circuits
from parametric and specialized blocks and account for ana-
log noise, quantization error, and manufacturing variations
within the device. We evaluate the compiled configurations
on the Sendyne S100Asy RevU development board on twelve
benchmarks from physics, controls, and biology. Our results
show that Legno produces accurate computations on the
analog device. The computations execute in 0.50-5.92 ms and
consume 0.28-5.67 µJ of energy.
CCSConcepts. •Computer systems organization→Ana-

log computers; • Software and its engineering→Com-

pilers.
Keywords. Compilers, Analog Computing, Languages

ACM Reference Format:

Sara Achour and Martin Rinard. 2020. Noise-Aware Dynamical
System Compilation for Analog Devices with Legno. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’20),
March 16–20, 2020, Lausanne, Switzerland. ACM, New York, NY,
USA, 18 pages. https://doi.org/10.1145/3373376.3378449

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7102-5/20/03.
https://doi.org/10.1145/3373376.3378449

1 Introduction

Programmable analog devices are a promising new class
of low-power computing substrates well suited for executing
complex dynamical systems [4, 7, 8, 32, 34, 37, 40, 41, 45].
Dynamical systems are used to model a variety of physi-
cal processes from domains such as biology, chemistry, and
physics. Applications include dosage prediction, optimiza-
tion, and stability for these processes. Dynamical systems
may also be used to implement filters, control systems, and
state estimators over external signals.
In contrast to digital systems, which simulate dynamical

systems by discretizing time, analog devices execute dynam-
ical systems continuously, using the physics of the device to
model the behavior of the dynamical system. This execution
model eliminates time scale issues digital devices suffer from
and enables the analog hardware to execute nonlinear dy-
namical systems using micro-joules of energy. Some analog
devices are able to seamlessly process external analog inputs
(such as sensor inputs). Our target devices are digitally pro-
grammable with digitally settable connections and digitally
configurable analog computing blocks.
1.1 Legno

We present Legno, a new compiler for programmable
analog devices. Legno targets the HCDCv2 [15, 18, 43], a
programmable analog device designed to execute general
nonlinear dynamical systems. To the best of our knowledge,
Legno is the first compiler to successfully target a physical
(as opposed to simulated) programmable analog device for
dynamical systems and this paper is the first to present ex-
perimental results for any compiled computation executing
on any physical programmable analog device of this class.

Given a dynamical system and target analog device specifi-
cation, Legno automatically configures the device to execute
the dynamical system. Our target class of devices exhibit sev-
eral properties that shape the compilation:

• Computation with Physical Signals: Analog devices,
including the HCDCv2, exploit the device physics to imple-
ment computation directly using physical signals such as
analog currents. While this direct computation is the key
to the energy efficiency of analog devices, it also requires
computations to operate successfully in the presence of
challenging physical phenomena such as noise, quantiza-
tion error, frequency and operating range limitations, and
manufacturing variations.

https://doi.org/10.1145/3373376.3378449
https://doi.org/10.1145/3373376.3378449

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Sara Achour and Martin Rinard

Legno manages these issues by scaling the computation
to respect the physical limitations of the device and com-
pensate for variations within the device while delivering
acceptably accurate computations in the presence of noise.

• Parametric Blocks: The HCDCv2 features digitally con-
figurable analog computation blocks, with different con-
figurations implementing different analog functions. Such
parametric blocks enhance the programmability of the de-
vice and enable it to support awider range of computations
with a given number of blocks.
To exploit the full capabilities of parametric blocks, Legno
deploys a staged compilation algorithm that first partially
configures blocks to select the desired computation oper-
ation (such as multiply or integrate), then completes the
configuration when scaling to ensure the final configura-
tion satisfies the physical constraints of the device.

• Leveraging Properties of Physical Signals: To support
efficient analog computations that leverage physical prop-
erties of the signals on the device, Legno generates con-
figurations that add signals by connecting the wires that
carry these signals in the HCDCv2.

• Specialized Blocks: Physical signals often have proper-
ties (signals represented with currents, for example, can-
not be routed to multiple input ports) that constrain their
use within the device. The HCDCv2 therefore provides
specialized blocks that copy and route signals globally
within the device. Legno produces configurations that
incorporate these specialized blocks as necessary to map
the computation onto the device.

• Locally Prioritized Interconnectivity: Complete inter-
connectivity is impractical in programmable analog de-
vices. The HCDCv2 prioritizes local interconnectivity,
specifically by providing denser interconnectivity between
colocated analog blocks. To effectively utilize the device,
Legno therefore incorporates a spatially aware placement
algorithm that places interconnected blocks close to each
other in the device.

Other Devices: In addition to the HCDCv2, previous pro-
grammable analog devices share these properties [41, 45].
Given the engineering tradeoffs that shape the design space,
these properties are also likely to appear in future devices —
noise and other physical phenomena are inherent in energy-
efficient computing with physical devices, leveraging the
physical properties of signals is one of the keys to efficient
analog computing, parametric blocks effectively support pro-
grammability whichmaximizing potential utilization of hard-
ware resources, and sparse interconnectivity is a fact of life
given routing constraints onmodern hardware platforms.We
therefore anticipate the basic Legno compilation approach
will generalize to include future programmable analog hard-
ware platforms.

1.2 Contributions

This paper presents the following contributions:

• Languages: It presents the Legno analog device specifi-
cation language, dynamical system specification language,
and analog device program language. These languages
specify the target analog device, the input dynamical sys-
tem, and the configuration to write to the analog device.

• Compiler: It presents the Legno compiler, a compilation
toolchain for programmable analog devices.

• LGraph: It presents the LGraph graph synthesis engine.
LGraph synthesizes an analog device program that im-
plements the input dynamical system. LGraph adopts a
staged synthesis pipeline (generation, assembly, and rout-
ing) that inserts relevant specialized blocks at each stage
and configures the parametric behavior of the used blocks
to implement the desired functionality.

• LScale: It presents the LScale scaling engine. Given an
analog device program and an analog and digital qual-
ity measure, LScale completes the configuration of the
parametric behavior of the blocks and scales the signals
and values in the program. The emitted analog device
program respects the frequency and current range lim-
itations of the device block, ensures that the noise and
quantization errors fall within the provided measures, and
compensates for manufacturing variations found in the
device. The experimental results show that LScale deliv-
ers realistic scaling transforms that produce good quality
computations on our target physical analog device.

• Experimental Results: It presents, to the best of our
knowledge, the first empirical evaluation of an analog
compilation toolchain on a physical programmable pure
analog device for solving differential equations.

Broader Implications: Driven by trends such as the need
for increased performance, reduced energy consumption,
and growing markets for focused classes of computations,
specialized but still programmable computing platforms will
play an important role in the future of computing. These
platforms will offer unprecedented combinations of energy
efficiency and performance, but at the cost of increasingly
challenging programming models. Reconfigurable analog
devices comprise one compelling example of this class of
platforms. Legno highlights the important role that new
compilation technology and, more generally, new software
toolchains, can play in enabling developers to successfully
exploit the potential of these promising platforms.

2 Previous Compilers for Analog Devices

Researchers have previously developed software tooling
and compilation techniques for mapping general-purpose
computations to programmable analog neural network ar-
chitectures [5, 21, 27, 35, 36, 40]. Our research, in contrast,
targets programmable analog devices for dynamical systems.

Noise-Aware Dynamical System Compilation for Analog Devices with Legno ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

category feature Arco Jaunt Legno

block
complex ✓ ✓
parametric ✓
special-use △ △ ✓

device
current-mode △ △ ✓
voltage-mode △ △

spatial layout △ △ ✓

property

operating range ✓ ✓
frequency △ ✓
noise ✓
quantization error ✓
manufacturing deviation ✓

Figure 1. Comparison of Legno with prior approaches. ✓:
full support. △: partial support.

Arco [2] and Jaunt [1] both target simulated programmable
analog devices for dynamical systems. Legno, in contrast,
targets a physical analog device and must effectively deal
with all of the physical phenomena (noise, frequency, and
operating range constraints, quantization errors, manufac-
turing variations) present in physical analog devices. Figure 1
presents a comparison of the architectural features and prop-
erties supported by Legno compared to Jaunt and Arco.
Block Features: Legno provides both language and com-
piler support for parametric, routing, and copy blocks, in-
cluding separating blocks by purpose and exploiting special-
ized blocks in dedicated compilation stages. Arco and Jaunt,
in contrast, do not support parametric blocks in their de-
vice description languages and compilers, do not distinguish
routing or copy blocks in the compilation, and therefore
do not support the effective utilization of parametric, rout-
ing, or copy blocks. Legno uses a pattern-based unification
scheme which works best with blocks that implement sim-
ple functions. Legno can easily be adapted to use a different
unification algorithm, such as the one deployed by Arco.
Device Features: Legno natively supports analog currents,
including implementing addition by connecting wires carry-
ing the signals to add and introducing blocks to copy currents
as necessary. While both Arco and Jaunt can target voltage-
and current-mode devices, they do not implement special-
ized mechanisms for performing computation with currents.
To our knowledge, analog voltages require less specialized
handling than currents — voltage-mode devices implement
computation with dedicated circuits and voltages may be
used multiple times without the aid of a copier.

To support devices that prioritize local connections, Legno
deploys a block placement algorithm that colocates con-
nected blocks. Arco and Jaunt, in contrast, use a layout-
agnostic placement procedure that does not produce efficient
placements for devices that prioritize local connections.

3 Languages

The Legno compiler works with a dynamical system spec-
ification (DSS) and an analog device specification (ADS). The

body(<rule>) ::= <rule> | seq<rule>;<rule>
seq(<rule>) ::= <rule> | seq<rule>,<rule>
tup(<rule>) ::= (seq<rule>)
lst(<rule>) ::= [seq<rule>]
pat(<rule>) ::= | <rule> | pat(<rule>) | <r1>
match(<r1>,<r2>) ::= (pat(<r1>) -> <r2>)*
multi(<r1>,<r2>) ::= <r2> | func match(<r1>,<r2>)

Figure 2. Shortcuts and macros for grammars
x ∈ RealNumbers, v ∈ Literals
n ∈ NaturalNumbers,
x+ ∈ RealNumbers ≥ 0,
G ::= sgn | ln | exp | cos | sin | abs
H ::= min | max | pow
I ::= [x,x]
E ::= E1 + E2 | E1*E2 | x | v

| integ(E1,E2) | (E) | call(v,lst(E))
F ::= E | F1/F2 | G (F) | H (F1, F2)

Figure 3. Math expressions
Stmt ::= var v = E | emit E as v | extern v
| interval seq(v) = I | func v(seq(v)) = F | time x
Prog ::= prog v { body(Stmt)}

Figure 4. Dynamical system specification language
prog cosc {

var v = integ(-0.22*v - 0.84*p, -2.0);
var p = integ(1*v, 9.0);
interval p,v = [-15,15];
emit p as pos; time 20; }

Figure 5. DSS for dampened oscillator

Legno compiler produces, as output, an analog device pro-
gram (ADP) that specifies a configuration of the analog device
that executes the dynamical system. The analog device pro-
gram is, itself, not directly executable. It is instead converted
to a low-level executable script, written in the Grendel script-
ing language (Section 3.4) for execution on the target device.
3.1 Dynamical System Specification Language

Figure 4 presents the dynamical system specification lan-
guage (DSSL). The language supports binding symbolic ex-
pressions to dynamical system variables (var v = E) and
defining named functions (func v = F) that the call(v,E1,
..., En) construct can invoke. Every statement of the form
var v = E defines a relation in the specification. Figure 3
presents the mathematical operators for expressions and
function bodies. An integ(E1,E2) expression denotes the
integral of E1 with respect to time given an initial value
E2. Function bodies (F) support a richer set of mathemati-
cal operations than dynamical system expressions (E). emit
statements observe variables and expressions in the dynam-
ical system. extern statements provide external signals to
the dynamical system.

Each variable in the specification must be annotated with
an interval bound (interval statements). Before compila-
tion, an interval propagation algorithm computes bounds for
all variables in the system. A well-formedness check ensures

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Sara Achour and Martin Rinard

that all non-external variables have defined behavior and
can be bounded. The time statement describes how much
time (in simulation units) to run the computation for.
DampenedOscillator: Figure 5 presents the dynamical sys-
tem specification (DSS) for a dampened oscillator. This sys-
tem models the position p and velocity v of a dampened
spring oscillator over time starting with an initial position
of 9 cm and an initial velocity of -2 cm/s. The DSS (Figure 5)
implements the following differential equations:

Ûv = −0.22 · v − 0.84 · p Ûp = v v(0) = −2 p(0) = 9
The var statements declare and define the dynamics of the
p and v variables; the interval statements annotate each
variable with the range of values it may take on. The v and
p variables are annotated to be between [-15,15] m/s and
[-15,15] m respectively. The pos variable corresponds to
the observation of the position p over time. The oscillator
executes for twenty simulation units.
3.2 Analog Device Specification Language

The analog device specification, written in the analog
device specification language (ADSL), comprises a collection
of block specifications, available connections, and the layout
of the target analog device.
3.2.1 Block Specification Language: Figure 6 presents
the block specification language. Each named block either
computes (compute), copies signals (copy), or routes signals
(route) through the chip. Each block has a set of associated
input (in) and output (out) ports. Each port is either an
analog or a digital port. Analog ports use analog currents
to represent values in the computation. Analog currents are
added together by joining wires and cannot be used more
than once without the aid of a copier block.
Ports may be externally accessible (extern). External in-

put ports accept externally provided signals. External output
ports may be observed with an external measurement de-
vice such as an oscilloscope. Each block may also have a
collection of digitally settable data fields (data) that can be
statically set by the compiler. The data fields may be constant
values (const) or expressions (expr). Each block has a set
of digitally programmable modes. Each mode is a tuple of
literals, which together set the behavior of the block.
Figure 7 presents the block specification for an analog

multiplier. The type clause identifies the multiplier as a
compute block. The modes clause specifies eleven modes,
(m,m,m) through (x,h,h). The block has two analog inputs
(x and y), one constant data field (c), and one analog output
(z). The rel statement specifies the basic expression of the
analog output port z as a function of the block mode.
When the block mode matches the pattern (x,∗,∗), the

block multiplies the analog input signal x by the digital pa-
rameter c so that the basic expression of z is c*x. Otherwise,
the block multiplies the two analog input ports together so
that the basic expression of z is x*y.

Mode = tuple(l), ModeR = tuple(l|*)
BlockT ::= compute | copy | route
SigT ::= analog | digital
DataT ::= const | expr vars seq(v)
PortT ::= in | out
QuantT ::= linear d
IFace ::= PortT seq(v) sigT (extern)?

| data v DataT
Impl ::= rel v = multi(ModeR,E)

| coeff v = multi(ModeR,x+)
| interval seq(v) = multi(ModeR,I)
| quantize v = multi(ModeR,QuantT)
| maxfreq v = multi(ModeR,n)

Def ::= block v BlockT modes lst(Mode)
Stmt ::= IFace | Impl
Spec ::= Def {body(Stmt)}

Figure 6. Block specification language
1 block mult type compute modes [(m,m,m),
2 (m,m,h),(h,m,h),(m,h,h),(h,h,h),
3 ,(x,m,m),(x,m,h),(x,h,m),(x,h,h)] {
4 in x,y analog; out z analog;
5 data c const;
6 rel z = func |(x,*,*) -> c*x
7 |(*,*,*) -> x*y;
8 coeff z = func |(m,m,h) -> 5,
9 |(m,m,m)|(h,m,h)|(m,h,h) -> 0.5
10 |(h,m,m)|(m,h,m)|(h,h,h) -> 0.05
11 |(x,m,h)->10 |(x,h,m) -> 0.1
12 |(x,h,h)|(x,m,m) -> 1;
13 quantize c = linear 256;
14 interval c = [-1,1];
15 interval z = func |(*,*,m) -> [-2,2]
16 |(*,*,h) -> [-20,20];
17 interval x = func |(*,m,*) -> [-2,2]
18 |(*,h,*) -> [-20,20];
19 interval y = func
20 |(h,*,*) -> [-20,20]
21 |(*,*,*) -> [-2,2]; }

Figure 7. Block specification for multiplier
Blocks can also specify a positive, constant coefficient

for each port. The coeff statement in Figure 7 defines the
coefficient of port z as a function of the block mode. The
value of an output port p that implements basic expres-
sion E is the basic expression with the port coefficients ap-
plied (coeff(p)E[v⇒coeff(v)v]). For example, withmode
(m,m,m), the value of z is 0.5*x*y; with mode (x,m,h), the
value of z is 10*c*x.

Each port also has an operating range. Each port’s value
must fall within the port’s operating range for the block to
function correctly. The interval statements in Figure 7 de-
fine the operating ranges for ports z, x, and y as a function
of the block mode. For example, the value of port z must re-
main between -2 and 2 µA for modes matching (*,*,m) and
between -20 and 20 µA for modes matching (*,*,h). The
maxfreq statement (not in Figure 7) identifies the maximum
frequency supported by the block ports.

Noise-Aware Dynamical System Compilation for Analog Devices with Legno ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

Loc = v tuple(n), AbsLoc = v tuple(l|n)
RegLoc = v tuple(l|v|_);
Ports = lst(v) @ RegLoc (port v)?
Stmt ::= loc lst(n) |block lst(v) @ Loc

| for AbsLoc blk lst(v) @ AbsLoc
| view v (in v)? | freq n
| (for AbsLoc)? conn Ports with Ports

Spec ::= device v {block(Stmt)}

Figure 8. Device specification language
1 device hcdcv2 {
2 view chip; view tile in chip;
3 view slice in tile; view idx in tile;
4 loc 0,1 in chip; loc 0,1,2,3 in tile;
5 loc 0,1,2,3 in slice; loc 0,1,2,3 in idx;
6 for slice(x,y,z) blk int,mul,fan@ idx(x,y,z,0);
7 for slice(x,y,z) blk mul,fan@ idx(x,y,z,1);
8 for idx(x,y,z,w) blk tout,tin@ idx(x,y,z,w);
9 blk cout @ idx(0,3,2,0); freq 126000;
10 for tile(x,y)
11 conn int,mul,fan,tin @ idx(x,y,_,_)
12 with int,mul,fan,tout @ idx(x,y,_,_);
13 for chip(x) conn tout @ idx(x,_,_,_)
14 with tin @ idx(x,_,_,_,_);
15 conn tout @ idx(0,_,_,_)
16 with cout @ idx(0,3,2,0); }

Figure 9. Example device specification

Digital ports are quantized into a finite set of values as
specified by their corresponding quantize and interval
statements. The block defined in Figure 7, for example, quan-
tizes c into 256 digital values between -1 and 1 (with the
values spaced 0.0071825 apart).

interval statements are required for all ports and data,
quantize statements are required only for digital ports, and
maxfreq statements are optional. Together, the interval,
maxfreq, and quantize statements specify the physical lim-
itations of the block, i.e., the range and frequency limitations
and quantization effects.

In comparisonwith compute blocks, copy and route blocks
are specialized blockswith additional constraints. copy blocks
may only copy or negate signals with only unity (-1 or 1)
coefficients. route blocks have a single mode, only one in-
put port and one output port, and only unity coefficients.
route blocks exist to enable successful signal routing in the
presence of constraints on connections between output and
input ports from different blocks.
3.2.2 Device Specification Language: Figure 8 presents
the device specification language, which identifies the blocks
and connections available on the analog device. blk state-
ments attach blocks in the device to locations (Loc). A block
at a location is called a block instance. The block name and
location uniquely identify each block instance. conn state-
ments identify settable connections. The hardware time con-
stant as specified by the freq statement defines the baseline
integration speed of the device.

Loc = v tuple(n), Port = v.v @ Loc
Assigns = seq(seq(v) = x)
CStmt ::= set v = x | expr v = E

| set v vars lst(v) = F
| scale Assigns | coeff Assigns

Stmt ::= config block v @ Loc { body(CStmt) }
| conn Port with Port | timescale x

Prog ::= body(Stmt)

Figure 10. Analog device program language
timescale 40000;
conn mul.z @ idx(0,3,0,0) to int.x @ idx(0,3,0,0);
conn mul.z @ idx(0,3,0,1) to int.x @ idx(0,3,0,0);

Figure 11. Example connections and time constant

The location of a block instance is a named tuple of num-
bers (v tuple(n)). The locations in the device are divided
into sequentially organized views. The name of the location
(v) is the device view the location belongs to. Every location
in a particular view also belongs to a location in its parent
view. Block instances may only be bound to locations from
the most specific view (the leaf view).
Figure 9 presents an example device specification. The

device has four views (chip, tile, slice, and index). There are
two chips (line 4), 4 tiles per chip (line 4), 4 slices per tile
(line 5), and 4 indices per slice (line 5). Each block location
identifies the chip, tile, slice, and index of the block. For ex-
ample, a mul block at idx(0,3,2,1) is on chip 0, tile 3, slice
2, and index 1 and therefore also belongs to slice(0,3,2),
tile(0,3), and chip(0).

This specification attaches one integrator (int), two mul-
tipliers (mul), two copiers (fan), and eight routing blocks
(tin and tout) per slice (lines 6-8). The device has exactly
one external output (cout), which resides on chip 0, tile 3,
slice 2, and index 0. All blocks may be connected to all other
blocks within a tile (lines 10-12), but routing blocks (tin and
tout) must be used to connect blocks belonging to different
tiles (lines 13-15). In the above specification, the baseline
time constant is 126000 hz – so that one unit of integrator
time corresponds to 7.93µs of wall clock time.
3.3 Analog Device Program Language

An analog device program (ADP) specifies a configuration
of the analog device as generated by the Legno compiler.
The ADP is itself not directly executable on the device — it
is instead translated to a physical device configuration and
loaded into the device via the Grendel scripting language.
Figure 10 presents the analog device program language.
Device Configuration:A device configuration specifies the
digitally settable connections to enable and the time scale of
the computation. Figure 11 presents an excerpt of a device
configuration. conn statements specify the connections to
enable — each conn statement identifies an input port and an
output port to connect. The timescale statement specifies
the time scale of the computation.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Sara Achour and Martin Rinard

config block mult @ idx(0,3,0,0) {
set c=0.22; expr z=c*x; }

Figure 12. Basic configuration for multiplier
config block mult @ idx(0,3,0,0) {

set c=0.22; expr z=c*x;
mode=(x,m,m);
scale x=0.063,c=4.2,z=0.1999; }

Figure 13. Full configuration for multiplier

Block Configurations: A basic block configuration specifies
the name and location of the block, values for constants, and
basic expressions for output ports. Figure 12 presents a basic
configuration for a multiply block from Figure 7. Here the
block name is mult, the block location is idx(0,3,0,0), the
value of c is 0.22, and the basic expression for z is c*x.

A full block configuration also specifies the mode, which
determines the full expression for each port, and a scaling
transform, which scales the computation to ensure it respects
the physical constraints of the device. Figure 13 presents
a full configuration for a multiply block from Figure 7. In
addition to setting c to 0.22 and the basic expression for z
to c*x, the full configuration also sets the mode to (x,m,m)
and defines scaling factors for the ports and data fields.

To reconstruct the dynamics of z in the units of the orig-
inal dynamical system, take the observed signal from the
computation, divide it by 0.1999 to invert the scaling trans-
form applied to z, then multiply by the time constant 40000
from the device configuration (Figure 11).
3.4 Grendel Scripting Language

Grendel is an executable, low-level scripting language
used for programming and executing experiments on the
HCDCv2. It is able to calibrate and profile blocks, configure
the analog chip, retrieve debugging information, and set up
external measurement devices. The Grendel source generator
generates Grendel scripts from ADPs, which contain all the
information necessary to configure the analog device.

4 Overview of the Legno Compiler

Figure 14 presents a high-level overview of the Legno com-
piler. TheDynamical SystemSpecification (DSS) andAna-
log Device Specification (ADS) respectively specify the
input dynamical system and the available programmable
blocks and connections on the target analog device.
The Empirical Model Database is a repository of em-

pirically derived models that describe how each individual
block instance deviates from the block specification in the
ADS. These models specify the empirically measured gain
and noise for each data field and port in the block instance.
The gain is the ratio of the measured value to the expected
value. The noise is the standard deviation of the measured
value. Figure 15 presents an example empirical model for the
multiplier at idx(0,3,0,0).

Legno Compiler

Graph Synthesis Automated ScalingADS

DSS

ADP

Empirical Model Database

Scaling
Transform

Select
Mode

Generate
USCP

AQM DQM

Place and
Route

Assemble
Graph

Generate
Trees

Figure 14. Overview of the Legno Compiler

{block:'mult', loc:'idx(0,3,0,0)',
(x,m,m): {z:{gain:0.755781,noise:0.01},

c:{gain:1.0,noise:0.0},
x:{gain:1.0,noise:0.0}},

(x,m,h): {z:{gain:0.660414,noise:0.1},
...}, ...}

Figure 15. Empirical model for multiplier at
idx(0,3,0,0)

TheAnalog Quality Measure (AQM) is a parameter that
specifies the minimum allowed signal-to-noise ratio for the
analog signals in the ADP. For constant analog signals, the
AQM specifies the upper bound for the ratio of the noise to
the magnitude of the signal (noise/|signal| ≤ AQM). For
dynamic analog signals, the AQM specifies the upper bound
for the ratio of the noise to the dynamic range of the signal
(noise/(max(signal)-min(signal)) ≤ AQM).

TheDigital Quality Measure (DQM) is a parameter that
specifies the minimum allowed signal-to-noise ratio for the
digital signals in the ADP. For constant digital signals, the
DQM specifies the upper bound for the ratio of the error to
the magnitude of the signal (error/|signal| ≤ DQM). For
dynamic digital signals, the DQM specifies the upper bound
for the ratio of the error to the dynamic range of the signal
(error/(max(signal)-min(signal)) ≤ DQM).
Compilation Choice Points: The Legno compiler encoun-
ters various nondeterministic choice points during the
compilation process. Different decisions at these choice points
typically produce different analog device programs (ADPs).
Legno has the capability to enumerate the full range of de-
cisions at each choice point and to therefore enumerate the
full range of ADPs for the input DSS. Our current Legno im-
plementation uses iterated random sampling at each choice
point to generate a subset of the full range of ADPs possible
at that point. It is possible for a phase of the compiler to
fail for one or more of the current ADPs. In this case Legno
continues on with the compilation of the remaining ADPs.

Here we present the compilation process for a single ADP,
identifying nondeterministic choice points as they are en-
countered during compilation. The two primary phases are:
LGraph [Section 5]: LGraph synthesizes an ADP that im-
plements the input DSS. The ADP contains connections and
basic block configurations. Recall a basic block configuration
assigns basic expressions to output ports and values/expres-
sions to data fields, but does not include scaling information.

Noise-Aware Dynamical System Compilation for Analog Devices with Legno ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

LScale [Section 6]: LScale completes the configurations
in the input ADP by setting the scale factors and completing
the mode in each block instance configuration. It also sets
the time constant of the ADP. LScale derives a universal
scaling constraint problem (USCP) from the input ADP, the
analog and digital quality measures (AQM and DQM), and
the empirical model database. Legno solves the USCP to
select the modes and scaling transform for the ADP. The
scaling transform accounts for the range, frequency, and
quality constraints imposed by the ADS, compensates for
manufacturing deviations, and ensures that the original dy-
namics of the input DSS can be recovered by scaling each
signal by statically derived coefficients.

5 LGraph

LGraph first generates a subcircuit for each relation in
the DSS (relation subcircuit generation, Section 5.2). Recall
that a relation is a statement of the form var v = e. It
then assembles these relation subcircuits into a circuit that
implements the DSS, inserting copy blocks as necessary (as-
sembly, Section 5.3). Finally, it assigns blocks to locations
on the device, inserting route blocks as necessary (place and
route, Section 5.4). Internally, LGraph works with a flexible
representation of the ADP called the VADP (Section 5.1).
5.1 Virtual Analog Device Program (VADP)

Figure 16 presents an example VADP that implements the
relation var c=(0.1*(-a))*b. The VADP identifies block
instances with unique integer identifiers which are replaced
with locations during the place and route stage. The VADP
supports subcircuits with input sources and output sinks.
Sources indicate where positive or negative DSS variables
are needed in the circuit. Sinks map output ports to DSS
variables. Both sources and sinks are resolved to output ports
during the assembly stage.
5.2 Relation Subcircuit Generation

For each relation var v=e in the DSS, the relation sub-
circuit generation procedure produces a subcircuit (imple-
mented as a VADP) that implements that relation. Figure 18a
presents an example synthesized subcircuit for the relation
v = integ(-0.22*v-0.84*p,-2).
Algorithm: The gen algorithm (Figure 17) produces a VADP
that implements the desired relation. Inputs to the algorithm
include the VADP to populate, the expression to implement,
and a destination (input) port or sink. The algorithm popu-
lates the VADP with the basic block instance configurations
and connections necessary to implement the provided ex-
pression. It then connects the port carrying that expression to
the provided destination. For a relation var v = e, LGraph
invokes the gen algorithmwith a newVADP, an expression e,
and the destination sink(v). We next describe the functions
invoked by the gen algorithm.

config mult @ 1 {set c=0.1;expr z=c*x;}
config mult @ 2 {expr z=x*y;}
conn source(a,-) with mult.x @ 1
conn mult.z @ 1 with mult.x @ 2
conn source(b,+) @ 1 with mult.x @ 2
conn mult.z @ 2 with sink(c)
Figure 16. Example VADP implementing c=0.1*(-a)*b

1 function gen(vadp,expr,dest):
2 match expr with
3 | v -> vadp.connect(source(v,+),dest)
4 | -1*v -> vadp.connect(source(v,-),dest)
5 | e1+e2 -> gen(vadp,e1,dest);gen(vadp,e2,dest)
6 | e -> blk,idx = select_block(e)
7 op,cfg,assigns=unify(blk,idx,e)
8 vadp.add(cfg);vadp.conn(port(blk,idx,op),dest)
9 for ip,ie in assigns:
10 gen(vadp,ie,port(blk,idx,ip))

Figure 17. gen algorithm

unify(blk,idx,expr): The unification function nondeter-
ministically unifies the input expression against one of the
relations in the block specification. It accepts a block in-
stance and expression, and returns the selected output port,
the computed basic configuration, and a set of input port-
expression assignments. LGraph performs unification using
pattern matching, but other algorithms could be used.
select_block(e): The selection function nondeterministi-

cally selects a compute block from the ADS that is unifiable
(can be unified with the expression) and creates a fresh iden-
tifier for that block. It returns the name and identifier of the
chosen block instance. If none of the compute blocks are
unifiable, the compilation process fails.
We next describe the basic operation of the gen algorithm:
Insertion of Source Nodes [Lines 3-4]: genmaps positive
and negative variables to positive and negative sources.
Addition with Kirchhoff’s Law [Line 5]: gen leverages
Kirchhoff’s Law to add variables together, as current-mode
analog devices do not provide compute blocks that perform
addition. Kirchhoff’s law states that at any point in a circuit,
the sum of incoming currents equals the sum of outgoing
currents. gen connects the synthesized subcircuits that im-
plement e1 and e2 to destination port/sink dest. Because
the currents carrying e1 and e2 both flow into dest, the
current flowing out of dest equals e1+e2.
Synthesis of Block Configurations [Lines 6-10]: For the
remaining expressions, gen uses block selection and unifica-
tion to implement the provided expression with a compute
block instance. It first selects a compute block instance and
unifies that block with the provided expression (Line 6-7).
gen adds the returned basic configuration to the VADP and
connects the unified output port to the provided destination
(Line 8). gen then generates the rest of the subcircuit by recur-
sively synthesizing each input port-expression assignment
returned by the unify function (Line 9-10).

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Sara Achour and Martin Rinard

#1

MUL
#2

MUL

INT

#1

V

V -P -

set c=0.22
expr z=c*x

set c=0.84
expr z=c*x

set x0=-2.0
expr z=
 integ(x,x0)

(a) generation
Pos

P

V

#1

MUL
#2

MUL

INT

#1

#3

MUL

INT

#2

FAN

#1

COUT

#1

z0,z2=x
z1=-x

FAN

#2

z0,z2=x
z1=-x

(b) assembly

Figure 18. Relation subcircuit generation and assembly for
dampened oscillator.

5.3 Assembly

LGraph next assembles the collection of subcircuits imple-
menting the individual relations from the DSS into a circuit
that implements the input DSS. It accepts, as input, the set of
VADPs produced in the relation subcircuit generation stage,
and produces, a output, a VADP of the assembled circuit.
Example: Figure 18b presents the assembled circuit for the
dampened oscillator (see Section3.1). It introduces two cur-
rent copiers (FAN) configured to produce one positive and
one negative signal. These positive (black) and negative
(red) signals are connected to the appropriate input ports.
Algorithm: The assembly algorithm matches the sources
found in each VADP to ports that implement the desired vari-
able with the desired sign. Because analog currents cannot
be used more than once, the algorithm inserts copy blocks
when necessary to replicate signals. LGraph first collates all
the VADPs and counts all the positive and negative sources
for each variable. If only one copy of a variable is needed, it
directly connects the source and sink together. If more than
one copy of a variable is needed, it nondeterministically

builds a tree of copy blocks and configures the copy blocks
(with basic configurations) to produce the required number
of positive and negative signals. These signals are then con-
nected to the appropriate sources. After all the sources are
matched to the appropriate ports, the source and sink nodes
are eliminated from the VADP.
5.4 Place and Route

Given a VADP that implements the assembled circuit and
an ADS, LGraph assigns block instances to locations (place-
ment) and maps connections to paths resident on the analog
device, inserting route blocks as necessary (route). It pro-
duces, as output, an ADP comprised of basic configurations.
The placement algorithm (Section 5.4.3) incrementally

resolves the location of each block instance by successively
solving a sequence of view placement problems (VPP).

This decomposition reduces the complexity and size of the
placement problem, enabling LGraph to tractably arrive at
a satisfying set of location assignments. Because VPPs also
account for the device’s routing restrictions, LGraph is able
to use a lightweight routing algorithm (Section 5.4) to assign
VADP connections to paths on the analog device.
5.4.1 View Placement Problem (VPP): The view place-
ment problem (VPP) is an integer linear programming prob-
lem that assignsVADP block instances to locations in a target
view, subject to a set of restricting location assignments. Re-
call views are sequentially organized groups of locations that
correspond to spatial regions on the device (Section 3.2.2).
The VPP nondeterministically generates location assign-
ments that respect the block instance and connectivity limi-
tations imposed by the ADS. For each block instance with
a restricting location assignment, the VPP ensures the as-
signed location is a child of the restricting location. The VPP
contains two types of binary membership variables [38]:
Instance variables [inst(block,id,loc)] assign VADP
block instances to locations in the view. LGraph derives lo-
cation assignments from enabled (set to 1) instance variables.
Path variables [path(conn,loc1,loc2,path_id)] assign
VADP connections to distinct paths comprised of route blocks
and digitally programmable connections. The VPP only mod-
els paths between distinct locations because analog devices
typically provide fewer connections between spatially dis-
tant blocks (distinct locations) than spatially colocated blocks
(same location). This simplification reduces the complexity
of the VPP while producing likely routable placements.
5.4.2 VPP Generation: The VPP generation algorithm
accepts an input VADP, an ADS, and a set of restricting
assignments and generates a VPP that, when solved, pro-
duces location assignments with the properties described in
Section 5.4.1. It generates the following constraints:
Block Location Assignment: Each block instance in the
VADP is assigned to exactly one instance.
Example: The sum of instance variables for multiplier #1
must equal one: [

∑
x ,y inst(mul,1,tile(x,y)) = 1]

Block Availability: The number of block instances mapped
to each location does not exceed the number of available
blocks of that type at that location.
Example: tile(0,1) has eight multipliers. Only eight mul-
tiplier instance variables for tile(0,1) may be enabled:
[
∑

i inst(mul,i,tile(0,1)) ≤ 8]
Path Assignment: If two connected blocks are assigned to
different locations, than the connection must be mapped to
a path between the two locations.
Example: If multiplier #1 is mapped to tile(0,1) and in-
tegrator #1 is connected to multiplier #1 (with connection c)
and mapped to tile(0,0), exactly one path variable assign-
ing c to a path between those tiles is enabled:
[inst(mul,1,tile(0,1)) ∧ inst(int,1,tile(0,0)) =∑

i path(c, tile(0,1),tile(0,0),i)]

Noise-Aware Dynamical System Compilation for Analog Devices with Legno ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

timescale 40000;
config block mult @ idx(0,3,0,0) {

set c=0.22;
expr = c*x;
mode = (x,m,m);
scale x=0.063;
scale c=4.2;
scale z=0.1999;

}
Figure 19. Excerpt of full configuration

Path Restrictions: The number of enabled paths that share
resources (route blocks) must not exceed the number of dis-
tinct paths supported by these resources.
Example: tile(0,0) requires outgoing connections use
one of 16 route blocks. tile(0,0) therefore supports a max-
imum of sixteen distinct outgoing paths:
[
∑

j ,i ,x ,y path(i,tile(0,0),tile(x,y),j) ≤ 16]
Restricting Locations: Each block instance may only be
assigned to a child of its assigned restricting location.
Example: If multiplier #1 is restricted to location chip(0),
it is only mapped to locations matching tile(0,∗):
[
∑

x inst(mul,1,tile(1,x)) = 0]
5.4.3 Placement Algorithm: The placement algorithm
accepts a VADP and ADS and produces a set of location as-
signments that spatially colocate densely connected blocks.
This is desirable as analog device microarchitectures typ-
ically prioritize providing programmable connections be-
tween blocks that are close together. The algorithm produces
assignments by incrementally refining the spatial location
of each block instance. It first solves the VPP for the most
general (root) view to attain an initial set of restricting as-
signments. It then solves the VPP for each child view, using
the parent view assignments as restricting assignments. If no
solution is found, the algorithm backtracks. Generally, back-
tracking is not necessary as early placement decisions assign
blocks to larger, more sparsely connected device structures.
However backtracking may occur more often for VADPs that
exhaust hardware resources.
5.4.4 Routing Algorithm: The routing algorithm maps
connections in the VADP to paths in the ADS. It assigns
a candidate path that implements each connection in the
VADP. After each path assignment, it removes any intersect-
ing paths from the set of candidate paths. If the algorithm
encounters a connection with no candidate paths, it back-
tracks to an earlier assignment. This lightweight algorithm
is often able to find satisfying routing solutions because the
VPPs solved during placement restrict the selection of paths
that share resources.

6 LScale

LScale computes a set of mode assignments and a scal-
ing transform (Section 6.1) that completes the input ADP.
It takes as input the analog device and dynamical system
specifications (ADS and DSS), an input ADP, quality mea-
sure parameters (AQM and DQM), and an empirical model
database. LScale derives a universal scaling constraint prob-
lem (USCP) from the program inputs and solves the USCP
to acquire the mode assignments and scaling transform for
the ADP. The completed ADP delivers two assurances:
• Recoverable: The original dynamics of the inputDSS can

be recovered from any ADP port by multiplying the time
and magnitude of the observed signal by statically derived
constants.

• Physically Sound: TheADP respects the operating range
and frequency restrictions imposed by the ADS, meets the
quality requirements imposed by the AQM and DQM, and
compensates for the manufacturing variations described
in the empirical model database.

6.1 Scaling Transform

The scaling transform is comprised of a collection of scal-
ing factor assignments for the ports and data fields in the
ADP (scale v = x or sv(v)) and a time constant describing
the speed of the simulation (timeconstant x or tc). The
scaling transform is applied by multiplying each data field
d in the ADP by its associated scaling factor sv(d). The
original dynamics of each port p is recovered at runtime
by multiplying wall-clock time by the time constant tc and
dividing the signal amplitude by its associated scaling factor
sv(p). The original dynamical system is recoverable from
the scaled ADP if the following property holds:
Recoverability Property: For each output port op in the
ADS, the implemented physical expression equals its basic
expression times the port scaling factor sv(op). Each physi-
cal expression specifies the signal value at the corresponding
port during execution of the ADP on the physical device.
Refer to Section 6.3.1 for information on how to derive the
physical expression of a port.
Example: Figure 19 presents an excerpt of a complete ADP.
The transform is applied to the configured multiplier by set-
ting c to 0.22*4.2. The original dynamics of the signal at
port z is recovered by dividing the magnitude of z by 0.1999
and multiplying wall-clock time by 40000. This scaling trans-
form ensures the physical expression of port z equals its basic
expression (0.22*x) times its scaling factor (0.1999). This
can be verified by first deriving output port z’s physical ex-
pression from the block configuration, block specification
(Section 3.2.1), the associated empirical model (Section 4)
then factoring out 0.1999 from the physical expression:

0.755781(4.2*0.22)(0.063*x) = 0.1999(0.22 x)

This property ensures the original dynamics of z (0.22*x)
can be recovered by dividing the scaled signal at z by 0.1999.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Sara Achour and Martin Rinard

variable type scope descriptor
mode integer block mode(block)
property real port/data namep(port|data)
scale factor real port/data sv(port|data)
time constant real global tc
injection real expr in/out iv(arg)

Figure 20. Summary of USCP variables created from ADP.
property from description
opRangep(v)1 ADS operating range restriction
maxFreqp(v) ADS maximum frequency restriction
digErrorp(v) ADS quantization error
coeffp(v) ADS constant coefficient
noisep(v) model-db noise
gainp(v) model-db measured gain

Figure 21. Summary of USCP properties for the port/data
field v . Implemented as two properties1.

6.2 The USCP

The USCP is a constraint problem whose solution produces
a set of mode assignments and a scaling transform with the
properties listed in Section 6. TheUSCP is comprised of amix-
ture of geometric programming and SMT constraints over
positive integer-valued and positive real-valued variables.
The USCP supports all geometric programming constraints
and a restricted subset of SMT constraints.
Variables: Figure 20 lists the USCP variables. Each type of
USCP variable is either globally defined or created for each
block, port, or data field instance in the ADP (scope column).
The mode variables store the selected modes. The time con-
stant and scale factor variables store the time constant and
scale factors from the ADP scaling transform. The property
variables capture the mode-dependent behavior of the device
and resolve to constant values when the mode variables are
instantiated.
Injection Variables: LScale modifies the ADP expression
data field assignments to more flexibly scale the circuit. For
each ADP statement that sets data field d to expression F
(set d vars [a0...an] = F), LScale introduces injection
variables iv(d), iv(a0)...iv(an) which change the stored
expression to iv(d)F[ai⇒iv(ai)ai].
Properties: Table 21 lists the USCP properties. LScale di-
rectly retrieves the opRange, maxFreq, and coeff properties
from the ADS and the gain and noise properties from the
empirical model database. LScale computes the maximum
quantization error (digError) properties from the quantize
statements in the ADS. For example, the maximum quanti-
zation error for an eight bit linearly encoded digital value
between [-1,1] is (1 (1))/256 = 0.0078125.
Intervals: LScale automatically derives the interval bounds
of each signal in the ADP by propagating the intervals from
theDSS through the circuit. LScale uses the derived intervals
to generate operating range and quality constraints.

6.3 USCP Generation

LScale generates the USCP by producing the following con-
straints for each block instance and port instance in the
input ADP. Each constraint is paired with an example that
references the multiplier block specified in Section 3.2.1:
Viable Mode Selection: Each mode variable may only be
assigned to the subset of modes that implement the selected
basic expressions in the configured block instance. The value
of a particular mode is the array index of that mode in the
block specification.
Example: The mode variable for a multiplier instance m that
implements the basic expression c*x must be set to either
(x,m,m), (x,m,h), (x,h,m) or (x,h,h):
[mode(m) ∈ [5..8]]
Mode-PropertyRelationship: For each property, theUSCP
must encode the relationship between the property value
and the mode of the block instance as a set of implication
constraints.
Example: If the mode of multiplier instance m is set to
(x,m,h), the property coeffp(z) is 6:
[mode(m) = 6 → coeffp(z) = 10]
Operating Range Limitations: For each port, the dynamic
range of the scaled signal must be contained by the operating
range of that port.
Example: For port instance z with interval bound [-3.3,3.3],
the dynamic range of the scaled signal must fall within the
port’s operating range:
[sv(z) [-3.3,3.3] ⊆ opRangep(z)]
Analog Quality Restrictions: For each analog port, the
ratio of the noise at that port to the dynamic range (if time-
varying) or magnitude (if constant) of the scaled signal must
be smaller than the AQM.
Example: For port instance z with interval bound [-3.3,3.3],
the noise-to-dynamic range ratio is less than the AQM:
[sv(c)-1 6.6-1 noisep(z)≤AQM]
Digital Quality Restrictions: For each digital port, the ra-
tio of the quantization error to the dynamic range (if time-
varying) or magnitude (if constant) of the scaled signal must
be smaller than the DQM.
Example: For constant data field instance c that provides
value 0.22, the error-to-magnitude ratio is less than theDQM:
[sv(c)-10.22-1digErrorp(c) ≤ DQM]
Frequency Limitations: For each port, the time constant
of the ADP must be lower than the maximum frequency of
that port.
Example: The time constant cannot exceed the defined max-
imum frequency for port instance z:
[[tc ≤ maxFreqp(z)]]
Connectivity: The scaling factors for each pair of connected
ports must be equal. This constraint automatically ensures
scaled analog currents are added properly.
Example: If a port instance z is connected to a port instance
x, then [sv(z) = sv(x)].

Noise-Aware Dynamical System Compilation for Analog Devices with Legno ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

phys expr new cstrs rewritten expr

q(v) sv(v) v q(v) sv(v) v
u e + u’ e’ u = u’ u (e + e’)
(u e)(u’ e’) u u’ (e e’)
integhw(ue,u’e’) u tc hw-1 = u’ u’ integtc(e,e’)
call(v,[u0e0,..]) iv(ai)ui = 1 iv(v)call(v,[e0,..])
sv(v)v = q(v)(ue) sv(v) =q(v) u v = e

Figure 22. Recoverability constraint generation
rules. The red terms are USCP expressions. q(v) =
coeffp(v)gainp(v). hw is baseline integrator speed.

6.3.1 Recoverability Constraint Generation: LScale
generates recoverability constraints which ensure the origi-
nalDSS dynamics can be recovered from the completedADP.
These constraints ensure that each physical expression is
equivalent to the associated basic expression multiplied by a
USCP expression. LScale derives a physical expression from
the basic expression of each ADP output port instance expr
op = E using the following transformation:
sv(v) op =

coeffp(op)gainp(op) E[v⇒coeffp(v)gainp(v)sv(v)v]

This transformation introduces the relevantmode-dependent
coefficients, empirically derived gains, and scaling factors
into the basic expression. LScale then iteratively applies the
rewrite rules defined in Figure 22 to each derived physical
expression until all the USCP variables have been eliminated.
LScale adds any constraints generated by the rewrite rules
to the USCP. The rewrite rules perform the following opera-
tions. The rules presented in rows 1-4 and 6 were adapted
from prior work [1]:
Factoring (rows 1-4): LScale factors out aUSCP expression
(red) from the physical expression, adding constraints over
USCP expressions as necessary.
Time Scaling (row 4): LScale ensures all integration opera-
tions are scaled by the same relative time constant (tc hw-1).
This changes the speed of the simulation from the baseline
speed (hw) to the scaled speed (tc). The ADS specifies the
baseline integration speed (hw) of the analog device.
Expression Data Field Mutation (row 5): For a call op-
eration that invokes the expression stored in data field vwith
arguments e0..en, LScale ensures the data field’s injection
variables cancel out the arguments’ USCP expressions. The
injection variable iv(v) scales the returned value.
USCP Variable Elimination (row 6): LScale eliminates
USCP variables from the rewritten relation.

6.3.2 Quality Guarantees: LScale does not provide any
guarantees on the end-to-end result of the ADP or guarantee
a minimum signal-to-noise ratio for any of the time-varying
digital and analog signals. While the introduced AQM and
DQM constraints affect the quality of the end-to-end result,
they confer no guarantees.We note that it is highly nontrivial
to provide a static error bound for a nonlinear dynamical
system given some perturbation (e.g. noise).

Computer[1]

Grendel
Dispatch

Microcontroller[2]

Grendel
Interpreter

Analog
Library

Analog Chip [3]

 GPIO[c]

srcgen

ADP

.grendel
script

Oscilloscope [4]

USB

[d]

14

3

2

sockets
 [a]

wiring[b]

Grendel Runtime

Figure 23. Grendel runtime workflow and lab setup

6.4 Completing the ADP

LScale solves the USCP to complete the input ADP.
Mode Selection: LScale first solves the USCP with an SMT
solver which nondeterministically produces a set of mode
assignments. In practice, LScale is always able to quickly
find a satisfying set of mode assignments or obtain a proof
that the USCP is infeasible. In the latter case, the ADP is
unscalable and LScale fails to complete these ADPs.
Scale TransformGeneration: LScale first applies the com-
puted mode assignments to the USCP. This procedure re-
solves all USCP property variables to constants and elimi-
nates all SMT constraints. LScale then uses a convex solver
to quickly find the best scaling transform with respect to
an optimization function. LScale’s optimization function
maximizes the speed (time constant tc) of the scaled ADP.
LScale also applies the set of injected variable assignments
to the expression data fields in the ADP.

7 Runtime and Implementation

Figure 23 presents the workflow for configuring the HCDCv2
to execute an input ADP. We first use the Grendel script gen-
erator srcgen to translate the ADP into a Grendel script.
srcgen applies the scaling transform to the ADP, then trans-
lates theADP statements to Grendel commands. The Grendel
runtime then executes the produced Grendel script on the
HCDCv2 analog device. After execution, we invert the ADP
scaling transform at each collected waveform to recover the
original DSS dynamics.
Grendel Runtime: A dispatcher and interpreter comprise
the Grendel runtime. The dispatcher routes Grendel script
commands to the appropriate devices. It sends HCDCv2 con-
figuration commands the microcontroller, which runs a bare-
metal interpreter that applies commands to the connected
HCDCv2. The dispatcher sends measurement commands to
the oscilloscope which records the desired external signals
(extern ports) and returns the collected waveforms.
Implementation: The Legno compiler uses the PULP ILP
solver, the Z3 SMT solver, the gpkit geometric program
solver with the cvxopt backend, and the networkx graph
processing library for compilation [6, 9, 16, 25, 44].

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Sara Achour and Martin Rinard

8 Results

We evaluate Legno on twelve benchmarks, six of which
were previously hand-implemented by our collaborators and
six of which are novel or from prior work [1, 2]. Unless other-
wise stated, each benchmark executes for 20 simulation units.
We present the number of differential equations, number of
functions, and system type (linear (lin) or nonlinear (nl))
in brackets after each benchmark:
cosc[2,1,lin]: The dampened spring oscillator discussed in
Section 3. The position of the oscillator is measured.
cos[2,1,lin]: The oscillator that implements the cosine func-
tion. The oscillator amplitude is measured.
vander[2,1,nl]: A stiff vanderpol oscillator that executes for
50 simulation units. The oscillator amplitude is measured.
forced[4,1,nl]: A forced vanderpol oscillator with an inter-
nally generated input for 50 simulation units. The oscillator
amplitude is measured.
pid[4,4,lin]: A robotics control system that adjusts the ac-
celeration of a body to meet a target velocity in the presence
of a large, oscillating disturbance for 200 simulation units.
The body’s velocity is measured.
pend[2,2,nl]: A pendulum simulation without the small-
angle approximation. The mass’s position is measured.
spring[4,3,nl]: A physics simulation of two masses con-
nected by a spring. The first mass’s position is measured.
heat[4,1,lin]: A one dimensional, grid-based model of the
heat equation PDE thatmodels themovement of heat through
a grid. The heat at the second point in the grid is measured.
kalman[2,2,nl]: A continuous-time Kalman filter that tracks
the average of a noisy signal for 200 simulation units [24].
The tracked average of the signal is measured.
smmrxn[1,3,nl]: TheMichaelis-Menten chemical reaction [31].
The concentration of enzyme-substrate complex is measured.
gentoggle[4,5,nl]: A genetic toggle switch [13]. The amount
of Tetracycline repressor protein is measured.
bont[5,1,nl]: Amodel of the botulism neurotoxin pathway [23].
The amount of translocated neurotoxin is measured.
8.1 Experimental Setup

For each dynamical system benchmark, we compile and
execute a collection of analog device programs and present
results from the best performing program. We configure
LGraph to generate 3 ADPs and LScale to generate 3 com-
pletions for each ADP. We use the lowest possible AQM and
DQM for each benchmark.
Hardware Platform:We evaluate the compiled benchmarks
on the Sendyne S100Asy RevU development board, which
interfaces with the HCDCv2 [15, 18, 43]. The HCDCv2 is a
current-mode programmable analog device with a baseline
integration speed of 126000 Hz. It has 6 types of compute
blocks (mul, adc, dac, int, cout, and lut), 5 types of route
blocks, and 1 type of copy block (fan). The compute blocks
provide multiplication (mul) and integration (int) opera-
tions and support for creating (dac), digitizing (adc), and

bmark runtime power energy % rmse
cos 1.59 ms 199.50 µW 0.32 µJ 2.13
cosc 1.34 ms 395.75 µW 0.53 µJ 2.32
pend 0.50 ms 554.82 µW 0.28 µJ 2.11
spring 1.50 ms 913.13 µW 1.37 µJ 4.62
vander 1.25 ms 722.78 µW 0.90 µJ 2.39
pid 6.58 ms 861.03 µW 5.67 µJ 4.27

forced 3.97 ms 849.03 µW 3.37 µJ 5.77
kalconst 3.32 ms 864.28 µW 2.87 µJ 2.29
gentoggle 0.50 ms 804.16 µW 0.40 µJ 3.42
smmrxn 0.52 ms 526.80 µW 0.28 µJ 3.31
bont 0.50 ms 823.25 µW 0.41 µJ 4.74
heat 9.52 ms 556.03 µW 5.30 µJ 0.81

Table 1. Performance, energy, and quality for benchmarks
executing on HDACv2 platform

externally accessing (cout) analog signals on the chip. Only
signals between -2 and 2 µA can be externally observed. The
HCDCv2 implements user-defined functions using a one-
input/one-output programmable lookup table (lut) and a
free-running analog-to-digital converter (adc) and digital-
to-analog converter (dac) that continuously converts analog
and digital signals. Each block on the device has between
1-16 modes that implement between 1-16 basic expressions.
There are between 16-128 hierarchically organized instances
of each block.
Signal Acquisition and Analysis: We collect waveforms
for each benchmark using a Sigilent X1020E oscilloscope.
The amplitude of the analog waveform is measured inmV
and the time is measured in wall-clock seconds.We invert the
applied scaling transform to recover the original signal from
each measured waveform. The recovered signal is compared
to a reference simulation of the dynamical system computed
by a standard digital differential equation solver which digi-
tally simulates the dynamical system with high precision. As
appropriate, we shift the measured signal in the time domain
and apply minor changes to the time constant (scale by 0.98-
1.02x) to account for otherwise uncharacterized deviations
in hardware behavior.
Energy Consumption: We use an empirically-derived en-
ergy model provided by our collaborators to estimate the
energy consumption of the device [14]. We use a model-
based approach, as it is difficult the isolate the power draw
of the analog chip because it is embedded on a larger develop-
ment board with other supporting circuitry. The maximum
power consumption of the device is 1.2 mW.
8.2 Analysis

Performance: Table 1 presents the performance character-
istics of the dynamical system simulations when executed
on the HCDCv2 board. The power consumption ranges from
199.5-913.13 µW. We observe variations in power consump-
tion because only the enabled components draw power. The
simulations take between 0.50 ms-9.52 ms to execute and
consume between 0.28-5.67 uJ of energy. The root-mean-
squared error relative to the dynamic range of the signal is
between 0.81-5.77%.

Noise-Aware Dynamical System Compilation for Analog Devices with Legno ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

simulation time

co
nc

smmrxn

(a) smmrxn
simulation time

m

pend

(b) pend
simulation time

sig
na

l

vanderpol

(c) vander
simulation time

m
/s

pid

(d) pid
simulation time

am
pl

kalconst

(e) kalman
simulation time

po
sit

io
n

spring

(f) spring

simulation time

sig
na

l

forced

(g) forced
simulation time

co
nc

gentoggle

(h) gentoggle
simulation time

sig
na

l

bont

(i) bont
simulation time

un
its

heatN4X2

(j) heat
simulation time

am
pl

itu
de

cosc

(k) cosc
simulation time

sig
na

l

cos

(l) sin

Figure 24. Benchmark executions on HDACv2 analog board. Red lines are reference signals. Blue lines are measured signals.

simulation time

am
pl

kalconst

(a) single mode
simulation time

am
pl

kalconst

(b) no empirical models
simulation time

am
pl

kalconst

(c) baseline

Figure 25. Effect of modes/empirical models on accuracy

Quality: Figure 24 presents a comparison of the analog sig-
nals measured from the HCDCv2 (blue) with the reference
simulation, which was executed on a digital computer with
high precision (red). In all cases the analog signal closely
tracks the reference simulation.
Physical Systems: Dynamical systems model physical phe-
nomena (e.g., physics and biology simulations) that are in-
herently approximate: the constants are often derived from
empirical measurements and, in many cases, the dynam-
ics are approximations of physical phenomena. With these
systems state variable trajectories are typically inspected
visually.
Control Systems: Control systems are typically designed
with some high-level objective in mind. For the pid pro-
gram, the objective is to attenuate any perturbations. For
the (kalconst) program, the goal is to track an input sig-
nal. Both the analog and reference implementations of these
computations meet these objectives.
Effect of Modes: To explore the effect of mode selection
on scaling, we artificially limit the available modes for each
block to a single mode that restricts the signal operating
ranges to [-2,2], increase the DQM and AQM as necessary
to enable the scaling phase to succeed, and recompile the
benchmark. Figure 25a presents the kalconst benchmark
executing with the resulting limited operating range and
new DQM and AQM of 0.030 and 2.22. We note the dynamics
deviate substantially from the reference dynamics, highlight-
ing the fact that the compressed operating ranges do not
support accurate execution.

Effect ofManufacturingDeviations: To explore the effect
of manufacturing deviations, we use an empirical model
database that records no deviations (all the gains are set to
one) and recompile the benchmarks. Figure 25b presents
the kalconst benchmark executing without manufacturing
deviation compensation. We note that the dynamics deviate
significantly from the reference simulation.
8.3 Analysis of Analog Device Configurations

Table 2 presents the compilation outcomes for the Legno
compiler. Columns 1-18 present ADP statistics and columns
19-20 of present the compilation times.
LGraph: Columns 2-11 of Table 2 present the block and con-
nection breakdown for each benchmark. For each benchmark
and block type, the number of extraneous blocks relative
to the baseline number of blocks is recorded as a second
number following a slash. For the cos, cosc, pend, spring,
and vanderpol benchmarks the baseline is computed from
hand-implemented configurations written by the hardware
designers [14]. For the remaining benchmarks, the baseline
is the minimum number of blocks of each type required to
implement each benchmark.
The analog device configurations produced by LGraph

have between 5-24 blocks and 5-28 connections. LGraph
uses between 1 and 6 current copiers (fan) and between
1-5 routing blocks (xbar) per configuration. LGraph uses
every type of compute, copy, and routing block available
on the device. LGraph takes between 2.52-5.77 seconds to
generate ADPs. For all benchmarks, all extraneous blocks
are the result of adding unity coefficients to the DSS (for
example, writing x as 1.0x) to introduce degrees of freedom
in the scaling process.
For all benchmarks, LGraph used the minimum number

of route and compute blocks. One route block is always
required to observe the signal because the device output is
not directly connectable to any of the compute blocks. The
bont benchmark uses four additional route blocks because

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Sara Achour and Martin Rinard

LGraph LScale compile time (s)
bench
marks

conne
ctions

scale factors injected vars
blocks int mul fan adc dac lut xbar DQM AQM time total uniq total uniq lgraph lscale

cos 5 2 0 1 0 0 0 1 5 0.020 0.128 0.10 20 4 0 0 2.52 0.18
cosc 9 2 3 2 0 0 0 1 10 0.020 0.151 0.18 36 12 0 0 3.51 0.79
pend 13 2 4/+2 2 1 1 1 1 14 0.030 0.084 0.32 46 17 2 2 3.59 0.43
spring 24 4 7/+1 5 2 2 2 1 28 0.030 0.123 0.10 88 15 4 2 5.12 0.98
vander 14 2 6/+3 3 0 1 0 1 17 0.010 0.100 0.32 54 17 0 0 4.14 1.33
pid 18 4 7/+3 4 0 1 0 1 21 0.020 0.143 0.24 74 22 0 0 4.81 1.55

forced 17 4 6/+1 4 0 1 0 1 21 0.010 0.169 0.10 70 18 0 0 4.81 1.86
kalconst 18 4 7/+2 4 0 1 0 1 21 0.030 0.231 0.32 74 22 4 4 5.43 1.50
gentoggle 21 4 5/+5 3 2 3 2 1 23 0.030 0.231 0.32 74 22 4 4 4.51 0.81
smmrxn 11 1 4/+1 2 0 2 0 1 13 0.030 0.092 0.32 38 11 0 0 3.99 0.38
bont 23 5 8/+1 4 0 0 0 5 25 0.010 0.084 0.32 90 18 0 0 5.70 1.89
heat 14 4 1 6 0 1 0 1 24 0.030 0.123 0.10 58 6 0 0 5.77 0.73

Table 2. Compilation outcomes for LGraph and LScale passes. All benchmarks use one cout block.

it requires more integrators than are available on one tile
and therefore had to partition the circuit across two tiles.
The minimum number of route blocks to work with this
partitioned circuit is five.
LScale: Columns 12-18 of Table 2 present the scaling trans-
form statistics. The scaling transformations produced by
LScale have between 4 and 22 unique signal scaling factors.
For the pend, spring, and gentoggle benchmarks, LScale
injects 2-4 constants into the data fields that store expres-
sions. The time scaling factors are 0.10x-0.32x the baseline
speed of the analog device (126000 Hz). The slowest simu-
lation (0.10x baseline) executes one unit of simulation time
in 7.94 · 10−5 seconds of wall-clock time. The lowest AQM
ranges from 0.084 to 0.247 and the DQM ranges from 0.01 to
0.03. We note that higher error does not necessarily translate
to significantly worse results, as benchmarks have varying
levels of robustness. LScale requires between 0.18-1.89 sec-
onds to scale the analog device program.

9 Related Work

Historically analog circuits were manually crafted to per-
form dynamical system simulations [10, 30, 33, 42]. These
circuits contained classical circuit components without the
sophistication of contemporary analog accelerators.

Pure andmixed-mode analog accelerators have been devel-
oped for accelerating a broad range of applications, including
neural networks, SAT solvers, and neuromorphic computa-
tions [4, 11, 19, 26, 28, 32, 37]. One prominent line of work
focuses on analog accelerators that target dynamical sys-
tems [7, 8, 15, 18, 34, 41, 43, 45, 46]. These accelerators cover
many points in the hardware design space. Here we focus
on current-mode analog devices with simple, flexible blocks
that execute general purpose dynamical systems [15, 18, 43].
Prior work has been done on synthesizing analog cir-

cuits at the transistor level to assist hardware designers in
crafting circuits [3, 17, 29]. Researchers have also developed

techniques for programming analog accelerators that imple-
ment neural networks to approximate digital subcomputa-
tions [12, 40].

Legno uses interval analysis to bound the analog signals
for the parameter scaling process. Interval analysis has a
long history in fields such as electrical engineering, control
theory, and robotics [20, 22]. Legno automatically performs
parameter scaling so the resulting analog configuration oper-
ates within the physical constraints of the hardware. Param-
eter scaling is traditionally manually applied to numerical
computations to improve the numerical stability [39].

10 Conclusion

Reconfigurable analog devices are a powerful new comput-
ing substrate well suited for executing dynamical systems.
We present Legno, the first compiler, to our knowledge, for
physical devices of this class. Legno is able to construct
circuits from specialized and parametric blocks while ac-
counting for analog noise, frequency and operating range
constraints, quantization error, and manufacturing varia-
tions within the device. We demonstrate that Legno is able
to automatically configure the HCDCv2 analog device to
obtain acceptably accurate results with low energy consump-
tion. Legno therefore takes a key step towards making this
promising new class of devices accessible to a broad range
of engineers and systems designers.

Acknowledgements

We would like to thank Yannis Tsividis and Sendyne for
granting us access to the analog hardware and for supporting
this research. We greatly appreciated their input and exper-
tise during the development of the Legno compiler. The
authors are supported by DARPA HACCS HR001118C0059
and DARPA TC FA8650-15-C-7564.

Noise-Aware Dynamical System Compilation for Analog Devices with Legno ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

References

[1] Sara Achour and Martin Rinard. Time dilation and contraction for
programmable analog devices with jaunt. In ACM SIGPLAN Notices,
volume 53, pages 229–242. ACM, 2018.

[2] Sara Achour, Rahul Sarpeshkar, and Martin C Rinard. Configuration
synthesis for programmable analog devices with arco. In Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 177–193. ACM, 2016.

[3] Kurt Antreich, J Eckmueller, Helmut Graeb, Michael Pronath,
E Schenkel, R Schwencker, and S Zizala. Wicked: Analog circuit
synthesis incorporating mismatch. In Custom Integrated Circuits Con-
ference, 2000. CICC. Proceedings of the IEEE 2000, pages 511–514. IEEE,
2000.

[4] Ben Varkey Benjamin, Peiran Gao, Emmett McQuinn, Shobhit Choud-
hary, Anand R Chandrasekaran, Jean-Marie Bussat, Rodrigo Alvarez-
Icaza, John V Arthur, Paul Merolla, Kwabena Boahen, et al. Neurogrid:
A mixed-analog-digital multichip system for large-scale neural simu-
lations. Proceedings of the IEEE, 102(5):699–716, 2014.

[5] B. E. Boser, E. Sackinger, J. Bromley, Y. Le Cun, and L. D. Jackel. An
analog neural network processor with programmable topology. IEEE
Journal of Solid-State Circuits, 26(12):2017–2025, Dec 1991.

[6] Edward Burnell and Warren Hoburg. Gpkit software for geomet-
ric programming. https://github.com/convexengineering/gpkit, 2017.
Version 0.6.0.

[7] G.E.R. Cowan, R.C. Melville, and Y. Tsividis. A VLSI analog comput-
er/digital computer accelerator. Solid-State Circuits, IEEE Journal of,
41(1):42–53, Jan 2006.

[8] Ramiz Daniel, Sung SikWoo, Lorenzo Turicchia, and Rahul Sarpeshkar.
Analog transistor models of bacterial genetic circuits. In Biomedical
Circuits and Systems Conference (BioCAS), 2011 IEEE, pages 333–336.
IEEE, 2011.

[9] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer, 2008.

[10] J.L. Douce and H. Wilson. The automatic synthesis of control systems
with constraints. Mathematics and Computers in Simulation, 7(1):18 –
22, 1965.

[11] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural acceler-
ation for general-purpose approximate programs. MICRO, 2012.

[12] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.
Neural acceleration for general-purpose approximate programs. In
Proceedings of the 2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 449–460. IEEE Computer Society, 2012.

[13] Timothy S Gardner, Charles R Cantor, and James J Collins. Con-
struction of a genetic toggle switch in escherichia coli. Nature,
403(6767):339–342, 2000.

[14] Ning Guo. Investigation of Energy-Efficient Hybrid Analog/Digital
Approximate Computation in Continuous Time. PhD thesis, Columbia
University, 2017.

[15] Ning Guo, Yipeng Huang, Tao Mai, Sharvil Patil, Chi Cao, Mingoo
Seok, Simha Sethumadhavan, and Yannis Tsividis. Energy-efficient
hybrid analog/digital approximate computation in continuous time.
IEEE Journal of Solid-State Circuits, 51(7):1514–1524, 2016.

[16] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network
structure, dynamics, and function using networkx. Technical report,
Los Alamos National Lab.(LANL), Los Alamos, NM (United States),
2008.

[17] Ramesh Harjani, L Richard Carley, et al. Oasys: A framework for
analog circuit synthesis. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 8(12):1247–1266, 1989.

[18] Yipeng Huang, Ning Guo, Mingoo Seok, Yannis Tsividis, Kyle Mandli,
and Simha Sethumadhavan. Hybrid analog-digital solution of non-
linear partial differential equations. In 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 665–678.

IEEE, 2017.
[19] Yipeng Huang, Ning Guo, Mingoo Seok, Yannis Tsividis, and Simha

Sethumadhavan. Analog computing in a modern context: A linear
algebra accelerator case study. IEEE Micro, 37(3):30–38, 2017.

[20] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis:
With Examples in Parameter and State Estimation, Robust Control and
Robotics. Springer London, 2012.

[21] A. Joubert, B. Belhadj, O. Temam, and R. Héliot. Hardware spiking
neurons design: Analog or digital? In The 2012 International Joint
Conference on Neural Networks (IJCNN), pages 1–5, June 2012.

[22] L.V. Kolev. Interval Methods for Circuit Analysis. Advanced series on
circuits and systems. World Scientific, 1993.

[23] Frank J Lebeda, Michael Adler, Keith Erickson, and Yaroslav Chushak.
Onset dynamics of type a botulinum neurotoxin-induced paralysis.
Journal of pharmacokinetics and pharmacodynamics, 35(3):251, 2008.

[24] Frank L Lewis, Lihua Xie, and Dan Popa. Optimal and robust estimation:
with an introduction to stochastic control theory. CRC press, 2017.

[25] Stuart Mitchell, Michael Gj O’ Sullivan, and Iain Dunning. Pulp : A
linear programming toolkit for python. 2011.

[26] Botond Molnár, Ferenc Molnár, Melinda Varga, Zoltán Toroczkai, and
Mária Ercsey-Ravasz. A continuous-time maxsat solver with high
analog performance. Nature communications, 9(1):4864, 2018.

[27] A. J. Montalvo, R. S. Gyurcsik, and J. J. Paulos. An analog vlsi neural
networkwith on-chip perturbation learning. IEEE Journal of Solid-State
Circuits, 32(4):535–543, April 1997.

[28] Alexander Neckar, Sam Fok, Ben V Benjamin, Terrence C Stewart,
Nick N Oza, Aaron R Voelker, Chris Eliasmith, Rajit Manohar, and
Kwabena Boahen. Braindrop: A mixed-signal neuromorphic architec-
ture with a dynamical systems-based programming model. Proceedings
of the IEEE, 107(1):144–164, 2018.

[29] E.S. Ochotta, R.A. Rutenbar, and L.R. Carley. Synthesis of high-
performance analog circuits in ASTRX/OBLX. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 15(3):273–294,
Mar 1996.

[30] Yakup Paker and Stephen H. Unger. {ADAC} — a programmed direct
analog computer. Mathematics and Computers in Simulation, 9(1):16 –
23, 1967.

[31] Denise R. Ferrier PhD. Biochemistry (Lippincott Illustrated Reviews
Series). LWW, 2013.

[32] Sylvain Saighi, Yannick Bornat, Jean Tomas, Gwendal Le Masson, and
Sylvie Renaud. A library of analog operators based on the Hodgkin-
Huxley formalism for the design of tunable, real-time, silicon neurons.
Biomedical Circuits and Systems, IEEE Transactions on, 5(1):3–19, 2011.

[33] Sams. Arrangement and scaling of equations. Mathematics and Com-
puters in Simulation, 6(3):179 – 182, 1964.

[34] Rahul Sarpeshkar. Ultra Low Power Bioelectronics: Fundamentals,
Biomedical Applications, and Bio-Inspired Systems. Cambridge Uni-
versity Press, 2010.

[35] Srinagesh Satyanarayana, Yannis Tsividis, and Hans Peter Graf. A
reconfigurable analog vlsi neural network chip. In Proceedings of the
2Nd International Conference on Neural Information Processing Systems,
NIPS’89, pages 758–768, 1989.

[36] J. Schemmel, J. Fieres, and K. Meier. Wafer-scale integration of analog
neural networks. In 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), pages
431–438, June 2008.

[37] Christian Schneider and Howard Card. Analog CMOS synaptic learn-
ing circuits adapted from invertebrate biology. Circuits and Systems,
IEEE Transactions on, 38(12):1430–1438, 1991.

[38] Alexander Schrijver. Theory of linear and integer programming. John
Wiley & Sons, 1998.

[39] Robert D Skeel. Scaling for numerical stability in gaussian elimination.
Journal of the ACM (JACM), 26(3):494–526, 1979.

https://github.com/convexengineering/gpkit

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Sara Achour and Martin Rinard

[40] Renée St Amant, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites,
Hadi Esmaeilzadeh, Arjang Hassibi, Luis Ceze, and Doug Burger.
General-purpose code acceleration with limited-precision analog com-
putation. ACM SIGARCH Computer Architecture News, 42(3):505–516,
2014.

[41] Jonathan J. Y. Teo, Sung Sik Woo, and Rahul Sarpeshkar. Synthetic
biology: A unifying view and review using analog circuits. IEEE Trans.
Biomed. Circuits and Systems, 9(4):453–474, 2015.

[42] Rajko Tomovic. Proceedings of the international association for analog
computation method of iteration and analog computation. Mathemat-
ics and Computers in Simulation, 1(2):60 – 63, 1958.

[43] Yannis Tsividis. Not your father’s analog computer. IEEE Spectrum,
55(2):38–43, 2018.

[44] Lieven Vandenberghe. The cvxopt linear and quadratic cone program
solvers. Online: http://cvxopt. org/documentation/coneprog. pdf, 2010.

[45] Sung Sik Woo, Jaewook Kim, and Rahul Sarpeshkar. A cytomorphic
chip for quantitative modeling of fundamental bio-molecular circuits.
IEEE Trans. Biomed. Circuits and Systems, 9(4):527–542, 2015.

[46] Sung Sik Woo, Jaewook Kim, and Rahul Sarpeshkar. A digitally pro-
grammable cytomorphic chip for simulation of arbitrary biochemical
reaction networks. IEEE transactions on biomedical circuits and systems,
12(2):360–378, 2018.

Noise-Aware Dynamical System Compilation for Analog Devices with Legno ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

Algorithm: Compilation of dynamical system to analog device
Compilation: Python 3.X
Dataset: Oscilloscope data collected from analog device
Runtime environment: Linux, Mac OSX
Hardware: HCDCv2 Device / Sendyne S100Asy RevU
Development Board
Runtime State: grendel firmware
Execution: Python 3.X
Metrics: compile time, energy consumption, execution time,
qualitative accuracy, resource utilization and program complexity
metrics
Output: execution time, energy consumption, generated program
complexity.
Experiments: semi-automated
Space required: 7.3 GB
Setup time: 10 minutes
Evaluation time: 3 hours
Publicly available: yes, GPL and CC licenses
DOI: https://doi.org/10.5281/zenodo.3606664

Figure 26. artifact summary.

A Artifact Appendix

Abstract: The Legno compiler is a compilation toolchain
for the HCDCv2 analog device. This toolchain is able to
compile dynamical systems to execution scripts that can be
dispatched to the analog hardware. The Legno compiler is
the first compiler to target a real-world differential equation
solving analog device. This guide outlines how to download
and install the publicly available Legno toolchain.
Description: Using these instructions, the user should be
able to perform the actions listed below. This manually spe-
cially formats commands, directories, and files:

1. Compile the benchmark applications using the Legno
toolchain. The compilation results are used to generate
the results for the prose in Section 8 and Tables 2, 1.

2. Analyze the oscilloscope data to generate the results
in Table 1 and Figures 24,25.

3. Add a new program and compile it using the Legno
toolchain.

Hardware dependencies: This compiler generates config-
urations for the HCDCv2 analog device. This device is not
yet commercially available. The full dataset of oscilloscope
waveforms and a video demonstrating the operation of the
device are included in the data artifact.
Software dependencies: Evaluators need docker installed
to use the containerized version of the compiler. To run
the compiler natively, evaluators can follow the instructions
outlined in the user manual included in the github repository.
Datasets: Two datasets that contain all the collected oscillo-
scope waveforms are included in the artifact. These datasets
contain the produced analog device programs, waveforms
and visualizations for all the benchmarks.

A.1 Downloading the Toolchain

To start, clone the Legno git repository containing the
compiler. This project contains the documentation, the com-
piler benchmarks, and the compiler source code. Next, navi-
gate to the docker/ directory to begin building the docker
container:

git clone \

https://github.com/sendyne/legno-compiler.git

cd legno-compiler/docker/

The docker directory should contain scripts for building the
docker image (Dockerfile, build_image.sh, run_image.sh),
table and plot generation scripts for generating the paper
results (generate_*.sh, a manual for interpreting results
(evaluation_manual.pdf), a script for compiling the bench-
marks (run_all.sh), and a script for converting .tbl files
to latex code (latex_gen).
Next, visit the DOI link from the Figure 26 to download
the required data. Download the oscilloscope_data.zip,
oscilloscope_data_standard.zip, and state.db files to
the docker/ directory. This DOI entry contains the neces-
sary oscilloscope datasets (oscilloscope_data*.zip), the
empirical model database derived for our device (state.db),
demo videos demonstrating the analog hardware executing
the dampened oscillator (demo*.mp4), and an archives of
oscilloscope data visualizations (quality_graphs.zip)
A.2 Installation

To build the docker image, execute the ./build_image.sh
command (5 minutes). This command creates a docker image
named legno-container. There may be some errors during
the model inference procedure – these are safe to ignore.
Once this completes successfully, you can create and login
to a docker container using the ./run_image.sh command.
This command creates and mounts two externally accessible
shared directories outputs and PAPER in the image and log
you into the docker container. The project directory can be
found in /root/legno_compiler. The shared folders cor-
respond to the automatically created outputs and PAPER
directories in the docker directory.

• output directory: This directory contains all the com-
pilation outputs. The output/logs subdirectory con-
tains all the standard output/error logs from execution.
The output/legno/extended directory contains the
compilation outputs for all the benchmarks.

• PAPER directory: This directory contains all the gen-
erated figures and tables for the paper. The figures and
tables in this directory can be compared to the figures
and tables included in the paper_data.pdf file.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Sara Achour and Martin Rinard

A.3 Executing the Compiler

The commands presented below compile all the bench-
marks in the paper [60 minutes, 1-2 minutes/operation]:

python3 run_all.py > run_all_bmarks.sh

chmod +x run_all_bmarks.sh

time ./run_all_bmarks.sh

The compilation outputs are written to the shared output/
legno/extended directory, and can be accessed from the
container and host machine. Each benchmark subdirectory
contains unscaled and scaledADP visualizations (lgraph-diag
and lscale-diag), grendel files (grendel), and execution
times for the different compilation steps (times).
A.4 Interpreting Filenames

Legno encodes the compilation parameters into the name
of each intermediate and output Grendel file.

cosc_g0x0_s0_dgd4.00a15.10v2.77c96.00b80.00k

_obsfast_t20_osc.grendel

The above Grendel script executes the cosc benchmark
for 20 simulation units [t20] and collects data with the oscil-
loscope [osc]. This script implements the unscaledADPwith
identifier g0x0 (see lgraph-diag) and the mode selection
and scaling transform with identifier s0 (see lscale-diag).
The implemented scaling transform has a maximum fre-
quency of 80 khz [b80.0k], an AQM of 0.1510 (a15.10),
and a DQM of 0.04 [d4.00]. The AQM for state variables is
0.0277 [v2.77] and the user-defined functions utilize 96% of
the device lookup tables (c96.00). The implemented scaling
transformmaximizes the speed and the dynamic range of the
observed signals subject to the above restrictions [obsfast].
The scaling transform was produced using empirical models
elicited from the device (dg) – this is called the device tag.
Please refer to the user manual for a complete description
of tags. Some benchmarks may be missing ADPs dg and de
tags – this is because LScale cannot scale ADPs using the
empirical model database if any of the necessary models are
missing.
A.5 Building Compilation Results Tables

The compilation outputs from the previous step can be used
to build produce the tables and figures in Section 8[few min-
utes]. Execute the ./generate_tables.sh command from
the docker container to generate the following tables (.tbl
files) to the PAPER directory:

File Table / Figure

bmarks.tbl benchmark prose, Section 8
hwblocks.tbl HCDCv2 prose, Section 8
hwboard.tbl HCDCv2 prose, Section 8
circuit-lgraph.tbl columns 2-11, Table 2
circuit-lscale.tbl columns 12-18, Table 2
compile-time.tbl columns 19-20, Table 2
energy-runtime.tbl columns 2-4, Table 1

A.6 Analyzing Oscilloscope Data

Execute the ./generate_quality_plots.sh command
from the legno-compiler directory of the docker container
to analyze the oscilloscope dataset [75 minutes]. This script
invokes exp_driver.py program, which invokes source files
from the scripts directory and stores analysis results in the
database outputs/experiment.db. This database can be re-
generated by using the scan and analyze exp_driver.py
commands (see the generate_quality_plot.sh script). Note
that the analysis script will backup the compilation outputs
generated from the previous step to the directory outputs/
local-results. This procedure generates the following vi-
sualizations in the PAPER directory:
File Table / Figure

-delta-max-fit- Figure24
-kalconst--naive-max-fit-* Figure 25b
paper-quality-energy-runtime.tbl Table 1

The individual oscilloscope plots are written to the outputs/
legno/extended/bmark/plots directory. After evaluating
the analysis outputs, restore the compiler results with:

python3 setup_exp_data.py restore

A.6.1 Analyzing standard Oscilloscope Data

(Figure 25a)The oscilloscope_data_standard.zip file
contains the oscilloscope data for the standard single-mode
executions described in Section 8.2. To analyze this dataset,
replace oscilloscope_data.zipwith oscilloscope_data_-
standard.zip in the docker container and then execute
python3 setup_exp_data.py install. The outputs/legno/
standard directory should have output directories for the
spring and kalconst benchmarks. Execute the following
to produce quality graphs for the standard executions:

./generate_standard_quality_plots.sh

The paper-kalconst-standard-delta-max-fit-best.pdf
file is the plot used in Figure 25a.
A.7 Compiling a Custom DSS

The benchmarkDSS s are in the progs/columbia and progs/
biology directory. To compile a custom DSS, first copy the
template DSS to a new file using the command:

cp progs/template.py progs/myprog.py

Modify dsname to return the program name (alphabetical
characters only). Modify dsprog function to define the de-
sired dynamical system (seeChapter 3 of user_manual.pdf).
Modify the dssim function to return the number of simu-
lation units to execute the simulation for. The following
command executes the DSS named myprog:

time python3 legno_runner.py --config \

configs/default_maxfit_naive.cfg \

myprog --lgraph --ignore-missing

The compilation outputs can be found in the output directory
outputs/legno/extended/myprog/.

	Abstract
	1 Introduction
	1.1 Legno
	1.2 Contributions

	2 Previous Compilers for Analog Devices
	3 Languages
	3.1 Dynamical System Specification Language
	3.2 Analog Device Specification Language
	3.3 Analog Device Program Language
	3.4 Grendel Scripting Language

	4 Overview of the Legno Compiler
	5 LGraph
	5.1 Virtual Analog Device Program (VADP)
	5.2 Relation Subcircuit Generation
	5.3 Assembly
	5.4 Place and Route

	6 LScale
	6.1 Scaling Transform
	6.2 The USCP
	6.3 USCP Generation
	6.4 Completing the ADP

	7 Runtime and Implementation
	8 Results
	8.1 Experimental Setup
	8.2 Analysis
	8.3 Analysis of Analog Device Configurations

	9 Related Work
	10 Conclusion
	References
	A Artifact Appendix
	A.1 Downloading the Toolchain
	A.2 Installation
	A.3 Executing the Compiler
	A.4 Interpreting Filenames
	A.5 Building Compilation Results Tables
	A.6 Analyzing Oscilloscope Data
	A.7 Compiling a Custom DSS

