CC~216-3 ' ' PAGE 1

COMPUTATION CENTER
Massachusetts inst!iute of Technology
Cambridge 39, Massachusetts

TO: A1l Programmers,

FROM¢ R. H. Campbell.

DATE: April, 1965.

SUBJECT: FAPDBG, a symbolic debugging aid.

This memo Is an attempt to describe FAPDBG, a symbolic
debugging ald for FAP subprograms, It supersedes memos
cC-216, CC-216 supplement 1, and CC~216 supplement 2. The
FAPDBG subprogram is a primitive version, produced primarily
In order to experiment with the possible typing conventlions
and formats. Suggestions and complaints will be of great
assistance In planning future changes and additions to the
debugging system, ' ,

FAPDBG acts upon requests typed by the user on the
console and performs such functions as examining and typing
or changing the contents of specifled registers, and
allowing a subprogram to be run in controlled segments. The
requests take the form of a single~ietter request name
followed by arguments, all separated by blanks. A spurious
blank may precede the request, but none may follow it. A
blank is a string of any (non-zero) number of spaces or
tabulations., Any number of requests may be concatenated on
one line merely by typing an apostrophe or an equal sign
between the successive requests., The advantages of
concatenation 1le In the fact that the subprogram will have
to be brought Into core less often and will generate more
output each time in.

The avallable requests may be divided into the four
classes of set up, register modification and examination,
subprogram control, and FAPDBG control, Each of these

classes will be considered separately.

Set up Beauests
The set up requests permit the user to Inform FAPDBG of
the symbols used In the subprogram he wishes to debug. They
are }load address, symbol gtable, work, and gquals.
1, L: load address.

a. L EP

CC~216-3 PAGE 2

causes FAPDBG to search the loading table for the subprogram
with an entry point name EP. When FAPDEG finds the orlgin of
the subprogram, FAPDBG wilil type it out and save it for use
in relocating the symbol table. If the entry can not be
found, FAPDBG will Inform the user of this fact and return
to process the next request,

2. T symbol gtable.
a. T FN

causes FAPDBG to read and relocate the symbols In file FN
SYMTB by a relocation constant equal to the last origin
typed ocut., If such a flle exlsts, FAPDBG will read it, add
the subprogram origin to each symbol! value, and merge the
symbols into i1ts symbol table, Note that the SYMTB file
contalins no relocatlion Information; thus absolute and common
symbols will also be modified by the subprogram®s origin.
This procedure will produce improper values for all absolute
symbols and for common symbols in all but the first-loaded
subprogram, FAPDBG will signal successful completion by
typing "SYMBOLS LOADED."™ if the file can not be found,
FAPDBC will inform the user of this fact and return to
process another request. |f the symbol table becomes full,
FAPDBG will stop reading the flle and inform the user of the
last symbol inserted in the table. This Information may be
of some use since the symbols In the SYMTB flle are in
aiphabetical order.

b, T

causes FAPDBG to delete all the user®’s symbols from the
symbol table.

3. W2 work.
a, W EP FN

is identlical to the two reguests L EP'T FN, J.e. it finds
the origin of the subprogram with an entry point EP, then
reads and relocates the symbols In flia FN SYMTB. |f the
subprogram cannot be found, no attempt will be made to read
the symbo! table., Having given a work request for one
subprogram does not Imply inabillity to refer to locations In
other subprograms, Work is merely a comblnation of the two
requests load address and symbol tabie.

b. W EP

is a brief form, permissible when FN and EP are the same. It
is equivalent to W EP EP, or L EP'T EP,

4, E: gqguals,

CC~216-3 PAGE 3

a. E FE FS

perml ts the user to defline or redefine the symbol FS to have
the value of the expression FE. If the symbol tablie is full,
an attempt to enter a new symbol will fail and FAPDBG will
inform the user of that fact.

Rezister Examination and Modification
The register examination and modiflcation requests

permit the user to examine and change the contents of
locations In memory as well as the live registers of the
machine. They are floating point look, Hollerith look, full
word Integer 1look, FORTRAN integer 1look, gctal 1look,
symbolic look, deposit, gompare, signed gccumulator, loglcal
accumulator, and storage gap. ‘

5. F: floating point look.

a. F LOC1 LOC2

" will set the output conversion mode to floating point and
type out the contents of the bleck of locations, LOC1
through LOCZ,

b, F LOC

will set the output conversion mode to floating point and
tvpe out the contents of the single location, LOC.

c. F

will merely set the output conversion mode to floating
point,

6. H: Hollerlth Took.
a. H LOC1 LOC2
wiil set the output conversion mode to Hollerith and type
out the contents of the block of ilocations LOC1 through
Loc2,
b. H tOC

will set the ocutput conversion mode to Hollerith and type
out the contents of the single location, LOC,

ce. H

wlll merely set the output conversion mode to Hollerith.

CC=216=3 PAGE &

7. 1: full word jnteger look.
a. | LOCY1 LOC2
wiil set the output conversion mode to decimal Integer and
type out the contents of the block of locations, LOC1
through LOCZ.
b | LOC

will set the output converslion mode to decimal integer and
type out the contents of the single location, LOC.

c. |

will merely set the output conversion mode to decimal
integer,

8. J: FORTRAN integer look.

a, J LOC1 LOC2 '
will set the output converslion mode to that of a FORTRAN
integer and type out the contents of the block of locatlions,
LOC1 through LOC2.

b. J LOC
will set the output conversion mode to that of a FORTRAN
integer and type out the contents of the single location,
LOC,

c. J

will merely set the output conversion mode to that of a
FORTRAN integer.

9. O: gctal look.
a. 0 LOC1 LOC2

will set the output conversion mode to octal and type out
the contents of the block of locatlions, LOCl1 through LOC2.

b, 0 LOC

will set the ocutput converslion mode to octal and type out
the contents of the single locatlion, LOC,

c. O

will merely set the output converslion mode to octal.

CC~21b=3 PAGE 5

10, S3 gymbolic look,
a, S LOC1 LOC2

will set the output conversion mode to that of a symbolic
machine instruction and type out the contents of the block
of locations, LOCl1l through LOC2. FAPDBG will convert the
address, tag, and decrement or count fields of a symbolic
machine instruction in the following manner. iIf a symbol
has the same value as the field under consideration, that
symbol will be typed. I|f no symbol has the proper value,
the user's symbol which has the closest value will be typed,
followed by a plus or minus sign and the necessary
correction., The correction will always be typed in octal.
{f the value of the "best" user's symbol results in a
correction whose magnitude Is greater than the field under
consideration, the fleld itself will be typed In octal.

b, S LOC

wiil set the output conversion mode to that of a symbolic
machine instruction and type out the contents of the single
focation LOC.

C. S

will merely set the output conversion mode to that of a
symbolic machine Instruction.

In addition to the six "1ook" requests, F, H, I, J, O,
and S, one may obtaln the contents of any single location In
the current ocutput mode merely by typing the location. of
course the first symbol in the location expression must not
be a single letter. The contents of location "#+1" may be
obtained In the current output mode by typlng an empty
request (just a carrlage return or concatenation character).

11. D: deposlit.

a. D LOC FuW

will cause the FAP word, FW, to replace the previous
contents of the specified location, LOC, This request may
be abbreviated by omitting the request name, provided that
the location expression does not begin with a single-letter
symbol, The FAP word may be a symbolic machine Iinstruction
such as CAL ALPHA-10,4 or one of the data generating
pseudo=instructions OCT, BCD, FLO, INT (full word decimal
Integer), of JNT (FORTRAN integer) followed by a blank and
one word of data.

A symbollic machine tnstrucfion consists of a symbolic
operation code, an optional asterisk to indicate Indirect

CC~216-3 PAGE ©

addressing, and an optional wvariable fleld in the same
format as accepted by FAP, except that all numbers are
Interpreted as gctal and that multiplication and division
are not allowed, No blank may Intervene between the
- operation code and the indirect flag; a blank must, however
precede the varlable field, HNote that since the address
fileld is truncated to fifteen bits, the left three bits of
the address part of type D Instructions (left and right half
indicator operations) will be considered by FAPDBG as the
tag field, both for input and for output. Thus to Insert
the Instruction

RFT 300105
It Is necessary to type
RFT 105,3

The OCT pseudo-instruction accepts a signed or unsigned
octal integer of magni tude less than or equal to
377777777177, Thus, to insert the traditional fence, it s
necessary to type

OCT =3777777777177

The FLO pseudo-instruction accepts a signed or unsigned
floating point number with optional decimal point and
optional E modifier to denote multiplication by the
Indlcated power of ten, The B modifier is not sllowed.

The INT and JNT pseudo-instructions accept signed or
unsigned decimal Integers of sufficlently small magnitude to
fit Into the number of bits available (34359738367 for INT
and 131071 for JNT).

The BCD pseudo=instruction accepts any string of
characters preceding the request terminator (carriage
return, apostrophe, or equal sign) and assembles the last
six Into one word, If fewer than six characters are typed,

spaces will be Inserted on the 1left, Note that this
pseudo=-instruction uses the Iinput line Image after FAPDBG
has edited and "normalized" 1it. Therefore a string of

spaces and tabulations will be IiInterpreted as a single
blank.

12. C: gompare or verify.
a, C EP FN

allows the user to find out which registers of the
subprogram have been changed from thelr initial value when
loaded, FAPDBG will search the 1loading table for the
subprogram with entry point name EP. FAPDBG will type out
the origin of that subprogram and will save it for

CC-216-3 | PAGE 7

relocating file FN BSS. Then 1t will read and relocate each
word in fitle FN BSS and comgare it with core. FAPDBG will
type in the current mode all iocsztions and their contents
for which there Is a discrepancy. The word obtained from
the file will be typed first, followed by the word obtained
from memory, When file FN BSS has been completely checked
agalnst memory, FAPDBG will type "EXAMINATION CONCLUDED."
and will return to process another request. This request may
be terminated at any point by pushing the interrupt button.
FAPDBG will close out the BSS file and will return to
process the next request. If the desired flle cannot be
found, FAPDBG will so Inform the user and return to process
the next request.

b. C EP

Is equivalent to C EP EP. It may be used whenever the file
name and an entry name are ldentical.

13. A: slgned agccumulator.
a. A FW

places the FAP word FW in the slgned accumulator and clears
the P and Q bits.

b, A
types out, in the current mode, as set by the previous F, H,
i, J, 0, or S request, the contents of the signed
accumulator, followed by the P and Q bits.
14, K: logical accumulator,
a. K FW

places the FAP word FW in the logical accumulator and clears
the S and Q bits

b, K
types out In the current mode, as set by the previous F, H,
i, J, 0, or S request, the contents of the 1loglcal
accumulator followed by the S and Q bits,
15. M: storage map.
a. M

will cause a storage map to be typed, with each subprogram
listed In the order of loading.

Cl=216«3 PAGE 8§

Subprozeam Control

The requests which have to do with subprogram control
allow the user to run his subprogram in controlled segments.
They are preak, go, and proceed.

16, B: preak.
a, B LOC

conditions FAPDBG to insert a "breakpoint" at location, LOC.
FAPDBG will save the location and set an indicator to slignal
that a breakpoint Instruction, speciflically a transfer Into
FAPDBG, is to be inserted Iinto that location. No subprogram
modificatlion occurs at this time. An examination of the
breakpoint location will reveal its original contents and
changing those contents (yla @ deposit request) wlil not
remove the breakpoint., The breakpoint must not be placed at
a subprogram-modifled Instruction or where it would be used
for Indirect addressing. Only one breakpoint at a time may
be Inserted.

b, B
causes the breakpoint to be removed.
17. Gs go.
a, G LoC

allows the user to start execution of the subprogram at
location, LOC. FAPDBG will examine the breakpolnt flag and,
if a breakpoint exists, will save the contents of the break
location and Insert the necessary transfer instruction. it
will then restore the machine conditions, and transfer to
the specified locatlon.

18, P: proceed.
a, P

allows the user to continue executing his subprogram from
the state it was in just before control last entered FAPDRG.
Upon encountering the breakpoint transfer Instruction,
control wiill be transferred to FAPDBS, which will save the
machine conditions and restore the temporarily removed
instruction at the break location. FAPDBG wiil! then type
“BREAK." and walt for requests.

Proceed will cause FAPDBG to perform all the steps
performed by go, except that after restoring the machine
condlitions, FAPDBG will execute the above~mentlioned
instruction and transfer to the appropriate location
following its locatlion as governed by any skipping which

CC~216~3% PAGE 9

might occur. If the Instruction 1is location=dependent,
npamely TSX, STR, STL, or XEC, FAPDBG wlll Interpret it as If
it were beling executed from its normal location. Thus a
breakpoint may be tnserted ai a subroutine cali. A chaln of
XEC instructions will be interpreted to a maximum depth of
ten. A subprogram In operation may be interrupted at any
time by pressing the interrupt button.

lnternal Operation

The request which controls the internal operation
allows the user to return to C7SS. !t iIs guit.

19. Q: guit,
a. Q
returns control to the Time=Sharing Supervisor In such a way

that a START command will transfer control to the place in
the user's subprogram where it last entered dormant status.

laoternal Symbols

The following symbols are permanently defined In FAPDBG
as locations where the machine conditions are stored.

$MQ The multiplier-quotient register,
$sS1t The sense indicator register.

$X1 Index register one,

$X2 Index register two,

$X3 index register three.

¢4 Index register four.

$45 Index register five.

$X6 index register six.

$X7 index reglister seven.

* The current location.

This symbol 1Is defined as the last location referred to
by either the user or FAPDBG. it Is redefined as the
focatlion of the next iInstruction to be executed in the
user’s subprogram by encountering a breakpoint or by a

Cem216.3 PAGE 10

manual restart.
$LS Lights and switoic

This focation contalns the state of the machine
conditions In the right-most eight octal digits as listed
below; the off status is represented by zero, on status by
one. Reading from teft to righte '

DIGHT CONDITION
5 Floating point trap mode.
6 Divide check 1ight.

7 Overflow light.
8 Multiple tagging light.
g Sense light one.
ie Sense light two.
11 Sense light thresa.
12 Sense light four,
$iC The Instruction location counter.

This focatlion contalins the address of the next
Instruction to be executed In the user's subprogram. It is
set by encountering a breakpoint or by a manual restart. It
Is exanined by the proceed request {n order to determine the
iosation to which to transfer control.

Sxntax

The Tocation, address, tag, and decrement paris of a
request argument may consist of strings of symbols and ggtal
numbers saparated by plus and minus signs to dencte the
desirad algebraic manipulation,

The indicated operations are carried out, the result
converted %o two's complement form and the rlght fifteen
blts saved (In the case of the tag fleld of a symbolic
instruction, the right three bits are saved). Symbols,
which must be defined, may consist of any number of
characters, at Jeast one of which must be nonenumeric (i.e.
not ¢ through 7), and none of which may be the special
charauters; pius sign, minus sign, c¢omma, space, oOr
tabulate, If the number of characters is greater than six,

CC-216-3 PAGE 11

only the last six will be used. Anv :tring conslisting only
of the diglts 0 through 7 «ii} .s con idered an octal number
of five digits, with left z:ros if ne:essary. |f more than
five diglts are typed, orly the last i'lve will be used. The
iine typed In |s scanned from t2 ief. and each fleld 1is
evaluated when encountered. ‘'f an undeflined symbol s
discovered, or a deviaticn from an understandable format |is
dlscovered, an appropriate comm:nt iIs typed and processing
of the request Is terminated. if <ne or more requests
cannot be Interpreted, ary go or proc: ed requests following
them on the same line will he §:inored

Qcarzliun

The current versior c¢f the BS3 1loader does not
automatically load FAPDBG cr &n:y othe: dabugging ald. When
the user types one of the in~core dehugzing commands, the
approprliate reiocatable sutprcocgram 1s 1oaded from the CTSS .
"debugging" library. This tapiics tha: the loader should not
be destroyed before Issuing ary o»f thaose commands. If it is
feared that the user's subgrogr:in may dastroy the loader,
FAPDBG may be loaded befoie ¢*s be:inning of execution.
This procedure should also be ured fo’' dabugging subprograms
which extend the memory bound.

The FAPDBG subprogram is a:orcex? ~:21y 12400 locations
long, octal, This Include: sio:zge race for a maximum of
800 symbols, decimal,

FAPDBG handles the interruit lev:is In the following
way., It always places itself at leve! one. Any interrupts
the user has are moved dowt tc ' =vels twd>, three, and fcur.
Thus 1t is always possibie to jress thsa interrupt button
either to return control t« FEPI 3G, o0° to stop its type-cut.

The supervisor commanc
FAPOBG ALPH:

will cause FAPDBG, after arnoun:ing 1:s presence, to read
requests from the card-imaje {1 = ALPIA DEBUG. When the
file Is exhausted, or If tie 1 ¢ can not be found, FAPDEG
will return to reading reqtests frcm :he console as wusual.
The file may be created by use of the ED command.

When FAPDBG is enterer, it =111 ainnounce that fact and
type the memory bound If t!e boiund ha; zen changed. The
user may then procged to mi ke rouyuests; of FAPDBG. To help
get the above descriptions In 2z corcrate example, a "typlcal
session” is presented belot, Forrowlig a2 convention used by
R. S. Fabryf sampie lines t 11" e pre“txed by a "uy," "s,®
"F," or "P," to Indicate t'at tiizy ar» typed by the yser,
the gsupervisor, FAPDSG, o th> user's subprogram,

Co-216=-3 : PAGE 12

resuectlve!y; For exémp!ey the 1ine
Fsg
represents a blank line typed by F.

The hypothetical user has written his own sine routline,
assembled and loaded 1t, and Is trying to get it ¢to glve
correct answers. He first glives the FAPDBG command to
inform the loader to load FAPOBG and transfer control to it.
FAPDBG acknowledges that control has reached i{t.

Usfapdbg
S:W 1416.0

F:FAPDBG ENTERED, MEMORY BOUND 1S 16730,
F

The user wishes to inform FAPDBG of the symbol
definitions to use., He does this by typing a work request
which causes FAPDBG to locate the subprogram In core memory
and then to read and relocate the symbols In the symbol
table file, which the user has named "“RHCSIN,"™ FAPDBG
informs the user of the two stages of this process.

Usw sin rhesin

F:SIN IS LOADED AT 5212,
F:SYMBOLS LOADED.

Fs

The next steps the user mlight take are to Insert a
breakpolnt at the end of his subprogram, set up its Input
parameters, and transfer control to lt. These steps might
look as follows; note that FAPDBG types a carrlage return
just before It tries to read a new line.

Usb end
Fe
ta flo 3,1415%%

U;g sin
FePROGRAM STARTED,

After the '"PROGRAM STARTED." comment, the user's
subprogram Is running, It will run undisturbed until it
encounters a breakpolint or enters dormant status for some
reason, such as a protectlion mode violatlon. From dormant
status it Is possible (provided the 1loader has not been
destroyed) to restart FAPDBG by typlng the command

FAPDBG

FAPDBG will redefine the current location symbol (+) to be
the location of the next Instruction to be executed, It 1Is

CE=286-3% PAGE 13

possible, now, to give a progcesd - sgu-st and continue from
the point at which the subprogra: entered dormant status.

Let us here suppose, however, tha® all went reasonably
well, and that control reached the breazkpoint. FAPDBG will
Indicate this and then walt for requests,

F1BREAK.
Fe

The user might now reascnably want to examine the
output of his subprogram, for example, a floating polint
number In the accumulator. This he does by changing the
output mode to floating peint and asking for the contents of
the sligned accumulator yla two concatenated requests.

Usf'a
Fa$A/ 5.6900432 P= 00Q=0
Fs

Unless the user Is satisfled with the results, he will
probably want to "poke around," exanining and changing
instructions and data.

Uss foo=5
F:FO0Q~5/ FAD END+17

f end+17
END+17 1.57079%99

d foo=5 fsb end+l8
18 1S NOT DEFINED.

;e Nmoam
a0 2 e se ¢o eo o3

This error comment by FAPDBG (llustrates an easily
overlocked fact. The numbers typed In the variable field of
~a symbolilc Instruction, both for Input and for output, are
absolute octal constants., The string of characters '"18%
above was interpreted as a symbol which, of course, was
undefined,

The user next attempts a concatenation of four
requests, but agaim makes a typing mistake.

Usd = fab end+17'a flo 3.14158°%g sin'a
FsFAB IS5 NOT DEFINED.,

F:G I1GNORED.

Fs$SA/ 3.14159 P=0Q=20
Fe

Note that the error iIn the earller deposit request
caused the go request to be lgnored, This would not have

b?en the case had the requests been typed on different
lines.

CC=216=3 PAGE 14

summary of Reguests
Below are presented in alphabetical order the request
letters, together with a short description of the operation
of each request. The numbers In parentheses refer to the
section headings above,
A FW

{13a) Replace signed gccumulator with FAP word FW, Clear
the P and Q bits.

A

(13b) Type In the current mode the contents of the slgned
accumulator, followed by the P and Q bits.

8 LOC

(16a) Insert a preakpoint at location LOC.
B

(16b) Remove the hreakpoint.
C EP FN

{12a) Compare the sdbprogram with an entry name EP with the
file FN BSS and type discrepanclies in the current mode.

C EP

(12b) The same as C EP EP, May be used when the flle name
and an entry name are the same,

D LOC FW
(11) peposit the FAP word FW in location LOC,
E FE FS

f4) Define or redefine the FAP symbol FS to be gqual to the
FAP expression FE.

F LOC1 LOC2

(Sa) Set output conversion mode to‘ﬂlbatlng point and type
the contents of the block of storage from LOC1 through LOC2,.

F LOC

(5b) Set output conversion mode to floating point and type
the contents of the single location LOC,

€C=216-3 , PAGE 15

F
(5¢) Just set output conversion mode to floating point.
G LOC
(17) Go to location LOC.
H LOC1 LOC2

(6a) Set output conversion mode to Hollerith and type out
the contents of the block of storage from LOC1l through LOC2,

H LOC

(6b) Set output conversion mode to Hollerith and type the
contents of the single location LOC,

H

(6¢c) Just set output conversion mode to Hollerlth.
I LOC1 LOC2

(7a) Set output converslion mode to decimal Jjnteger and type
the contents of the block of storage LOC1 through LOC2.

I LOC

(7b) Set output conversion mode to decimal jnteger and type
the contents of the single location LOC,

(7c) Just set output conversion mode to decimal Jnteger.
J LOC1 LOC2

(8a) Set output conversion mode to FORTRAN integer and type
the contents of the block of storage LOC1l through LOC2,

J LOC

(8b) Set the output conversion mode to FORTRAN Integer and
type the contents of the single location LOC,

J
(8¢c) Just set the output conversion mode to FORTRAN Integer.
K FW

(14a) Insert the FAP word FW in the logical accumulator and
clear the S and Q bits.

CO=216-3 PAGE 16

K

(itb) Type in the current mode the contents of the logical
accumulator, followed by the S and Q bits.

L EP

(1) Type the load address of the subprogram with an entry
name EP,

M
(15) Type a storage gap.
N
Unused.,
0 LOCl Log2

(9a) Set the output conversion mode to gecta! and type the
contents of the block of storage LGCY1 through LOC2,

0 LOC

{9b) Set the output converslon mode to gctal and type the
contents pf the single iccation LOC,

0
(Sc) Just set the output conversion mode to gctal,
p

{18) Proceed to the locatlon stored In $1C by the last break
or Interrupt.

Q

(18) Quit and return to CTSS.
R

Unused,
S LOC1 LoC2

(10a) Set the output conversion mode to gymbolic and type
the contents of the block of storage LOC1l through LOC2.

$ LOC

(10b) Set the output conversion mode to symbolic and type
the contents of the single location LOC.

CC~216=3 PAGE 17

S
(10c) Just set the output conversion mode to gymbolic.

T FN
(2a) Read and relocate, by the last origin typed out, the
symbols In file FN SYMTB,

T
(2b) Remove all the user's symbols from the symbol table.

U

Unused.

Unused.
W EP FN

(3a) HWork subprogram with entry name EP whose symbols are In
flle FN SYMTB. The same as L EP'T FN,

W EP
(3b) The same as W EP EP or L EP'T EP.
X

Unused.,
Unused,

Unused.

