```
SUBJECT: CTSS LIBRARY SUBPROGRAMS NOT IICLUDED IN THE CTSS
    PROGRAIHER'S GUIDE
DATE: JULY 1967
```


Introduction

The following is an inder by entry names of subprograns inciuded in this hemo. A user should refer to CCmi74 for the usage of XSIMEQ and XDETRH. After the Index are write-ups about the subprograms.
it is suggested that this annotated itemization be inserted in the CTSS Programiner's Culde after section $A G_{0} 13.00$.

	EITTRY NAME	SYNQPSLS
1	ACgS, ASIN	Arccosine, arcsine functions. Floating-point argunent.
2	ATAN, ATH	Arctangent functlone Floating pointo
3	DETCS	Simulates a FORTRAN function call to XDETRin.
4	$\begin{aligned} & \text { DFAD, DFSB, } \\ & \text { DFHP, DFDP, } \\ & \text { SFDP, DCEXIT } \end{aligned}$	Performs double precision floatingapoint operations on numbers stored in consecutive storage jocations.
5	D 114	Positive difference function.
6	ExP	Exponentlal function. Floating point (1).
7	EXP(1	Computes 1**Jo Fixed point (1).
8	EXP(2	Computes $X * * K$. Floating-point number to a fixedmpolnt power (1).
9	Exp 3	Computes $X * * Y$. Floating arguments (1).
10	$\begin{aligned} & \text { FINT } \\ & \text { MINT } \end{aligned}$	Converts MAD integer to FORTRAN integer. Converts FORTRAN integer to MAD Integer.
11	FLIP	Interchanges rows and columns in a MAD two-dimensional array.
12	INDV, DPNV	Integration of differential equations.
13	INT	Truncatione floating point.
14	IDSET, IDPAR, 1GEND 1GSCP. 101TR	Complled into MAD routines during translations of FORTRAN statements involving iterated Input-output.
15	L0G	Logaritha (base e) function.
16	MAXO	Maximum, fixed-point argunent, floating-polnt function.
17	MAXI. XMAXO	Haximum, floatingwloating, fixed-fixed.
18	MIno	Minimum, fixed-mpoint argunent, floating-polnt function.
19	MINL. XMINO	Hinimum, floating-floating, fixed-fixed.

	ENTRY NAME	SYMOPSIS
20	M90	Remalnderingo Floating pointo
21	RANND．SETU	Random number generator．
22	SIHCS	Simulates a FORTRAN call to XSIINEQ。
23	SIN，CQS	Sine and cosine functions． Floating point．
24	（SLI）	Short IIst Input：Used by FORTRAN routines．
25	（SLD）	Short list output．Used by FORTRAN routlnes．
26	SQRT，SQR	Square root function．Floating point．
27	TAN，CDT	Tangent and cotangent functions． Floating polnt．
28	TANH	Hyperbolic tangent function。
29	XDIM	Finds the absolute difference between the two arguments． Fixed point．
30	XDTRI：	Called by MAD and HADTRN programs instead of XDETRM．
31	$\begin{aligned} & \text { XINT, } \\ & \text { XFIX } \end{aligned}$	Truncation． Changes floatingepoint numbers to fixed－point numbers．
32	XLDC	Finds the location where a variable is stored．
33	XMAXI	Finds the maximum values of a set of floating－point numbers．Result is fixed－point．
34	XHIN1	Hinimum floating arguments，fixed result。
35	XHPD	Remaindering．Fixed point．
36	XSIGN，SIGN	Transfers the sign of the second argument to the first．

	ENTRY NAUE	SYNORSIS
37	XSMEQ	Called by MAD and MADTRN prograns instead of XSIMEQ。
38	. 01300	Computes $Y * * Z_{\text {。 }}$ Floating point. Used by MAD routines.
39	. 01301	Computes X *iks X floating point, K fixed point. Used by HAD routines.
40	. 01311	Computes I*a.J. Fixed pointe Used by VAD routines.
41	.03310. 03311	Computes linear subscripts for two-dimensional MAD arrays.

(1) See corresponding entries that are used by liAD routines, nos. 38-41.

CTSS SUBPROGRAA

Entry Name:
Purpose:

Length:
Transfer Vector:
Error Procedure:

ASIN, ACDS
Computes the princlpal value of arcsine X or arccosine X for a single precision floating-point argument.

250 octal locations
ERRDR, LDUMP
The error condition is met and ERRDR subprogran called, if the absolute value of the argument is greater than 1.0 . The ERRDR subprogram may also be called In case of machine fallure. Upon return from ERRØR, the ASIN and ACØS functions send control to the LDUMP subprogran.

Calling Sequence:

FORTRAN
$Y=\operatorname{ASINF}(X)$

HAD
$Y=A S I N_{0}(X)$

EAP
CLA X
TSX \$ASIN, 4
where:

GISS SUBPROGBA:1

Entry Name:
Purpose:

Length:
Transfer Vector:
Error Procedure:
Calling Sequence:

EQRIBAN	MAD	EAP	
ANGLE = ATANF (TANG)	ANGLE = ATAN。(TANG)	CLA	TANG
		TSX	\$ATAN, 4
		STD	ANGLE

where:

ANGLE | Is an angle in floating-point radians in the |
| :--- |
| first or fourth quadranto |

\quad TANG is the tangent of an angle In floating-pointo
Reference: \quad SHARE Distribution No. 507 , IB ATN 1

CISS SUBPROGRAU
Entry Nane:
Purpose:

Length:
Transfer Vector:
Calling Sequence:
MADTRN: CALL DETCS ($N F \emptyset R, N \nsupseteq \equiv D, A, D, H F \emptyset R$)
HAD: EXECUTE DETCS。 (NFQR, $N D F D R, A, D, H F D R)$
where:

NFOR	Is a FORTRAN (decrement) integer giving the maximun number of rows or coluims which the matrix A may have.
$N P F D R$	is a FORTRAiN (decrement) integer giving the number of rows or columns in the inatrix A at the time XDTRH is called.
A	is an unsubscripted floating-point variable referring to the natrix.
D	Is a floating-point varlable by whose value the value of the determinant will be modified. Upon return, D met (A) 。
MFgR	upon return will contain a FORTRAN (decrenent) integer which will be
	1 If the solution was successful
	2 If an overflow occurred
	3 If the matrix A is singular.

Executlon:	Given the above calling sequence, DETCS reforms it in such a way as to simulate a FORTRAN function call. XDETRi is called by this routine. Upon return frou XDETRM, the resulting integer value is stored in HFDR. A programer may call this routine Instead of XDTR: if he wlll alter his integers in the call so they are FORTRAN integers (by multiplying each of then by 2.P.18, shifting the integers left 18 places, or calling Flft and upon return changing the resulting FORTRAN integer $M F D R$ to a $I A D$ Intecer fby dividing it by 2.P.18, shifting the integer right 18 places. or calling llint).
Restrictions:	All Integers are FORTRAN (decrement) Integers.
	The matrix A must be a square matrix with the base element set at 1 , that is. $A(1,1)=A(1)$. However, in the call. A must not be subscripted.
Reference:	CC-174

GTSS SUBPBOGBAL

Entry Names：
Purpose：

Length：
Transfer Vector：
Error Procedure：

DFAD，DFSB，DFMP，DCEXIT，DFDP，SFDP
To perform doublemprecision floating＊ polnt operations on numbers stored in consecutive storage locations．

153 octal locations
ENDJ\＃！
If division by zero is attempted and DCEXIT has not been called．ENDJDE will be callede Floating－point operations may result in a floating－point trapo

Calling Sequences：

FORTRAN：	CALL CALL CALL CALL CALL CALL	DFAD（ADDEND，AUGEND ${ }^{\text {SUM }}$ ） DFSB（SUBTRA，MINUND，DIFF） DFMP（MLTPND，ILLTIER，PRODCT） DFDP（DVDND，DVSOR，QTHT） SFDP（DVDND，SPDVSR，QTNT） dCEXIT（ERRLOC）
MAD：	EXEC EXEC EXEC EXEC EXEC EXEC	TE DFAD，（ADDEND，AUGEND，SUM） TE DFSB。（SURTRA，MIINUND，DIFF） TE DFIMP。（MLTPND，MLTIER，PRODCT） TE DFDP．（DYDND，DVSOR，QTNT） TE SFDP，（DVDHO，SPDVSR，QTNT） TE DCEXIT。（ERRLOC）
FAP：	TSX OPiN OPN OPN	\＄DFAD， 4 ADDEND，TAGI AUGEND，TAG2 SUM，TAG 3
	TSX OPN OPN OPN	$\begin{aligned} & \text { SDFSB, } \\ & \text { SUBTRA, TAG4 } \\ & \text { MINUND; TAG5 } \\ & \text { DIFF, TAG } \end{aligned}$
	TSX OPN OPN OPN	$\begin{aligned} & \text { \$DFMP, } 4 \\ & \text { MLTPND, TAG7 } \\ & \text { MLTIER,TAG8 } \\ & \text { PRODCT, TAG9 } \end{aligned}$

TSX	\$OFDP 4
OPN	DVDHD. TAGIO
OPN	DVSOR, TAG11
OPN	QTNT, TAG12
TSX	\$SFDP, 4
OPN	DVDidD. TAG13
OPN	SPDVSR, TAG14
OPN	QTNT, TAG15
TSX	\$OCEXIT. 4
OPN	ERRLOC

where:

OPN is any operation code which allows an address (and tage if the tag position is used).

TAGI is any index register to modify the operand, except index register 4 。
ADDEND Is the location of the high-order part of the
addend. The loworder part is at
ADDEND+1(FAP) or if the high-order part is at
ADDEND(2). then the low-order part is at
ADDEND(1):

AUGEND Is the location of the high-order part of the augend.

SUM Is the location of the high-order part of the sum of the addend and the augend.

SUBTRA is the location of the highoorder part of the subtrahend.

MINUND is the location of the highoorder part of the ininuend.

DIfF is the location of the highoorder part of the subtrahend milnus the minuend.

MLTPND is the location of the higheorder part of the nultiplicand.

MLIER is the location of the high-order part of the multiplier.

PRODCT is the location of the hich-order part of the product of the multiplicand times the multiplier.

DVDiND	Is the location of the highworder part of the dividend.
DVSOR	Is the location of the highmorder part of the divisor.
QTNT	Is the location of the highmorder part of the quotient of the dividend divided by the divisor.
SPDVSR	is the location of the single-precision divisor.
ERRLOC	Is the location to which control is to return If the divisor is zero. This should be set by an ASSIGN statement in FORTRAN and MADTRAN programs.

Restrictions:

Execution:

The tag of an operand may not be 4. The operands may not be indirectiy addressed.

DFAD causes the double-precision numbers to be added together. The result is doublemprecision.

DFSB causes one double-precision number to be subtracted from the other. The result is doublemprecision。

DFAP multiplies two double-precision numbers together. The result is doublemprecision.

DFDP divides one doublemprecision number by another. The result is doublemprecision.

SFDP divides a double-precision number by a singlemprecision number. The result is doublemprecision.

DCEXIT allows the user to specify the location to which control is to go if division by zero is attempted.

CTSS SURPRQGBA:

Entry Nane:	DHil
Purpose:	To duplicate the FAP coding for the FORTRAN builtoin function. Dlilf, for use with haomoded subprograms.
Length:	7 octal locations
Transfer Vector:	Hone
Calllne Sequence:	
NAD	EAP
X DM $M_{0}(Y, Z)$	$\begin{array}{ll} \text { CALL } & \text { DIM, } Y, Z \\ \text { ST } \end{array}$

where:

Usage: The routine finds the positive difference between the two arguments.

Identification:
HDDIM appears in columns $73-77$ of the binary deck and the symbollc deck.

CISS SUBPBOGRAU

Entry Name:
Purpose:

Length:

Transfer Vector:
Error Procedure:

EXP Version 11
Computes e^{x} for a single floatingpoint argument.

124 octa! locations plus four temporary erasable locations.

None
If the argument is greater than 88.028, the subprogram ERRDR is called. If the areument is less than $\mathbf{- 8 8 , 0 2 8 \text { , a result }}$ of ze*o is returned.

Calling Sequences:
EORTBAN
$1 A D$
EAP

$$
E X=\operatorname{EXPF}(X)
$$

$$
\left.E X=E X P_{0} ; X\right)
$$

$$
\text { CLA } X
$$

$$
\text { TSX \$EXP, } 4
$$

STo EX
where:
X is a floating-point number between $=88,028$ and 488.028 。

References:
SHARE Distilbution Nos. 507 and 571 : 1 FXP

CTSS SUBPROGBAM

Entry Name:
Purpose:

Length:

Transfer Vector:
Error Procedure:
Calling Sequences:

EXPC1
To compute 1^{J}, where 1 and J are fixed-point variables.

45 octal locations plus two temporary locations

None
None

EAP
CLA 1 LDQ J
TSX \$EXP(1.4 STD ITON

EORTRAN
1TDJ = 1** J
were:
1 is a fixed-polnt variable, stored in the decrement.
\checkmark Is a fixed-point varlable, stored in the decrement.
ITOS is the fixed-point result, scored in the decrement.

CTSS SUBPROGBAM

Entry Name:
Purpose:

Length:

Transfer Vector:
Error Procedure:

EXP(2 Version 11
To compute X^{k}, where X is a floatingpoint variable and K is a fixed-point variable。

131 octal locations plus two temporary erasable locations

ERROR, LDUIIP
If there is a large negative exponent and small base, the divide check light is turned on and the subprograms ERRDR and LDUMP are called.

Calllng Sequences:

EQRIBAN

$Y=X * K$

EAP
CLA X
LDQ K
TSX \$EXP(2.4
where:
X is a floating-point variable and
K is a fixed-point variable, stored in the decrement in FAP。

CTSS SUBPROGRA4

Entry Hame:
Purpose:

Length:

Transfer Vector:
Error Procedure:

EXP(3 Version 11
To compute $Y * * Z$, where Y and Z are floating-polnt variables.

236 octal locations plus four temporary erasable locations

ERRDR, LDUMP
If there is a negative base and non-lintegral exponent, the subprograns ERRDR and LDUMP are called.

Calling Sequences:

EORTRAN	EAP	
$W=Y * * Z$	CLA	Y
		LDQ
	TSX	EXP 3.4
	STD	W

where:
W, Y and Z are floating-point variables。

CTSS SUBPROGRAM

Entry Names:
Purpose:

Length:
Transfer Vector:
Error Procedure:

FINT, HINT
To convert FORTRAN Integers to MAD intesers, or MAD integers to FORTRAN integers.

33 octal locations
WRFLX
If a HAD integer is too large to be converted into a FORTRAN integer, the following message is printed:
'mad INTEGER EXCEEDS 32767'
and the HAD Integer module 32768 is taken as the argument.

Callling Sequences:

where:
1 refers to a MAD (full word) Integer.
J refers to a FORTRAN (decrement) integer.
A is equivalent to J.
Execution:
FINT converts a MAD integer into a FORTRAN integer. If the liAD integer is larger than 32767, a message is printed, and then the integer modulo 32768 is taken as the argument.
mINT converts a FORTRAN integer into a MAD Integer,

CTSS SUBPROGRAA

Entry Name:

Purpose:
Length:
Transfer Vector:
Calling Sequence:
where:

FLIP

To transpose a matrix.
132 octal locations
.03311. EXIT
MAD: EXECUTE FLIP (NAME, $H, N)$

NAME is a two-dimensional array dimensioned as
(MAX (H,N), MAX (M,N))
is an integer varlable corresponding to the number of rows in the array NAIE.
is an integer variable corresponding to the number of columns in the array NAME.

CTSS SUBPROGRUH

Entry Names:
Purpose:

Length:
Transfer Vector:
Error Procedure:

INDV, DPNV

> To obtaln in floating-point arithmetic the numerical solution of a system of Nth order, non-linear, simultaneous ordinary differential equations, essentially by writing the initial conditions and differential equatlons In any desired FORTRAN or FAP language.

626 octal locations
ERRDR, LDUMP
If sense light 1 is not on for the first entry to INDV or if there are more than 50 dependent variable statements, the subprogram ERRDR is called. Upon return to INDV. the subprogram LDUMP is called.

Calling Sequences:

FORTRAN
$X=\operatorname{INDVF}(X, H)$

EAP
CLA X
LDQ J
TSX \$INDV. 4 STD X
where:
x is the independent variable and
H is the increment.

EQRTRAN
$Y=\operatorname{DPNVF}(Y, D Y)$

EAP
CLA Y
LDQ DY
TSX \$DPNV, 4
STD Y
where:
Y is the dependent variable and
DY is the increment using Adams four point formula.

Reference:

SHARE Distribution Nos. 413 and 827. GL AIDEI

CTSS SUBPROGRAC
Entry Name: INT
Purpose:
To duplicate the FAP coding for the FORTRAN bulit-in function. INTF, for use with HAD-coded subprograms.

Length:
7 locations

Transfer Vector: None
Calling Sequence:

LIAD
$X=1 N T .(Y)$

EAP
CALL INT,Y STø X
where:
the argument and function are floating-point。
Usage:
The routine truncates the argument (sign of argument thines largest Integer less than or equal to absolute value of the argument).

MDINT appears in columns 73-77 of the binary and symbolic decks.

CTSS SUBPROGRA

Entry Names:
Purpose:

Length:
Transfer Vector:
TiA to supervisor:
COH:MON:
Error Procedure:
Calling Sequence:
FORTRAIN: PRINT 1. (A(I), I m J,K,L)

PRINT could be also READ, WRITE OUTPUT TAPE, READ INPUT TAPE.

1 is the format statement number.
A is the name of an array where the ith elenent, I+Lth element, o.. (until $J+(N * L)$ is greater than K) will be printed.

```
HAD: PRINT F\emptysetRMAT ALPHA, LI, I\emptysetSET.(LDC1)
    EXECUTE I$PAR.(L2)
    EXECUTE I\emptysetEND.(L$C2)
    EXECUTE I\emptyset|TR.(V,M1, M2, M3)
    EXECUTE IDSCP.
```

where:
PRINT FØRMAT could also be READ FORMAT, WRITE BCD TAPE or READ BCD TAPE.

ALPHA is the format name.
L1 and L2 are normal $1 / 0$ lists.
LOC1 is the location where the AAD sequence begins.

	LOC2 is t after compl will return 19END。＂	the location where the program will go leting the ilst．If omitted，control n to the statement following＇EXECUTE
	$\begin{aligned} & V \text { is an i } \\ & \text { indexing). } \end{aligned}$	Iteration varlable（usually used for
	MI is the V	Initial value of the iterative variable
	M2 is the	last value of V ．
	M3 is the	Increment to be used on V．
Execution：		Executing IøSET will cause the program to leave the $1 / 0$ list without terminating the format，transferring control to LøC1．
		Executing IøPAR will cause the list $L 2$ to be written（or read）as though part of the original $1 / 0$ list．The format will be continued exactly as though the list were part of the original 1／0 list．
		Executing loEND terminates the $1 / 0$ list and returns as indicated above．
		Executing lalTR causes V to be set to Its initlal value，M1，and the values of $M 2$ and 113 to be saved for use of 10SCP。
		Executing I 10 SCP causes the value of to be compared with M2，and，if less than in2，causes it to be incremented by M3 and then returns control to the beginning of the corresponding iteration；otherwise，control goes to the statement following the iEXECUTE 1甲SCP。＇
Restrictions：		When used in the list for IOPAR． multiply subscripted arrays must appear with multiple subscripts or with variable single subscript（ioe．，if Is a multiply subscripted array，then either $B B$ or $B B(5)$ is illegal）． and IØSCP may be nested three deep there must be an EXECUTE IDSCP corresponding to each use of IDITR for proper nesting．

CTSS SUBPROGBALI
Entry Name: LDG
Purpose:
Computes the floating-point natural logarithri.

Length:
Transfer Vector:
Error Procedure: If the argument is less than or equal to zero, then control is transferred to the subprogran ERROR. The subprogran L \emptyset G then transfers to LDUMP。

Calling Sequence:

EOE BAN
$E L N X=L \emptyset G F(X)$

HAD
ELNX = LøG。 (X)

EAP
CLA X
TSX \$LyG. 4 STO ELNX
where:
$X \quad$ Is a floating-point number greater than zero.
ELNX is equal to loge X. In floating-point.
SHARE Distribution NO. 665 , IB LDG 3

Examples：

1）

FORTRAN：	PRINT 2，（All） 1 （ 1.20 ）	
MAD：	PRINT ONLINEFDRMAT QQ0002，	IOSET．（QQ0003）
QQ0003	EXECUTE 101TR．$(1,1,20,1)$	
	EXECUTE IØPAR．（A） 1 ）	
	EXECUTE IOSCP。	
	EXECUTE IDEND。	

2）
FORTRAN：PRINT2，$((B(1, J), 1=1,3), J=1,3)$
KAD：PRINT QNLINEFGRMAT QQ0002，IDSET．（QQ0005）
QQ0005 EXECUTE 1QITR $(1,1,3,1)$
EXECUTE 10！TR．（ $3,1,3,1$ ）
EXECUTE IOPAR．$(B(1, J))$
EXECUTE IDSCP．
EXECUTE IDSCP。
EXECUTE IDEND．

CTSS SUBPBOGRAM
Entry Name: HAXO
Purpose:
To dupllate the FAP coding of the FORTRAN bullt-in function, MAXOF, for use with MAD-coded subprograns.

Length:
25 octal locations
Transfer Vector:
None
Calling Sequence:

MAD
$J=\operatorname{MAXO}\left(I_{1} \ldots \ldots I_{n}\right)$

FAP

CALL MAXO, Iy,o...Im STO J
where:
the arguments (any number of argunents greater than one) are fixed-point and the function is floating-point.

Usage:

Identification:

The routine finds the maximum value of the arguments.

MDMAXO appears in columns 73-78 of the binary and symbolic decks.

CTSS SUBPROGRAM

Entry Names:
Purpose:

Length:
Transfer Vector:
Calling Sequence:

MAD
$J=\operatorname{MAX1},\left(Y_{1}, \ldots \ldots Y_{n}\right)$
$J=\operatorname{XMAXO} \cdot\left(I_{2} \ldots \ldots I_{n}\right)$

MAXI, XIMAXO
To duplicate the FAP coding of the FORTRAN bullt-in function. MAXIF and XMAXOF, for use with MAD-coded subprograms.

22 octal locations
None

EAP
CALL $\operatorname{MAX1}, \gamma_{1} \ldots \ldots Y_{n}$ STD X

CALL XMAXO, I $\ldots \ldots I_{n}$ STD
where:
the arguments and function of MAXI are floating-point, the arguments and function of XMAXO are fixed-point, and there can be any number (greater than one) of arguments.

Usage:

Identification:

The routine finds the maximum value of the arguments.

MOMAXI appears in columns 73-78 of the binary and symbolic decks.

CTSS SURPROGRAi
Entry Name:
IIINO
Purpose:
To duplicate the FAP coding of the FORTRAN bulit-in function, MINOF, for use with MAD-coded subprogranis.

Length:
26 octal locations
Transfer Vector:
None
Calllng Sequence:
$\triangle A D$
$X=\operatorname{MINO}\left(I_{1}, \ldots . I_{n}\right)$

EAP

CALL MINO, I $\ldots \ldots I_{n}$ STø X
where:
the arguments are fixed-point
and the function is floating-point.
Usage:

Identification:

The function is used to find the smallest value of the set. $l_{1} \ldots \ldots I_{n}$

MDMINO appears in columns 73-78 of the binary and symbolic decks.

CTSS SUBPROGRAM

Entry Names:
Purpose:

Length:
Transfer Vector:
Calling Sequence:

MAD

$$
X=M \mid N I_{0}\left(Y_{1} \ldots \ldots Y_{n}\right)
$$

$$
X=X M I N O_{0}\left(I_{1} \ldots \ldots I_{n}\right)
$$

MIN1, XMINO
To duplicate the FAP coding of the
FORTRAN bullitoin functlons, MINIF and
XHINNOF for use wlth MAD-coded
subprograms.
23 octal locations
None

EAP
STD $_{X}$ MIN1, $_{X} \ldots \ldots, Y_{n}$
$\operatorname{CALL}_{\text {STD }} X_{X}^{X M I N O, I} I_{1} \ldots \ldots I_{n}$
where:
the arguments of MIN1 are floating-point and the mode of the function is floating-point,
the arguments of XMINO are fixed-point and the mode of the function is floating-point.
and for elther entry the number of arguments is greater than 1.

Usage:

Identification:
The routines find the minimum value of at least two or more arguments.

MDMIN1 appears in columns 73-78 of the binary and symbolic decks.
CC-274

CTSS SUBPROGRAM
Entry Name: $\quad M D D$

Purpose:
To dupllcate the FAP coding of the FORTRAN bullt-in function, MDDF, for use with MAD-coded subprograms.

Length:

Transfer Vector:
Calling Sequence:
MAD
$Z=M D D .(X, Y)$

EAP

$$
\begin{array}{ll}
\text { CALL } & \text { MDD, } X, Y \\
\text { STg } &
\end{array}
$$

where:
the arguments and function are floating-point.
Usage:
The function is defined as $A R G_{1}-\left(A R G_{1}=/ A R G_{2}\right) \& A R G_{2}$, where (X) $=$ integral part of X.

Identification:
MDM6D appears in columns 73-77 of the binary and symbollc decks.

CTSS SUBPROGBAM

Entry Name: RANND, SETU
Purpose: Generates a floating-point number between 0 and 1.0 with rectangular distribution. The cycle time for each value of SETU is $2^{3.5}$.

Length: 42 octal locations

Transfer Vector: None
Error Procedure: None
Calling Sequence:
for RANND-

EQRTRAN	MAD	EAP	
$A=R A N N D F(x)$	$A=R A N N g_{0}(x)$	TSX	
		STD	

where:
X is a dumny argument.
A. Is a floating-point random number generated by the formula

$$
R_{n}=R_{n-1}\left(2^{27}+3\right)\left(M \emptyset D 2^{35}\right)
$$

$R_{0}=1$ unless the subprogram SETU is used to change it.
for SETU-
FORTBAN
$B=\operatorname{SETUF}(1)$

MAD
$B=S E T U .(1)$

EAP
CLA 1 TSX \$SETU. 4

0
0 PZE $\quad .5$
where:
1 is a fixed-point variable used to change the starting value of R_{0} 。

B is a duminy argument.

GTSS SUBPROGBALI

Entry Name:
Purpose:

Length:
Transfer Vector:
Comrion:

SIINCS
Simulates a FORTRAN function call to XSIMEQ. This routline is used by the library subprogran XSIEQ.

42 octal locations
XSIMEQ
77775

Calling Sequence:
MADTRN: CALL SIMCS (MXFR,NFR,LFR, $A, B, D, A R Y, M F R)$
MAD: EXECUTE SIACS: (MXFR,NFR,LFR,A,B,D,ARY,MFR)
where:
MXFR is a FORTRAN (decrement) Integer giving the maximum number of rows the matrix A may have.

NFR Is a FORTRAN (decrement) integer giving the number of rows or columns in the matrix A at the time XSMEQ is called.

LFR is a FORTRAN (decrement) integer giving the number of columns in matrix B 。

A is an unsubscripted floatingmpoint variable referring to the square matrix A. Upon return, the answers (the X matrix) will replace the A matrix.

B is an unsubscripted floating-point variable referring to the matrix $B_{\text {。 }}$

D is a floating-polnt variable by whose value the value of the determinant of the matrix A will be scaled. Upon return, $D=D * \operatorname{Det}(A)$.

ARY refers to a one-dimensional array whose length is greater than or equal to NFR.

MFR upon return will contain a FORTRAN (decrement) integer which wlll be

GISS SUBPROGRAH

Entry Name:
Purpose:

Length:
Transfer Vector:
Error Procedure:
Calling Sequence:
EORTRAN
SINX $=\operatorname{SIINF}(X)$

SIN, CDS
Computes the sine or cosine of a floating-point radian arguinent.

172 octal locations
None
None

HAD EAP
SIIXX $=$ SIN. $(X) \quad$ CLA X
TSX \$SIN. 4 STD SINX
where:
X is the angle in floating-point radians.
SINX Is the computed sine of X in floating-point.

Reference:
SHARE Oistribution No. 510, IB SIN 1

CTSS SUBPROGRAM

Entry Name:
(SLI) Version 11

Purpose: To provide list indexing for the

Length:
Transfer Vector: Input of nonsubscripted arrays.

17 octal locations

Error Procedure: None
None

Calling Sequence:

FORTBAN

DIMEIS IAN SYMBAL (100) READ 1, SYilGOL

EAP

TSX $\$(S L I) .4$
PZE SYMB H L + 1
PZE 100
-
-
bSS 99
SYHBYL BSS 1
where:
SYMBDL is the first location in the array to be Indexed.

100 Is the number of variables in the array SYiABML to be transinitted.

CTSS SUBPROGRAM

Entry Name:
Purpose:

Length:
Transfer Vector:
Error Procedure:
Calling Sequence:
(SL() Version 11
To provide list indexing for the output of nonsubscripted arrays.

17 octal locations
Hone
None

EORTRAL	EAP		
DIMENS ION SYIBGL (100)		TSX	\$(SLe), 4
PRIINT 1, SYHRQL		PZE	SYMBML + 1
		PZE	100
		-	
		-	
		BSS	99
	SYiAblul	BSS	1

where:
SYMBgL is the first location in the array to be indexed.

100 is the number of variables in the array SYMBgL to be transmitted.

CISS SUBPRUGRAid
Entry Hame: SQRT, SQR
Purpose: Coinputes the square root of a floatingpolnt arguaent with either entry.

110 octal locations
ERRYR, LDUMP
If the argument is negative, control transfers to the subprogran ERRQR and then SQRT transfers to LDUiAP.

Calling Sequence:

EORTRAN
$\operatorname{SQX}=\operatorname{SQRTF}(X)$

UAD
SQX $=$ SQRT. (X)

EAP
CLA X TSX \$SQRT. 4 STD SQX
where:

CTSS SULPRUGRAD

Entry Name:
Purpose:

Length:
Transfer Vector:
Error Procedure:

TAlI, C\&T
Computes the tancent X or cotangent X for any single precision floating-point argument given in radlans.

244 octal locations
ERRUR, LDUMP
If the ${ }_{s 5}$ argunent for TAN is greater than $2^{6}-1$ or if the arguant for COT Is less than 2^{126}, then control is transferred to the ERRDiR subprograia. The subprograil TAll, CBT then calls LDUMP.

Calling Sequence:

EQRTRAN
TANGX=TANF (X)

HAD
TAHCX=TAN. (X)
X
TSX \$TAN. 4
STD TANGX
where:
X is any single precision floating-puint argunent given in radians whose tangent is to be computed.

TANGX is the floating-point result of the tangent X_{0}

CTSS SUBPRUGRAM

Entry Hane:
Purpose:

Length:
Transfer Vector:
Error Procedure:
Calling Sequence:
FORTRAN
AHS : TAIHIF (ARG)

TAIII
Computes the hyperbollc tancent of x for any sincle precision floating-point arcument given in radlans.

143 octal locations
Hone
Hone

MAU
EAP
ANS $=$ TANH. (ARG) CLA ARG
TSX \$TANII. 4 ST0 AHS
where:
ARG is a floating-point radian argunent whose hyperbolic tangent is to be completed.

AUS Is the floating-point result of the hyperbollc tangent of ARG。

Reference:
SHARE Uistribution ido. 507. IB TANII

CTSS SUBPROGRAM

Entry Hame:
Purpose:

Length:
Transfer Vector:

Calline Sequence:
$x=$ Xulim. $(1, J)$

HAD

XDIA
To dupllcate the FAP colling of the FORTisAll built-in function, XDlilf, for use with HAU-coded subproera is.

7 locations
Hone

EAP

CALL XDIIT, 1,J STU X
where:
the arguments and function are fixel-point numbers.
Usage:

Identification:
The routine finds the positive difference between the two arguments,

ADXDIII appears in coluinns 73-78 of the binary and syibolic decks.

CTSS SUBPROGRAiU

Entry Name:
Purpose:

Lengti:
Transfer Vector:
Calling Sequence:

XOTIM
To allow MAD anl ilADTis routines to call XDETKil, a prosran to compute the value of a determinant. This value is then modifled by a scale factor.

53 octal locations
UETCS, FIITT, IINT
HADTLN: $\quad H=\operatorname{XDTRMF}(N, N D, A, D)$
. $1 A D: \quad A=X D T R M, ~(N, H D, A, D)$

where:
$N \quad$ refers to an integer whose value is equal to the parameter N in the $H A D T i N$ statenent 'Dlilemblan $A(H, N)^{\prime}$ or is the third element in the $I A D$ dinension vector describing the matrix. A.
refers to an integer giving the nuaber of rows or columns in the matrix A at the tiae XDTiAi is called.

A is an unsubscripted floating-point variable referring to the matrix. In a HAD prograli, the 'base element' of this array must be 1 . Upon returin, this matrix may be altered.

Is a floating-point variaile by whose value the value of the Jeterilinant will be .modified. Upon return, $D=\operatorname{d*Uet}(A)$ 。
upon return will be
I If the solution was successful
2 If an overflow occurred
or 3 if the matrix A is singular.

This progran nust not be usel by FORTRAid routines.

All integers are expected to be normal liAD address integers.

The matrix A must be a square matrix with the 'base element' in the dluension vector defined as 1 。

A in the calling sequence aust not be subscripted.

NOTE: XDTKA. must appear in an intecer declaration in a had program. CC-174

CISS SUBPROGRAM
Entry Names:
Purpose:

Length:
Transfer Vector:
Calling Sequence:

MAD
$J=X I N T$ O (Y)

$$
J=X F \mid X,(Y)
$$

where:
the argunent is a floating-polnt number and,
the function is fixed-polnt.
Usage:

Identification:

EAP
CALL XINT, Y STg J

CALL XFIX,Y STD J

XIITT, XFIX
To dupllcate the FAP coding of the FORTRAI bulit-in function, XINTF and XFIXF, for use with had-coded subprograirs.

12 octal locations
None

GTSS SUBPROGRAG

Entry Nane:

Purpose:

L.ength:

Transfer Vector:
Error Procedure:
Calling Sequence:
EQRTBAI
$L=X \operatorname{LgCF}(N)$

XLyC Version 11
Finds the location where a variable is stored.

26 octal locations
None
None
where:
N Is the varlable whose location is to be found.
L Is the location of N.

ETSS SUBPRUGKAin

Entry Name:
Purpose:

Length:
Transfer Vector:
Calling Sequence:

XilnXI
To dupllcate the FAP coding of the FORTKAil built-in function, XilAKIF, for use with ilAD-coded subprocrais.

27 octal locations
idone

HAD

$$
J=X \operatorname{IHAX} 1_{0}\left(Y_{1}, \ldots, Y_{n}\right)
$$

EAP

$\underset{\text { CALL }}{\text { STD }} \underset{J}{X H A X 1, Y_{y}, \ldots . Y_{n}}$
where:
the arguments (any nuinber of arguients greater than one) are floating-point and
the function is fixed-point.
Usage:

Identification:
The routine finds the maximul value of the arguments.

HDiHX1 appears in coluans 73-77 of the binary an! syibollc decks.

CTSS SUBPRUGRAM

Entry Name:
Purpose:

Length:
Transfer Vector:
Calling Sequence:
X.11111

To Jupllcate the FAP codlne of the FORTRAN built-in function, Xillillif, for use with ilAls-coled subprocrans.

31 octal locations
None

HAD
$J=X \| H N L_{0}\left(Y_{1} \ldots \ldots Y_{n}\right)$

EAP
$\underset{\text { STQ }}{\text { CALL }} \quad \underset{J}{ } \quad$ IIIN1, $Y_{2} \ldots \ldots, Y_{n}$
where:
the arguivents are floating-point and the function is fixed-point.

Usage: The routines find the inininun value of the argunents.
nuXind1 appears in columns 73-78 of the ifnary and symivolic decks.

CTSS SUBPROGRAD

Entry Nane:
Purpose:

Length:
Transfer Vector:
Calling Sequence:
LIAD
$K=x_{i} 1 \neq 0,(1,0)$
$x .100$
To Juplicate the FAP cojing of the FORTKAid built-in function, XilouF, for use with HAD-coled subprograis.

7 locatlons
Hone
EAP
CALL X:MDO,I,J STY K
where:
the arguments and functions are fixel-point.
Usage:
The function is defincl as $A R G_{1}-\left(A R G_{1} / A R G_{2}\right)$, where $(X)=$ integral part of X.

Identification: ruxinibl appears in coluans 73-78 of the binary and symbollc decks.

CTSS SUBPROGKA:

Entry Names:
Purpose:

Length:
Transfer Vector:
Calling Sequence:
MAD
$Z=\operatorname{Sich}(X, Y)$
$K=X \operatorname{SiGH},(1, J)$
where:
the argument and function of SIGN are floatine-point and the argument and function of XSIGll are fixed-point.

Usage:

Identification:

XSIGN, SIGN
To dupllcate the FAP coding of the FORTILAil bullt-in functions, XSIGilF and sICHF, for use with ilAD-cojed subprogr airs.

6 locations
Hone

$$
\text { CALL SICH, } X, Y
$$ ST6 Z

CALL XSIGN, I,J
STy K

The routine does a transfer of sign (Sicn of Arg_{2} times Arg_{1}).

HOSIGH appears in columns 73-78 of the binary and syinbolic decks.

CTSS SUBPROGRAM

Entry Name:
Purpose:

Length:
Transfer Vector:

Calling Sequence:

MADTRN: $M=X S H E Q F(H X R D I, N, L, A, B, S C A L E, A R R A Y)$
MAD: $\quad M=X S M E Q .(M X R Q W, N, L, A, B, S C A L E, A R R A Y)$
INTEGER M.MXRQW,N, L, XSMEQ.
where:
$M X R \emptyset W$ refers to an integer whose value is equal to the parameter MXRDil of the MADTINN statement 'DIAEIISIDis A(MXRgW,J)'。
if is an integer giving the number of rows or columns in the matrix A at the time $X S M E Q$ is called.

L Is an integer variable whose value is equal to the number of columns in matrix B.

A is an unsubscripted floating-point variable referring to the matrix A. In a $A 1 A D$ program, the 'base element" of this array inust be 1 . Upon return, the answers (the X matrix) wlll replace the A matrix.

B
Is an unsubscripted floating-point variable referring to the matrix B. In a MAD progran. the 'base element' of this array must be $1_{\text {. }}$ This matrix must be dimensioned in MADTRN as ' $B(1, J)$ ' where 1 and J are integer constants each greater than or equal to N.

SCALE is a floatingmpoint variable by whose value the value of the determinant of the matrix A will be scaled. Upon return, SCALE = SCALE * Det(A).

ariay	refers to a one-dimensional array whose lencth is Ereater than or equal to 11.
14	upon return wlll be
	1 If the solution was successful
	2 If an overflow occurred
	or 3 if the matrix A is singular.
Restrictions:	This progran must not be called by FORTKAN routines.
	All integers are expected to be norial HAD address integers.
	The matrices A and B must not be subscripted in the call to $X \operatorname{SiAE}$. Their 'base eleaents' in their respective dimension vectors nust be set to 1 .
	The matrix A must be a square matrix.
	Each maximun subscript of natrix must be greater than or equal to H_{0} the number of rows of inatrix A.
	HUTE: XSAEQ, nust appear in an integer declaration in a $A A D$ procrain.
Reference:	CC-174

CTSS SUBPROGRAIC

Entry Name:
Purpose:

Length:
Transfer Vector:
Error Procedure:
.01300
Computes Y where Y and Z are floating-point variables.

106 octal locations
SQRT, LDG, EXP, ERRQR, LDUIIP
The subprogran ERRDil is callel if $\gamma<0$ and the z is not an integer.

Calllng Sequence:

MAD

$$
X=Y, P, Z
$$

EAP

CLA	Y
LDQ	Z
TSX	$\$ 001300,4$
STY	X

where:
X, Y, and Z are floatingmoint variables.

CTSS SUBPROGRAM

Entry Name:
Purpose:

Length:

Transfer Vector:
Error Procedure:
Callling Sequence:

LIAD

$$
Y=X_{0} P_{0} K
$$

.01301
Computes X^{K} where X is a floatingpoint variable and K is a fixel-puint variable.

43 octal locations

None
Hune

FAP

CLA	X
LUQ	K
TSX	$\$.01301,4$
STO	Y

K STD Y
where:
$X \quad$ is a floating-point variable.
K is a fixed-point variable stored in the adjress in FAR.
$\gamma \quad$ is a floating-point variable equal to X^{K}.

CISS SUBPROGRAM

Entry Nane:
Purpose:

Length:
Transfer Vector:
Error Procedure:
Calling Sequence:
MALD
$I T Y J=1 . P . J$
MAL
$I T Y J=1 . P . J$
.01311
To compute 1^{J} where 1 and J are fixed-point varlables.

42 octal locations
Hone
None

EAP
CLA I
LDA J
TSX \$.01311.4 STH ITAJ
where:

1. J. and ltyd are fixed-point varlables stored in the address in FAP.

CTSS SUBPROGRAN

Entry Name:
Purpose:

Length:
Transfer Vector:
Error Procedure:
Calling Sequence:
MAD
$A(1, d)=\ldots$
$.03310, .03311$
Computes the linear subscripts for arrays of two subscripts.

17 octal locations
None
None

EAP
CLA 1
LDQ J
TSX $\$.03310 .4$ or .03311
TXII A.,AUI. 1
STE SUBSCR
where:

A	Is the name of the array.
ADIN Is the location of the dinension vector.	
I and J are subscripts.	
SUBSCR is the linear subscript which is returned to the	
	address of the $A C$.

