Massachusetis Tnstitute of Technology
Proisci MAG

L2467 Hemorandum MAC-M-205
November 25, 1964

MADEUG: A MAD DEBUGGELING SYSTEM
by Robert S. Fabry

MADBUG is a system under which the user can create and
debug programs written in the MAD progfamming language.
MAGBUG aliows the user to input and edit symbolic programs
and to execute In a controlled way and Iinterrogate the
derived machine language programs, The most important
consideration in the design of IMADBUG was ease in learning
and using, both for the beginner and for the advanced
programmer. iMADBUG is wunusual in that it wutilizes
information which has beer. previously lgnored, This
information comas from: (1) the sequence in which the wuser
types his requests, (2) the flles avallable In the user's
fiie directory, (3) the expanded information content of the
new MAD symbol table flles developed for "ADBUG, and (&) the
in‘ormation inherent in the very.limited, stylized set of
coding sequences generated by a compiler, The use of this
additional information manifests itself In two ways: (1) the
user need provide very little information to accomplish a
stven task, and {2) the user does not have to understand

assembly Yanguages; machine languages, octal numbers,

RS e AR i

s farly research on the form of the HMADBUG system was
sponsored by the Advanced Research Projects Agency under
contract number SD=162 with Information Internaticonal Inc.
of Cambridge, ass: later research and programming was
carried out as a special project for credit under Professor
F. J. Corbato; and the remaining work was carried out with
noe sponsovship,

HAUBUG November 25, 1964 PAGE 2

relative or absolute addresses, symbol tables, machine
representations of constants, or any of a host of similar
items, The MADBUG requests of CHANGE, DELETE, [INSERT, and
APPEND demonstrate the influence of the '"Expenslve
Typewriter"” program written for the PDP=1 by Steve Piner,
The "nDT" program written for the PDP~1 by Robert Saunders
and the "FLIT" program written for the TX-0 by Jack Dennis
and Thomas Stockham have influenced the OPEN, VERIFY, BREAK,

and KiLL requests,
AN INTRODUCTION TO MADBUG

A simple hypothetical session with MADBUG will provide a
useful background for the detalled description which
follows, Conslider a user who is writing a function which
returns the smallest factor of the number given to it as an
argument, The function returns zero if the argument Iis a
prime, (Lines will be prefixed with a U for the user, 1 for
MADBUG, S for CTSS, or P for the user's program, Typing s
assumed to be on a 1050 consoie, which means that the user
types in lower case and the machine types 1In upper case,
“"M:", by itself, means a blank line typed by 1.,) Flrst, the
user will tell the system he wishes to use MADBUG:

Usmadbur

S:W 1812.2

43
MADBUG is now waiting for the user to glve his first
request., The user tells "1ADBUG that he 1is working on a

subprogram In a file called FACTOR HMAD:.

1MADBUG November 25, 1964 PAGE 3

U:work factor
MACBUG makes no response unless the request calls for
information. The user wants toc input the program, which
doesn’t exist yet. He chooses to request MADBUG to append
some Input to the (now empty) symbolic program (intiroducing,
for the demonstration, a syntactic error in the third ca?d

and a bug in the Initialization of the index "i"):

Uzappend .

Us external function (arg)

Us - normal mode is integer

Ue entry to factor

Us through loop, for i=1,1,I*i.g.arg

Uslocop whenever (arg/i)«i.e.arg,function return i
Us function return 0

Us end of functlon

Us

The blank line signals the end of Inputing cards and implies
that the user will type a request next., The user requests
that hils program be translated Into machline language:

Ustranslate

M: TRANSLATING FACTOR, ..

M: #eee« ERROR 17025 IN STATEMENT BEGINNING OM CARD 003
M "t LLEGAL FORMATION OR PUNCTUATION.

M TRANSLATION ERROR

Mz

He asks MADBUG to print the offending third card:
Usprint 3
Ms ENTRY 7O FACTOR
M
and recognlzes that he omitted the period. He corrects his

ervrors:

Us:change 3
entry to factor.

ae e

U
and re-translates his program, abbreviating the request name

by Its flirst letter, as is always allowed:

MADBUG November 2%, 1964 PAGE 4

Uzt

M: TRANSLATING FACTOR. ..

M2SUCCESSFUL.

Me
FACTOR is syntactlcally correct and the user turns to write
a short main subprogram to test its operation:

Uswork test

Uzappend

Us normal mode is Integer

Us:loop print comment $type.$

Us read data :

Us fac=factor.(num)

Uz print results num,fac

U: transfer to loop

Us end of program

Us
The user Is ready to test hls programs, He tells MADBUG
what programs to load, This does not cause loading,
however, He then asks MADBUG to start hls program. Since

he does not specify a starting point, and since the program
has not been loaded and run before, the program will be
started at the beginning of the maln subprogram, MADBUG
will know that TEST must be translated and that loadlng must
occur at this point:

Ususe test factor

Usgo

M: TRANSLATING TEST...
M:SUCCESSFUL,

M: LOADING FRESH CORE IMAGE...
M:SUCCESSFUL,

MsUSER IN CONTROL.

P:TYPE,

The user Is now talking to his program:

Usnum=25 =

Ps NUM = 25, FAC = 1
P:TYPE,

Usnums7 =

Ps NUM = 7, FAC = 1

MADBUG MNovember 25, 1964 PAGE 5

P:sTYPE.
The user realizes his program has a bug, studies his
program, and discovers that he should have initialized the
index to 2., He could simply edit the correctlon into his
program and GO agaln, but an alternate stratagy will also
aliow the user to discover additional bugs In his program,
if any, without requiring re-translation and re-loading.
The user Intervrupts hils program and returns control to
MADBUG:

Uz(the user hits the break button once.)

S:INT, O

M:MADBUG IN CONTROL,

M:INTERUPT WHILE IN PROGRAM !{/RFLXA AT 10 RELATIVE OCTAL.

Ms
WRFLXA is one of the lowest level subroutines for console
Input and output. In this case, the user®s program was hung
there walting for input. The user inserts a breakpoint at
statement LOOP and returns control to his program, Since he
does not specify a starting point, and since his program has
been executed after the previous loading, the program will
be restarted where it left off. The user then types another
value of NUM to hls program:

Ueswork factor

Usbreak loop

Uzgo

M2:USER IN CONTROL.

Usnum= 5 =

MeMADBUG IN CONTROL.

M:BREAKPOINT ENCOUNTERED AT STATEMENT LOOP.
~ The user fixes the initialization of the index by hand,
using the open request, removes the breakpoint, and lets his

program calculate the factor:

MADBUG November 25, 1964 PAGE &

U:zopen i
Mel=s 1 (Us)2
Uskill loop

Usgo

M:USER IN CONTROL.

P: NUM = 5, ' FAC = 0
P:TYPE,

and then repeats the process for the other case:

Us:(the user hits the break button once.)
S:INT. O

M:MADBUG IN CONTROL,

M INTERUPT WHILE IN PROGRAM WRFLXA AT 10 RELATIVE OCTAL.
M

U:break loop

Usgo

M:USER IN CONTROL,

Usnum=25 =

Ms:MADBUG IN CONTROL.

M:BREAKPOGINT ENCOUNTERED AT STATEMENT LOOP,
Usopen | :

Mela 1 (U:z)2

Uzkill loop

Usgo

MsUSER IN CONTROL,

P: NUM = 25, FAC = S
P:TYPE,

The user is satisfled that there are no more bugs, He does
now what a less conservative user would have done as soon as
the bug in the initialization of the Index had been
discovered, He edits the correctlion Into the symbolic
program using the MANIiPULATE request. This request will
reptace all occurances of the first string, "I=1", by the
second string, "i=2", MADBUG will 1ist the cards on which
the replacement Is performed, (Editing a symbolic program
whose machine language translation was used for loading wlll‘
destroy the current user core image. Thus the user could
not have made the change and then continued to 1look for

additional bugs in the old core Image.)

MADRBUG November 25, 1964 _ : PAGE 7

Us(the user hits the break button once.)

S¢iNT. O

M:MADBUG IN CONTROL, v

M: INTERRUPT WHILE IN PROGRAM WRFLXA AT 10 RELATIVE OCTAL,
Mz

Usmanipulate /i=1/i=2/

M:LOOP-1

M:THAT'S ALL,

M: ’

The user, being conservative, makes a test of his program in
its final form:

Uz:go

M: TRANSLATING FACTOR..

M:SUCCESSFUL.,

MsLOADING FRESH CORE IMAGE...

M:SUCCESSFUL.

M:USER IN CONTROL.

P:TYPfo

Usnuma3 «

P: NUM = 3, FAC = 0
P:TYPE.

Uznum=125 »

P: NUM = 125, FAC = 5
Ps TYPEO

Us:(the user hits the break button once.)

S:INT. O

M:MADBUG IN CONTROL.

Mz INTERRUPT WHILE IN PROGRAM WRFLXA AT 10 RELATIVE OCTAL,

Me
Satisfled, the user deletes the maln program written for
testing, and requests MADBUG to return him to CTSS:

Uswork test

Usdelete

Usqulit

S:R 93.556+79,.350

Sz
CTSS is listening to the user, and the user may LOGOUT or
issue any other CTSS command,

A DESCRIPTION OF MADBUG

MADBUG Is instructed by requests, typed one per line,

A request line is made up of the name of the request

followed by Its arguments, with one or more blanks for

MADBUG November 25, 1364 PLGE &

separation., Request names may be abbreviated by their flrst
letter. 'n request lines, tabulation characters are
equivaient to blanks, There may be blanks before the
request name and after the last argument; biank request
1ines are Ignored., Since blanks are used as delimiters, the
arguments, which may be as complicated as “a(l)+l,..b-3",
must ba typed without internal blanks, A request which
operates on varlables will operate on single variables or on
blocks of varlables, specifled In the usual MAD manner as
“"alpha...beta"; a request which operates on cards will
operate on single cards or on blocks of cards. For example,
"werlfy alpha beta(1)...beta(3) k(1,1,1)" would verify, in a
sense described later, the varlables ALPHA, BETA(1),
BETA(2), BETA(3), and K(1,1,1).

MADBUG requests can be classified Into four groups: the
edit requests which are PRINT, DELETE, [INSERT, CHANGE,
APPEND, MANIPULATE, and TRANSLATE; the core reaquests which
are GO, OPEN, VERIFY, LINKAGE, BREAK, KiLL, SAVE, and
RESTORE; the requests for returning to CTSS which are QUIT
and EXECUTE; and the declarations which are WORK, USE, and
FORCE. These requests will be discussed In the next few
sections,

The \iork Request

The MADBUG requests are carried out in the context of a
single MAD subprogram. The WORK request allows the user to
declare which subprogram Is of Interest. For example: "work

prog"” sets up MADBUG to work on the program iIn file PROG

MADEUG November 25, 1964 PAGE 9

MAD, The file PROG MAD does not have to exist. As
illustrated In the sample session, If the user adds lines to
a non~exlstant file, MADBUG will create the file. Thus, |If
the user Is working in the context of a subprogram PROG, and
wishes to print a subprogram ROOT, he must flrst request
"work root" and then may‘request "orint®.

Edit Requests

MADBUG uses a different technique for editlng than the
CTSS EDIT command, Neither the user nor MADBUG supplies a
line number for a card Image. Instead of Indicating a card
image by giving lts associated line number, the user has
three options: (1) the statement label on the card, If any;
(2) the card's position relative to another card which has a
statement label (the third card before ALPHA is ALPHA-3; and
(3) the number of the card in the deck (the 17th card in the
deck is simply 17). 1In counting for (2) or (3), the user
must count all physical card images Including remark and
continuatlion cards., MADBUG interprets the arguments of a
request before executing the request; thus, I(f a .deck
consisted of three cards, "delete 1 2% would leave the thlrd
card, but Ydelete 1" followed on another line by "defete 2"
vwould leave the second card,

In unusual situations there may be @ 1long section of
program with no statement labels, The wuser 1Is free to
Insert remark cards with statement labels in such a case.
MADBUSG, but not the MAD transliator, will ailow references to

statement labels on remark cards,

MADBUG November 25, 1964 PAGE 10

Three special conventions exist for specifying
statement labels: (1) the "' |s always taken to mean the
previous card referred to by the user, so that a "print «+3"
after a "print 6" would print the 9th card, and so that a
“"print alpha...*+2" would print three cards starting with
ALPHA, (2) the "/" is always taken to mean the last card In
the deck, so that, in a five card program, "print 1 3 5" Is
identical to "print 7 3 /". (3) Requests which operate on
cards will operate o) every card in the subprogram If no
cards are specifiled, so that "print" is identical to "Yprint
loood"

MADBUG observes the standard conventions of horizontal
spacing: the characters after a tab will be moved to column
12 and the charact:rs after a tab-~backspace will be moved to
column 11.

The descript on of several of the editing requests willl
- refer to input 1i1e blocks. An input line block consists of
all the lines the user types before typing a blank 1lline,
The editing requ:sts are defined as follows:

PRINT wil! print all cards mentioned as arguments,

Thus, "brint a(l)+l...b=3" would print a block of cards

starting »ith the card after the card ltabeled A(1l) and

ending with the third card before the card 1labeled B;

"orint 1 6 b.oo*+1" would print the first and sixth

cards aud a block of two cards starting at the card

labele: B; “print™ wouid print all of the subprogram

being w~orked,

MADBUG November 25, 1964 PAGE 11

DELETE wiil delete all cards mentioned as arguments.
Thus, "delete" would delete all of the cards of the
subprogram being worked, and "delete 1 3,,.6" would

delete the first and the third through sixth cards.

INSERT will insert successive input 1ine blocks before
successive cards mentioned as arguments, Thus, one
might see the following sequence:

Usprint
M:ONE

Ms
Usinsert
U:zero
Us
Usprint
M: ZERO
M:ONE

M:
Us:insert 1 one

CHANGE will vreplace successive cards or blocks of
cards, glven as arguments, by successive input line
blocks., A b!ock'containlng any number of cards may be
replaced by an input line block of any length, Thus
one might see the following sequence:

Usp

M:ONE

M:TWO

M: THREE
M:FOUR

i !

MADBUG Hovember 25, 196b PAGE 12

MsFiVE

M3

Us:c one three...flve
U:a

Usb

2]

60 80 €& ad 96

TIZITZICCC
ng>"5
o

28 &3 ec 0

APPEND with no arguments will append the 1Input 1line
block which follows the request line to the subprogram
being worked. On the other hand, iIf the request has
arguments, they are taken to refer to MAD subprograms
which will be appended, in order, to the program beling
worked, The following sequence illustrates using
APPEND to finish writing a "“program" and to re-arrange
the "program';

Uswork test
Usprint

M:sONE

M:TWO

Me

Usappend

Usthree

Us

Usprint

M20ONE

M:TWO

M:THREE

M3

Usappend test test
Usdelete 1...2 4 6 8,,.,9
Usprint

14+ THREE

M3TWO

MsONE

Mg

MADEUG November 25, 1964 PAGE 13

APPEND is also useful for creating a modified version
of a subprogram whlle keseping the original, To do
this, WORK the new name, APPEND the old name, and then

mzke modificatlons,

MABIPULATE is a request for character manlipulation
within a card Image. The flirst argument specifies the
manipulation. Arguments after the flrst specify cards
within which the manipulation wiii be performed, The
first argument has the form: /#2a/wxx/ where the slash
stands for any separation or dellimiter character which
must occur exactly three times, and the strings of
asterisks stand for any paiv of character strings., The
manipuiation consists of replacing all occurances of
the first string by the second string. Any character
except a tab or space may be used as the delimiter; It
is recognized by Its being the flrst character of the
argument, The two character strings may include any
characters except the delimiter and the carriage
return, and they may be of dlfferent lengths. tf the
first string is empty, It will be taken to match a null
string before column one on the card, thus allowing a
simple way of inserting a statement label on a card,
As a conflirmation to the user, MADBUG will print a2 list
of cards on which the manirulation is performed. 1 f
the manipulation is perfornad more than once on a card,
the card wlll be included In the 1list once for each

time the manipulation occurs. MADBUG does not consider

MADBUG November 25, 1964 PAGE 14

replacing a string by itself tc change the symbolic
program, Thus the user can replace a string by Iitself
to locate all occurences of the string. One might

observe the following sequence:

Uz:p one

MsONE THROUGH ONE, FOR 1=1,1,1,G.N.OR.X(1).E.O
M: '
U:manipulate *one*loop#* one

M:ONE

M:ONE

M:THAT'S ALL.

Ms

Usp =

M: LOOP THROUGH LOOP, FOR 1=1,1,1,G.N.OR . X(I).E.O
Ms '
Usp toop+l

M: DATA=Y(1)

Me

Usm $$label$ =«

M:LOOP+1

M: THAT'S ALL,

M

Usp *

M: LABEL DATA=Y(1)

Ms

Us m /1/3/ 1oop...label

M:LOOP

M:LOOP

Mz LOOP

M: LABEL

MeTHAT®!S ALL,

M:e

U:P ‘oopooolabel

M: LOOP THROUGH LOOP, FOR J=1,1,J.G.N.,OR.X(J).E.O
M: LABEL DATA=Y (J)

M:
JRANSLATE has no arguments, and causes the subprogram
being worked to be translated into machine language by
the MAD compiler. From the user's point of view MADBUG
is performing the translation, It is not necessary to
translate any subprogram before using it. MADBUG will
request any translations that are needed at load time,

The TRANSLATE request is a convenience to the user who

MADBUG November 25, 1964 PACGE 1%

is changing several subprograms at one time, and who

would like to catch any syntactic errors in onz before

turning his thoughts to another.

The Use Request

The core requests, which will be discussed in the next
section, operate in the context of a core Iimage, MADBUG
must have some way of knowing what subprograms to load when
creating a core Image, The arguments of the USE request are
the subprograms to be used, Thus a wuser writing a
subroutine ROOT and a test program MAIN might "use main
rect”™. There are provisions for using FAP programs, special
litraries, and special loader parameters; these provisions
are described later.

Core Image Requests

Some core requests require cards for arguments, and
their arguments observe the same conventlons as those of the
adit requests., A core request which refers to a declaration
or remark card will operate on the first executable
statement following the vreferenced card, Other core
requests require varlables for argumerts. A varlable 1is
glven as an argument in standard MAD notation,' fncluding
muiti=dimensional arrvays and COMMON and ERASABLE variables,
but not the dummy arguments of functions, Three spacial
conventlons exist for variables: (1) the "#" 1s always taken
to mean the previous variable refered to by the user; (2) If
no variables are speclified, the request wil! operate on

avery variable In the program; and (3) the block notation

ghnous November 2%, 196u PAGE 1f

can be used to include several arrays or variables at ance.
Varlabies are taken to be ordered alphabetically {(with a
blank coming after R, alas.) and then by linear subscript.
The first time the user gives & core request, & core
irage must be created by MADBUG. This 1is accomplished by
translating each of the needed subprograms Intoc machine
tanguage, 1f necessary, loading the subprograms iInto core,
and finally modifying some cf the subprograms in order to
intercept i1legal references to an array. If an error s
detacted In this process, the core image will not be formed,
and the core request will be terminated, The user should
correct the errvor and try the core request again. The core
image will be destroyed when the user Issues the quit
request or edits a program occuring In the core Image. The
core requests are defined as follows:
G0 will start the user program, A single card glven as
an argument for GO will cause the user program to be
started at the named card, If no argument 1Is given,
the user program will be started wherever It stopped
fast. A fresh core image will startlét the beginning
of the main program,
The user program will remain In control until (1)
It terminates by calling DEAD, DORMNT, FENDJOB, ERROE,
or EXIT; (EXIT can be implicitly called by letting
control reach an END OF PROGRAM or END OF FUNCTION
card.) (2) a "breakpoint™ Is encountered by the user

program; (3) the user Intarrupts by pushing the break

RERSE T af
ISR H

ok

e
¥
&

PAnE 17

oo i o # 8
2 ETRDE ¢ P I

bution once; or (i) an arrvay s veferenced with
subscriots polnting outside of the dimensioned array.
{Seme array dimension viclations are not caughty this
i3 discussed In a later section.) On any of these
cocasions, contrel returns to MADBUG, and the wuser s
informed of the reason.

infrequentliy, the user program may have an error
which causes controi to return to CTSS. In this case,
the wser should type two CTSS commands, flrst ‘“save
fusar)™ to save his own cove image and second "resume
{mdbg)¥ to return controi to the core 1Image on which
MADBUG saved lItseif. Even 1f the first of these
comnarnds results In an error comment from €TSS, the
wser should type the second. This proceedure Is called

& manual restart.

OPEN wiil print the contents of variables mentioned as
arguments, one by one, and after each, walit for the
user [0 ftype a new value for the variable, If the user
wishes the old value to remain, he Jjust types a
carviage returmn, In typing out the value of a
variablie, MADBUG makes use of the declared mode of the
variable and of the current value to decide whether the
vatue should be presented (o the user in Integer,
siphabetic,. floating=poini, Boolean, statement labal,
or funcgion mode, The user must type a constant for
the naw values in a form compatible with the dectared

made of the variable. 1t is possible to change tha

3G dovember 2%, 1964 PAGE 1&

inputioutput form associated with 5 declared moce
permanently or to override the normal associations for
8 single request., This is discussed later.

One special note: because of the way the MAD
compiler works, one may change the effect of a transfer
statement by changing the value the variable which has
the same name 3s the statement label! to which the
statement transfers, One may not, however, change the
scope of a THROUGH loop in this fashion, even by
changling the value of the variable with the same name

as the THROGUGH scope,

RIFY will cause the values of varlables mentioned as
arguments to be compared with the values of the same
variables in a fresh, unexecuted version of core, Each
variable whose value has changed will be printed with
Its present value, Its value In the fresh version of
core will also be printed if it Is non=zero.

An optlon is avallable with verify; the user may
specify any core Image saved with the SAVE request to
be used instead of the fresh copy of core discussed
above. Thls Is done by giving the name of the saved
image following the request name and before the list of
variables to be varified. As the wuser will discover
beiow, thls name must begin with an asterisk, and can
thus be recognized by MADBUG.

The discussion of output forms used for the values

of variables, which was given under the OPEN request,

MADBUC November 25, 1960 PAGE 19
aVlse holds for the VERIFY request.

LINKAGE causes MADBUG to tell the user which statement
made the most recent call to the external function

subprogram currently being worked.

BREAK will modify the machine language program in the
current user core image so that control will return to
MADBUG 1f one of the cards given as arguments Is to be
executed. When MADBUG regalns control from the wuser
program, the name of the statement which is about to be
zxecuted wili be printed for the user, At this time
the user will usually examine variables in his program
to determine what his program is doing, “Breakpoints®,
as these points In the user core are called, belong to
a given core Image, and can vary from one saved core

image to another. (See the SAVE request.)

KILL will remove any breakpoints at cards mentioned as
arguments., It Is nct an error to insert a breakpoint
where one already exists nor to remove one which does
ot exist., For example, to kilil all the breakpoints In

the subprogram being worked, “kiil",

2AVE has a single name as its argument and causes a
copy of the current user core image to be saved as a
{T8S File with the primary name given as an argument
and the secondary name SAVED. The name gliven by the

usey must begin with an asterisk, The current user

MADELS Nowember 25, 1964 PAGE 2D

core image was nroduced by leading, and has been
mudified by srecution and by YMADBUG requests. One may
save the curvent corse image under a name which has
aiveady been used for a Save request. in this case,
the current core Image will replace the previous core
fmage. A1l the core Images saved wusing the SAVF
recuest will be destvoyed when the user's current core
image Is destroved., This Is because the saved flles
created by MADBUG are not normal CTSS saved flles, and

are useless cut of the context of MADBUG.

RESTORE wliil replace the current user core Image with a
copy of the image whose name is gliven as an argument,
The core lmage name must be 3 name under which the user
has saved a core Image using the SAVE regquest, or It
must be =FRESH, #FRESH is a byproduct of the locading
process, It Is a completely unexecuted version of core
wﬁth no breakpoints and with all vartables at their
initial! values. Except for the special way in which it
is created, *FRESH is like any normal core image saved
oy the SAVE request,
Getting Back to CVSS
Wnen the user 1s finished with MADBUG, and desires to
retuyrn to CTssgyhe should use the QUIT request., The QUIT
request will destroy alt the flles created durlng the
session, except for the modified MAD programs and thelr

assoclated BSS and SYMTAR files,

MADBUG Nowember 25, 196k PAGE 21

The EXECUTE recuest allows the user to return (o CVSS
for a single command, without ending his session with
MANBUG. For exampie, the user could effect the CTSS command
“1istf aa mad" by requesting "execute listf aa mad", These
commands are executed using the command chaining technique
with the sequence: "save (mdbg)", the wuser's command, and
“resume (mdbgl)*. No provision is made for saving a core
image which might result from the user’s command.

SPECIALIZED FEATURES AND TECHNIQUES '

Two error comments that the user may get from MADBUG
have speclal slgnificance. One §s "TRY AGAIN."™, which
always means that the current request has been terminated.
The ocher Is "CONSULT LISTINGS.” which can only occur as a
result of a bug in MADBUG., Any user getting this conment
will please retaln as much information In the way of ocutput,
fitles, etec, as he can and call Bob Fabry, %2524, so the bug
can be removed promptly., The user can often continue with
more requests In spite of a "CONSULT LISTINGS." error,

Two types of improper array references are not caught.
First, references with a constant linear subscript are not
checked. For example, one might DIMENSION A(10) and
A{20)=100. Second, referernces to arrays which are given as
arzuments to functions are not checked, For examplie, one
could have called for ROOT.(A(K)) where K is 20, This
situvation can sometimes be avoided by placing arrays In

COMMON, and not passing them back and forth as arguments.

ASDBUG Movember 25, 1984 pant 22

In unusual cases, the user core image may “blow-up’” in
such a way thai the information about conxrmi and about the
vatues of variables is gone or meaningless, in this Case
the user will still find MADBUG a wuseful tool, and may
approach the problem by an exponential search through time
for the point at which the blow=up occurs, Stated another
way, this amounts to performing a serlies of tests iIn which
each test Is designed to cut by a half the uncertainty about
when the blow~up occurs., When the user knows the exact
point of the blow-up, he «can then step through very
cautiously, looking for clues. Such an approach relics
heavily on BREAK, KiiLl, SAVE and RESTORE. At the start, the
user moves a core image as close to the blow~up as he knows
he can, SAVEs the core image, and guesses the half=way mark,
in terms of opportunities for bugs, to a place by which the
biow=up must have occured. He then uses BREAK and KilLiL to
step his current core image to the haif=way point he
guessed, (1) If the core image blows~up in this process, he
guesses a new half-way point, half way between his saved
image and his old half-way mark, RESTOREs his saved core
image, and trys hls new guess. {2) If the core Image
doesn’t blow=up In the process, he SAVEs his current core
image for a new starting point, guesses a new half-way mark
between his new core Image and the blow=up, and trvs this
new guess, This process is falrly simpie to carry out using

HADBUG, and most blow=ups can be readily soived thls way,

MADBUG November 2%, 1984 PAGE 272

when loading I3 performed, MADBUG will normaliy load »
program named {(MDBG), which MADBUG provices, Immediately
foilowing the files specified by the USE request, Then
MADBUG will process the core images of all orograms loaded
into core before (MDBG) and insert patches, using an area
reserved in (MDBG), to attempt to catch any user subprogram
when ft accesses an array with an [ilegal subscript., if the
user wishes to load programs which were wri .ten in FAP, MAD
programs for which the symbelic programs are not avallable,
debugged MAD programs which he does not wizh to protect, or
tibrary files, he may specify the positio of (MDBG) by
typing (MDBG) in place of a file name In tha USE request.,
All the files before this parameter w1l te treated
normaliliy, and all things after it will be ig ored 2y MADBUG
and just passed on to the loader, Any loawer parvameters,
such as (CFLP) or (LIBE), can also be used aiter (MhBG), if
the user needs more than elghty charactere for his USE
request, he may type & hypen as an argument:of use., when
the hyphen is encountered, MADBUG will Emmedexaly read the
next input line for more arguments for the ISE eguest.
This may be done for several successive lines,

The FORCE request forces certain internal agistery in

MADBUG to new values, picked by the user. "o FORCL s

parameter, glve the name of the parameter a: the fir:
argument of FORCE, and give remalning arguments s requirec

by the parameter beling forced:

UG Wowember 25, 1896k PACE 24

FORCE FATLH will set the amount of upatch space
avallable in the user core imazes to the decimal numbes
gluen a5 the argument. Inftially PATCH 1s set to 00
The pateh space is used during 1eoading and whenever
hreakpoinis are inserted. FORCE PATCH does not change
the available patch space immediately, since the
internal reglister Is examined only during loading. A
user would reduce the patch space If he was squeezed
for core space, He would iIncrease &t 1f '4ADBUG
compiains, during itocading, that there s not‘ enough
patch space, or If he exhausted the patch space
inserring breakpoints, If the patch space |s exhausted
by hreakpoints, however, [t Is wusually sufficient to
KYet some of the less neccassary breakpoints to rpet

space for new ones.,

RGE FORMAT will set the normal Input/output form
associated with each of the possible modes for
variables, Aftev the word FORMAT, the arguments are
taken In pairs, the first item of the pair indicates a
mode and the second indicates a form. The modes are
tndicated by a digit from 0 to 7, standing for

Filoating-point, integer, Boolean, function, statement

—r

abel, mode 5, mode 6, and mode 7, In that order. The
Form destgnation Is one of the following: Mon®™ for
fioating polnt with n significant fligures on outputl,
Y for tnteger, Y“AY™ for alphabetic, "M for elther

fpnteger ot alphabetlie with MADBUC plcking for output,

RAGBUG Hovembey 2%, 1%b4

"EY For ogtal. 8" for Boolean, Y8 For statement
tabel, and YF" for function. Initiatiy, FORMAT i35 set
(o, 2063 Y P28 3F S5 & 6 9 7 @, {in this

section, “@" is used to denote the letter “0OY.)

FORCE MODE a2tiows the wuser to predetermine whether
MADBUG saves itself as a permanant mode file or as &
temporary mode file, The wvaluyes of MODE are.
vorrespondingly, "P* and "T". Mode Is originally set
to pY, ‘The usef will want to FORCE MODE to temporary

i¥ he is not interested in extraeme reliapility as much

as in conserving his track allotment.

It Is also possible to override all the normal 1/0
forms fof the duration of one OPEN or VERIFY reauest., To do
this, use one of the form designations listed above, but
preceded by a stash, Insert it after VERIFY (and the saved
file name, |If present) or OPEN and before the arguments,
For example, "open fo alpha®.

MADBUG observes the convention that the first statement
of a main progvam starts after the call to ,SETUP which the
compiier always Inserts as the first executable machine
instruction., Another convention at this level s imposed by
the compiier, A breakpoint on an ENTRY TO statement will
not be encountered when the entry Is callted, but will be
encountered If control is transfered to the statement or

falls to the statement.

MAELGOUE NMowvenwhss 25

{ &8 . Lubk PANE 7%
MATDIRUD Crpates and desvrovs spepial Files asg e
processes the usey’s reguests. They are desgroved cluring

the pracessing of the same requesty for which they are
created, Normally, the user will not have to worey aboug
them, bult occasfonally he may be made aware of thelr
existance. (MDBG! SAVED is the name under which MADBUG
saves Jtseif when it chains to otheyr commands . This flic
will vary in Yength during a session, but will be o1 the
order of %0 tracks long. |ts mode depends on the value of
MODE, as described earllier., (TEMP) {(MDBG) s wused during
file modification, When a word In a flie must be modified,
the modified file §s Flirst created as (TEMP) (MDBG), and
then the original fiie Is deleted and {(TEMPY (MDBGY (s
renamed. The length of this file depends on the leagith of
the file being modified, The file has permanent mode.
{MDBG) BSS Is created by MADBUG whenever loading is
required. 1[ts pés?tlon in the new core image was discussed
earifer. it contains the bootstrap for HADBUG and the patch
area, It is one track long and has temporary mode, {MBGY)
SAVED is & very short program which processes the input Yine
blocks the user types while editing., ¢ processes all the
Input tine blocks associated with one edit reguest and reads
in the following reguest before chalning back to “ADBUG. it
s usually one track long and is permanent mode.

A user core image may usé the command buffers, A call
tc CHNCOM will not return control to MADBUG, MADBUG saves

the command buffers and counter inftially and restores them

wr the user gives the QUIT rvequest. MADRUN a2lso treasts

ihe commend buffoers and counter as psusdo=machine conditions
associated with each core image. The buffers are uniy lost
on manual restart. A fresh core image has empty Huffers.

By editing, the user modifies the MAD subprogram on
which he Is working, By inserting and removing br&akén%nts
and by changing the values of variables, the user nodifies
the current user core image, (USER} SAVED, MADBUG does not
change external files until the changes avre ‘logically
needed. If the user uses EXECUTE to ask CTSS to oprocess
these files, he may want to Insure that these logical
modifications are made physically, To Insure that the MAD
subprogram being worked 1Is modified physically, give =2
redundant WORK request using the name ¢f the subprogram
already being worked., Whenever a WORK request is given, the
togical modifications associated with the subprogram
praeviously belng worked are made physically, To Insure that
the current user core image is modified phvsically, use a
SAVE request. A user who cannot afford the added tracks can
‘give an "execute delete" on the created SAVED fiie,

This variation between the physical and logical
madifications provides some degree of safety to the user who
carelessly makes gross incorrect modifications to one of his
programs, (f the user should acclidently type a "d" as =&
roquest line for examplie, he should quit by hitting the
break button twice in succession. This wiil prevent MADBUG

from actually deleting the file in question.

MATBUG November 25, 1964 PAGE 2§

SUMMARY OF MADBUG REQUESTS

XTI R ALEMTENES additional lines (3) pasg
work subprogram name none &
print card names (1) card images by MADBUG 10
dejete card names (1) none 13
insert card names (1) card Images by user 11
change card names (1) card images by user 11
append none card images by user 12

(or) subprogram names none

manipulate special, then cards card names by MADBUG i3
translate none . comments by MALBUG 1%
use subp rogram names norne ‘ 15
EC card name or none comments by MADRUG (4} 1€
open vartables (1,2) values by both (&) 17
verify variables (1,2,5%) values by MADBUG (&) 1%
1inkage none Tinkage by MADBUG (&) 13
break card names (1) nane (4) 19
kity card names (1) none (L) 13
save save=name none (&) 18
restore save-name none (&) 0
quit none none FEH
execute command and arguments depends on command 21
force parameter, special none 25
notess (1) If none, all are implied., (p, 10, po 15)

{2) Optional form forclng flrst argumentc., {(p. 25}

(%) Any request can get error comments from MADBUG,

{4) Comments by MADBUG If core image i3 created. (p.l6}

¢5) There {s an optisnal save-name argument., (p. 18)

