CC~-213
_ June, 1963
COMPUTATION CENTER
Hiassachusetts Ingtitute of Tachmology
Cambridge 39, Massachusetts

TO: All Programagrs
FROM: F. J. Corbatd, J. Saltzer, N, Barta, T. Hastings
SUBJECT: An Abbreviated Description of the ¥MAD Compiler Language

A, !ntrod\;ction

The MAD coapiler was designed end prepared originally for the

IBM 704 computer by B. Arden, B, Galler and R, Graham at the University
of Michigan. The compiler has subsequently beem converted to the IBM
7090 by the Michigan group and with their cooperation besn adapted by

. the MIT Computation Center staff to work within the FERTRAN-FAP Monitor
-Systen used ou many 7090 machines., The MAD language bas many of the
features found in PERTRAN I3, ALGEL 88, ALGHL 60 and the soom-to-be~
introduced FERTRAN IV, 8incs KAD has few restrictions and is highly
flexible, it is well-suited as an iaitial computer language. Moreover,
ance a programmer has mastered one language, general experience has
shown that subsequent langusges are much easier to leamn,

Only an essential subset of the MAD languege is offered here but
this subset is sufficient for complete, correct prograss, The full
langusge specification is given in tbhe MAD Refereace Mamual (but with
the final definitiom of the lamguage, of course, implicitly contained
in tho MAD compiler program of appraximately 12,000 instructions,)

B. Iypes of Constants

1. Integer: of magnitude less than 227 and primarily used for
counting and integer arithmetic. Integer comstants
are written ia decimal with an optionsl plus sign

- 42 positive or an obligatory minus sign 1if negative
but without & point, Examples: 4, 49, -100

=38 .o 107

2. Floating-point: of magnitude zero or in the approximate range 10
These numbers are primarily used in arithmetic
calculations, Floating-point constants may be
writton withk or without exponents, If writtem
without an exponent; the constant comtains from
cne to eight digits and a decimal point, which must
be written, but which may appear aanywbers in the
alllb.l'.

It the number u written with an exponent, it
must contain from one to eight digits with or without
a decimal point, followed by the letter E, followed
by the exponent of the power of 10 that multiplies
the number,

ml‘-: 3.0, 3. ."'03 -123.‘5889
3.0849, +87,58-30, 1008-5, ~,9E3

Page 2

C, Vaeriables Bach variable muy bte of cne of the two modes:
integer ox floating~point and only takes om value:
of the correosponding mode, (Strictly speaking there
are S modes in NMAD but the remaining throe are
unnecensary lere.) Variable names may comsist of
1 to 6 letters or digits of which the first is .
alphabetic, A variable is assumed to be of floatimg-
poim mode unless declared othervise. (See section
3¢, below, for mode declaration statements,) Examples
of variable numes: ALPHA NAME ANSWER, LOSAP3

- D, Arxays Arrays are sots of variables in which each variedle
as an plement of the array is distinguisbhed by
particular iateger subscoripts. The ariay nane
convertions used are same as for variables,

Fer typcgraphiical reasons, subscripts are enclosed .
in parentheses and separated by commas, Eack array
has a fixed but arbitrary number of dimensions.
Subscripts s of the ith dimension are integer mode
expressions ~23 Bxpressions below) which take on
values batween 1 and d, where d_ is the fixed maximum
subscript value to be sed for ihe ith dimensien.
Subscript values of xero (or negative values) are mot
. allowed here with the e¢xception of arrays of ocne
subscript (1.e. vectors) where a subscript value of
zero is allowed, Examples: ALPHA(J),TABLER(ES3,
MN-MNr1) , TABLE3(S,7) . . ‘

E. External Functions Function names follow the same rules as variable
_ names but must have a distinguishing terminal "."
added. (In addition, all varisbles, arrays, and
functions must have unique nRames.) The value of &
‘function can be of any mode., Examples:
FPRML, PFIRSTF, ABCD,

F. munu.o-u ions

Arithmetic expressions may be formed using parentheses and the operations:
#0=98,/,.P,, and ,ABS. for addition, subtraction, sultiplication, divisios,
exponentation, and absolute value respesctively. The allowed integer or
flosting-point constituents of arithmetic expressions are variables, sub-
scripted clements of arrays, constants, and functioms. In general, all com-
stituents must be of the same mode but with the exception that if iateger
and floating-poiat modes are mixed, the expressicn is evaluated in the
integer mode until cocuversion to the floating mode becomes necessary.

For exsmple ((X.P.N)/Y) ¢ Q& . ABS . P-5,

represents the expression

| x
e 'u
¥ < iv“

Pogs 3

in the usual algebreic notatiom {whsre the vaive will be of the floating=

' potnt mode because of the floating-point rive), All operations must be

axplicitly stated, .@.8. (AB)C is not correct, hut {A+B)%C is correct.

The ruesult of any integer mode calculation is an integer. When two
integer mods numbers are divided only the integsr portiom of the result

is kept 2% ths quotient; the fractional portion of the result is ducardcd
o‘o 7/3 = 3

Boolean expressions have the values true, or false., They Say be formed
using parenthesos and ths operators .NOT., .#R., .AND,, .THEN., and .EQV,,
for "negation”, "inclusive or”, "and","implication”, and "equivalence”,
reapectively. The allowed constitutents of boolean expressions are relations
which have boolean values, Boolean-valuad relations are > ,x,s 4,2, and
vhich for typographical reasons are written es .G., .GE;, .B., MB., LB,
and L. zespectively; these relations may occur betwesn any two aritlmatic

axpressions and mixed msodes are allowed. For example
((A.GE.B) oABDo(coﬂﬂob))oﬁak(&ﬂocoﬁllmo
represents the boolean expressiocn

({a2b) o (edd)) V (o #5)> (8/1000.))

Stateuents

A prograa consists of & collection of subprograms., BEach subprogram
written in the MAD language cousists of a sequence of MAD statoments,

Theze statements, which compile intc segments of machine language instruc-
tions, fall into 4 categories:

1., Substitution Statements are of the fora
a=b

where b is sn expression and a is a varizble. When executed the .
new velue of the variable 2 (in the appropriate mode) is computed
by evsliuating the expression b, Thus it 1s possible to transform
from fixed to floating vice-versas., Note that if the variable
a appears in the expression b, the cld value of & is used in the
conputationo Examples:

Ys ALPEA/(BiC)-BETAH2 ,0¢8
J= J+l

2, Control Statements

8, TRANSFER T9 s is a statement which when executed causes the
progran to transfer to the statement lebeled s in its left-margin
(cols, 1-10). Statements are labeled in ths same way &s variables
and each label must be distinct from all other statement labels,
varisbles, arrays, or function names. Exsmple:

TRANSFER T9 ALPHA

b,

Ce

Page 4

WHENEVER b8 is a simple conditional statement where b
is a boolean expression, and s is any executable statement except:
END #£7 PROGRAM, another WHENZVER, THR#UGH or a functiom ENTRY. If
the boolean expressicn is true the statement s will be executed.
Otherwvise control will pass to the next statement following the
conditional., The comma in thiz statesment aust be writtem,
Examples:

WHENBVER X.L.100, TRANSBFER TS STAP
VHEENEVER Y.G.232,.88.8.E.X1, wa¥

The sequence
WHENREVER b@

aoo

@R WHENEVER bl

OR WHENEVER b, .
BTHERWISE

cao

END §iF CANDITISNAL

: is a compound conditional ztatesent where the
b; are boolean oxprenions and the dots are any sequence of stazements,
The coapound conditional is a pattern of statements which allows the
conditional execution of just one of the program segments bracketed
by the indicated statements., The segment executed is determined

by the first boolean expression by which is trus, Any or all of the
it WEENEVER statements or the ZTHERWISE statement may be omitted,
After the conditional execution Of one program segment, program
control automatically transfers to the statesent logically following
the required END #F CINDITISNAL statement, This compound conditicnal

. is distinguished from the simple comditiomal by the absence of a
coman following the pooleaa expressions .

Exanples;

wr

WHENEVER X.LE.O
Y=0,
@sl,
£R WHENEVER X.G.10,
Y=20,
Z=100,
OTHERW ISE
- YaX
' Z=10, *X
- END §F CONDITIENAL "~

WHENEVER W.L.10,
TRANSFER 19 L&JP2

R WHENEVER W.1.20,
TRANSFER T8 L64P3

END gF CANDITIONAL

Page 8

d, THRAUGH 8, FAR v = 2, 5, b is an iteration statement
which operates as follows:

1. The variable v iz set equal to the expression e1.
2, The boolean expression b is tested, If b 1s true,

program control passes to the stateamsnt after the
statement labeled 8,

3, If b is false, the statements up to and including
.3 (the scope) are executed,

4, v is incremented by the value of the expression ep;
Taturn to step 2,

A THRIUGH statement may appear within the scope of say other
THREUGH, provided that the scope "of the nasted THREUGH lies
entirely within the scope of the higher level THRIUGHE statement.
Note that the statement labeled s may not be a declaration

statement,
Example:s
THREUGH LOEP, FOR Mel ,2 .M.G 48
100D °© o o
;'MGB LOgPL, FAR M=) K-1, M.G. ML OR.K.E.O
LégPl ° o o
mmau 186P2, FER J=l,1,J.G.
THRAUGH LL6P2, POR Kwl,l ,K.G.
<

@, EXECUTE name, (ar at ust) is a statement wl!ich nnevzzt 3
a calilng sequence to %o subprogramr nsms. The Aisted ho il
®ay bo expressions, For example xxxclm: B HIM, (.5,X4Y,2. P .5) creates
a calling sequence to the nuhprogm BIM, witk the values of the

three expressions as arguments., The names of subprograms follow the
snde rules as for oxternal functions. Example:

EXECUTE S@RT.(A)

L, CONTINUE 1s a dummy statement which when exscuted causes no
sction, Tho statemcnt normally has & label snd is used to indicate
4 jeining point in a program, to which another atatement may transfer,
it is someiimes used as the last statement in the scope of a THROUGHE,
tc indicate to the reader that the end of the scope bas beean reached.
Bxample:

Lagr3 CANTINUE
3. DECIARATION STATEMENTS

These statements only coavey information te the MAD compiler and
would not appear an & flow diagram of a program,

2,

Co

Page 6

The following monitoer contsod card (fully defimed
later) snd ststement:

2 BAD

END SF PREGRAM

bracket & "Main" subprogram; upom subsequent loading of
& progran compased of several subprograms, the progras
is started at the begindimg of the "Mein” subprogram,

Similarily the monitor control card and statements
® MAD '

EXTERNAL FUNCTION (arguasent 1ist)

ENTRY 79 n.

e ¢ o

FUNCTIEAN RETURH v
END @F FUNCTISN

bracket an external function subprogras which depending on
how it 48 programmed may be used in one of two different ways.
In the first case the function named n. has a single value,

v, 2nd is used in an expression. An example is the function
S8IN. in

Y=Y 3.5 ®8IN,(X~-.5)

in the secoud case, the single value v is meaningless (e.g.
in a "function” to sort a table) and is omitted from the
FUNCTISN RETURN statement which is still required. Thia type
of external) function subprogran may only bs used by an EXECUTRE
statement. In either case, the arguments listad (separated
by commas) in ap RETRRNAL FUNCTISN statement must all be of
the simple form of variable -amegs, unsubacripted array names
or function names (Without arguments). These pames as they
occur in the defining functiion subprogrem act as dummies for
compilation purposes only. In the use of the function, the
argumenis used may be expressions of the appropriaste mode,

It also should be notad that, depending on the programaing
of the function definition, the srgument list may mot omly
contain ipput values but also may contain varisble and array
names which will contain output values of the external function
subprogram after it ig executed. Example:

EXECUTE SORT.(TABLE3 N}
¢could sort the array nemed TABLE3, which has N elements.

Every array used in & program must have adequate space reserved
tor-it, For example, if the array A{(J) may be used with J
betwoen 1 and 30, 50 locations must be set aside for the array
A, For vectors (ons-dimensicnal arrays) this setting aside
may be dome by the statement:

DIMENSISN v(d)

d,

Page 7

where vV is the nams of ths vectoer and d is & constant ipteger
squal to the amount of storage needed, Actually, @#l locatiomns
will be reserved, tc allow uso of the subacript zero, Saveral
dimonsion statements may be combined, as in the example:

DIMENSISN A(50), JARRAY(245), 21(24)

Arrays of 2 or more dimensions require a slightly more cou-
plicated specification, including information about the structure
of the array. With every amltidimensional array is associated

& vector (the "auxiliary vector") containing this informatiom,
This vector’s name appears in the dimension specificatioa of

the multidimsnsional array. For example, 1f an array A(J K,Ld
may bave all three subscripts between 1 and 10, 1000 spaces

8re needed, The dimension statoment msy appear as follows:

DIMERSIZN A(1000,AY) AV(3)

¥ote that the auxiliary vector sust bave space rourvod for
it, also, thus its name appears twice in the DIMENSIGR statement,
The numbers stored in the auxiliary vector must be as follows:

AV(0) = pumber of dimensions in the array

AV(l) = location of (1,1,...,1) element, usually 1.
AV(2) = naxzmn size of second subscript.

Av(a) - ” ” mi“ (1]

AVid) s " " " fourth "

" etc,

In the example AV(3) would ba the last entry, since the array
bad only 3 dimensions., The maximus size of the first subscript
is not specified in the auxiliaery vector. The auxiliary
vector may be filled in by substitution statements at run time,
or preset with a VECTSR VALUES statement at compile time,

(see baslow)

It 13 often desirable to preszet an array with constant values
at the compilation time of a program, This may be donme by the
statement:

VECT#R VALUES V(S)“s'cﬂ-ﬂcwz" co

where v 1s the array name and the c, are constants, all of the
same mode. If s is zero, the subscript on v may be omitted.
Examples : '

VECT¥R VALUES FLE(23) = 15.5, 21,7, 382

VECTHR VALUES AV = 3,1,10,10

It i3 not recessary to provide a DINENSIGN statement for vectors
preset with a VECTOR VALUES statement, if the element with
the highest possible subscript has been praset.

A multidimensional array is stored in consecutive registers
in memory, Thus it is possible to calculate an equivalent
linear subscript using the following formula:

= dl 4o <°°°(‘(‘1‘1)0d2 ¢(92-1)"d3 *aoo" dn‘*(.n.l)

4,

Page 8

where the dy are the ith elsments in ths srray’s auxiliary
vector (sse above) aud the 3; sre the values of the subscripts.

An example of muitidimensional to lipear mapping is
the presetting of entries in the middle of a multidimensionel
array. The multidimensional array & Bay be preset starting
with the rth linear element by:
VECTER VALUES a(r) = (.‘..1 ’2”.”"
where r has been calculated trom the 84°s and the auxiliary
vector with the above formula. Example:

array B(J;K), 1<J<13, 15Ks6
. to preset B(4,3) = 15.5Xx10i2

DIMENSISN B(72,8V)
VECTOR VALUES BVe 2,1,6
VECTPR VALUES B(21) = 15.3E13

The dimension statement reserves 6X12s72 locations for B,
and names the auxiliary vector BV, The first VECTSR VALUES
presets the suxiliary vector for B: 2 dimensions, B(1,1)
is at 1, Max(K) = 6 :
Since all entries of BV are preset, it is not dimensziocned.
The second VECTSR VALUES presets B(4,3), The equivaient
linear subscript from the formula is

rmdy +{81-1)-dgeg,y=1 ® 14(4-1)7643-1 = 31

8. All variables are assumed to be of the node
unless explicitly declared otherwise. Mode declarations
hold for the entirs subprogram and are made by the statenent

INTEGER l1ist

where 1iak consists of one or mere variable or array names,
separated by commas. More than ocune mods declaration statemsnt
of a given type say be used, Example:

INTEGER A,B, IHAT

Input~Output Statements

Although it is possible to specify elaborate formats by which
information can be brought in and out of the computer, for simplicity
only three specific formats will be offered here, (The alloved formats
of the Computation Center version of MAD are the saume as those of
FORTRAN II.) In all these statements, magnetic tape is used for input-
output efficiency on the 7080 computer; an IBM 140} computer is used
to preprocess input tapes from cards and to poat-procou output tapes
to the printed page.

a.

Fage 9.

To print out one or mors iipes of cuiput (or read one or
wore input data cards) of integers which are right-justified

in 4 adjacent fields 18 characters wide, one writes eitber
of the statoments;

FRINT FPARMAT INT, list

READ FORMAT INT, list

where consecutive numbers on the in/out medium correspond to
the variables and array elemonts specified in the list., A list

oy

‘may contailn any number of variables, including nome, In addision,

whenever integers are printed or read by & subprogram there must

- be somewhore in the subprogram the format description statement:

}3-H
RuamPlo: vECTOR VALUES INT = (4118)
b, Similarly, to print (or read) ons or more lines of real numbers

Co

d.

~which ars right-~justified in 4 adjacnnt fields 18 characters wide,

the statements uged are:

PRINT FERMAT REAL, 1list
or

READ PARMAT REAL, 1list

where list bas the same Reaning as for integers and somewhere in
the subprogram there is also the format statement:

VECTOR VALUES REAL = $(4E18.8)$

To print 2 one line message of arbitrary text one sust use the
statement pair:

PRINT FERMAT £
Vﬁm VAMJES I = $(mxh2h3e oahn’s

where n is an integer such that 15n€72 and the successive Hollerith
characters h, contain the message. (The first character h; must be
a blank,) rﬁ. format vector name, f, may be aay unique name such
as HOLL, MESSl, etc, Example:

PRINT FORMAT END1
VECTER VALUES END1 = $(20H END £F WATIOIU)3

The statements of a subprogram are called a '"source subprogram”
and are card-punched on IBM cards using the usual Hollerith codes
to represent the letters of the alphabet, digits, and special
characters. Statements are punched anywhare in the fleld of columns
12-72 (blanks are ignored with the obvious exception of the text
included betwsen $ quote marks in VECTSR VALUES statements.) If a
statemont will not fit on one card it may be continued to another

Page 10

card by puaching comsecutive digits from ! to 9 ia col, 11 of each
continuing card. Statement labels are punched anywhere in the field
of columns 1-10., If the letter "R" appsars in colusn 11, that card
will be ignored by the compiler, although it will be printed on the
compilation listing (with the "R" deleted). This feature is usod
to make explanatory comments to a person reading the program., If a
comment iz to be continued "R"” must appear in column 11 of each
successive caxrd.

e. Processing of & Program

Compiling and execution of & program prepared for the MIT
Computation Canter is usually done under the control of a system
called the FZRTRAN-FAP~MAD Monitor System (PMS), Control of the
monitor is by means of special control carxds which have an
asterisk punched in column 1 and key werds in the cols, 7-72 of
the card.

_ MAD source subprograms are compiled by the monitor using the
MAD compiler program. The compiler examines each subprogram for »
various syntactical errors and may give ocne or more "error diagnostics.”

When a subprogram does compile (it may stil) contain logical
errors, bowever?) it is punched off-line as an "object subprograam”
in the form of relocatable binary cards, Off-line printed output
alsco is produced giving the machine languags instructions of the
compiled subprogram as well as other referemce details useful ia

debugging.

To operate 8 prograa in the most elementary mannexr, the following
procedure is used, A run deck is prepared with the following
sections in sequence. (S8ee attached example)

1. Identification Card (ID) in a format given by the Ceater,

3, An FM8 control card ® XEQ indicating that, if all seurce
programs corractly translete, the program is to be
exscuted,

3. The FiS control card ¢ MAD indicating that the following
program is to be coapiled by the MAD translator,

4, "Main" subprogram and all other subprograms (im either
source or object form) which are explicitly required by
EXECUTE statements in these subprograms and which are
Bot on the library tape.

(The FMS systen automatically supplies all needed Library
subprograms including those implicitly required by input-
output statenents such as PRINT, etc., and by external
functions such as SQRT, EXP., etc.)

8§, The FMS control card 2 DATA

6. Data cards (if any) to be read from the input tape by the
program,

Page 11

This run deck is writter on the off-line imput tape (probably
along with several other runs) and the FHS gystem iz started, The
monitor works on one run at o time, first compiling all the subprograms
which are in source lamgusge. If there are no compiling diagnostics,
the monitor brings in the "BSS loader" which then proceeds to read im
each cbject subprogram, storing them in sequence starting from a
lower address of core memory. During loading the loader maintains a
storage map giving the location and symbolic name of each subprogram.
When the FMS control card "®DATA" is encountered, a second phase of
loader processing begins, The loader exanines each subprogram te
determine what other subprograms are needed by it (listed symbolically
in & "transfer vector" at the beginning of each subprogram), If
necessary, missing subprograms are obtained from the library tape.
Using the completed storage map, the loader comverts each symbolic
nama in & transfer vector to a correspording transfer instruction to
the memory location of the spacified subprogram, Thus, the satry
links between subprogrsms are established, and the program is started
at the entry point of the "main subprogram,

The MIT version of MAD automatically inserts at an END §F PROGRAM
statement the nmecessary imstruction to return to the Monitor system,
When the program reaches this point, control returns to the momitor,
and it then proceeds to the next job,

LEVEL OF PRECEDENCE OF OPERATORS IN NAD

uABso, + (unary)
Opﬂ

~ (unary) USED IN
o,/ ARITHMETIC

EXPRESSI0NS
+, -

OEO , OmO 5 ooo) OGEO)OLD jo“o usxn u

EXPRESS I0NS
oNOT,

-AND,
-OR,

- THEN,
EQV,

Page 12

¥M2802=900Us FMSsDEBUG»19150,0 JOHN DOE, 18 JUNE, 1963
* XEQ
* MAD

R JOHN DOE

R INTERCHANGE SORT

VECTOR VALUES INT = $(4118)%

DIMENSION KVL (100)9sKVA{100)

R READ IN INPUTY

READ FORMAT INTsNsKVL(1)eeceKVLIN)»
1 : KVA(1)eoeKVAIN)
R SORT ON KvL

THROUGH LISTs FOR I=lylsleGeN

KMIN = KVL (1)

THROUGH SCAN» FOR J=lslsJeGaoN

WHENEVER KVL(J)eLE«KMIN

KMIN = KVL(J)
IMIN = J
END OF CONDITIONAL

SCAN CONTINUE

TEMP = KVL(IMIN)

KVLUIMINY = KvL(I}

KVLUI) = TEMP

TEMP = KVA(IMIN}

KVAULIMIN} = KVAL(I)
LIST KVA(IY = TEMP

R PRINT RESULTS

PRINT FORMAT MESS1.

VECTOR VALUES MESS1 = $(7H SORTED)S

' THROUGH PLISTsy FOR K=1313KeGaN

PLIST PRINT FORMAT INTs KVL(K)sKVA(K)

END OF PROGRAM
* DATA

