The Compatible Time-Sharing System

A Programmer’s Guide

The Compatible Time-Sharing System

A Programmer's Guide

SECOND EDITION

The M. |. T. Computation Center

P. A. Crisman, Editor

Cambridge, Massachusetts

The M. L. T. Press
Massachusetts Institute of Technology

Copyright © 1965
by
The Massachusetts Institute of Technology
All rights reserved. This book may not be reproduced, in whole

or in part, in any form (except by reviewers for the public press),
without written permission from the publishers.

Library of Congress Catalog Card Number: 65-25206
Printed in the United States of America

FREFACE TO THE SECOND EDITION 2/66 1

This second edition represents a major revision and
extension of the first edition and is necessitated by the
continuous evolution 5f the Compatible Time-Sharing Systenm
(CTSS) over the past two years of operation. As CTSS has
bean improved in reliability and capacity, since the summer
and fall of 1963, it has Leen implemented at both the
Computation Center and Project MAC. Both installations
oparate as a community service, seven days a veek,
twenty- four hours a day with the MAC computer being
tim2-shared full time and the Computation Center coamputer
being time-shared about half of the time. At present, over
110 consoles are scattered throughout the MIT campus, at New
England colleges, and in the homes of several Project MAC
participants. As a result, the two installations have had
extensive experience with a broad spectrus of users.
Therefore, it is no longer a question of the feasibility of
1 time-sharing system, but rather a question of how useful a
system can be prcduced.

During these two years of growth, there have been freguent
changes of hardware confiquration. Over seven different
varieties of terminals have been attached to the systen
(thre2 are obsolete now) and several different drum and disk
configurations have been used. Because of the programming
intarface design, most of these changes have been insulated
from the average system user. Despite the numerous hardwvare
changes it has become increasingly obvious that the essence
of a useful time-sharing system 1lies in the programeing,
i.e., in the software, and not in the hardware.

The programming has grown frcm a skeletal form of perhaps
50,000 instructions to> an estimated size cf between 400,000
and 1,000,000 words cf fpublicly-available system program.
From the few 1languages which were first available, the
system also has evolved to presently contain over a dozen
langjuages. Much of this growth in both words and in
languages is the work of many users rather than of systen
programmers. In fact, it has been a goal to enhance and
simplify the process 2f sub-system writing by supplying a
framework that 1is highly wmodular and vwhich encourages
division of responsibility and initiative.

Many of the ideas described in this manual were mentioned in
the first edition but at that time had not been implemented.
In addition, several key features have been introduced to
make a more complete system. A brief list of some of these
features, which are detailed more completely within this
manual, are: passwdrd logic, introduction of more elaborate
accounting procedures, inter-console message, public files,
anl macro commands. Further details of the system design
and implementation are given in Project MAC Technical Report
No. 16 by J. Saltzer. A summary of system operational

PREFACE T0 THE SECOND EDITICK 2/66 2

experience is given by R. Fano in Project MAC Technical
Rz2port No. 12 (AL-609-296) and is also published as an
article in the January 1965 issue of the IEEE Spectrunm.

Two major features have been introduced into the systen
which deserve special comment. First, the entire secondary
storage mechanism has been redesigned. This is considered
to be the most significant and far reaching change because
it improves the wmulti-programming capability of the =systen
and the contrclled sharing of files on the part of user.
Th2 design and implementation of this critical section has
been led by Robert Daley.

The second major new feature is the improved message
coordination with the typewriter terminals. This feature,
while not o¢bvious to users, has greatly improved the
organization and operaticn of the supervisor program. The
work in this important and critical area has been done by
Stanley Dunten who also has been instrumental in maintaining
2ffactive system operation.

Th2 present manual 1is considered a part of the systenm
because it is maintained on-line within the system, and it
r2presants an attempt to keep all system documentation
continuously ug to date. As system users know,
documantation difficulties have been severe, with over 80
bulletins and numerdus research memoranda prepared and
circulated as amendments to the first edition of the manual.

The effect of the present manual is that an active systen
usar can keep his manaoal updated. To do this, he should
periodically insgect a special table -of contents of the
manual, which is maintained on-line. ‘within the system in
reverse chronological order of .changes. that have been made
to the variocus sections. - Ffom this special table of
contents, he can juickly determine which sections have been
revised since the last time he updated "his copy, and then
obtain on-line printouts of thdse sections he needs.
Needless to say, the procedures . of 'requesting appropriate
sactions by mail or in person will still ke available. In
any case, the need for maintaining a massive mailing 1list
for amendments to the manual is eliminated.

Acknowledgenents

In addition to the freviously-mentioned critical work of
preparing the present system by Robert -Daley and Stanley
Dunten, the system owes its present form. to an ever
increasing number of staff members and contributors. Other
centributors o the system programming are, alphabetically:
Janet Allen, Michael Bailey, Robert Creasy, Patricia
Crisman, Marjorie Daggett, Caniel Edwards, Robert Fenichel,
Charles Garman, Robert Graham, Thomas Hastings, Jessica
H211wij, Lyndalee Korn, Richard Orenstein, Louis Pouzin,

PREFACE TO THE SECOND EDITICN 2/66 3

Glenda Schroeder and Mary Wagner. In addition,
contributions of some of the commands bave been made by
Margaret Child, Leola 0dland, Don Oppert, and Jeronme
Saltzer. Many of the subroutine write-ups which served as
r2farance documents for the present system were prepared by
BEdith Kliman, Judith Spall, and Susan Springer.

A great deal of the present system's impact upon users has
b22n because of its reasonably continuous and reliable
service., To a large extend, this has been due to the great
z2al and perserverence of the Computation Center's
operational staff, who have conscientiously dealt with the
many problems which have arisen.

W2 wish to thank the Computation Center and Project MAC
aiministration for contributing the proper environment and
shouldering the many problems which have been generated.
Th2y have made possible the present system's high level of
development.

Thanks are also due to the maintenance personnel of the
Intarnational Business Machines Corporation and of the New
England Telerhone and Telegraph Company for their diligent
2afforts in maintaining a high level of system performance.

A special acknowledgement goes to the Advance Research
Projects Agency of the DLepartment of Defense, and the Office
of Naval Research, the sponsors of Project MAC, and the
National Science Foundation, for the support of some of the
special equipment at the Comgputation Center.

F.J. Corbato
May 1965
Cambridge, Massachusetts

FEREFACE TO THE FIRST EDITION Page 1

This handbook is an attempt to document the technigues of
using a current version (model 13) of the <compatible
tim2-sharing-system (CI'SS) which has been developed at the
MIT Computation Center. It is primarily a manual of how to
us2 the2 system, in contrast to many of the research nmemos,
which have been more detailed in their documentation of the
techniques of implementation. Because CTSS is basically a
system which will allow an evolutionary development of
time-sharing while ccntinuing to allow more <conventional
background systems to operate, it is expected that the
present manual will of necessity be revised many times
ba2fore it reaches a final forn. A good deal of the
difficulty arises frcm, cn the one hand, the rather drastic
change 1in wuser operating techniques which time-sharing
permits, and on the other hand the immense anmcunt of
programming reguired to fully implement the systen.

The present work, although nct highly polished, 1is being
pr2sented now to assist in this evolutionary process, It is
expected to be a supplement to the Computation Center's
Preccedures Handbook which explains wmany of the general
administrative details of the Center. Furthermore, a
knowladge of programming is assumed of the reader. It has
been our objective tc present to an experienced programmer a
rrasonably complete manual which will allow him to use
wisely the present versicn of the time-sharing systenm.

B2cause of the rapidity with which many of the features are
being iwmplemented, and the delays in distributing the
in2vitable revisiosns, some features are described here which
are not yet accomplished. The reason for this 1is that it
was f21t to be important to indicate the intended sccpe and
objectives of the system so that individual users could plan
ah2ad in their applications. The features which are not
implemented will be found listed in an appendix which will
be revised periodically. In addition, each of the chapters
can be expected to be periodically revised.

Since the present work is primarily a handbook, no attempt
has been made to make any comparisons with the several other
tim2-sharing and remdte-console efforts which are being
developed by groups else-wherte. The only other general
purposz2 time-sharing system known to be operating presently,
that of the Bolt, Beranek and Newman Corporation for the
PDP- 1 computer, was recently described by Professor John
McCarthy at the 1963 Spring Joint Computer Conference.
Other time-sharing developments are being made at the
Carnegie Institute of Technology with a G20 computer, at the
University of California at Berkeley with a 7090, at the
Ranl Corporation with Johnniac, and at MIT (by Professor
Dennis)with a PDP-1. Several systems resemble our own in
th2ir logical organization; they include the independently

PREFACE TO THE FIRST EDITICN Page 2

developed BBN system for the PDP-1, the recently initiated
work at IBM (by A. Kinslow) on the 7090 computer, and the
plans of the System Development Corporation with the Q32
computer.

To establish the context of the present work, it 1is
informative to trace the development of time-sharing at MIT.
Shortly after the first paper on time-shared computers, by
C. Strachey at the June 1959 UNESCO Information Processing
Conference, H.M. Teager and J. McCarthy at MIT delivered an
unpublished paper "rime-Shared Program Testing®™ at the
August 1959 ACM Meeting. Evclving from this start, much of
th2 tim=2-sharing philosophy embodied in the CTSS system has
been developed in conjunction with an MIT preliminary study
committee (initiated in 1960), and a subsequent working
committee, The work of the former committee resulted, in
April 1961, in an unpublished (but widely circulated)
intarnal report. Time-sharing was advocated by J. McCarthy
in his lecture, given at MIT, contained in "Management and
th2 Computer of the Future®" (MIT, 1962). Further study of
the design and implementation of man-computer interaction

systenm is being continued by a recently organized
institute-wide project under the direction of Professor
Robart M. Fano. In November 11961 an experimental

tim2-sharing system, which was an early version of CISS, was
demonstrated at MIT, and in May 1962 a paper describing it
wis delivered at the Spring Joint Computer Conference.

As might be expected, the detailed design and implementation
of the present CISS system is largely a team effort with the
major portions of it being prepared by the following: Mrs.
Majorie M. Daggett, Mr. Robert Daley, Mr. Robert Creasy,
Mrs. Jessica Hellwiqg, Mr. Richard Orenstein, and Professor
F.J. Corbato, Impocrtant contributions to some of the
commands and the background system has been offered by
Professor Jack Dennis, Mr. J.R. Steinberq, and nmenrbers of
the Computation Center Staff. Mrs. leslie Lowry, Mr. VLouis
Pouzin, and Mrs. ©Evelyn Dow have <contributed to the
preparation cf the commands.

Special credit is given to Professor Herbert Teager for the
l2sign and development of his Flexowriter control subchannel
which allowed the <c¢riginal experimental version of the
prasent system to be developed, tested, and evaluated; only
with such an opportunity was it possible to have the
confidence tc make the present pilot development of the CTSS
systenm.

2 should also like to extend our thanks to the Computer
enter of the University of Michigan where Professor Bernard
Galler, Mr. Bruce Arden, and Mr. Robert Graham have Dbeen
very helpful in advising us cn the use of their Mad Comfpiler
in our time-sharing system. 1In addition, Mr. Robert Rosin
kinily made available the mMadtran editing program for

EREFACE TO THE FIRST EDITICN Page 3

processing Fortran II sukprograms to Mad subprograms.

W2 should further like to take this occasion to acknowledge
partial support by the National Science Foundaticn, the
Office of Naval Research, and the Ford Foundation, of the
i2v2lopment of our present systen. We also add our
appreciation for the support provided the Computation Center
by th2 IBM Corporation.

Finally, we should like to encourage the readers «cf this
handbook to examine the present system with a view toward
inmprovements and we shall welcome such criticisms.

F.J. Corbato

Cambridge, Massachusetts
May 1963

AA.

AB.

AC.

AD.

AE.

AF.

AG.

TABLE OF CONTENTS (12/31/69)

(* denotes file system section)

Preface to the Second Edition

Preface to the First Edition
Introduction to Time Sharing
.0 Introduction
.1 General description and usage techniques
<2 "lime-Sharing Primer®
.01 File names
Documentation
.1 Conventions for this manual
.2 Glossary and conventions
.3 System documentation
Hardware
.0 Equipment configuration
.1 Clocks
.2 Consoles and character sets
.01 Character sets
.02 Srpecial characters
.3 Data phone extensions
Files
.1 Historic file systenm
%*.2 A pnew lcok in the file systenm
«3 Library files
.4 Cormon files and Puklic File
.5 Time accounting files
File Editing (off-line)
-1 Bulk input and ocutput
.2 DAEMON
.01 Retrieval
Background
.1 Restrictions for background programs
Subroutines

AG. O SUpérvisor entries: Reference list

AG.1 Consocle 1I/0
.01 RDPLX,RDFLXA,WRFLX,
WRFLXA ,RSSRB
.02 SETFUL,SETBCLC,SETNCV
.03 PRNTP,PRNTPA, PRNTPC
.04 WRMESS,RDMESS,ALLOW,

General I/O

Character mode
Fenced output
Inter-progran
FOREID communication

-
N

e

3

-

02/66

12/69
12/69
12/69

12,69
12/69
05/66

12/69

12,69
12/69
12,69

09/65
12,69
11/65
12,69
12/69
12,69

12,69

12/69

12/69

12/69

06/69

CTSS

.05

.06
.07

.08
.09
.10
.M
<12
.13
<14

AG.z
.01

.02
.03
.04
.05
.06

.07
*,08

.09
*,1C

* 11

AG.3
.01
.02
.03
.04
.05
.06

* .07
AG. Y

.01
.C2

FRCGRAMMER'S GUIDE

Disk File I/0

BFOPEN,BFREAD ,BFWRIT,

Section TABLE 12/69

ATTCON,RELEAS,SNDLIN, Slave remote consoles
SNDLNA, REDLIN, RDL INA,
SLAVE ,SET6 ,SET12

(CSH),.READ, .READL,

. LOOK,.SCRDS

(SPH) , (SPHM) ,.PRINT,
« COMNT, .SPRNT

.PCONMT

. PRSLT,. PRBCD, . PROCT

LRDATA,; _.RPDTA

SETNBK, KILNBK

MAD, Fortran online
input compatibility

MAD, Fortran online
output compatibility

MAD print comment

MAD print results

RAD read data

No-break mode

PRMESS,PRMESA Erint message
PR12,PR12A Print message in 12-bit
PRFULL,PRFULA Erint message in 12-Dbit

. LOAD,. DUMP, DSKLOD, Unbuffered I,0

D SKDMP {old library)
SEEK,. READK, ENDRD, Buffered input
B-D- VREAD (old library)

ASSIGN, .WRITE,FILE,
APPEND,B-D-V-FWRITE

Buffered cutput
(old library)

-.RELRW Belative read/vwrite
{cld library)
SETVBF Set fixed record length

(old library)
Library service

(old library)
Zero file (old library)
File System disk I/O

SRZH,BLK,FLK ,ENDF,
cLour

.CLEAR

OPEN, BUFFER, RCFILE,
RDWAIT, WRFILE,WRWAIT,
IRFILE,FCHECK,FWAIT,
CLOSE,SETPRI

LCFIL Load file 1into free core

Buffered input/output
BFCLOS,BFCODE

0ld file system write-arounds to new systen

File Status

CHMODE, RENAME Change mode cr nanme

DELETE,ERASE Delete file
CCMFIL,ISSFIL,USRFIL Switch file directory
FSTAT,.FSTAT File status (old library)
GTNAM Get file name in series
.RESET,RESETF Drop files from active

status
Change mode or nanme,
delete, find status

CHFILE,DELFIL,UPDATE,
FSTATE,STORGE

Errors and Exits

Historic file system error procedure
SETERR,SNAP ,RECOUP Library disk error
procedure

2

12/69

08/65

08/65

08/65
06/69
06,69
06/69
06,69
11,65
11/65
11/65

11/65

11/65

11,65
12/66

01766

12/69

11/65
11/65
06,69

11,65
12/66

09/65

.05

*.06

EOFXIT,SETEOF ,WRDCNT

EXIT,EXITM,CLKOUT,
ENDJOB,LCUMP ,PDUMP
LDUMP

ICDIAG, FERRTN, PRNTER,
PRDIAG

AG.5 Tapes and Pseudo tapes

Section

meom e v

1LADLD

—-—
N
N
o4}
Vel

library end-of-file
procedure

Terminal procedure

Error exit for math
routines

File system error
procedure

Write BCD with format

Read BCD with format

write end of file
I/0 system tapes for

Dead and dormant status

Ploating point trap

Free storage management
Get buffer from free
Supervisor parameters

Current comfil number
Privileged I/0 systen

Line number cf logged-

General Macro command

.01 .PUNCH, .PNCHL ,.TAPWR,
(SCH), (STH), (STHM)
.C2 .TAPRD, (TSH), (TSHM)
.03 (STB), (ISEB), (WLR), (RLR) Read/write binary
.04 .BSF,.BSR,.EFT,.RNWT, Backspace, rewind,
(BST), (EFT), (RWT)
* .05 MOUNT,UMOUNT,VERIFY,
LABEL,TAPFIL foreground
AG.6 Prcgram Status
.01 DEAD,CORMNT, GET ILC,
FNR'IN
.02 SLEEP,WAIT Alarm clock
.C3 GETBRK,SETIBRK,SAVBRK Interrupt level
.C4 STOMAP Storage map
.05 L.SETUE, (FPT), (EFTM),
(LF TH)
.06 GETMEM,SETMEM, GMEN, Memory bound
SMEM,EXMEM
.07 FREE, FRER, FRET
*.,08 TILOCK File-wait return
.09 GETBUF
core
AG.7 Supervisor
.01 GETLOC,GETARY,SETLOC,
GLOC,SLOC,SYPAR
.02 GETCF,SEICFN
*_,03 UEDMFL, CELMFC,ATTACH,
ALLOT', MOV FIL, L INK, calls
UNLINK,SETFIL,RSFILE
*, 04 ATTNAM Attached directory
.05 WHOAMI User information
.06 COMLOC,SNATICH,GAC, Named items in
ACORE supervisor
.07 SETWRL,GETWRL User A-core word
.08 SETBLP,GETBLP Timing response
.09 ISIN
) in user
AG.8 Commands and Subsystem Control
.00 General Discussion of Macro commands
.01 XECOM,NEXCOM, NCOM Single commands
.02 SCHAIN
.03 CHNCOM, (GET, G, SET,S)

Supervisor command chain

09/65

12,69

08/65

09/65

12/69

12/69
12/69

09/65

05766
12/69

12/69

12/69
12/69

12769
12/69
06/69

12,69
12/69
12/69

CTSS PROGRAMMER'S GUIDE

.04 GETCOM, COMARG Command argument
.05 SETOPT,RSOPT,LDOPT, Cptions and subsystenm
GEI'OPT,S ETSYS, GETSYS control
AG.9 Cebugging
.01 ERROR Subroutine trace
AG. 10 Conversion
.01 BCDECZ,BCOCT BCD or spread-octal
to binary
.02 DEFBC,DELEBC, DERBC Binary to BCD
.03 ocCcaBZ,0CDBC,0CLBC, Binary to spread-octal
OCREC
.04 BZ2EL,Z2EL,LJUST,RJUST Justification and
padding
.05 (IOH), (RIN),(FIL), Format conversion
IOHSIZ,STQUO
.06 PAKR,PAKL,UNPAKR,UNPAKL Fack and unpack words
.07 PFINT,MINT Fortran integers
.08 COM,ORA,ANA Complement, OR, AND
.09 DECODE,ENCODE Format conversion
.10 DTBC,OrBC, BTDC, BTOC Binary to octal or BCD
convarsion
. 11 PAD,BZL,NZL,ZEBL,NBL Padding
.12 ADJ,LJ,RJ Justification
.13 BZ57 Null zeroes, blanks
AG.11 Subroutine Linkage Processing
.01 COLT,SELAR,MDL Variable-length calling
sequence
.02 GNAM Type of calling sejuence
.03 MOVE1,MOVE2,MOVE3 Move argument list
.04 SETFMT,SETNANM Format and file name
AG.12 Timers
.01 GETIME, GETTM, GTDYTM Current date and time
.02 TIMER,JOBTM,RSCLCK, Alarm clock, stop watch
STOPCL,KILLTR,TIMLFT,
RSTRTN
.03 CLOCON, CLOCOF, UPCLOC Simulated interval timer
.04 RDYTIM Print time used
AG.13 Miscellaneous
.00 List of miscellaneous library subroutines
.01 (FPT) Floating point overflow
and underflow
AH. Commands
AH.1 Logging
.01 LOCGIN Log in
.02 LOGOUT,ENDLOG ,0TOLGS Loy out, automatic

LS and CLC

Section TABLE

12/69

control

12/69

09,65
03/66
12,69

12/69

12/69
12769

05,66

12/69
12,69

02/66
08,65

12/69
12,69

CTSS

AH.Z

AH.3

ERCGRAMMER®'S GU IDE

.03 FIB,DELFIB,PRFIB
.04 TIPEEK

.05 DIAL

.06 HELLO

Languages and Subsystens
.01 AED

.02 BEFAP

.03 C0G0-90

.04 COMIT

.05 DYNAMO

.06 ESL Display Systenm
.07 FAP

.08 GPSs

.09 LIsp

.10 MAD

.11 MADT RN

.12 SNOBOL

.15 OBPs

.16 TIP

.17 FORU4

.18 FORMAC

.19 . ,WRITE

File Creation and Editing
.02 ED

.03 SAVE,MYSAVE

.04 SAVFIL,RERUN
*,05 LINK,UNLINK,P?RNIT,
*_ 06 MOUNT,UMOUNT,VERIFY,

LABEL,TAPFIL
.C7 ECL

Section TABLE

12/69

logout
Foreground Initiated
Background
Time and disk gquotas
Attach remote cansole

Dialup message

ALGOL Extended for
Design :

Bell Laboratcries 7094
Assembler

Coordinate Geometry
Language

String Processing
Language

- Model Simulation

Language

ESL Display Systenm

IBM 7094 Assenmbler

General Purpose System
Simulator

List Processing
Language

Michigan Algorithnm
Decoder

Fortran II to MAD
translator

String Manipulation
Langjuage

Online Prograaming
System

Technical Information
Program

Fortran IV tc MAD
translator

Desk Calculator

Conmpand Interface

Context edi tor for
card- image files

Save dormant program

Save and restore RUNCOM
status and files

Link to files in other
U.F.D.'s

Tape-handling commands

Context editcr for
line-marked files

Context editor for
binary files

5

12/69
12/69

12,69
12/69

02/66

09/66

12,69

02,66

08/65

05,66
01)66
12/69
03/66
03/66
12/69
12/69

12/69

12/69
05/66
03766

12/69

CTSS PROGRAMMER'S GUIDE

.69 QED
.10 EDA
.11 MOVE, APND
.12 EDC
AH.4 File Compression
.01 ARCHIV
.02 CRUNCEH
.03 SQUASH,XPAND
.04 SQZBSS,PADBSS
.05 AARCHV
.06 APENDA
AH. S5 File Printing
.01 LISTF
.02 PRINTF
.03 ERINT
.C4 PRBIN
.05 PRBSS
.06 SDUMP
.07 PRINT A
.08 P
AH.€ File Housekeeping
.01 COMBIN
.02 SPLIT
.03 CHMODE, RENAME, DELETE
.04 COMFIL,COPY,UPDATE
.05 EXIBSS,UPDBSS
.06 RCQUEST
.07 CALL
.08 ATTACH
.09 APEND
.10 RCASCI
AH.7 Program Execution
.07 LOAD,LOADGO,VLOAD,
NCLOAD,L,USE
.02 LDABS
.03 STARI,RSTART, RESTOR,
REZCALL ,RESUME ,R,
CONTIN
.04 LAED,USE
.05 DO
.12 PLOAD
.07 BLIP

Section TABLE

12769

Erogrammable editor

Context editor for
ASCII files

Copy files

Context editor for
card- image files

Archive seldom used
files

Compress BCD files

Line-mark files

Compress BSS files

Archive ASCII files

Append to Archives

List file directory
Erint card-image file
Print BCD file

Erint binary file
Summary of BSS file
Frint SAVED file
Print ASCII file
High-speed print

Combine files

Split files

Change mode or nanme,
delete file

Common files

Library file house-
keeping

Off-line processing

File system call

Attach to other U.F.D.

Append to files

Off-line ASCIT printing

Relocatable progranm
loading

Absolute program loading

Start or continue
program execution

Relocatable program
loading

Load private command
from common file

Simulate loading; cross-

reference storage map
Set execution timing

06/69
12,69

12,69
12/69

06/69

12,69
12/69
06,69
12/69

06,69
01,66
06/69
11,65
01/66

06,69
06/69

12/69

08/65
11/65

12/69
09/66
06/69
12/69
12/69
05/66
05/66
05/66
07/66
12/69
12/69

12/69

(g}
=3
wn
[7]
)
=)
Q
1

.08

=)

o
<4
<
[}
=)
w
(1)
c
[]
<
o

RUN

AH.& Debugging
General discussion of debugging tools

.00
.01

.02
.03
.04

.05
.06

.07
.09

FAPDBG

MADB UG
PHM

PATCH,STOPAT,TRA

S PATCH
sb, SP

STRACE
DEBUG
STOMAP

AH.9 Document

.01 TYPSET, RUROFF
.03 REMARK
.05 MAIL
.06 RCFF
.C7 PINFO
AH.10 Command Execution
.01 RUNCOM,CHAIN
.02 GENCONM
.03 SUBSYS
.04 OPTION
AH.11 Miscellaneous
.01 PRNTER
.02 WHO
.03 SPACE,RJECT
.04 ECHO
.05 oCr,DEC
.06 PON,POFF
.07 RED, BLACK
.08 YES
.09 WAIT
.10 TIME
.11 PERROR

Al. Public File Subroutines

AI.0 General

AI.2 Input/Output

.01

MADIO,REAL,PRINT

Section TABLE

—
N
N\,
o
@O

response
TIP utility dispatching

symbolic FAP language
debugger

MAD language debugger

Post mortem dump

Relocatable progranm
patching

SAVED file patching

Supervisor dumping and
patching

Subroutine trace

Symbolic debugging

Storage map

Memo editor, printer
Send message to systems
staff
Send message to users
Print ASCII memos
Cnline documentation
of new changes

Macro command
Octal arguments
Subsystem control
User options

File error diagnostic
List current users of
CTSsS
Listing control
Frint command line
Octal/decimal conversion
Turn printer on and off
Change ribbon color
Command chain checkpoint
Pause between commands
Print date and time
Explain file error code

Ccmpressed I/C0 rcutines

~i

12/69

09/65
09/65

06,69
12/69

12,69
08/65

02/66
06,69
06,69

12/69
08,65
12/69
12,69

03/66
12,69

12,69
12/69
12,69
12/69
12/69
12,69
12/69
12,69
12/69

05/66

09/66

CTSS PROGRAMMER'S GUIDE Section TABLE 12/69

AJ. Public File Commands
AJ.C General

AJ.2 Languages and Subsystenms
.02 GEM

.03 EBS
Ad.4 File Compression

.01 SQZBCD,PADBCD

AJ.S File Printing
.02 DISPLY

.03 LSTLNK
.04 OCTLF
.05 TAPLF

AJ.6 File Housekeering
.01 61012
.02 APPENL

.03 ENCIPH, DECIPH
.04 CHMPARE
.05 12ro6

AJ.8 Debugging
.02 SRCH
.03 DUMPER
AJ.10 Command Execution

.01 QUES
.03 RUNPRT

AJd.11 Miscellaneous
.01 SLAVE
AK. Sample fprograms

AK.C General

General Purpose
Macrogenerator
Equilibrium Problen

Solver

Compress BCD files

Text display on ESL
scope

List links inp U.P.D.

List U.F.D.in octal

List tape files

Convert 6-bit to 12-bit

Combine line-marked
files

Garble files

Compare two files

Convert 12-bit to 6-bit

Search SAVED file
Dump SAVED file

Check success of RUNCOM
Identify RUNCOM para-
meters

Slave remote consoles

AK.8 Commands and Subsystem Control
.01 Usage of subsystem facility

INDEX to Subroutines and Commands

12/69

02/66
03/66

07/66

03/66
07,66

02/66
09/66

08/65
08,65
09/65

12/69
12/69

08/65
09/66

08/65
11,65

08/65

12/69

12/69
12/69

(END)

(BST)
(CSH)
(EFT)
(EFTM)
(FIL)
(FPT)
(FPT)
(I0H)
(LFTM)
(RLR)
(RTN)
(RWT)
(SCH)
(SPH)
(S PH M)
(STB)
(STH)
(STHM)
(TSB)
(TSH)
(PSH M)
(WLR)
.ASIGN
. BSF
.BSR
.CLEAR
.COMNT
.DUMP
. EFT
.ENDRD
.FILE
.PSTAT
. LOAD
.LOOK
. PCOMT
.PNCHL
. PRBCD
.PRINT
. PROCT
.PRSLT
.PUNCH
.RDATA
.READ
. READK
.READL
.RELRW
.RESET

————

AG. 5.04%
AG. 1.06
AG. 5.04
AG. 6.05
AG.10.05
AG. 6.05
AG.13.01
AG.10.05
AG. 6.05
AG. 5.03
AG.10.05
AG. 5.04
AG. 5.01
AG. 1.07
AG. 1.07
AG. 5.03
AG., 5.01
AG. 5.01
AG. 5.03
AG. 5.02
AG. 5.02
AG. 5.03
AG. 2.03
AG. 5.04
AG. 5.04
AG. 2.07
AG. 1.07
AG. 2.01
AG. 5.04
AG. 2.02
AG. 2.03
AG. 3.04
AG. 2.01
AG. 1.06
AG. 1.08
AG. 5.01
AG. 1.09
AG. 1.07
AG. 1.09
AG. 1.09
AG. 5.01
AG. 1.10
AG. 1.06
AG. 2.02
AG. 1.06
AG. 2.04
AG. 3.06

INCEX

-RPDTA
- BWT

- SCRDS
- S FEK
-SETUP
«SPTRNT
. TAPRD
«TAPWR
- NRITE
ACORE
ADJ
ALLOT
ALLOW
ANA
ASS IGN
ATTIACH
ATT CON
ATINAM
ECLEC
BZOCT
BFCLOS
BFCOLE
BFOPEN
BFREAD
BF WRIT
BLK
BREAD
BTLC
BIOC
BUFFER
BNRITE
BZEL
BZL
CHFILE
CHMODE
CHNCON
CLKOUT
CLOCOF:
CLOCON
CLOSE
CLOUT
COLT
Con
COMARG
COMFIL
COMLOC
DEAD

(12/31/69)

AG. 1.10
AG. 5.04
AG. 1.06
AG. 2.02
AG. 6.05
AG. 1.07
AG. 5.02
AG. 5.01
AG. 2.03
AG. 7.06
AG. 10,12
AG. 7.03
AG. 1.04
AG.10.08
AG. 2.03
AS. 7.03
AG. 1.05
AG. 7.04
AG.10.01
AG. 10.01
AG. 2.10
AG. 2.10
AG. 2.10
AG. 2.10
AG. 2.10
AG. 2.06
AG. 2.02
AG.10.10
AG. 10.10
AG. 2.08
AG. 2.03
AG.10.04
AG. 10. 11
AG. 3.07
AG. 3.01
AG. 8.03
AG. 4.04
AG.12.03
AG.12.03
AG. 2.08
AG. 2.06
AG. 11,01
A5.10.08
AG. 8.04
AG. 3.03
AG. 7.06
AG. 6.01

DECODE
DEFBC
DELBC
DELETE
DELFIL
DELMFD
DERBC
DORMNT
DREAD
DSKDMP
DSKLOD
DTBC
DuMP
DWRITE
ENCODE
ENDF
ENDJOB
ENDRD
EOPXIT
ERA SE
ERRCR
EXIT
EXITHM
EXMEM
FCHECK
FERR TN
FILE
FINT
FLK
FNRTN
FORBID
FREE
FRER
FRET
FSTAT
FSTATE
FWAIT
FWRITE
GAC
GCLC
GCLS
GETARY
GETBLP
GETBRK
GETBUF
GETCPF
GETCFN

(¢}
[Ye]
-h

AG. 10.09
AG.10.02
AG. 10.02
AG. 3.02
AG. 3.07
AG. 7.03
4G. 10, 02
AG. 6.01
AG. 2.02
AG. 2.01
AG. 2.01
AG. 10. 10
AG. 4.04
AG. 2.03
AG.10.09
AG. 2.06
AG. 4.04
AG. 2.02
AG. 4.03
A5. 3.02
AG. 9.01
AG. 4.04
AG. 4,04
AG. 6.06
AG. 2.08
AG. 4.06
AG, 2.03
AG. 10.07
AG. 2.06
AG. 6.01
AG. 1.04
AG. 6.07
AG. 6.07
AG. 6.07
AG. 3.04
AG. 3.07
AG. 2.08
AG. 2.03
AG., 7.06
AG. 8.03
AG. 8.03
AG. 7.01
AG. 7.08
AG. 6.03
AG. 6,09
AG. 7.02
AG. 7.02

CrsS PRCGRAMMERYS GIITIDE Sectinn INDEX 12,69 2

SETCLC AG. 8.03 PDUMP AG. 4.04 SETSYS AG. B.US
GETCLS AG. 8.03 PR 12 AG. 1.13 SETVBF AG. 2.05
SETCOM AG. 8.04 PRLIAG AG. 4.06 SETWRC 2G. 7.07
GETILC AG. 6.01 PRFULL AG. 1. 14 SLAVE AG. 1.05
GETIME AG.12.01 PRMESS AG. 1.12 SLEEF AG. 6.02
3ETLOC AG. 7.01 PRNFTER AG. 4.06 SLOC AS. 7.01
GETMEM AG. 6.06 PRNTP AG. 1.03 SMEM AG. 6.06
GETOET AG. 8.05 RLFILE AG. 2.08 SNAP AG. 4.02
GETSYS AG. 8.05 RDFLX AG. 1.01 SNATCH AG. 7.06
GETTM AG.12.01 RCLINA AG. 1.05 SNDLIN AG. 1.05
GRTWRD AG. 7.07 RDMESS AG. 1.04 SRCH AG. 2.06
3LOC AG. 7.01 RDWAIT AG. 2.08 STCMAP AG. 6.004
GMEM AG. 6.06 RDYPTM AG. 12.04 STOPCL AG.12.02
GNAM AG.11.02 RECOUP AG. 4.02 STORGE AG. 3.07
3IDYTM AG.12.01 RECLIN AG. 1.05 STQUD AG.10.05
GINAM AG. 3.05 RELEAS AG. 1.05 SYPAR AG. 7.01
IODIAG AG. 4.06 RENAME AG. 3.01 TAPFIL AG. 5.05
IDHSIZ AG.10.05 RESETF AG. 3.06 TILOCK AG. 6.08
ISIN AG. 7.09 RJ AG.10.12 TIKER AG.12.02
JOBTM AG.12.02 RJUST AG.10.04 TIMLFT AG.12.02
KILLTR AG.12.02 RSCLCK AG.12.02 TRFILE AG. 2.08
KILNBK AG. 1.11 RSFILE AG. 7.03 TSSFIL AG. 3.03
LABEL AG. 5.05 RSOPT AG. 8.05 UMOUNT BAG. 5.05
LDFIL AG. 2.09 RSSRB AG. 1.01 UNLINK AG. 7.03
LDOPT AG. 8.05 RSTIRTN AG.12.02 UNPAKL AG.10.06
LDUME AG. 4.05 SAVBRK AG. 6.03 UNPAKR AG.10.06
L INK AG. 7.03 SCHAIN AG. 8.02 UPCLOC AG.12.03
LJ AG. 10. 12 SCLC AG. 8.03 UPDATE AG. 3.07
LIJUST AG.1C.04 SCLS AG. 8.03 UPDMFD AG. 7.03
MDL AG.11.01 SEEK AG. 2.02 USRFIL AG. 3.03
MINT AG.10.07 SELAR AG.11.01 VERIFY AG. 5.05
MOUNT AG. 5.05 SET12 AG. 1.05 VREAD AG. 2.02
MOVE1 AG.11.03 SET6 AG. 1.05 VWRITE AG. 2.03
YWIVE2 AG.11.03 SETBCD AG. 1.02 WAIT AG. 6.02
MOVE3 AG.11.03 SETBLP AG. 7.08 WHOAMI AG. 7.05
MOVFIL AG. 7.03 SETBRK AG. 6.03 WEDCNT AG. 4.03
NBL AG. 10. 11 SETCLC AG. 8.03 WRFTILE AG. 2.08
NCOM AG. 8.01 SETCLS AG. 8.03 WRFLX AG. 1.01
NEXCOM AG. 8.01 SETEOF AG. 4.03 WRMESS AG. 1.0U
NZL AG. 10. 11 SETERR AG. 4.02 WRWAIT AG. 2.08
OCABC AG.1C.03 SETFIL AG. 7.03 XECOM AG. 8.01
OCDBC AG.10.03 SETFAT AG. 11.04 ZBL AG.10.11
OCLBC AG.1C.03 SETFUL AS. 1.02 ZEL AG. 10.04
OCRBC AG. 10.03 SETLOC AG. 7.01 BZ57 AG.10.13
OPEN AG. 2.08 SETMEM AG. 6.06

ORA AG.10.08 SETNAM AG.11.04 Public

OTBC AG. 10. 10 SETNBK AG. 1.11

PAD AG.10. 11 SETNCV AG. 1.02 MADIO AI. 2.01
PAKL 3G .10.06 SETOPT AG. 8.05 ERINT AI. 2.01

PAKR AG. 10.06 SETPRI AG. 2.08 READ AI. 2.01

CTSS FROCGRAMMER'S GUIDE

CIMMANDS

—— g ——— oo

AARCHV
AED
APEND
APENDA
APND
ARCHIV
ATTACH
BEFAP
BLACK
BLIP
CALL
CHAIN
CHMODE
COGO
COMBIN
COMFIL
COMIT
CONTIN
COPY
CRUNCH
DEBUG
DEC
DELETE
DELFIB
DIAL
DO
DYNAMO
ECHOQ
ED

EDA
EDB
EDC
EDL
EJECT
ESL
EXTBSS
FAP
FAPDBG
FIB
FORG4
FORMAC
SENCONM
GPSS
HELLC
L

AH. 2.19
AH., 4,05
AH. 2.01%
AH. 6.09
AH. 4.06
AH. 3.1
AH. 4.01
AH. 6.08
AH. 2.02

AH.11.07

AH. 7.07
AH. 6,07
AH.10.01
AH. 6.03
AH. 2.03
AH. 6.01
AH. 6.04
AH. 2.04
AH. 7.03
AH, 6.04
AH. 4.02
AH. 8.08
AH. 11.05
AH. 6.03
AH. 1.03
AH. 1.05
AH. 7.095
AH. 2.05
AH.11.04
AH, 3.02
AH. 3.10
AH. 3.08
AH. 3.12
AH. 3.07
AH.11.03
AH. 2.06
AH. 6.05
AH. 2.07
AH. 8.01
AH., 1.03
AH. 2.17
AH. 2.18
AH.10.02
AH. 2.08
AH. 1.06
AH., 7.01

LABEL
LAED
LDABS
LINK
LISTF
LITHP
LOAD
LOADGO
LOGIN
LOGOUT
MAL
MADBUG
MADTRN
MAIL
MOUNT
MOV E

M Y¥SA VE
NCLOAL
0oCT
OPS
OPTION
P
PALBSS
PA TCH
PERMIT
PERROR
PINFO
PLOAD
pM
POFF
PON
PREIN
PRBSS
PRFIB
PRINT
PRINTA
PRINTF
PRNT ER
QED

R
RECALL
RED
REMARK
RENA ME
RERUN

Section INDEX

AH. 3.06
AH. 7.04
AH. 7.02
AH. 3.05
AH. 5.01
AH. 2.09
A, 7.01
AH. 7.01
AR, 1.01
AH. 1.02
AH. 2.10
AH. 8.02
AH. 2.11
AH. 9.05
AH. 3.06
Ad. 3.1
AH. 3.03
AH. 7.01
AH.11.05
AH. 2.15
AH. 10.04
AH. 5.08
AH. 4.04
AH. 8.04
AH. 3.05
AH.11.11
AH. 9.07
AH. 7.06
AH. 8.03
AH.11.06
AH.11.06
AH. 5.04
AH. 5.05
AH. 1.03
AH. 5.03
AH. 5.07
AH. 5.02
ABH.11.01
AH. 3.09
AH., 7.03
AB. 7.03
AH.11.07
AH. 9.03
AH. 6.03
AH. 3.04

RESTOR
RESUMNE
REVOKE
RCFF

ROASCI

- RCUEST

RSTART
RUN
RUNCOM
RUNCFF
SAVE
SAYFIL
SD
SDUMP
SNOBCL
SP

SP
SPATCH
SELIT
SCUASH
SQZBSS
START
STOMAP
STOPAT
STRACE
SuBsYs
TAPFIL
TIME
TIP
TR A

TT PEEK
TYPSET
UMOUNT
UNL INK
UPDATE
UPDBSS
USE
USE
VERIFY
VLOAD
WAIT
WHO
WRITE
XPAND
YES

12769 3

AH. 7.03
AH. 7.03
AH. 3.05
AH. 9.06
AH. 6.10
AH. 6.06
AH. 7.03
AH. 7.08
AH.10.01
AB. 9.01
AH. 3.03
AH. 3.04
AH. 8.06
AH. 5.06
AH. 2.12
AH. 8.06
AH, 11,03
AH. 8.05
AH. 6.02
AH. 4.03
AH. 4,04
AH. 7.03
AH. 8.09
AH. 8.04
AH. 8.07
AH. 10.03
AH. 3.06
AH.11.10
AH. 2.16
AH. 8.04
AH. 1,04
AH. 9.01
AH. 3.06
AH. 3.05
AH., 6.04
AH. 6.05
AH. 7.01
AH. 7.04
AH. 3.06
AH. 7.01
AH.11,09
AH. 11.02
Att. 2.19
AH. 4.03
AH.11.08

CTSS EBRCGRAMMER'S

PUBLIC
12T06
610 1=
APPEND
CMPARE
DECIEH
DISPLY
DUMPER
ENCIPH
EPS
GPM
LSTLNK
OCTLF
PADBCD
QUES
RUNPRT
SLAVE
SQZBCD
SRCH
TAPLF

AJ. 6.05
AJ. 6.01
AJ. 6.02
AJ. 6.04
AJ. 6.03
AJ. 5.02
AJ. 8.03
AJ. 6.03
AJ. 2.03
AJ. 2.02
AJ. 5.03
AJ. 5.04
AJ. 4.01
AJ.10.01
AJ.1C.03
AJ.11.01
AJ., 4.0
AJ. 8.02
Ad. 5.05

GUILCE

Section INDEX

12/69

4

(END)

CTSS PRCGRAMMER'S GUIDE Section AA.O Page 1

Identification

Introduction to Time-Sharing

Time-sharing is an ambiquous term. Some people use this
term to describe concurrent operation of ss2veral parts of a
singls computer. This sort of operation, also called

multiprograsming, generally 1is directed toward efficient
utilization of hardware.

Th2 time-sharing system described in this manual seeks to
allow a somewhat different sort of efficiency. Although
hardware utilization is still consijdered, the primary goal
is concurrent, effective utilization of a single computer by
several users.

The motivaticn for time-shared computer usage arises out of
th2 slow man-computer interaction rate presently p[possible
with the bigger, more advanced computers. This rate has
changad little (and has become worse in some cases) 1in the
last decade of widespread computer use.

In part, this effect has been due to the fact that, as
2l2mentary probleas become mastered on the computer, more
complex problems immediately become of interest. As a
result, larger and more complicated programs are writtem to
tak2 advantage of larger and faster computers. This process
inevitably leads to more programming errors and a longer
p2riodl of time rejuired for debugging. Using current batch
processing techniques, as is done on most 1large computers,
eich program bug usunally requires several hours to
eliminate, if not a complete day. The only alternative
available has been for the programmer to attempt to debug
directly at the computer, a process which 1is grossly
wasteful of computer time and hampered seriously by the poor
console communication usually availakle. Even if a
typewriter is available at the console, there are usually
lackiny the sophisticated guery and response programs which
are vitally necessary to allow effective interaction. Thus,
what is desired is drastically to increase the rate of
interaction between the grogrammer and the computer without
larjye 2conomic loss and also to make each 1interaction more
meaningful by extensive and complex system programming to
assist in the man-computer communication.

In addition to allowing the development of wusable and

sophisticated debugging techniques, an efficient
time-sharing system should make feasible a number of
-r2latively new computer applications which can be

implemented only at great cost in a conventional system.
Any problem requiring a high degree of intermixture of
computation and communication on a real-time basis should
r2ajily lend itself t> time-sharing techniques. Examples of
this type of application include:

CTSS PROGRAMMER'S GUIDE Section AA.O Page 2

dacision-tree problems; real-time management

problems (airline reservations, hospital administration,
2tc.) ; gaming problems; sociological experiments;
t2aching pachines; language learning problems;

library retrieval; text-editing; algebra manipulators;

and many more.

Th2 Compatible rime-Sharing Systenm (CTSS) is a
general-purpose rrogramming system which allows a new fornm
of computer opsratisn to evclve and yet allows most older
programming systems to ccntinue to be operated. CTSs 1is
us21 from consocles which may be of several varieties, but
#hich in essence are electric typewriters. Each console
us2r controls the computer (i.e. as seen by him) by issuing
standard commands, one at a time. The commands allow
convenient performance of most of the routine programming
oparations such as input, translation, loading, execution,
stopping, and inspection of programs. This command
conveniance, although it has a fixed format, causes no 1loss
of generality since a command can also be usel to start an
arbitrary programming subsystem with 1its own control
language.

Th2 consoles of CISS <comnmunicate with the "foreground"
system, ty which computation is performed for the active
consols users in variable length tursts, on a rotation
basis, according to a sched uling algorithnm. The
"pbackground"™ system is a conventional programming systen
(s1ightly edited for the time-sharing version) which, at the
l=2ast, operates whenever the n"foregqround" systemr 1is
inactive, but which may also be scheduled for a greater
portion of the computer time. The entire operation of the
computer is under the control of a supervisor program which
remains perwmanently in the 32,768 word A-bank of core
m2mory. When a user program is scheduled to be run, it is
brought into the 32768-wcrd B-bank of core memory (unless it
is already there) from drum or disk memory.

Not only are the drum and disks used for swapping of active
user programs, but all conscle users utilize the disk memory
for semi-permanent storage of their active program and data
files. Cards and magnetic tapes still serve in secondary
rolas as long-time and back-up storage devices.

(END)

CTSS PROGRAMMER'S GUIDE Section AA.1 12/69 1

|-
o

entification

52n2ral Description and Usage Techniques

The foreground system is organized around both "cosmands",
which are system programs accessible to all users, and the
usar's private program files. Both types of programs are
stored on the disk, along with files of data, documentation,
a2tc. Por convenience, the disk files have titles with name
anl class designators. Files can be entered from conscles
or cards, and they may be punched out at disk editing time.

The_Supervisor

The supervisor program remains in A-core at all times when
CTSS is in ofperation. Its functions include: handling of
all input and output; scheduling; handling of temporary
storage and recovery of ¢frograms during the scheduled
swapping; monitoring input and output performed by the
background system; and performing the general role of
monitor for all Jjobs. These tasks can be <carried out by
virtue of the supervisor's direct control of all trap
intarrupts, the most crucial of which is the one associated
with the interval timer clock.

Th2 interval timer clock is set for small bursts of tinme,
currently 2C0ms. Every clock burst allows the supervisor to
intarrupt the program currently running in B-core in order
to interpret input from the consoles or to issue output to
th2 consoles. If the input from a console is other than a
break character, it 1is 1left in the supervisor's core
buffers. Wwhen a break character is encountered, the
supervisor determines whether this is a line of input which
has arrived early for one of the working programs or whether
th2 status of one of the users should ke changed; i.e., to
working status or waiting command status. If the line was a
command line, the user is placed in waiting command status
so that the next time his turn arrives, the supervisor can
load the command program as his working core image.

Th2 user programs are run for periods of time determined by
th2 scheduling algorithm. At the end of each rfprogranm's
allotted tire or if it changes status, the supervisor
i2t2rmines which user is to ke run next. It mwmust then
determine whether the program or programs currently in core
nust be dumped (to disk or drum), in part or entirely, to
leave room in ccre for the next user. The next user program
must then be retrieved from secondary storage together with
the proper machine ccnditions.

In addition to maintaining input and output buffers for each
user console, the supervisor keeps a record of the status of
2ach user. The status of a user may Lte: "working", where a
program is ready to continue running whenever it is next

CTSS EBCGRAMMER'S GUILCE Section AA.1 12,69 2

brought in ; "waiting command", where the user has just
completed a command line at his console; "input-wait" or
"output-wait®, where the program is tesporarily held ug
waiting for either a console line or a free output buffer;
“file-wait", where the program is temporarily delayed until
another user has finished using the requested file; "I1/0
quaue wait", where a program is delayed because an I/0
device (typically a tape) 1is busy or not yet ready:
"timer-wait", where the program has requested that it be
121ay2d for a specified time; "dormant", where the ©progranm
has stopped running and returned control to the supervisor,
but machine <conditions and the status of nmemory are
preserved for inspection, modification, or re-entry; and
"j2ad", where the program has terminated, control has been
returned to the superviscr, and machine conditions and the
status of memory have been scrapped.

It should be noted that command programs are handled in
exactly the same manner as the wuser's own programs, with
raspect to status and scheduling. The background system is
also considered another user; at present it has a different
place in the scheduling algorithm, with permanently 1lowest
priority. In addition there is another type of background,
consisting of backgrcund jobs initiated from consoles but
l2ft to run without console interaction; these jobs are run
with exactly the same type of scheduling as normal
foreground programs.

Command Format

Commands may be typed by dead or dormant wusers; they are
intarpreted by the time-sharing supervisor (not by the user
programs). They can thus be initiated at any time,
regardless of the particular program in memory. (It is for
similar reasons of coordination, that the supervisor handles
all input-ocutput of the foreground system typewriters.)
Commands are composed of fields separated by blanks; the
first field is the command name, and the remaining fields
ir2 parameters pertinent to the command. Each field consists
of the last 6 characters typed most recently since the last
blank (initially an implicit 6 blanks). A carriage return
is the signal which initiates action on the <comrmand.
Whenever a command is received by the supervisor, "W t" is
typed back. When the command is completed, "R t1 + t2" is
typed back. "™W" is the abbreviation for WAIT; "R" for
READY; "t" 1is the current time of day; "ti"® 1is seccnds
spent in executicn; and "t2" is seconds spent in swapping.
A compand may be abandoned at any stage, including during
the typing of the command line or during command output, by
7iving the "quit signal" peculiar to the console.

A "command line™ which has a dollar sign ($) as its first
character will be treated as a comment and will not be
executed.

CTSS FRCGRAMMER'S GUIDE Section AA.1 12,69 3

Command Initiation

At the completion of a command line at a wuser's console,
that user is placed in waiting-command status. He is then
set at the end of a scheduling gqueue which 1is chosen
according to a rule assigning higher priority to shorter
progranms. When this wuser reaches the head of the
highest-priority active gqueue, he will be placed into

working status.

When the user first reaches working status, the supervisor
searches its compand directory for an entry giving
information about the command. There are three types of
commands:

1. A-CORE-TBRANS FER - special supervisor functions,
such as SAVE. A supervisor subroutine is executed
in core A, and the user is restored to the state
he was in before issuing the command.

2. B-CORE-TRANSFER - cause the user‘'s program to be

started at a given location. These commands (USE,
START, etc.) cause the message

"ILLEGAL SEQUENCE OF COMMANDS"®™

to be typed if the user does not have a core image
(i.e., if he is not in DORMANT status).

3. DISK-LOADED - these commands are by far the @most
numerocus. The program which 1is associated with
{("which performs"®) a given disk-loaded cosmmand
resides in a disk file (of second name *TSSCC.°!
for system commands, *SAVED' for user cosmands),
in the system file directory or the user's own
files (see AH.10.04 concerning private cormands).
When it is executed, a disk-loaded command becomes
the user's core image. Some disk-loaded commands
are "PRIVILEGEL"™ and may make supervisor calls
vhich users are forbidden to make.

If the comeand name is fcund in the command directory, the
suparvisor either:

1. Executes the indicated A-core subroutine, and
returns;

2. causes the user's location counter to be set to
the correct value, and places the user in working
status;

3. lcads the indicated disk file as the wuser's

prcgram and starts the user at the beginning of

CTSS PROGRAMMER'S GUIDE Section AA.1 12,69 4

his new core image.

If the command name is not found in the directory, the
suparvisor assumes that the command is an wunprivileged
disk-loaded command, and attempts to load a command file
with first name the same as the command name. If no such
file exists, perhaps because the command name has been
misspelled, the comment

'name® NOT FOUNL.

will be typed. In such a case, the user's core image and
machine status are preserved.

If the 200's bit in the user's restriction code is on, he is
a "restricted user" and may not use any disk-loaded commands
axc2pt LCGIN and LOGOUT. That is, he may use only

LOGIN, LOGOUT

RESUME, RESTOR, CONTIN, RECALL, K

SAVE, MYSAVE

START,RSTART

USE, PM, STOPAT, TRA, PATCH, STRACE, PAPDBG

All other commands issued by a restricted user will be "NOT
FOUND"™,

(For all practical purposes, such a user may only resume
SAVED files, and the particular SAVED files in his directory
datermine coppletely what use he may make of the systenm.)

If the 1000 bit in the user's restriction code is not cn, he
is a "subsystem-restricted"™ user. Such a user may nct alter
his standard cptions or subsystem trap status; his subsysten
will have been initialized by LOGIN. His ability to use
CTSS is determined by the subsysten.

Program Termination

A foreground prcgram terminates its activity by one of two
m2ans. It can re-enter the supervisor in a way which
eliminates the ccre image and places the wuser in a dead
status; alternatively, by a different entry the program can
b2 placed in a dormant status (or be manually placed there
by the user giving a gquit signal). The dormant status
differs from the dead status in that a dormant user may

Still restart or examsine his program.

Input and Cutrut Wajit States

Usar input-output to each typewriter is via the supervisor,
and even though the supervisor has a few 1lines of buffer
space available, it is possible for a program to become
input-output limited. Consequently there 1is an input-wait

CTSS ERCGRAMMER'S GUILE Section AA.1 12,69 5

status and an cutput-wait status, into which the user
program is autcmatically placed by the supervisor whenever
input-output delays develop. When buffers become nearly
empty on output cr nearly full on input, the user program is
automatically returned to working status; thus waste of

computer tire is avoided.
Scheduling

In order to optimize the response time to a user's command
or program, the superviscr uses a nulti-level scheduling
algorithm. The basis of the algorithm is the assignment of
each program as it enters working or waiting command status
to an nth level priority dqueue. Programs are initially
antared at a level which is a function of the program size
(i.e., at present, programs of less than 4k words enter at
l2v2l1l 2 and longer ones enter at level 3). There are
currently 9 levels (0-8). The process starts with the
suparvisor operating the program which is first in the queue
at the lowest occupied level, L. The program executes for a
time limit = 2.P.L guanta; a juantum of time 1is one half
second. If the program has not finished (left working
status) by the end of the time limit, it is placed at the
end of the next higher level gueue. The program at the head
of the lowest occupied level is then brought in. If a
progjram F enters the system at a lower level than the
program currently running, and if the current program P1 has
run at least as long as P 1is allotted, then P11 will be
returned to the head of its queue and P will be run.

There are several different time limits whose current values
may be of interest to the users. If a data phone is dialed
into the computer and the user does not 1log in within 2
minutes, there is an autcmatic hangup. If a user stays in
any non-working status for one hour, he is automatically
logged out. The clock burst which enables the supervisor to
housekeep the console input and output and to change progranm
status is currently set to 200 ms. The quantum of time used
in the scheduling algorithm is one-half second.

Memory Protection and Relocation

To avoid fatal conflicts between the supervisor and multiple
users, the CTSS IBM 7094 includes a special modification
whiczh behaves as follows:

Core memory is divided into 256-word blocks. There are two
7-bit protection registers which, when the <computer is in
its normal mode, can be set by program to any block numbers.
Whenever a user program is run, the supervisor, as a final
step just before transferring to the user program, switches
th2 computer to a special mode such that if reference toc any
memory address outside the range of the protection register
block numba2rs is atteapted, the normal mcde is restcred and

CTSS PROGRAMMER'S G UIDE Section AA. 1 12/69 6

a trap occurs to the supervisor.

There is alsc a 7-bit relocation register which modifies
avary memory reference, during execution, by addition of the
relocation register block number. Thus programs which have
b2e2n interrupted by the supervisor may ke moved about in
memory, if necessary, with cnly the proper readjustment of
tha r=2location register required.

Finally, if the user program, while in the special mode,
should attempt to execute any instructions concerning
input-output, changes in mode or core bank reference status,
or resatting of the protection or relocation registers, the
normal mode is restored and a trap occurs to the supervisor
projram in core bank A. Errors in this <class are known
generically as protection mode violations.

Th2 supervisor performs a number of control functions which
may be directly requested by the user. These 1include: all
input and output (e.g., disk, drum, consoles, targes);
requests for infcrmation about or extension of the user
projram memory allocation; simulation of floating point
trap; contrcl of each user's status, interrupt 1level, and
input mode; and other functions which involve conrmurnication
with, or contrcl by, the supervisor.

Since all protection violations cause a trap to the
superviscr, users may conveniently communicate with the
suparvisor by means of such violations. Before rejecting a
protecticn violation as a user error, the supervisor checks
th2 possibility that it was caused by a user-program of the
form

TSX NAME1,4

e e ® 0w

. e e - e e

NAME?1 TIA =HNAME

whare NAME is the BCL name of a legitimate supervisor entry
point. The details cf each supervisor entry are described
in section AG. The TIA instruction is described in 1IBM
manual L22-6636; it may usefully (but inexactly) be read as
Trap Into A core.

(END)

CTSS PROGRAMMER'S GUIDE Section AA.2 12769 1

" IIME-SHARI NG PRI MER"

Begyinnings are most difficult. This is far more true
than trite in regard tc the use of the Compatible
Tim2-Sharing System (CTSS), which involves techniques that
arz2 liable to seem rather obscure even to experienced
programmers. This document was designed, then, in order to
facilitate the new CTSS user's transition from
batch-processing orientations to a time-sharing orientation.
It does not pretend to> offer "sophisticated" ipnformation.
Rather, 1t is 1intended to relieve the r2ader of the

naca2ssity of having to worry about ferreting out -- usually
by word of mcuth -- the basic operational information which
is prarequisite to sophistication. So, leaving only the
details of becoming an accredited user through

administrative channels, and of turning on and dialing in
his particular console (see Section AC.3) to the reader, ve
attempt to present here a "toehold"™, a guide (including an
annotated "script") to> the new CTSS user for his first
time-sharing console session.

(The material herein is based upon "“Some Introductory
Not2s on Time-Sharing Console Usage Techniques for the
Summer Programping Ccurse,"™ which was written as a reference
for students taking the one week Basic Programming and FAP
Cours2s, offered annually by the M.I.T. Computation Center;
as such, it may have rather too pedantic a cast -- though
on2 hopas that over-simplification is more informative than
over-complication.)

A QUIZK LOOK AT II ME-SHARING

Time-sharing is a system which allows a number of users
to mak2 use of a coamputer "at the same time® for independent
tisks. The technijue 1is possible because of the large
mismatch between computer speeds and human reaction times.
Although the computer is actually sharing its attention
among all of its users, it can be made to appear to each
us2r as if he had control of the machine in its entirety.
The prograrm which regulates the process of co-ordinating
acztivities (the CTSS Supervisor -- or "the system") resides
in a separate bank of core memory, and actually causes the
various users' programs to be brought into a sa2cond bank of
m2mory from other storage devices.

Interaction:

Each user really has physical control only over sonme
ramot2 input-output terminal, wusually a typewriter-like

CTSS PROGRAMMER'S GUIDE Section AA.2 12769 2

device ("cconsole"). He issues basic 1instructions, called
">ommands"™, to the system by typing the name of the command
and the arguments associated with it; the system will then
bring in the program which is associated with (i.e., "which
per forms") the ccmmand and cause it to be executed. In
j2n2ral, the user types 1in lower <case and the systenm's
responses are in upper case (except on teletype devices,
which operate only in upper case). When the system receives
1 command it acknowledges receipt Ly typing out on the
user's ccnsole a line comprising the letter "W" (for Wait)
tollow2d by a five-digit numbker expressing the time cf day.
When the coswand has finished working, the system informs
th2 user of this fact by typing a line comprising the letter
wgw (for Ready) followed by two numbers separated by a plus
sign, the first number expressing the number of seconds
expended in executing the command and the second number
2xpressing the number of seconds expended ‘"swapping" the
projram (s) involved in and out of core.

The user 1is said to be at “"comnrmand level" after
receiving an "R" (Ready) line. When at command level, he may
issue any system command desired. During the execution of a
program, however, cormands are not accepted; in particular,
as commands themselves are programs they can not be
over-ridden by the typing of new conmands. In order to
r2turn to command level before the executing program has
finished, then, the user must give a "quit sigpnal® to the
system. This quit signal is two pushes of the console's
“"hbraak" button. The altility to gquit is quite useful,
especially when, for example, a user's program misbehaves or
a command has furnished enough information for one's
purposes but would continue to operate "longer" if not
intarrupted.

Most often, the arguments of commands are the names of
"filas" where a file is Fkroadly defined as a logical set of
information. A file wmay contain ("the information may
r2presa2nt") a source program, an object program, a set of
data, text, lists, or almost anything definable by the user
which 1s expressable in the symktols available. These files
may be input from CTS5S ccnscles or from punched cards (see
S2ction AE.1) and are normally stored on the computer's
magnetic disk stcrage devices; however, their actumal
location is of nc importance to the programmer since he
always refers to files by name. The system itself frovides
for references to actual locations internally and wmaintains
a1 s2parate "file directory" for ‘each user so that no
conflicts arise in the assigning of names.

A master file directory (M;F.ﬁ;) is maintained,
containing information about the location and contents of
the several user file directories (U.F.D.). Each U.F.D.

CISS rRCGRABHER®S GUIDE Section AA.2

contains information about the location and contents of the
various files which the user has created. The U.F.D. 1is
associated with a problem number and a programmer number.
Also associated with certain problem numbers are "common
files" -- file directories which contain files of comnmon
int2rast and are directly accessible to all users on the
problem nuaber.

Certain of the common files associated with the systenm
programmers' problem number (M1416) contain information of
j2n2ral utility and are accessible to all users. (See
Section AD fcr further information about files.)

Each file is required to have two names, a "primary"
name and a "secondary®" name, 2ach of which consists of six
or fewer characters. The primary name 1is almost always
arbitrary and shculd have some mnemonic importance. The
s2condary name may >r may not be arbitrary, depending on the
contents of the file and the way in which they are to be
used. For wexample, a file containing a MAD (Michigan
Algorithm Decoder) source program may have the arbitrary
primary name PROG1, but must have the secondary (class) name
"MAD", Cbject program files have the secondary name "“BSS"
(Binary Syrbclic Subroutine).

Applications:

Learning to use CTSS is similar to learning to play the
juitar. Knowledge of a few basic chords enables the novice
musician to play a rather large number of songs; knowledge
of a faw basic commands enables the novice CTSS user to
write and execute an arbitrarily large number of programs in
A rather large number of programming 1languages (Section
AH.2). Beyond this basic area of application (which is the
only one dealt with in detail here), however, are at least
tvo othar large areas of special application. 1In the first
place, there exists a large number of special-purpose
commands for such purposes as file manipulation, debugging,
documentation, and interactive problem-solving (Section AH).
In th2 second place, user programs may avail themselves of a
wealth of library subroutines, both batch-processing and
tim2-sharing in nature (Section AG). By takiny advantage of
these additicnal tcols, the CTSS user may expand his
rapertoire of applications as necessary, and probably more
rapidly than the guitar player expands his repertcire of
SONngs.

R2fzarence:

Further general information of interest may be found in
Sections AA.C and AA.1. Infcormation about the use of the
manual may be found in Section AB.

CTSS PROGRAMMER'S GUIDE Section AA.2 12/69 4

. < s i i e

[-
]

OF EASIC CONSOLE TECHNIQUES USED IN PROGRAM

———— e ——— - ———— -y —p PP -——

Typing errors in command lines and in input 1lines
may be corrected by typing a3 commercial at sign
(2) to cause the system to ignore ("kill") the
entire line thus far, or by ¢typing one or more
sharp signs (#) to cause the system to ignore
(*erase") one or more immediately preceding
characters.

A conscle session is begun (after turning on and
dialing in the <console) by issuing the LOGIN
corpand, identifying the user to the system and
establishing that a 1line to the computer |is
available.

Source programs will be entered and modified or
corrected using the text editing command EDL.
(Other available editing commands are covered 1in
Section AH.3.)

Corgpilation will be accomplished by the MAL
command in this document -- although other
compilers and assemblers are available in CTSS
(Section AH. 2.)

Cnce a program has been successfully compiled (or
assembled), execution is effected by the LOACLGO
command-again for purposes of this documentation;
loading cf programs 1is covered generally in
Section AH.7.01.

When a program has been satisfactorily run, it may
be removed from the user's file directory by use
of the DELETE command. Files not explicitly
deleted will be left alone and will still reside
in the disc stcrage units.

At the end of a console session, the LOGOUT
command is given to inform the system that the
user's line to the computer is free to accomodate
someone else.

e e lmn A - — o o - i o o

The LOGIN Copmand:

Af ter the conssle has bkeen turned on and dialed in,
type a line cf the fcllowing general form:

"login probno name®,

_—— e e e e A ~

CTSS ERCGRAMMER®’S GUIDE Section AA.

wha2re probno is an argument of the LOGIN command specifying
the user's assigned problem number, and the second argument
is the user's last name. Compands and arguments must be
separated by at least one blank ("space"). The system will
respond with a W(ait) line, and then will type out
"PASSWORD"™. At this point, the user must type his assigned
private password, during which time the console's printing

will be suppressed. Provided a line is available -- and the
user has been allotted time and disk storage records on the
system -- a message acknowledging the fact that the user has

been "logged in" will follow. (Further details may be found
in Section AH.1.01).

When there is no line available, the system will cause
th2 console to be %hung up" (disconnect at the syster's end
of the connection), and the user should try to log in at a
latar time. If , on the other hand, no response 1is typed
after the login command was given, CTSS is not in operation;
information about when it 1is expected to be back in
operation may be gotten from data-phone ext. 1300 (recorded
m2ssage) , or if the recorded message has not yet been
updated, from the computer operator at MIT ext. U4127.
Occasionally the system will not recognize "login" as a
command; this means that the name of the login command has
been temporarily altered so that the systerm programming
staff can hold a test session.

The EDL Command for Input:

1. EDL is a CISS command which is used for input and
for "context editing® of files. We will take
advantage of its input facility, to create the
files which will 1later be edited. "Context

editing" rejuires the unique specification and
locaticn of a line in terms of 1its contents by
means of appropriate requests ("subcommands" of
EDL) before the line can be edited. (This rather
obscurely-stated point should be made clear by
discussion belcw -- EDL for Editing, point 5 --
and by the Appendix). Reguests to EDL may be
abbreviated by their first 1letter, with the
exception cf the request "file" (see point 8),
although the full request name may also be used;
the abbreviated forms will be used herein.

2. A more complete description of the EDL command
may be found in Sections AH.3.07 and AH.9.01.

3. To begin input: type, e.g., "edl abc123 madCR"
or, in general, "edl name1 name2CR", where CR
indicates Carriage Return.

4. Response: FILE ABC123 MAD NCT FCUND.

CTSS PROGRAMMER'S GUIDE Saction AA.2 12,69 6

Input

"Input" is one mode of the EDL command; “Edit®",
the command's other mode, is discussed below.

For all lines which do not begin with statement
labels, strike the "Tab" key, then type the 1line.
For lines with 1labels: type the 1label, then
strike Tab and type the rest of the line. For MAD
continuaticn card indicators: tab, backspace,
indicator, line. ¥hen finished with a 1line,
strike Carriage Return (CR).

N.B. Wherever CR 1s indicated, strike the
appropriate key on the console; do not type the
letters "CR".,

To deal with typing errors while still

working on the line in which they occur: The
sharp sign (#) serves as an erase character and
causes the ignoring of the immediately preceding
character; more than one erase character may be
used (e.g., XX1##Y2 will be treat2d as XYZ by the
computer). To kill the entire current input line,
strike the at-sign (@ . N.B. This also deletes
tabs, €.Gay "/tab/x=a+bdy/tab/x=al*b" causes
"y,stab/x=a 1*b" to be treated as the input line. A
kill character cannot Lke erased.

For typing errors discovered in prior input lines:
fcllow the procedures discussed below under the
EDL comsmand for editing (beginning with point 4).

To file a program: strike an extra CR (i.e., CR
after last line plus CR for an "empty" line); this
action causes entry to the Bdit mode in which the
request "file'" may be used. Response will be a
system R (eady) line, and the wuser will be at
"command level" again -- which he was not while
using EDL. (It 1is important to distinguish
between general system commands, on the one hang,
and requests to a specific command, on the other.)
A file named, e.g., "abc123 mad"™ will have been
established in the user's file directory.

N. BE. EDL WILL ACCEPT REQUESTS IN THE EDIT MODE
ONLY; in the Input mode, all material typed 1is
treated as input.

To verify input (optional): type (general form)
"print namei name2®. The PRINT cosmmand will ca:

the file to be typel back on the console.

TN
[V R wlw

S — — P -]

CTSS PROGRAMMER®S GUIDE Section AA.2 12,69 7

{=3
1o
fw
=
o
N
19
=]
|
1=
[=5
jh
el
i
Q
v
o
[l
[
-]
o+
N
o]
=]
(X)

1. To cause the MAD (or the appropriate language's)
compiler to operate on a program: the command 1is
the name of the language and the argument 1is the

primary name cf the file; e.g., "mad abci123w,
The secondary name of the source file wmust be
WMAD™ .,

2. Response from successful attempt: A line
beginning "LENGTH," followed by various other
information. A file named , e.3., "abc123 bss"
will have been created.

3. Error messages: These indicate "syntactic"
pistakes; the source program file must be
appropriately corrected.

4. Further details may be found in Section AH.2.10.

The EDL Comepand for Editing:
(CR Indicates Strike Carriage Return)

The following is excerpted from Section AH.9.01:

Editing is done line by line, We may envision a pointer
which at the beginning of editing is above the first line of
tha file. This pointer is moved down to different lines by
some requests, while other requests specify some action to
b2 don2 to the line next to the pointer. All requests
except FILE may be abbreviated by giving only the first
latter. 1Illegal or misspelled requests will be conmented
apon and ignored.

The Appendix and the discussion below should clarify the
importance of the "pointer®. Requests which take arguments
must ba separated from the argquments by a space.

1. TYpe "edl namel name2CR" (general form).
2. Response should be "Edit".

3. - The EDL command will type back lines ("verify"
them) after certain requests. The requests which
will cause verification are "locate" and "change"
(discussed below); wait for the response before
issuing another request when one of these two has
been given.

4. Type "tCR" ("t" is the abbreviation for "top").
(This is not strictly necessary for beginning to
edit, but is required when the Eiit mode has been
entered from the Input mode, or when the pointer

CTSS PROGRAMMER'S GUIDE Section AA.2 12,69 8

rust be npoved "upwards".) The "pointer" |is
positioned "above" the first 1line of the file.
Note that "top" is the only request to EDL which
moves the pointer "“upwards".

To position the pointer to a particular line, use

wn]n (for "locate™). The argument of this regquest
(typed after a space which must focllow the "1") is
a string of characters which uniquely specifies a
line amongst the lines "below"™ the pointer, The
pointer will be moved to the line which contains
the first cccurrence of the string. &E.g., if the
"tcp" request had just been issued and the first
two lines of a file were

B+C

A
D A+X

the request "1 aCR™ would position the pointer at
the first line, but "1 a+CR" would have positioned
it at the second line. (Note also that in the
latter case the first line is then ®above" the
pointer, and if it is to be operated upon, the "t"
request - "1" request sequence must be given
again.)

To replace an entire line, the request is "¢
(for "retyrpe"). The argument (typed after a space
which must follow the "r") is the entire new line
itself (with agpropriate tabs and terminal CR, as
in Input). This request does not move the
Fcinter.

To change a portion of a line, the reguest is "c"

(for *"change™"). The argument (space as usual) 1is
rather complex: Begin with an arbitrary character
which does not appear in either the original
string of characters to be <changed or the new
string ("q" is frequently useful); this character
serves as a delimiter of the two strings. Between
the delimiters, type the old and the new character
strings, in that order. The first occurrence of
the old string will be altered. For
example, "c gakcqgxyzqCR"™ will cause "abc" to be
replaced by "xyz", and if the original 1line were
"abcabc" the resulting 1line would be "xyzabc".
Blanks within the strings are sigpificant: "“a bc"
is not the same as "abc". (This request does not
move the pointer.) "Global" changes are possible,
but will nct be dealt with here.

To insert one line after the line currently
pointed at, type ®ji», follcwed by a space,
fcllowed by the line to be inserted. To 1insert

CTSS ERCGRAMMER'S GUILDE Section AA.2 12/69 9

10.

]1.

12.

=3
=2
o
it
@]
o

several lines, change mode from Edit to 1Input by

giving an “extra" CR, or by typing "“iCRr". The
response will be "Input". Type the line or lines,
with appropriate tabs. When done inserting,

return to Edit mode by giving an extra CR.

To delete a line or lines: position the pointer
(wvith the "1" request) to the first 1line to be
deleted, then type "d"™ (for "delete") followed by
CR if only this one line is to Le deleted, or by a
space and a number (expressing the number of
consecutive lines to be deleted) if more than one,

then ZR. (This request 1leaves the pointer
positioned at the last line deleted.)

To move the pointer "downward" one or more lines,
the request 1is "n" (for “next"); it takes a
numerical argument, in the same fashion as "d",

To re-file under the original file name, simply
type "fileCR"™ (from the Edit mode). This process
replaces the older version with the edited
version.

To file under a new file name, type "file XxXXXXXCR"

where xxxxxx represents the new primary name.
This process preserves the older version, in the
event that a comparison of both versions is
desired for some reason (e.g., to determine which
of two methods takes longer). Secondary names may
not be changed when filing.

4
|
|

3.

After a successful compilation or assembly (no
syntactical errors) has been achieved, the command
"loadgo namel"™ will cause the object program
("namel bss") to be loaded and executed. Library
search occurs during the loading process.

Shertly after the customary W(ait) response,
the word "EXECUT JON"™ will ke typed by the systen.
This will be fcllowed by the program's results, if
all has gone well with the program. Then,
prcvided there +were no execution errors, an
end-of -run message and a system R (eady) line will
be typed out.

Further details may be found in Section AH.7.01.

Projgram Logic "Debugging®™:

“.

Wrcng results imply errors in program logic. (See

CTSS ERCGRAMMER'S GUILE Section AA.Z 12,69 10

CC Memo 182 for a 1list of <common programming

€rrors.)

2. When discovered, the errors can be corrected in
the source file (name?l mad, e.g.,) with the EDL
cormand.

3. After editing, the program must be recompiled
with the appropriate langquage ccmmand (MAD).

4. The new program is executed with the LOADGO
command.

5. If the results are still wrong, back to 1l....
Housekeeping:

When a program is no longer desired, all files relating
to it can be removed from the disk by typing (general form)
"delete namel *#CR". The asterisk indicates to the DELETE
command that it is to operate on all files with primary name
"namel", Cf course, individual files may be dealt with by
"del ete namel name2". (Further details may be found 1in
Sa2ction AH.6.03).

Th2 LOGOUT Command:

At the end of a consocle session, give the command "logout™,
Th2 system will respond with the present time, the date, and
the total time used (in minutes). (Further details may be
found in Section AH.1.02.)

CTSS PROGRAMMER'S GUIDE Section AA.2 12/69 11

AMILIARI ZATION SESSICK -- AN

—— e —— — — ———

The program created in this script is deliberately
simple-minded, sc as not to distract from the basic point at
issue -- console usage. (For demonstration purposes, some
of the errors introduced are unique to the MAD language, but
should be reasonably clear to the reader even if he 1is not
familiar with MAD). The program is intended merely to
compute and output the square root of the sum, and the
product, of two numbers input from the console. (Data can,
of course, be input to the program from files as well as
from the console. 1Indeed, batch processing tape techniques
are simulated on CISS -see Section AG.5 -- and numerous
subroutines are provided for direct disk file I/ 0 -- see
Section AG.2.)

Instructions:

———— i —— — — — ————— —

1. Type the lines appearing in lower-case letters and
wait for the system responses if a 1line 1in
upper -case osccurs next in the "script".

2. Hit Carriage Return at the end of each lower-case
line.

3. Circled numbers to the left of the page refer to
the Notes, which follow the "script®.

4, Lcng-hand insertions are typiﬁg instructions
(usually involving the Tab key) e.g., Tab -

S. The numbers in W (ait) and B (eady) lines are
fictitious; expect different ones.

6. Before issuing the DELETE command, the LISTF
command may be used to get a 1listing of the
contents of your file directory (Section AH.5.01),
and TTPEEK may be used to get a table of ycur time
and track usage for the current month (Section

- AH.1.04) . WNeither command requires arguments.

Script:

login m1416 padl ipsky
W 1315.1
Password

STANDBY LINE HAS BEEN ASS IGNED

M1416 3711 LOGGED IN 10,22/69 1315.6 FRCM 800289
LAST LOGOUT WAS 10/19/69 2247.1 FROM 800315

CTSS PROGRAMMER'S GUIDE Section AA.2

CTSS BEING USED IS MITBA3
R 6.783+.000

edl simple mad

W 1316.4

FILE SIMPLE MAD NOT FOUND.

Input

point a

normal mode is integer
floating
T ab

“Tab
“Tab

“Tab
2nd ofa

(:) Edit
t

1 mode

print comment$numbers,pleeuvhzéétsasesd

read data
a=sqrt (b+c)
d=bc
“T3b end of program

NORMAL MODE IS INTEGER

C “Tabk

~Tab
a

N

a=

@_
G
@— ¢ qtgt.g

1 3=

i

Input
Tab
“Tab
(::}__éait

file
*

norpal mode is integer
floating point a,d
FRINT COMMENT SNUMBERS, PLEASES

A=S QBT (B+C)

A=SQRT.(B+C)

D=BC

print results a,d
execute exit.

R 5.833+4.250

print simple mad

W 1321.3

SIMPLE

MAD 01710 1321.4

NOFMAL MODE IS INTEGER
FLOATING POINT A,D

FRINT COMMENTSNUMBERS,PLEASES
READ DATA

A=SCRT. (B+(C)

D=BC

12

CTSS ERCGRAMMER'S GUILE Section AA.2 12/69 13

PRINT RESULTS A ,D
EXECUTE EXIT.
END OF PROGRAM

R .616+416

mad simple
W 1321.9
THE FCLLOWING NAMES HAVE OCCURRED ONLY ONCE IN THIS PROGRAM.
THEY WILL ALL BE ASSIGNED TO THE SAME LCCATION, ANL
COMEILATION WILL CONT INUE.
BC
B
C
LENGTH CC072. TV SIZE CC0006. ENTRY 00016
R 2.766+.533

edl simple mad
W 1322.8

Edit

1 bc

D=BC
¢ gbgb*q
D=B*C

file
*
R 3.516+1.450

mad simple

W 1323.7

LENGTH 0C071. TV SIZE 00006. ENTRY 00015
R 2.216+.750

loadgo simgle
W 1324.1
EXECUTION.
NUMBERS , ELEASE
b=7, c=2%

:: A = 2.707999E 26, D = 14.000000

EXIT CALLEC. PM MAY BE TAKEN.
R 6.166+1,.050

edl simple mad
W 1325.5
Edit

1 mode
(::)-- NORMAL MODE IS INTEGER

i
1 read
REAL LCATA
i Tab whenever (b+c).1.0., transfer to tag

1 2xit

CTSS PROGRAMMER'S GUIDE Section AA.2 12/69

EXECUTE EXIT.
S Jqytaylgq
T&aG2 EXECUTIE EXIT.
i
Input
tig “7ab print comment$negative argument$

T3k transfer tc tag2
4
Elit

fil=
*

R 2.950+3.150

mad sinmple

W 1523.1

LENGTH 00107. TV SIZE 00006. ENTRY 00020
R 2.966+.9C0

loadgo simple

W 1523.7
EXECUTION.
NUMBERS,PLEASE
(::)“ b=7.,c=2.%*
m A= 3.000000, D= 14.000000
EXIT CALLED. PM MAY BE TAKEN.

R 6.566+1.083

loadgo simple
W 1524.7
EXECUTION.
NUMBERS,PLEASE

b=-7.,c=,2.%
(::)———-NEGATIVE ARGUMENT
EXIT CALLEEL. EM MAY BE TAKEN,
R 6.216+.816
da2l2t2 simple *
W 1526.1
R 1.716+366

logut

W 1528.2

o *LOGUT' NCT FOUND.
R .000+.C83

logout m1L16RRREE
W 1528.4

41416 3711 LOGGED OUT 10,22/69 1536.3 FROM 800289
TOTAL TIME USED = .7 MIN,

14

CTSS PROGRAMMER®S GUIDE Section AA.2 12769 15

Notas:

10.

11.

12.

14.
15.
16.
17.
18.

19.

We decide rleevhz isn't funny and use
four erase characters.

The "empty line" takes us to Edit mode.
The line should have been tab'ed originally.

Same as 3, and we realize we want both ansvers
floating.

These two locates demonstrate "context editing”.

We remember that MAD subroutine calls require
periods.

This insertion allows us to see the answers after
executisn and terminates the program in standard
fashicn.

The "empty line" again.

Verifying the typing.

The error message reminded us that we meant BC to
be a product, not a name.

Wheoops!d A is 'way wrong. We have a bug.

We remember that the square root routine expects
floating point arquments, and take the easiest
route cf getting them to be floating -- deleting
the integer mode declaration.

We remember that the square root routine also
exfpects positive arguments.

Still another "empty line™.

N.B. the decimal points.

Success.,

And success again.

The misspelled command is not findable.

Erase characters apply in command lines toc.

(END)

CTSS ERCGRAMMER®'S GUILE Section AA.2.01 12/69 1

Ilentification

Fixad File Names

———— — ———— — —

Unexpected file names appear in a user's file directcry fronm
time to time. The fcllowing is a partial annotated list of
filas generated:

1) by CIS5 in performing system duties;

2) by one of the commands which makes a new file
as part of its execution process; or

3) by ancther CTSS user.

Note, and be warmed, that catastrophic conflicts will arise
if sevaral users are performing a command which generates a
fixed file name at the same time in the same file directory
(usually a common file). The obvious way to avoid such
conflicts is to avoid performing such coammands while
attached to any directory other than one's "home directory™".

Files With Bcth Names Fizxed

e e S i o i A —— — o —— — o~ o -t 2 L2 o T .

These files are wused for intermediate data by the MAD
compand.

(COMBI NFILE) AH.6.01:

This name is given to the intermediate file employed by the
COMBIN command. It may be deleted if found.

MATL BOX AH.9.05:

This file is created (or appended to) when a user gives the
command MAIL with the prcblem number and program number of
tha addressee's file directory. When the recipient
subsequently logs in the fcllowing message will appear on
his console:

YOU HAVE HNAIL BCX

(MOVIE TABLE) AH.7.01, AJ.8.01:
Tha MOVIE TABLE is created by the standard loaders. It is a
temporary mode file and represents a map of the programs

loaded.

QUIrPUT RQU EST AH.6.06:

CTSS PROGRAMMER'S GUIDE Section AA.2.01 12769 2

The RQUEST command for bulk I/0 creates or appends to a file
in th2 user's disk storage. When the file has been
processed by the disk editor, it is set to temporary mode.

PERMI1I FILE AH.3.05:

The PERMIT corrmand establishes a line-marked file of private
protected mode in the user's directory; PERMIT FILE contains
information used in the linking process.

URGENT MAIL AH. 1.01,
U RGENT POST AH.1.01:

DAEMON can create this file in a user's directory so that
his subsequent LOGIN will remind him TO PRINT the new file
in ordar to get a message from the systen. The alert
message printed cn his ccnsole is:

YOU HAVE URGENT MAIL
or
YOU HAVE URGENT POST

US ER PROFIL AH.2.19:

This file i1s used by the '.' compand to stcre the
abbreviations and lists cf SAVED files.

(BUG) SAVED AH.8.08:

This file is used by DEBUS tc save the current core image
when executing CTSS commands from within the progranm.

Files With Fixed Seccnd Names

S e ——— 4 o i S o S~ " o S W 2 S S S ——

NAME1 ASCII AR.3.09, AH.3.10:

EDA or QED (with the *wa' instruction) creates a file with
secondary name 'ASCII'. The ROFF command expects a file
with the secondary name ?ASCII*.

NAME1 BCD AH.2.07, AH.2.10,
AH.2.11:

A file of secondary name *BCL' is produced by several of the
language processors on request. Such files <contain
assambly/compilation listings; they are generated in
response to the argument ° (LIST)® in the languaye processor
command.

CTSS PROGRAMMER®*S GUIDE Section AA.2.01 12/69 3

NAME1 BSS e.g., AH.2.07, AH.2.10,
AH.2.11:

A 'BSS* file contains an object program, produced by one of
the language processcors. 'BSS' is a 7094 term, documented
2lsawhere.

NAME1 (DUMP) AJ.8.03:
For details, see the DUMPER SAVED write-up.
NAME1 (MEMO) AH.9.01, AJ.6.01:

TYPSET creates a file with the secondary name ' (MEMO)'°'.
RUNOFF expects a file with the secondary name ' (MEMO)‘'.

NAME? RUNCOM AH.10.01:

A file of secondary nampe *RUNCOM*' or 'BCD' may be used to
j2fine a procedure consisting of a number of CTSS commands.
These files may be executed at the console with the RONCOM
command or under FIB.

NAME1 RUNQFF AH.9.01, AH.9.06:

This file is created when using the 'FERINT' option with
2ither the RUNQFF or ROFF commands. It contains the
formatted versiocn of the (MEMO) or ASCII file as it would
normally appear on the console but it suitable form for
offline printing via the RQASCI command.

NAME1 SAVED AH. 3.03:
*SAVED' files contain machine

~
c
for subsequent execution. F

write-up.

onditions and core-images,
or detalls, see the SAVE

Frogno SAVED AH.3.09, AH.10.03:

(Where prognc is the user's programmer number.) This file
is created by serveral commands (including SAVE and CEL) and
contains the user's machine conditions and core-image for
later RESUMEing cr CONTINeing.

FroglL SAVED AH. 1.02:
(The user's programmer pnumber followed by the 1letter "L".)

At any time an automatic LOGOUT may be 1initiated by the
system., The file may be RESUMEd at a later time.

CTSS EHRCGRAMMER'S GUILE Section AR.2.01 12/69 4

NAME1 SQZBSS AH.L4.0U:

'SQZBSS' files contain compressed-form BSS "decks". For
details, see the write-up on PADBSS SAVED and SQZBSS SAVED.

NAME1 SYMTAB AH.2.10, AH.2.11;:
This is an cpticnal file containing a symtol table, produced
by the MAD (and, of course, MADTRN) 1language processor in
r2sponse to the ' (SYMB)*' argqument.

NAME1 SYMTB AH.2.07:

This is an automatically-generated file containing a symbol
table, produced by the PAP language processor.

Fil>s_With_ Special or

FAPBCD progno
FAPBSS progno
FAPSYHM progno
FAPT EM progno AH.2.07:

{whar2 "“progno" is the user's programmer number) These files
are used by the FAP command in the assembling of the wuser's
program.

(INPUT progno AH.9.01,
(INPT1 progno AH.9.01:

These twc names are used for intermediate files by TYPSET,
ED, and EDL. Following a quit sequence (or an automatic
LOGOUT) either one of these files may be found. It may be
renamed and used as a source file (in the automatic LOGOUT
casz2, 2diting may, of course, be continued when the prognol
SAVED file is resumed). When invoked, the editing commands
will announce the presence of one of the intermediate files
(if one is present); the user must either type ‘'yes' to the
question about deleting it, or type 'no' and then RENAME it.
Th2 commands will not proceed unless the intermediate file
is disposed of, one way or another.

Frobnc progno AH.4.01:
This is an intermediate file used Lty the ARCHIV cosmpand
(vwhere probnec, frogno are a user's problem number and
projrammer number). PFor details, see the ARCHIV write-ug.

.TAPE. 3 AG.5.01:

Tn2 .PUNCH, .PNCHL and (SCH) subroutines create oir agpend to
a pseudo-tape line-marked file named .TAEE. 3.

-—b
N
N
[«
[Ve)
v

CTSS PRECGRAMMER'S GUILCE Section AA.2.01

- TAPE. n AG.5.01:

Th=2 .TAPWR, (STH) and (STHM) subroutines create or agpend to
a pseudo-tape line-marked file named .TAEE. n, where n is
specified in the calling progranm.

ees XXX St‘u ED 5608002:

This is an intermediate file used in chaining commands. For
details, see the SCHAIN write-up.

«e<00n SA VED AH.3.04:

This is an intermediate file used in chaining commands. For
i2tajils, see the RUNCOM write-up.

(END)

CTSS PROGRAMMER'S GUIDE Section AB.1

—eud
[\l
N
o
V]

Identification

Conventions of this manual

This CTSS Programmer's Guide will be divided into sections
on a functicnal basis. The naming of the sections will be of
the format MS.X.YY.

M 1is the manual designation. Since the CISS"
Programmer's Guide for the IBM 7094 is the
first manual in a series, its designation will
be " A "'

S 1is an alphabetic major section designation,
e.g., this is section "Bw,

X 1is the one or two digit subsection
designation. This first publication will have
subsections numbered from 1 to 13. Note that
they will not be designated as 01 to 13.

YY is the minor subsection designation. This is a
twc digit numeric designation (00,01,02....)

The manual was prepared by the CTSS commanis QED and ROFF
whare 2ach section is a separate file of the name MSXYY
ASCII. Note the deleticn of periods within the file nanme.

Users may request copies of complete manuals or any section
thareof fronm the Informa tion Processing Center's
publications office. Or, at the user's convenience copies
may be ROFFed on the user's 1050 or 2741 Selectric console
or Model 37 Teletype. All of the files are linkable through
file directory M1416 3212,

The table of contents will be maintained in two forms.

1) TABLE ASCII which may be ROFFad to produce the
current table of contents in the form
distributed ¥With the manual (i.e., 1in
sectiosnal or functional order). The first line
of TABLE will ke dated to indicate the date of
the latest change to the manual. Any revisions
of the manual will be noted by date beside the
section which vwas modified.

2) DATTOZ ASCII which may be ROFFed to produce a
table of contents in reverse chronological
order cf section modification. This will show
rapidly the latest changes to the manual by
section and date.

Within the text of the manual, areas of
modifications will be noted by an asterisk or

CTSS ERCGRAMMER'S GUIDE Section AB.1 12,69 2

bar in the right hand margin. This will be
done only on one level of revision, that is,
the flags of any earlier revision will be
removed before the later modifications are
made.

Bacause the manual will be done as much as possible with the
current limited character set and as 1little bhand work as
possible by the typist, the following conventions will be

usal.

1)

2)

3)

4)

5)

6)

The symbols designating "less than", "greater
than", "less than or equal to", and ‘"greater
than or egual to", will be replaced by the MAD
conventicns of .L., .G., .LE., and .GE.

Octal notation is expressed as the octal
number enclosed in parentheses, followed by an
8, e.g. (7777)8.

Exponentiation 1is expressed in the MAD
notaticn of .P. (e.g., 2.P.9).

Optional arguments in calling seguences to
subroutines will be enclosed within @mrinus
signs (e.g., —PZE BUFF-). This applies also to
arguments to commands (e.g., —~NAME2-).

Indication for a literal within a subroutine
calling sequence will be typed in lowver case
and be enclosed within single quotation marks
(e.g. 'j'). This means that the actual value
should be used, rather than the 1location of
the value.

Some command arguments must be literal values
and these will be shown as uppercase
characters enclosed in single quotaticn marks
(e.g., 'REV'). This means that no
substitution is possible, but the actual
characters shown must be used.

(END)

CTSS ERCGRAMMER'S GUIDE Section AB.2 12/69 1

Ilentification
Glossary and Conventions

Documentaticn_Conventions

Within calling sejuences, arguments written in upper case
denote the lccation of a variable. Arguments in 1lower case
denote the value itself. If 1literals are used, they are
notad as such by the conventions of the language or as lower
case letters enclosed in single quotation marks. Minus signs
around an argument mean that arqgument is optional.

Thare are three possible kinds of <calling sequences for
subroutines. The statement "as supervisor entry:" means that
th2 user must supply the TIA as noted beside the TSX. The
statement "as supervisor or library entry:" means that the
usar may supply the TIA as noted, or he may use the external
library name noted in the I'SX in which case the library will
supply the TIA. The statement ™as library subroutine:" means
that the2 subroutine is an external library routine. A MAD or
Fortran calling sequence will wusually be given but the
routine may also be called by the equivalent FAP «calling
sequence.

* in front of an entry in the table of ccntents,
indicates the new I/0 systenm. An * in the
right-hand margin, indicates a modification to
the write-up. :

AC 36-bit signed accumulator.

b denotes a required blank in a character
string.

C. RE. carriage return.

Console 1In general, the word console means a
tyrpewriter console (e.g., 1050, 2741,
teletype) rather than a special display
ccnsole (e.g., ESL scope) .

Current File Directory is the file directory tc which
the user is currently switched. It is usually
the user's file directory fktut may be switched
to a comeon file directory by COMFIL or to
another user's file directory by ATTACH.

External Routines are subprograms (with entry points)
which are called by other subprograms. The
library entries and 1library subroutines are
external rcutines. The FAP calling sequences

CTSS FERCGRAMMER'S GUILE Section AB.2 12769 2

Fence

FILNAM

FMT

Library Entry

Lina-Marked

Line-Nunmkered

LIST

give the entry point name. The FAP convention
for calling external routines is: 1) EXTERN
pseudo-or specification, or 2) preceding the
name by $, or 3) CALL pseudo-op. A1l the FAP
calling sequences in this documentation assume
EXTERN specification so that the CALL and $
are not shown,

is a magic number used to designate the end of
a variable-length string of parameters. The
fence referred to in this documentation is a
word of all octal sevens.

is used in calling sequences to indicate the
initial location of 2 BCD words containing the
nase of a disk file (right justified and
blank padded). In Fortran programs, FILNAM may
be set by the subroutine SETNAM or it may be
the file name in H specification form. In MAD
prcgrams FILNAM may be set in a Vector Values
statement.

or FORMAT is used in calling sequences to
indicate the beginning location of a format or
a locaticn containing a pointer to the
beginningy of the format, if SETFMT is used.

- The majority of the required TIA's for the
supervisor entries have been placed 1in the
library as library entries.

Files are files composed of variable 1length
records. Each logical record is preceded by a
word containing binary ones in bit positions
0-17 and the number of words to fcllow in bits
18-35.

Files are files composed of 14 word 1logical
records. Characters 73-80 are a sequence field
(the leftmost 3-6 may be alphabetic and the
rightmost 2-5 must be numeric).

is used in calling sequences to provide a list
of parameters to the subroutine being called.
It usually specifies parameters for input or
output. A list may consist of a combination of
single variables, dimensioned or subscripted
variables, or tlock notation as described in
the MAT manuvals. 1In Fortran, the implied DO
may be used only in I/0 statements, not in
calls td subroutines.

In MAD, a LIST might Dbe: A, B(...B(10),
C(N) «..2 (1), G(J). The notation D(N)...N,

CTSS EFRCGRAMMER®'S GUILE Section AB.Z

Memory

MODE

NAMNE1

~b
N)
N
o
€0
(%)

E(1)...10, is also availaktle; this form in
general 1is acceptable only to I/0 system
entries or associated library routines.

In FAP, a P2E prefix may te used with the
location of a single variatle.

The FAP ejuivalent of the above MAD LIST is:

TXH A
TIX B-1,,B-10
TIX C-*n',,C-1
TXH G-'3°

TIX D—'n"'n
TIx e-1,,L{10) i.e., location of a 10

bound or allotment is the number c¢f core
registers available to the program, counting
register 0. Therefore, the first wunavailable
register is equal to the memory allotment,
except in the special case of (77777)8 when
the entire 32,768 words of memory are meant.

With the previous file system, files cculd be
one of four modes:

0. TIEMPORARY - words are deleted as they
are being read or skipped over.

1. PERMANENT - can be read or altered
indefinitely.

2. READ-ONLY (class 1) - can be read but
not altered until the mode is changed.

3. READ-ONLY (class 2) - can be read but
not altered except by a control card
sabmitted to the dispatcher.

With the current file system there are seven
possible modes and the mode of a single file
can be any comkination of the seven, some of
which are not meaningful.

C00. PERMANENT
001. T ENMPORARY
002. SECONDARY
CO4. READ-ONLY
010. WRITE-ONLY
020. PRIVATE

100. PROTECTED

NAME2 are used in <calling sequences to
indicate the actual name of a disk file.
NAME2 is the secondary (class) name. The

CTSS PROGRAMMER'S GUIDE Section AB.2 12/769 4

String

Supervisor

actual names are right aijusted, blank
padded, BCD words.

Files - files having pno 1logical record
breaks. Processed as strings of words by
externally specified word counts.

Entry - supervisor routines which reside in
A core can be entered only by a special
calling sequence convention.

TSX ROUTIN,Y
ARGS

ROUTIN TIA =HROUTIN

If the name of the routine contains fewer than
six characters, the BCD word referred to 1in
the TIA must be 1left adjusted and blank
padded. The TIA's for many of the entries have
been placed in the library as library entries
in order tc save the user the inconvenience of
supplying the TIA, and to allow for tracing
supervisor entries if the standard debugging
aids are used.

(END)

CTSS FRBCGRANMERS GUILE Section AB.3 5,66 i
Ilentificatich
System Documentation
“"Documantation™, in the sense of assembly/compilation
listings, of CISS' supervisor, commands, and 1library
subroutines can be made available to users interested in the
fine details of system implementation. From the on-line

source language files maintained by the system programmers,
documant tapes for off-line printing are fprepared
periodically. Although system 1listings are internal
docum=2ntation of work by the system's group, there 1is a
desire to make the system as widely understood as possible.
For this reason, systenm listings are normally made
available to those who indicate their interest. Users
d2siring to study large areas of the system (e.g., 'the
library") may request printing of the relevant document
tapa; the consultants will explain the details of the
raquesting procedure. Because these procedures are
expensive of both machipnpe and system programmers' tinme,
casual requests for listings should be avoided.

Usars desiring to study only a small area of the systenm
(e«g., the SQRT subroutine) will probably not want the
antira contents of document tape; to satisfy this type of
need, the consultants will have listings of at least the
library available for browsing.

(END)

«
=)
[72}
75}
L]
[~ el
C
(2]
=
]
e |
a
tzi
=)
@
[4]
(4]
(4]
L)
L]
[<}]
193]
(1]
[g]
fald
...l
(@]
=l
[13
[}
L)
(]
-
o
AN
[4))
(%]
-

Equipment Configuration

The primary terminals used with CTSS are modified Model 35
T21l2types, Model 37 Teletypes, and IBM 1050 and 2741

Selectric teletyrevwriters (adaptations of the "golfball"
office typewriter). These terminals are located mostly, but
not exclusively, within the M.I.T. campus. Several

demonstrations have been conducted from such places as
Europ2, California, and South America. In additicn, CTSS
sapports up to three ARDS stcrage tube display terminals via
1200 bit/second phone connections. Access may also be gained
from the Telex or TIWX' telegraph netwvorks.

Although Teletypes and other typewriter-like terminals are
alaquate for most purposes, some applications demand a much
more flexible form of graphical communication. The CTSS
configuration includes for this purpose a multiple-display
systen developed by the M.I.T. Electronic Systens
Laboratory fcr research in computer aided design. The
system includes two oscilloscope displays with character and
line generators and 1light pens, connected to a PDP-7
computer which maintains the display and perforss such
functions as rotation and translation. The PDP-7
commumnicates with the 7094 via the direct-lata channel. The
two displays can be operated independently of each other.
Communication with the computer can be achievel by means of
th2 light pen, and also through a variety of other devices
(knobs, swithces, push buttons), as well as the normal
typa2vwriter terminal. The meaning of a signal from any of
these inputs is entirely under program control. Because of
cible length reguirements, the display must be 1in a roonm
adjacent to the 7094 installation; remote operation vwould
raquire improved data transmission facilities.

All of these terminals can operate siwmultaneously by
time-sharing the 7094 central processor. In order to assure
reasonably prompt response, the maximum number of users is
g2n2rally limited to about 30; however, this nusber is under
control of the supervisory program, and is adjusted on the
bisis of system loading: CI'SS has on occasion serviced as
many as 38 normal users simultaneously.

The IBM 7094 central processor has been modified to operate
with two 32,768-wdrd banks of core memory and to provide
facilities for memory protection and relocation. These
f2atures, together with an interrupt clock and a special
operating mode (in which input-output operations and certain
other instructions result 1in traps), vere necessary to
assure successful oper ation of independent frograms
coexisting in core memory. One of the memory banks is
available to the users' programs; the other is reserved for
the time-sharing system supervisory program. The second bank

CTSS ERCGRAMMER'S GUILE Section AC.O 12/69 2

was added to avoid imposing severe memory restrictions on
users because of the large supervisor program and to permit
us2 of existing utility programs (compilers,etc.), many of
which require all or most of a memory bank.

The c2ntral processor is eguipped with six data channels,
two of which are used as interfaces to conventional
p2ripheral equipment such as magnetic tapes, printers, card
readers, and card punches. A third 3data channel provides
Jiract-data connection to terminals that require high-rate
transfer of data, such as the special display system.

The fourth data channel provides communication with two disk
units (IBM 2302) and a low speed drunm (IBM 7320). The
theoretical storage capacity of the disks is 76 wmillion
computer words and the capacity of the drum is 186,400
words. The time rejuired to transfer 32K words in or out of
core is apprcximately one second for both the disk and the
irum.

The fifth data channel provides communication with two high
speed drums (IBM 7320A). The capacity of a 7320A is the same
as that of the 7320 but the transmission time for 32K words
is one-quarter second.

Tha transmission control unit (IBM 7750) consists of a
stored-program ccmputer which serves as an interface between
the sixth data channel and up to 112 communication terminals
capable of telegraph-rate operation (up to 200 bits per
sacond). An appropriate number of these terminals are
connected by trunk 1lines to the M.I.T. private branch
2xchange and to the TWX' and Telex networks. Higher rate
terminals can be readily substituted for groups of these
low-rate terminals; for instance, to support ARDS terminals
at high speed (on output), three 1200 bit/second terminals
are installed. A1l cf these terminals are compatible with
Ball System data sets. Part of the core amemory of the
transmission control unit is used as output buffer, because
the supervisor program and its necessary btuffer space have
grown in size to the point of occupying all of the A bank of
cor2 memory. '

(END)

Cu
(=]
(72
M‘
T
=X
(@]
G
>]
>
a2
= |
]
=
-/@
1 #7]
(1]
cl
=t
(et}
o]
[91]
4}
G
ﬂ’
'-1 »
C
=]
1]
)
.
-
L
Q)
Vo]
(11}
-

Tha2 CTSS IBM 7094 has an interval timer clock available as

as Chronclog clock. The interval timer clock is
complately under control of the supervisor; its acticn is as
follows: locaticn 5, memory A, is incremented in the units
position every 1/60 sec; whenever it overflows, an interrupt
occurs which, if the clock is enabled, causes a trap to
lozation 7 and the instruction location counter to be stored
in location 6. The interval timer clock is more completely
dascribed in IBM Manual L22-6554.

The supervisor uses this clock both for interrupting

projrams and for time accounting. Base-time and
day-of-the-month information are obtained from the Chronolog
clock which 1is attached as a pseudo tape wunit. The

superviscor can also simulate the interrupt <clock Dbehavior
for each user. By supervisor calls, the user can program
for nested interrupts and computation time readings.

(END)

wd
-t
k)
—

wn
@)
cl
[]
[
o
wn
m
¢
or
PM
[o]
o]
&
(@}
.
[P]
.
<«
N
AN
cn

CTSS Character Set

Purpose

[+

Two character sets, cne a subset of the other, are standard
on CTSS. The smaller set (the 6-bit or BCD set) is
basically the 7094 standard BCD set of 6-bit character codes
including 47 characters and Lklank, and augmented with four
console control functions. (Carriage return, tabulate, form
f223, and colon, which is used by some programs as a logical
*"hackspace" character.) The larger set (the 12-bit or Full
s2t) consists o2f 111 graphic and control characters,
represented as 7-bit codes right-adjusted in a 12-bit field.
This larger set jincludes both upper and lower <case letters
anl a variety of special characters and console control

functions.

ar
~

Twelve-to-six bit_marping

All input from consoles is treated initially as 12-bit codes
by the CTSS superviscr. These 12-bit codes will, howvever,
normally be mapped into the six-bit subset by the supervisor
unlass special action 1is taken by the user program to
prevent the mapping. Supervisor calls (SETBCD and SEIFUL)
ar2 available for turning on and off the mapping.

In tha CTSS Character Set talkle below, the 6-bit subset is
contained in the upper half of the table. When a character
from the lower half of the table appears in an input strean,
it is mapped according to the following rules:

1. Characters in the table enclosed in parentheses
are discarded.

2. All other characters except commercial at, number
sign, questicn mark, and double gquote are
truncated to> six bits bty discarding the left six
bits.

3. Number sign (#) is the ™erase" character: the

previous character is discarded. Double gucte (")
is also an "erase" character.
4. Ccmmercial at (@) is the "kill" character: the
. entire line is discarded. Question mark (?) is
also a "kill"®" character.

To simplify the job of a program which wishes to do its own
12-to-6 kit mapping, the supervisor on input inserts a flag
bit (the fourth from the left) on those codes which are to
be discarded upon mapping. For example, the 12-bit code for
th2 percent sign, accarding to the table, is:

coccor0c01C (0105 octal)

CTSS PROGRAMMER'S GUIDE Section AC.2.01 12,69 2

When using the RDFLXA supervisor call, the code which will
b2 received by a user program will be:

060101000101 (0505 octal)

sinca this character is discarded when mapping to six-bit
mol2. Thz flag bit is optional on output characters. For
example, to type out a percent sign, either code 0105 or
0505 is acceptable.

- s o e S —

No one device is capable of input or output of the complete
CTSS character set. For each device, a table is frovided
which lists the exceptions. In most cases, these tables
indicate one of two mapping rules for excepticnal
characters. These rules are:

1. The character is discarded on output, or
2. The character prints as some graphic different
from standacd.

The fact that a different graphic is attached to a given
code does not of ccurse, imply that the code will be
intarpreted differently by the computer. "This latter
comment must be kept in mind when using a 1050 or 2741
console, which may have any of several slightly different
sets of key caps and/or printing balls.

On tha Model 35 Teletype and the Telex, the upper and lower
case letters are wmapped together as in the following
a2xampla:

1. Cn input, a typed letter "A" will always produce
the code fcr upper case "Aw, 0021,

2. Cn output, the code for lower case ™", 0121, will
tYFe an uprer case A.

Character Code Iables

Unassigned pcsitions in the CTISS character set table are
r2servad for future expansion. At present, these unassigned
characters are discarded on output. In the individual
d2vic2 code tables, a lack of an entry implies that the
corresponding entry in the CTSS character set table applies.
The entry "ig" means that this character code is igncred on
output tc this device.

All codes are given in octal.

CTSS EFRCGRAMNMER'S GUILCE Section AC.Z2.01 i2/6S

Abbreviations used in the character set tables:

ig
WRU
P-off
P-on
V.T.
N.L.
L.F.
F.F.
tab
hang
sngl
dbl
L.K.
U. K.
back
BRS
RRS
CREF
A.M.
HLF
HLR
ESC
ACK
NAK

Ignored (see comment above)

Who are you

Printer off

Printer on

Vertical tat

New line (Carriage return and Line feed)
Line feed

Fornm feed

Horizontal tabulation

data phone disconnect

Single space carriage on return
Double space carriage on return
Lock keyboard

Unlock keyboard

Back space

Black ribbon shift

Red ribbon shift

Carriage return without line feed
Alternate mode

Half-line forward feed
Half-linpe reverse feed

Escape

Acknowledge

Negative acknowledge

0000
0010
0020
0030
0040
0050
0060

0070

0100
0110
0120
0130
0140
0150
0160

0170

CTSS PROGRAMMER'S GUIDE Section AC. 2. 01 12,69 4

NOTES:

(HLF)

CTSS Character Set

1 2 3 4 5 6 7
1 2 3 4 5 6 7
g = '
A B C D E F G
I .) :
J K L M N L P
R F.F. 3 * N. L. null
blank / S T U v W X
yA tak ’ {
(n () (\) (3) () (%) (@) (L. F.)
(HLR) (") {bell) (!) (WRD) (hang) (P-off)
a b c d e f g
i (BRS) {RRS) {~) back (CREY) "
(1) 3J k 1 m n o p
r (<)) (ESC) () ?
(L.K.) s t u v W X
z (Vv.T.)) (1) (P-on) (U.K.) (A.M.)

Character codes in parentheses are discarded on
input in 6-bit mode. In 12-bit mode these

.characters have (400)8 added to them, as a flag

bit.

Character codes 0137 (doukle quote) and 0104
(pumber sign) are the erase characters in 6-bit
mode.

Character codes 0156 (question mark) and 0106 (at
sign) are the kill characters in 6-bit mode.

The codes 0017 {(Imterrupt), O0S7 {Quit) and 0077
(Hang-up) on input are intercepted by the
supervisor and are never sent through to the
prcgranm.

CTSS ERCGRAMMER'S GUIDE Section AC.2.01 iz/69 5

Model 37 Teletype Character Set

Sam2 as CTSS Character Set except as noted below:

0000
0010
0020
0030
0040
0050
0060

0070

0100
0110
0120
0130
0140
0150
0160

0170

NOTES:

2.
3.
4.
5.

0

1 2 3 4 5 6 7

(N AK)

(ACK) ig

Cn early model 37's, codes 0107 (line feed), 0110

- (HLP) and 0111 (HLR) are ignored on output.

Code 0107 (line feed) cannot Le input.

Code 0117 (Printer-off) cannot be input.

Code 0175 (Printer-on) cannot ke input.

Ccde 0C17 (Interrupt) can be generated by one push
of the "interrupt"™ button.

Code 0057 (Quit) can be generated by two pushes of
the "interrupt" button.

CTSS PROGRAMMER'S GUIDE Section AC.2.01 12,69 6

1050,2741 Character Set

Same as CTSS Character Set except as noted below:

0 1 2 3 4 5 6 7
0000
0010
0020
0030
0040
0050 ig
0060
0070
0100 ig (%)
0110 ig ig (~) ig ig
0120
0130 ig ig
0140
0150 ig (prefix)
0160 ig ig
0170 ig ig ig ig ig
NOTES:

1. Interrupt and Quit signals are generated by the
"Attn" key on 2741's and the "Reset Line"™ button
on 1050°'s

2. Ccde 0107 (line feed) cannot be input from a 2741,

3. Code 0154 (prefix) cannot be input from a 2741,

4. Code 0117 (printer off) cannot ke input.

5. Ccde 0132 (black ribbon shift) cannot be input.

6. Code 0133 (red ritlron shift) cannot be input.

7. Code 0175 (printer onj cannot be input.

Same

0000
0010
0020
0030
oouo0
0050
0060

0070

0100
0110
0120
0130
0140

0150

[«>]
-
onN
<

0170

CTSS

PECGRAMMER?'S GIUTDE Section AC.2.01 12,69 7

Standard Model 35 Character Set

as CTSS Character Set except as noted below:

NOTES:

0

p

Pt

1 2 3 4 5 6 7
g 19 ig
A B C D E F G
I ig ig ig ig
J K L M N 2 P
R ig
g S T u v W X
y/ ig ig

Some outside (i.e. not new-style MIT-mcdified)
model 35's will not respond to code 0176 (Keybcard
unlock) .

Cn cutside model 35's, code 0055 (Carriage return)
will cause a Carriage BReturn and a Line Feed on
cutput. The computer will type a 1line feed
whenever a carriage return is detected on input.
On outside model 35's, the tabulate character
(0072) prints as a back slash and will not cause
tab motion of the carriagye.

Interrupt and Quit signals are generated by the
“"Break" buttcn.

CISS ERCGRAMMER'S GUIDE Section AC.2.01

Telex Character Set

Sam2 as CTSS Character Set except as noted below:

0 1 2 3 4 5
0000
0010 :
0020 &
0030 bell
00u0
0050 ig *
0060
0070 H
0100 ig iy ig ig
0110 ig ig ig ig
0120 A B C D E
0130 H I ig ig ig ig
0140 ig J K L M N
0150 Q R ig ig ig ig
0160 ig ig S T u v
0170 Y Z ig ig ig ig
NOTE:

1. Code 0115 (Who Are You) prints a Maltese

12/69 8
6 7

ig

ig ig
F G

2)

W X

ig ig
Cross.

2. Either code 0035 or code 0113 will ring the Telex
bell ¢n cutput. On input, a bell produces code

0035,
3. Either code 0072 or code (0103 will
semicolon o5n output. On input, a

prcduces ccde 0072.

4, Either <code 0020 or code 0120 will
amrersand cn cutput. On input, an
produces ccde (020.

print a
semicclon

print an
arpersand

S. Either code 0054 or code 0104 will print a number

sign on output. On input, a3 number sign
code 00Su.

produces

(END)

(@]
]
wn
tn
e
4]
(@]
4]
143
& 4
tr
2]
-
[¥7]
(=]
t7
te
n
[{]
)
or
(<))
Ne}
-

9
IR
4
<

Iientification

Spacial console characters
Purpose

When working at the conscle, there are several significant
signals or characters which the user finds necessary. The
"pr2ak character" is necessary to signal the end of a 1line
so that the superviscr knows that it is tim2 to analyze the
lin2 to determine whether or not action is required. The
"jnterrupt signal"® is useful for the wuser to signal his
projram that the pre-planned branching within the ©program
should ncw be fcllowed. This might be analogous to sense
switch interruption during tatch processing. The "Cuit
signal” signal is used to stop the «current program (by
placing it in dormant status) and return the user to the
command level. The "erase character" is interpreted before
the line is frocessed by the supervisor and it causes the
immzdiately preceding character to be erased by moving the
character pcinter c¢r counter back one. The "line-kill
character" is als> interpreted before the line is [processed
by the supervisor and it causes the deletion of the current
lina,

Brzak _Character

The break character is a carriage return. Whenever a user
typ2s into his console, regardless of whether or not his
program is running, the input character is received by the
supervisor within 200 ms. The input character is added to
th2 user's input message and if it is not a break character,
no further action is taken. If the <character 1is a break
character, the message is called complete and one of several
actions results.

If the user was at ccrmpmand level (i.e., the user was in dead
or iormant status), he is placed in waiting command status.
If the user's frogram was in 1input-wait status, it is
r2turn2d to working status so that it may resume by reading
th2 input message. If the user's prograr was already 1in
working status, the message is merely considered early and
is left in the buffer for suksequent reading by his frogram.
(If early messages continue to arrive and the input buffer
ar2a bacomes nearly filled, a message is typed out to the
user requesting that he stop typing until his previous input
is reai.)

Wh2n a program is first initiated or placed in working
status it is said to be at interrupt level 0. This applies
to both commands and user programs. The program ccntinues

CTs5 PROGRAMMER'S G UIDE Section AC. 2,02 12/69 2

execution until it terminates by entering dead or dormant
status or until the user transmits the C(CUIT signal which
places the program in dcrmant status immediately. This
minual 2UIT signal allows the wuser to chanye his @ming,
correct mistakes, etc.

Intarrupt signals may be used by the user to externally
direct or ccntrcl certain pre-planned phases of his programs
axa2cution., These interrupt treakpoints may be recursively
stacked to a wmaximum depth of 3. Whenever a console
interrupt signal is received by the superviscr, control 1is
returned (by means c¢f a push down 1list) to the entry
pr2viously assigned. Interrupts are dealt with within a
user's program by means cf subroutines SETBRK, GETBRK, and
SAVBRK (AG.6.03) .

The interrupt signal is generated when the intarrupt key is
pushed once (ATTN on 2741, RESET LINE on 1050, BREAK on
model 35, INTERRUPT c¢cn wmodel 37). The quit signal is
g2n2rated by pushing the button twice within two seccnds.

Erase_and Kill Characters

——— -——

A console operating at command level is automatically set to
the normal mode c¢r 6-bit BCD code. (A program call to the
sup2rvisor is necessary in order to <change to the 12-bit
typing mecde). While inputting 1in the normal mode, two
sp2cial characters are tecognized before the message is sent
to the supervisor. The characters " (quote) and # (number
sign) are interpreted as a single character eraser. This is
accomplished by moving the character pointer back one sgace
instead of forward, within the <current 1line or message.
Tharefore, n gJuotes or number signs will erase n characters
(not counting the guotes themselves as characters) back to,
but not including, the previous <carriage return or break
character. The ? (questicn mark) and the 2 (commercial at)
ar2 interpreted as a line-delete signal. The entire message
back to the previous break character is erased.

(E ND)

@]
Lo
v
[4]
o
e}
o
4
j2 o]
o=
=
%]
rc
-
.
[}
-
L]
o
%3]
w
(4%}
O
r
PJ-
Q
ford
o>
(@]
)
b
Y™
AN
[¢a]
\C
——d

Identificatich

i Pl P

Data phone extensions

Consoles may be connected with the 7094 via telephone 1lines
throujh the data switch. Because of the differences in
transmissicn rates between various types cf consoles, there
are several classes cf lines:

1050,2741 Dial *0O°
35ASR/KSR Dial '9°?
37K SR Dial *1371

BRDS display Dial 1601

All of these numbers are 'hunt groups', i.e. they cause the
telephone exchange tc search over a number of 1lines until
on2 is found which is not Lusy.

Consol2s have specific (although not necessarily unigue)
identificaticn ccdes. These codes are to be used with the
attached remote consocle supervisor entries; they are also
chack2d by LCGIN for unit group restricted users. The
console ID wcrd consists of a type code (2 for 1050, 3 for
TELEX, 4 for TWX', S for 1inktronic and 33KSR, 6 for
35ASR/KSR, 7 for 37KSR, 8 for 2741, 9 for ARDS), two to four
BCD zaroes, and one to t hree BCD characters of
identificaticn, for a total ct six characters.

Each data phcne used with a console has a unique extension
number which may be used for voice transmission. A data
phone may be called from another data phone by dialing the
4~digit extension number, «cr from an MIT extension by
Jialing 818 followed by the data phone number. Note that
data phone extensions are nct regular MIT extensions.

If your conscle or data fhone needs service, call MIT Ext.
4128, giving name, rod>m numker, console type, and nature of
the troukle. The appropriate repairman will be notified;
th2 r2cord of the trouble is kept until the repair is made
and reported back by the serviceman.

A recorded message giving the current status of CTSS 1is
available at data phcne ext. 1300. If an abnormal system
com2down (crash) occurs, and CTSS will ke down for more than
10 minutes, the operatcr will update the recording
indicatiny expected comeup time and the nature of the
troukle.

{END)

CTSS ERCGRAMMER'S GUILF Section AD.1 9765 1

Historic file system
Purposg

The IBM 1301 disk served as the bulk storage for the tinme
shariny system sc that wusers files, system files and
sub-system files could be gquickly and randomly dumped and
read. It was extremely important to have a flexible but
atfficieant and usable central module which would handle all
the disk input and ocutput for all users. The following
il2as were incorporated in the disk control subroutinpe which
was used for about a year and a half. In August of 1965,
th2 old disk control subroutine was replaced by a new module
which incorporated many improvements, btut also allowed for

much upward compatibility for the o0ld systen. The old
system will, therefore, ke described here because of all the
routines and write-ufs which are still wusing the

compatibility features.

Considarations

The following ccnsiderations went into the make-up of the
f1l2 systeam and they might help in the uynderstanding of the
systen.

1. The user should be able to write and =maintain
permanent grograms and data files on the disk.

2. System and subsystenm programs should be
permanently recorded on the disk.

3. The user should have only symtolic reference to
his files.

4. The user should be able to read and write many
files simultaneously.

5. The user should not be able to reference any files
nct authorized to him.

6. The user should be able to initiate files in
different mdodes such as temporary, permanent, or
read-only.

7. 1In order to utilize the maximum storage <carpacity
cf the disk file the format of a single record per
track should be used.

Protection

— i e s e e . i

During time-sharing, all systems and users make use of the
sinjle standard input/output package. If a system dces not
use the standard routines, it can be run ty itself with the
iisk inoperative or if it needs the disk, the contents of
the disk can be dumped and later reloaded when time-sharing
is restarted. During time-sharing, the standard package
makz2s use of input/output trapping and merory protecticn to
insure protection of user's frograms ind files. The user

CIsS ERCGRAMMER'S GUILCE Section AD.1 9,65 2

has access only to files which are authorized to hir.

A further protection against loss of files 1is the
operational procedure of dumping the Contents of the disk
fil2as p2riodically onto tape. These dump tapes can be wused
by a retrieval program tc reload the disk completely or
s2lactively. These history tapes are kept on file by
operations according to a schedule which is approximately:
daily tapes for a week, weekly tapes for 4 months and yearly
tapes forever. 1In case c¢f a major unrecoverable catastrcche
the entire syster may be backed-up 24 hours by reloading the
most ra2cent dump tape. The user may recover any of his
individual files from any of the tapes which contain then.

File Structure

Eizh user is assigned one or more tracks to serve as a
directory of all his private files currently stored on the
iisk. A user does not have access to any other user's file
directory. A group of users who may be working on the same
problzm may be assigned an extra set of file directories
(called commron files) toc which all the users of the group
have access.

The old system had twoessevere limitations: first, only one
usar could be working in a file directory at any one tinme,
and second, that a reference to a single file could exist
only in a single file directory. These 1limitations meant
that in order to share rcutines or data, users had to copy
filas into and out >2f common files, so that there were
multiple copies cf the same file. Furthermore, whenever one
usar was using a common file, no one else had access to it.
Thase limitations have been much alleviated with the new
system.

The file directories contain the two BCD word names, the
number of tracks used, the starting track address fcinter,
the date-last-used, and the mode of each file. A master
fila directory is maintained which contains a pointer to the
file directory of each user in the systen. A track usage
tibla is also maintained which tells the system which tracks
are already used and which are free. All the tracks o¢f a
single file are chained together by virtue of the first word
ot 2ach track either pointing to the next track in this file
or to the last wcrd cf this track if there are no more
tracks. Whenever possible, the tracks for one file are
assigned consecutively, in order to reduce the time lost in
s22kiny. When the disk is reloaded from the dump tares, the
housekeeping is done to provide consecutive tracks for
filas which might previously have been scattered.

(]
L]
n
n
o
X
[}
o
el
B J
X
x
]
o

-
s
"2}
(-
i~
2
-

Sa~tion AD.1 3/65 3

Usaje

All files are referred to Lty a two word BCD name and nc
absolute track lccations are known or needei. All calling
sa2quencas to the disk routines provide the facility of
allowing the user tc specify his own error procedure or

acc2pt the standard system error procedure. All of the
calls and errcr frocedures are described in section AG of
this manual. Almost all of these <zalls will have

write-arcund routines for the new I/0 system so that they
will behave in much the same way as they did before April
1965. Note that in the table of contents of this n@manual,
the sections which refer to the new I/C system are preceded
by an ¥,

(ENL)

CTSS PROGRAMMER 'S SLUIDE Section AD. z 12,69 1

Identificaticn

—— e ———— . — — — — — —

Th2 naw file structure and Input/Output systenm
Purpose

The new file system was implemented, 1) in order to continue
th2 basic philosophy of the previous file system and remove
many of the weaknesses which had become evident in its years
of 2x2rcise and 2) to provide and exercise a protoctype of
the file system which is proposed for the next time sharing
system.

Som2 improvements to be found in the new system will be
mentioned here, and it 1s assumed that the reader is
familiar with the previous file system discussed in section
AD.1. The I/0 system can accomodate any ccnfiquratiocn of
I/0 channels and/or devices and thereby provide a standard
intarface to all users. The Ekack-up feature, of having
files dumped ontc tapes which can be saved for retrieval,
will b= accomplished by a DAEMON which 1s in constant
operation during time sharing. 1In this way the amount of
information which is dumped and the amount of time lcst due
to back-up will be greatly reduced. The I/0 system can now
deal wvwith entries in file directories which are pointers
(LINKs) to entries in other file directories rather than to
the files themselves., This means that a user may perzit
oth2r users to use any of his files without actually cofpying
the desired files into other directories. Thus, many users
miy be referencing files within the same directcry,
simultaneously. Indeed, many users miy be realinj the same
fil2. A lock does exist so that no one may reference a file
which ancther user is altering. A further improverent is an
increase in the number of modes which files may have.
Allitional entries have keen added to the 1I,/0 system tc
allow the administrators to update the master file directory
luring time sharing operation sc that new users can be
placed in the system wmore quickly. The I/0 system 1is
moiular for all machine dependent sections. By reglacement
of certain modules, different stratejies for particular TI/0
iavices, or I/0 devices themselves, may ke changed without
affecting the overall I/0 structure.

Structure of the I/0_System

The I/0 system presents a standard machine independent
intarface to all users. All calls to the I/0 system are
directed to the basic contrcl module of the system called
th2 Fils Coordinator. The File Coordinator then requests
service from the Buffer Control Module, which in turn may

raquest sarvice from a1 particular Strategy Module. Attach
Strata3jy Mcdule is concerned only with a certain class of
information storage. The Strategy Module may in turn

r2quest service from an I/0 Adapter. The I/O Adapter 1is a

CTSS PROGRAMMER'S G UIDE Section AD.2 12/763 2

module which fprocesses input and output reguests for
spacific I/C devices, All calls tc the 1I/0 systen
requesting input or cutput must follow this path of control,
th2 File Coordinator- the Buffer Contrcl F¥odule- a Strategy
Module- an I/O Adatpter.

The File Coordinator:

The File Coordinator provides the interface between the file
system and the user. It interprets the calling sequences,
per forms validity checking <cf the <calls, and calls the
appropriate module.

Tha Buffer Control Module:

Th2 Buffer Control Module is called ty the File Coordinator.
Its functions are to maintain the user's active file status
tible parameters, to convert the user's calling sequences to
appropriate I/0 commands fcr the stategy modules, and to
mov2 the data words between the buffers and the user's data
storage area. The Buffer Control Module in turn <calls the
appropriate Strategy Module when I/C is needed.

Th2 Strategy Modules:

Each Strategy Module is responsitle for a particular storayge
device. This module determines the strategy to be wused 1in
d=2alingy with this storage device and 1its associated 1/0
Alapter. Regquests are stacked in queues to be executed by
the I/0 adapter whenever tha associated channel becones
fr22, 1In addition, the Strategy Module is responsible for
keeping track of the number cf available units of secondary
storag2 for the device to which it is assigned. Requests
are made to the Strategy Modules only through the Buffer
Control Module.

The I/0 Adafpters:

Th2 I/0 Adapter is responsitle for the operation o¢f ‘the
hardware interface tc a particular device or devices. The
I1/0 ajapter accepts rejuests for service from the Strategy
Modules only. The I/0 adapters are responsible for
processing all traps associated with the devices to which
t hey are assigned. rhe I/0 adapters interrupt the

appropriate Strategy Modules wupon completion of previous
ra2juests,

Th2 buffer control mdodule (BCM) is called by the file
coordinator and its function is twofold: 1) maintain the
us2rs active file status table parameters of file 1length,
reading and writing status and pointers, buffer status and
p2niingy I/0, and 2) convert the user's calling sequence into

CTSS PROGRAMMER'S SUIDE Section AD.Z 12,69 3

appropriate calls to the I/0 adapter for physical records
and move data between the buffers and the user's data area
on a word basis.

Whenevar possible, data 1s moved directly frcm the I,0
device into the user's data area without going through a
buffer. In the general case, however, a Ftuffer nmust be
supplied for intermediate stcrage for thos2 parts of the
data which do not comprise a complete physical record on the
I/0 device. Scme users ®may wish to devise more
sophisticated I/C control when the system efficiency 1is
considered unsatisfactory, sc the following conditions are
not2d where files may be dealt with without providing a
buffer. For example, a multiple tuffers system may be built
in the user's prcgram without extra buffering by the systenm.

R2adinjy without a buffer:

If klocks of integral number of physizal records are
read or if reading goes through the end of file, no
buffer will be used even if one is assignad.

If no buffer is assigned and partial records are called
for, the physical record will ke read for each call 1in
order tc extract the logical or partial record from the
physical.

Writing without a buffer:

A complete new file of any length can be written by a
single call without a buffer being assigned.

An existing file may be written into without a buffer
only from the beginning of a physical record through
the end of a physical record or through the end of a
file.

Appending tc a file or writing partial records requires
a buffer.

Truncation without a buffer:

Truncation without a buffer can only be accomplished if
the truncation word is beyond the end of file or 1in
front of the first word (file made e@mpty).

Th2 BCM selects an appropriate strateqy depending on
whether a buffer has been assigned or not and returns
an error if a buffer is mandatory where ncne was
assigned. A user may switch 3 file from "“no-buffer"
node to “buffer" mode or vice-versa by calls to BUFFER.

File Notaticn and Structure

CISS PROGRAMMER'S S UIDE Saction AD.2 12769 4

The smallest piece of information which can be manipulated
by th2 I/0 system is an element. A file 1s an ordered
sejuence of elements. The file is the largest amount of
information which can be manipulated bty the I/C systen.

Evary file will have a unigue name which 1s used to identify
that file to the user. An element in a file 1s referenced
by specifying the tile name and the 1linear 1index. For
2xampla2, the element "i" in file "a" is referred to as a(i).
Files may be <created, modified or destroyel by a CTSS
projram only through the use of the I/0 systen.

A fil= appears to the user to ke a block of ccecntiquous
storage which may be referenced through normal sequential
1ldressiny conventions. However, the physical structure of
tha fil2 is independent of the logical structure which the
user experiences., The user may refer to a file only through
th2 symbolic file name and should have no notion of where or
how the file is stored. The number of elements which make
up a file is arbitrary, and in fact a file may exist with no
elements.

There are four basic operaticns for manipulating elements

within files: opening, closing, reading and writing. To
initiate a read and/cr write operation, the file must first
b2 opaned for reading and/or writing. To terminate the

r2adiny and/or writing of a file, the file must be closed.
Modes:

A characteristic of every file is its mode. The mnode of a
fil2 is specified by a 7-bit mask at the time it is created.
(The mode may be changed later if desired.) Each bit in the
misk indicates a different property of the file, and any
combination of fproperties may be specified. The prcperties
and tha (octal) mask bit positions are shown belouw.

000. PERMANENT- If all bits in the mole mask are zero,
the file can be read or written, and will be stcred
indefinitely.

001, TEMPORARY- Such a file will automatically be

deleted the first time it is read. The deletion
will not take place until the file is closed after
reading.

002. SECONDARY- This ©fproperty appears 1in directory
eantries for files which have been deleted by
storage ccllection mechanisms. The entry is
retained for purposes of identification.

004. REATD-ONLY- The file can only te read. An attempt
tc write into or delete a file of this prcperty
will cause an error condition.

CTSS PROGRAMMER'S GUIDE Section AD.2 12/69 5

010. WRITE-ONLY- r'he file can only be appended tc. An
attempt to read from or delete a file with this
property will cause an error condition.

020. PRIVATE- The file can only be referenced by the
AUTHOR i.e. the user who created or 1last mwmodified
this file. An attempt to delete a file <cf this
progerty will cause an error condition.

040. Unused mode bit.

100. PROTECTED- The mode of the file may only be changed
by the AUTHOR of the file. Any attempt by another
user to change the mode of this file will result in
an error condition. A 'PROTECTED' file may not be
renared nor deleted, even by the AUTHOR.

File Directcries:

The File Coocrdinator may service requests from a fixed
number of active users. Reguests from a specific wuser are
in the form a(i), to reference the element "i" in the user's
fila "an, The File Coordinator however, manipulates
information by use c¢f an implicit address of the fornm
z(b(a(i))) . This address references the elemsnt "i" in the
file "a", which is sgecified by the file "b", which in turn
is specified by the file "c". The file "c" in this case 1is
1 specific Master File Cirectory and the file "b" is a
specific User File Directory. After establishing a f®c*" and
"pb" pair, each successive call for a(i) will then be
interpreted by the I,0 system as c(b(a(i))), wuntil another
call is given specifing a new “c" or "b", By - treating the
user file directcries and the master file Jdirectories as
normal information files, multiple usage cf single files can
be accomplished in a general manner.

Th2 formats of the Master File Directory and the User Pile
Directories are shown on the next page. The groups of words
1-7 actually begin in the fourth word of the file and are
repeated in the groufs of seven for each entry in the file.

An entry in which both of the first ¢two words are zero,
m2ans that an entry has teen deleted.

Th2 dates are of the format: bits S,1-8 :contain the year
-400 modulo 500, bits 9-12 ccntain the month, bits 13-17
contain the day, and bits 18-35 contain the number of
s2conds elapsed since midnight.

Th2 AUTHCR is the programmer numker of the user who created
or last modified the file. The F is a 3-bit integer which
sp2cifizs on which secondary storage device the file
resides. If F is 0, the entry refers to a linked file. F
is us2d by the PBuffer Control Module to determine which

CTSS PROGRAMMER'S GUIDE Section AD.2 12/69 6

strategy module shculd be called.

RCOUNT specifies the number of elements contained in a
physical record of the file. NOREC specif the number of
physical reccrds contained in the file. LCOUNT specifies
th2 number of elements contained in the last physical record
of the tile. The highest element address in a file may be
j2fined as (NORECS-1) * RZOUNT + LCOUNT. The 3-bit integer
P is normally one. However, P=0 is equivalent to P=1,

b

Ac
4 TO

ILOCK is used to allow multiple users to access the same
file simultaneously. If a file is in read status, ILOCK
contains a count of the number of users currently reading
from that file. When the number of users reading from the
fila drops to zerd>, any user who wishes to modify that file
will be allowed to proceed. When a file 1is opened for
writing, the high order kit of ILOCK is set to 1. Curing
the time that ILCCK indicates that a modification to a file
is in prcgress, no new users will be allowed to reference
that file.

If user "A" wishes to reference a file <contained 1in sone
other user's file directcry (user "B"), he <can accomplish
this by means of a "LINKELY file. A LINKED file is defined
in a user's file directory as a file with a device
specification of zero (F=0).

If a file in a user's file directory is a LINKED file (F=0),
RCOUNT, NORECS and ILOCK are ignored. The problem and the
programmer number of the user to which the link is made are
in words 3 and 4. The name of the file teing linked tc is
in words 6 and 7. A file wmay be 1linked in this manner
throuyh the file directories of several users. The depth of
linkage is currently restricted to 2. The last entry mwmust
b2 a normal file directory entry which defines the file in a
normal manner. Once this linking operation 1is completed,
tha file will be treated as a normal file. This operation
will be repeated every time a user attempts to open a LINKED
file.

The user may refer tc his file directory as a file of the
nam2 "U.F.D. (FILE)"™ which is defined in his file directory
as a norral file in READ-ONLY nmode. The Master File
Diractory is defined as a User File Directory by the name
“"M.F.D. (FILE)"™ in the Master File Directory. This file 1is
also referred to as "U.F.D. (FILE)"™ within the Master File
Diractory. To read the Master File Directory, first,
ATTACH. ($M.F.D.$,5 (FILE)S$). The I/C system will never
1llow the Master File [Cirectory or any User File Directory
to be deleted.

WORD

»

.

NO o FE Wy -
L]

(!
-3
n
(¥}
n
o
[lp}
[
-]
>
x
i J
|
)
-
[%7]
"]
(=)
o]
[e]
(o]

Section AD.2 12,69 7

MASTER FILE DIRECTORY, "M.F.D. (FILE)"

® 2 8 0 9 5 09 o289 00 eSS CONTENTS ® % 5 9SS S ST OO IEGSes e

USER PROELEM NUMEER (36 EITS)

USER PROGRAMMER NUMBER (36 BITS)

DATE AND TIME any file in U.F.D. LAST MODIFIED (36 BITS)
DATE LAST USED (18 BITS), AUTHOR (18 BITS)

--- (8 BITS), --- (10 BITS) ,F (3 BITS), RCOUNT (15 BIIS)

--- (3 BITS), NORECS (15 BITS), P (3 BITS), LCOUNT (15 BITS)
The2 next "P" words ccntain specific information for a file
of type "F",

USER FILE DIRECTORY, "U.F.D. (FILE)"

® e s a3 2@ s e e @ 0 09" o0 s a0amve s CONTENTS > 8 0% e 0 s ® o 000000 ec0 e

FILE NAME, PART 1 (36 BITS)

FILE NAME, PART 2 (36 BITS) ,

DATE AND TIME LAST MODIFIED (36 BITS)

DATE LAST USED (18 BITIS), AUTHOR (18 BITS)

MODE (8 BITS), ILOCK (10 BITS), F (3 BITS), RCOUNT (15 BITS)
--- (3 BITS), NORECS (15 BITS), P (3 BITS), LCOUNT (15 BITS)
The next "P" words ccntain specific information for a file
of type "F",

CTSS FRCGRAMMER'S GUITCE Section AD.?2 12,69 8

2302 Disk and 7320 Drum Strategy

The file directory entry for a 2302 or 7320 file <contains
pointers to the first and last tracks. For a file of this
typ2, RCCUNT will be the numter of data words 1in a single
track. NORECS will be the total number of tracks 1in the
fil2 and LCCUNT will be the number of data words in the last
track.

Each track in a file of this type will contain chain address
pointers to the following and preceding tracks. In addition
each track will contain a latel in the following forms:

I__LCOUNT _I__TRAENC__1I

- —— e —— o — —— — ——— — ——

TRAKNO is a track segquence number. LCOUNT will be non-zero
only in the last track of a file and will contain the count
ot th2 number of data words in that track. This count nmust
match the value cf LCOUNT in the wuser file directcry for
that file.

Tracks are assigned in a manner similar to that described in
m2mo CC-196 (Disk Control Routine). All track usage tables
will be files contained as entries 1in the Master File
Diractory. The file which defines the usage of disk tracks
will be referred to as "DISKUT (FILE)"™. The track usage
fil2 for the 732C drum will be referred to as "DRUMUT
(FILE)"™.

2302 Disk and 7320 Drum I/0 Adapter

The disk/drunm Strategy Modules provide calls to the
Jisk,/drum I,/0 adapter specifying only logical track
addresses. The I/0 adapter is responsible for determining
th2 actual channels which must be used. The adapter places
11l raquests into a rejuest gqueue and returns. The trap
processor for the disky/drum I,/0 adapter empties the reguest
gu=2ue on completion of previous requests for that channel.
If a request is made requiring a <channel not already in
oparation, a trap will be simulated for that channel.

Tap2 Strategy Module

Magnetic tapes will be treated as secondary storage 1in the
same manner as disks or drums. Many files can be recorded
on a single tape, but a single file may not consist cf wmore
t han one tape. 1The first physical file of a tape file will
b2 a BCD header label (see Section AG.5.05).

In a file directory entry for a tape file, RCOUNT will be
432 and EF will be one. The seventh word of the file
diractory entry will contain an internal tape address known
to th2 I/C supervisory systems only; this word contains a

[l]
w0
-
N
[
—
=3
s]

Section AD.2 12769 9

G

logical unit number and a file number. Cther information in
th2 file directory entry has the same meaning as described
in the disk and drum Strategy Modules.

Each data record will contain 432 information words preceded
by a control word in the following form.

PZE RECNO,,LCOUNT

RECNC will be the record segjuence number. LCOUNT will be
non-zero only in the last record of a file and will be the
zount of the number of words in that record. This word
count nmust match the value of LCOUNT in the file directory
antry for that file.

Th= I/0 adapter for the tape Strategy Module will operate on
raquest queuyes in the same manner as the disk and drum I/O
adapters.,

To use Tage Strategy, a user must have an
1lministratively-assigned tape record quota. Because the
use of tapes makes unusual demands on both the system and
th2 operators, assignment of such gquctas will be the
exception rather than the rule.

Usage

Not2 three things in particular atout this I/0 systen.
First, it is basically nct a buffered system so that upon
r2turn from RECFILE or WRFILE it is safe tc assume that the
I/0 has not actually been done yet. Before the srecified
lata area may be referenced, a call to FCHECK and a
"finishad" return must be made. In other words, before a
satisfactory delay has been made by FCHECK, the input data
is not really there or the output data has not yet been
transmitted sc the user may not rewrite th2 data area. The
s2cond thing of note 1is that 1if an error return 1is
specified, scme errors are detected immediately and some are
not detected until the next I/0 call. Each RDFILE or WRFILE
serves as an FCHECK con the preceding RDFILE or WRFILE on the
sam2 file. The third thing to note is that all of the I/O
is considered to be by relative locations so that all files
can be considered to be =imilar to addressable storage.

Calling Conventions:

Following is a list of calls to the new file systen. The
detailed write-ugs cf these calls can te found in section AG
and in the table 5t contents their sections will be preceded
by an *, Their calling sejuences are given in MAD notation
and the MAD compiler has been modified slightly to accept an
int23er or an integer-variatle specifying the nunmber of
words in block nctation rather than the last address of a

CTSS ERCGRAMMER'S GUILE Section AD.2 12,69 10

block. The new file system is consistent in expecting the
namber of words rather than the last address in block
notation. All arrays are stored forward so that the
beginning address must be the lowest core location of the
array. Also, all file names are specifjed by the 1locations
of both BCO names rather than the location of the first nane
as FILNAM is used in the o0ld file systen. The file names
ar2 right adjusted and blank padded. For example:

MAD: FSTATE. (5 NAME1$, $ NAME2$,A (8)...8)
FAP: TSX FSTATE,4 ‘

TXH =H NAME1

TXH =H NAME2

TIX A,, EIGHT or TXH A,,8

EIGHT PZE 8

A BSS 8
In all of the calls, if an argument is not pertinent, a -0
may Lke specified (FAP: PTH = -0). All calls will accept

two mors arguments than shown. The first is the location of
users' error return and the second, if supplied, specifies
th2 location into which the error code will be stored.

Some of the arguments and information items are of special
forms which might be noted here.
DEVICE = 1. 1is low speed drum
2. 1is disk
3. 1is tage
File status = 1. 1is inactive

2. 1is open for reading
3. 1is cpen for writing
4. 1is open for reading and writing

(@]
3
ra
£0
o
%]
0
kL4
4
2
]
0

-
w
[}
<
(]
]
(%]
n
w
Q
o+

"

'-l-
[#]
3
>
]
[N
—
N
N
(b))
el

97}
W

SUMMARY

Alministrative and Privileged:

UPDMFD. ($ EROB$, $ PROGS)

DELMFD.($ PROB$, $ PROGS)

ATTACH. ($§ EROB$, $ PROGS)

MOVFIL. (5§ NAME1$,$ NAME2$,$ PROBS,$ PROGS)
SETFIL.($ NAME1$,$ NAME2$,DAYTIM,DATELU,MODE, DEVICE)

LINK. (B NAME1$,3 NAME2S, SPROBN$, $PROGE, NMI , $NM23$, MODE)

UNLINK.($ NAME1$,$ NAME2S)
ALLCT. (CEVICE, ALLOT , USED)
RSFILE.($ NAME1$,$ NAME2S$)

R2ading and Writing:

OPEN.($STATUSS,$ NAME1$,5 NAME2S$,-MCDE-,-DEVICE-)
BUFFER. (§ NAME1$,$ NAME2$, BUFF(432) ...432)

RDFILE.($ NAME1$,$ NAME2$,RELLOC,A (§)...N,~-ECF-,-EQFCT~)
RDWAIT. (3 NAME1$,3$ NAME2$, RELLOC,A(N) ...N,-EOF-,-EOFCT-)
WRFILE.($ NAME1$,$5 NAME2$,RELLOC,A(N)...N,-EOF-,-EQFCT-)
WRWAIT. ($ NAME1$.$ NAME2$, RELLOC,A (N)...N,-EOF-,-EOFCT-)
TRFILE. (5 NAME1$,$5 NAME2$,RELLOC)

FCHECK.($ NAME1$, 5 NAME2$,FINISH)

FWAIT. (5 NAME1$,$ NAME2S$)

CLOSE.($ NAME1$,$ NAME2S)

othars:

UPDATE.
SETERI. (PRIOR)

RESETF.

CHFILE.($ NAME1$,$ NAME2$, NMODE , SNEWNMI$, SNEWNM2$)
DELFIL. ($§ NAME1$,$ NAME2S$)

FSTATE.($ NAME1$,$ NAME2$,A (8)...8)

STORGE. (DEVICE, ALLOT , USED)

MOUNT.(CHAN ,UNIT,MESSAG (20)...20)

UMOUNT. (UNITNO, MESS AG(20) ... 20)
VERIFY.(UNIINO,LABEL (4) ...4)

LABEL. (UNITNO, LABEL (4) ... 4)

TAPFIL. (6 NAME1$,$ NAME2$,UNITNGC,FILENC)
IODIAG.(A(7) ««-7)

TILOCK. (RETRN)

FERRTN . (RETRN)

ATTNAM (A(2)...2)

(@)
L]
n
tn
o]
to
(i)
[£+]
H-J
b
=
k]
L o]
-
(75}
(]
=
~4
[]
=t
(92}
D
9]
-'
ek &
o)
=]
it
(=]
i
[N

11,65 1

(&

Iientification

Library files

Library files are created by COMBINing BSS fil2s into files
which may then be searched for missing routines by the
relocating lcaders. Any user may create his own 1library
fil2s and, by use »>f the special arquments, direct the
loader to search his 1library files instead of (or in
addition to) the CISS system library files. Subsystems of
CrSS (2.9., AED) may have their own likraries and their own
loaders. However, the ones being discussed here are the
CTSS system library and loaders.

Th2 system library is currently divided into files which
reside in the system common file directory. TSLIB1 contains
all of the standard routines described as 1library
subroutines and library entries in this manual. The 1loader
will normally search TISLIB1 for missing routines unless
prohibited by special arguments. TSLIB2 contains the
debugging subroutines and core-B transfer commands. The
loader will search TSLIB2 automatically only when a core-B
transfer command has been given. If the debuyging routines
ar2 to be loaded with the program Lefore execution the
loader should be informed by (SYS) TSLIB2 or, for example,
mor2 completely by (NEED) FLEXPM (SYS) TSLIB2. A special
library in the system file 1is KLULIB which contains
subroutines for the "KLUDGE" (i.e., ESL scope console) and
which may be searched if special arguments are given to the
loader.

The library files may be improved by any user by following
th2 maintenance procedure descrikted in section AB.3. The
library is wraintained by the programming staff at the
Computation Center.

(ENL)

CTSS PROGRAMMER'S GUIDE Section AD.4 12/69 1

Iientification

Common Files and the Public File
Purpose

This section describes the nature of, and submission
procedure for, ©prcgrams in the “Public File"--a file
dir=actory accessible to all users of CTSS. To furnish
perspective, the evoluticn of common files and the Public
Fil2 is also discussed.

Development of Common_Files

Within the former file system, a given file cculd be
rcferenced from cnly one file directory and only one user
could be attached to a file directory. In practice, a group
of users could be working on one probler and, therefore,
have need to access a common pool of programs and data.
This conflict was partially resolved by implementing the
concept of cormon files, where "common" implies some sort of
“joint ownership®™. A group of users workimg on the same
problem was assigned a single problem number. Each problenm
number could then have associated with it as many as four
common file directories. Any user could switch from his own
files directory to one of the common file directories
associated with his fproblem number. With appropriate calls
to the supervisor a user could copy any of his files into
th2 common files or copy files from any of the commcn files
into his own directory. Some restrictions still existed,
nim2ly, only one user could operate in a commcn file
directory at any one time; tc avoid locking users out of a
common file, files had to ke copied and, therefore, many
copies of the same file existed; also, common files were
rigidly associated with a proklem numkter and therefore
communication between prcblem numbers was impossible. (The
current treatment of common files is covered 1in Sections
A5.3.03 and AH.6.04,)

Davz2lopment _of System Files

The four common files associated with the systenm
programmers® problem number took on the special function of
s2rvicing all users, regardless of proktler number. Their
common file 4 became known as the Public File and any user
could put files there and copy files from there. In order
to housekeep the system files, the Disk Editor, which was
run at least once a day, deleted all files in the Public
File which were in temporary or permanent mode. Only a
system programmer could change a file in Fublic to the old
file system's R1 or R2 mode (approximately Read-only and
R2ad-only Protected) . A further restriction was placed on
th2 Fublic File, namely, only programs which were adequately
documented cculd rerain in Public. The documentation was

CTSS PRCGRAMMER'S GUILE Section AD.4 12,69 2

available from the consultants. The system programmers®
common file 2 became known as the System File, common file
S, and any user could copy files from there. Common file S
contained the binary files of all the commands and the BSS
fil2as of the libraries. The system programmers' common file
1 contained the source and binary files of the supervisor
and common file 3 contained listing files of the supervisor.

The Fublic File (M1416 CMFLOY4) is a file directory with a
track quota cf zero, the contents of which are available to
all users. It contains nothing but 1linkage pointers to
fil2s which exist in other file directories. There are
several reasons why these fpcinters must be placed in a
Public File: 1) The Public File now also fulfills the role
formerly played by the System File; hence, certain files
must be made available through it to the programs which need
them. For example, system libraries, TSLIBn BSS, are needed
by th2 loaders. The actual BSS files reside in one of the
other MI416 commcn files (accessible by system programmers
only) but lcaders can read them through the 1links 1in the
Public File. 2) Many commands and their data files are
maintained by their authors rather than by the programming
staff. These command and data files wmay reside in the
authors' file directcries but are made available to all
usars of the system through links in the Public File. 3)
Users have prcgams which are of general interest and
us2fulness but which have not Leen given command status.
These progrars are made available to all users through the
links in the Public File.

Users! _Programs

A major advantage of a time-sharing systemrm stems from the
ability it offers for users to share software as well as
hardware. This “talent-sharing” can easily go far beyond
the power offered by the range of <compilers and 1library
routinas made available by batch-processing system programs;
in some sense, every progaram on the disk could be thought
of as a "system program". To facilitate exchange of users'
programs, be they subroutines (for the documentation of
which Section AI is reserved) or "conmnmands" (the SAVED files
which are documented in Section AJ), the Public File was
instituted. Inclusicn of a frogram in the Public File both
yjuarantees its accessibility to all users and, indeed,
publicizes its existence to all (studious) readers of the
Programmer's Guide. However, inclusion of a program in the
Public File alsc implies a degree of sanction by the
aiministrators of the system. Because of this ‘"sanction",
then, progyrams which are submitted for inclusion in the
Public File cannot automatically be accepted. Both the
natur2 of the program and its documentation =sBpust be
evaluated. To this end, the following submission procedure

CTSS PROGRAMMER'S GUIDE Section AD.4 12,69 3

has been developed.

Submission Erocedure

Whan a candidate for inclusion in the Puklic Files has been
debugged, the author should send its documentation to the
2litor of this manual. There are two parts to the
jocumantation. First, a typed (or TYPSET) write-up is
required, in the general format of a section of this manual,
with the following additions: The section on Purpose should
be as extensive as pcssible, with emphasis on the areas of
applicability of the program. If the program is fully
documented elsewhere (e.g,, MAC and/or C€C memo), a full
r2f2rence should be given. Examples of usage are extremely
desirable. Second, information as to the directory and
nam2 (s) of the file(s) involved must be given, along with
the names (and fphone numkers) of at least two users, other
than the author, who have used the program and who recommend
its 1inclusion in the Public File. After favorable
evaluation, the implementaticn considerations below apply,
inl th2 message of the day and the next set of revisions to
the manual will herald the new arrival.

On2 of the system programmers will LINK to the file
containing the new Public program from his (M1416) common
fila 4. The author must, of course, have PERMITed the file
to MI416 *. The system programmer, in turn, will PERMIT the
link to all users. The mode of the link (the entry in the
Public File) will normally be Read-only ani Protected (RP)
unlass the author specifically requests a different mode.

A ra2striction on authors is implied ty the fact that, at
present, links may only be nested to a3 maximum depth of 2.
(This limitation was made to allow efficient searching and
to keep the file control system from executing an indefinite
loop.) "Public" files, however, require two 1links to be
r2achad and therefore, may not link further themselves.

Th2 author's file directory is the only one which is charged
for the records cccugied by the file. There 1is no "free
rij2" for files "in®" the Public File (as they are not
actually there), while at the same time there need be only
on2 copy of a file in the entire file systen.

Usage_of Public Frograms

Onc2 the Fublic program has Lteen "hooked up" as described
above any user may then LINK to the file entry in the Public
Fi1l2 (MI416 CMFLC4) after which he may use the file 1t
references as if it were one of his own files.

CTSS FRCGRAMMER'S GUILE Section AD. W4 12,69 4

Through the LINK facility, it 1is, of course, not necessary
to COPY into one's own files. Further, it is requested that
users in general pot copy files listed in the Public PFile.
Th2 rsasons for this rejuest are to avoid proliferation of
copies of files (thus conserving disk space) and tc allow
modifications made by the 1iauthor to become immediately
avallable to users of the file. Modifications are reflected
immediately because the linkage information is kept
complately in symbolic form. The chain of links is searched
each time the file is opened or 1is referenced with the
FSTATE supervisor entry.

(END)

[
1

(1

[l
(e
2
=
(77}

Section AD.S 12/69 1

"
i
(4

Time-acccunting files
Purpose

Th2 time-accounting files keep all crucial user information
such as password, time allotments, party group numbers, etc.
These files are read and written by the commands LOGIN and
LOGOUT and they can be updated by a few persons with special
ra2striction codes.

Dafinitions

Each person who is permitted to use the time sharing systenm
is assigned a unique frogrammer number (4 digits).
Depending on the number cf jcbs he undertakes, he will also
b2 assigned one or more proklem numbers (1 alpha and 3 or &
numeric characters). Groups of people working on the same
problzm may be assigned the same protklem number. When a
user logys in, he types his problem number ani last nanme.
Th2 combination of problem number and last six characters of
the last nare is neither unique nor secret. A six character
secret passwecrd is therefore requested by LCGIN so that a
check can be made of the acccunting files to see if such a
uniqu2 combination exists. The unique copbination defines a
single user and a single file directory, with its associated
tim2 and space allotments, etc. An administrator allots a
cartain amount of computer time each month and a gquota of
szacondary storage space to each user. In additicn, each
user is placed in a farty grcoup. Each party group contains
some numkter of users and some different number of slots or
lines which give access to the computer (see Section
AH.1.01). Each user is also assigned to a unit group, which
specifies the consocles the user may or may not use.

Th2re are five time-accounting files:

UACCNT TIMACC
TIMUSD TIMACC
ERTYGE TIMACC
GRPUNI TIMACC
ISSFIL TIMACC

1ll of which are kept in the system files.

CTsS PROGRAMMER'S GUIDE Section AD.5 12/69 2

UACCNT TIMACC

P’h2 £il2 UACCNT contains identifying information fcr each
user. LOGIN searches UACINI for the user's problem number,
nam2, and password; this combination must be found before
t he person can be logged in.

Format _of_ UACCNT_TI MACC

Three kinds cf entries are fcund:
1. Group header entry

wd 1 GRPXX
2-28 blank

This entry precedes an administrative group block,
corposed of one or more problem number blocks.

2. Frcblem-number header entry
wd 1 *
wd 2 probno, normalized, right- justified
3-28 blank

This entry heads a protlem-number bleck,
consisting of cne or more user entries for this
problem number. (A normalized problem number 1is
of the form LDDDD.)

3. User entry
2 card images:

wordl wcrd2 ...
1) NAME EROG PARTY STBY UFD UNIT RCODE FLAGS PASS
2) DRUM DISK TAPE 1 T2 T3 T4 T5

FLAGS and UNIT have blank right
RCODE has leading zeroes
NAME is left justified

EARTY 1is party line group numker
STBY allcw standby if non-zero
UFTC user's home file directory
UNIT is unit group
RCCDE has leading zeroes
FLAGS are binary indica tors:

001 out of funds

002 account expired

CTSS FRCGRAMMER®'S. GUILE Section AD.5S 12,69 3

DRUM,DISK,etc. are guotas
T's are in minutes

This entry corresponds to one authorized wuser or
one common file. The following conventicns are
cbserved:

a. 28 word entry

b. each item in one word only

C. SIBY always "s*

d. items right-justified except:

NAME left-justified
FLAGS one blank on right
UNIT one blank on right

e, RCODE has leading zeroes
f. unused fields must be blank

A special entry tyre is distinquished, the kludge
user entry. This entry follows a normal |user
entry for a user authorized to use the ESL display
sccpe. It 1s identical to the preceding entry
except in the following respects. The name has at
least cne asterisk (*) on the right, and is filled
with asterisks to make 6 characters. For example:

SHMITH SHITH*,
COE COE*%%,
LIPSKY LIPSK*.

The party group is always "20" and the unit group
always "2n,

(=7

_____ 2

record quotas; name and programmer numbers
both CMFLIX.

Entries for common files have only PROG, NAME an
ar

Sort of UACCNT T IMACC:
ma jor key: group
crder 1is: 1, 2, 5, 3, 4, 6, 1, 8, ces
intermediate: problem number
numeric order
minor: prograsmer numkber

numeric order, common files last.

CTSS PROGRAMMER 'S GUIDE Section AD.S 12,69 4

TIMUSD TIMACC

The fila TIMUSD contains the following information fcr each
user:

TUn T1ime used for each shift.

DATE, TIME Late and time of last logout.

UNIT Conscle ID at last logout.

TL Total time logged in since first of month.

LOGIN reads the TIMUSD file each time someone 1logs 1in.
LOGOUT updates the time used information and re-writes that
portion cf the file containing information on the user
logjingy out. If the user was not previously in the TIMUSD
file, a new entry is appended to the end of the file.

Format _of TIMUSD_TI MACC

—————— — —— ——— —— — — — — . — —— > w— ——

2 card images:
wordl word2 ...

1) PROB EROCG N AME

2) DATE TIME UNIT T1 T2 T3 T4 TS5 CTU
DATE Last Logout MMDDYY
TIME HHMM.T
ONIT 20000. 800273 etc.
T1-5 Time used, shifts 1-5, in seconds
CTU Ccnsole time used, in minutes

PRTYGP TIMACC

- e -t o - ———— —

The file PRTYGP contains the party group information and the
maximum number of users. The information contained is
copied into the supervisor at system initialization time;
the tables thus generated are 1later examined by LOGIN.
R2f2r to section AH.1.01 for details about party groups.

werdi word?2

1) MXUSRS

AMMER'S GUTDE Section AD.S 12,69 5

9}
=3
in
[¥2]
Iy
'
(e}
4

>

2)<..m) GRP MXGRP
MXUS RS Maximum number of users permitted on ZTSS
GRP Party group number
MXGRP Maximum primary lines for group

All items are right-adjusted in 6-character fields.

GRPUNI TIMACC

The file GRPUNI defines grougs of consoles the user may or
may not be allowed to use.

——— —— g e —— . T s G — — — ——

Fixed field card images; one set for each unit

grcug:
wordl wordz2 e
N UGN NUME
2) FLAG UNITID UNITID .cae
UGN Unit grcup number

NUME 14% numker of cards follcwing

FLAG Zero or blank indicates permitted consoles,
otherwise indicated forbidden consoles.

UNITIC Console identification

PR 3

T e m i w e e

The file TSSFIL defines those user file directories which
ars to be considered as ‘'putlice, and are to be made
accessible via the supervisor entry TSSFIL. The information
contained is copied into the supervisor at system
initialization tinme.

Fixed field card images; one card per directory:
wordi word2

PROEN ERCGN

CTsS PROGRAMMER 'S GUIDE Section AD.5 12/69 6

PROBN Problem number of this directory
ERCGN Programmer numker of this directory (e.gq.
CMFLO1)

Both are right adjusted.

(ENL)

MMERYS CUILFE Section AE.1 12769 1

G W o ar e e S0 B AR 1 z

Bulk input and cutput

Purpose

Since the conscle is a relatively slow inputy/output device,
it is necessary and desirable to have a means of entering
programs and data into the disk files fror card decks and
conversely tc be able tc output disk files onto cards or the
high speed printer. Files may be punched on cards in such a
format that they may later be reentered into the system to
Juplicate exactly the original file. In this way, cards may
serve as a permanent, inexpensive back-up. There exists a
background program known as the "Disk Editor" to control
these bulk input/cutput tasks.

Restrictions

Files of FRIVATE mode may in no way ke output. Files of
PRIVATE cr FRCTECTED mode may in no way te deleted by the
Disk E£ditor; theretfore, existing PRIVATE or EROTECTEL files
of thz same name as new files may not be replaced by INPUT.
None of the disk editor requests will alter (delete or
input) a file "through a link".

Usage
A Disk Editor program is run several times a day by the
operations staff. Request cards to the Disk Editor may be
submitted to the disgatcher by the user, or the RQUEST
command (AH.6.06) may be used to create a card image file
called OUTPUT RQUEST, which will automatically be processed
by tha2 Disk Editor. (Each line within the OUTPUT RQUEST
file is the equivalent of a control card and may, therefore,
spacify any of the following rejuests except INPUT. The
format of each line is the same as a control card except
that FRCB ERCG nust not Le specified. See Method, belcw.)
Only the first 72 columns of a request card will be read by
th2 Disk Editor.

The control cards for the Disk Editor are of the format:
XX PROB PROG NAME1 NAMEZ2 CP ... NAFMEINn NAME2n

The fields are separated by cne or more blanks, or by a
comma, Or by a comma and one or more blanks.

XX 1is the type of I/0 operation desired. (See
below.)

PROB 1s the user's rroblem number. (It must not be
specified in an OUTPUT RQUEST file.)

CTSS PROGRAMMER'S GUIDE Section AE.1 12,69 2

ER CG

NAME1

CFE

Xx=1C?*

XX=*INPUT'

XX="PRINT®

is the user's programmer number. (It must not
be specified in an OUTPUT RCUEST file.) If a
common file is specified, PROG is of the fornm

NAME2 is the file name. All requests except
INPUT allow more than one file name per card
with the restriction that the file name nmust
be complete on one card, i.e., NAME2 @may not
be on a continvation card.

specifies an option (accepted by particular
requests).

Continuation card

This card must precede a card deck to be input
to the disk as a single file, NAME1 NAME2.
The deck may be in hollerith or column binary
format. (The Cisk Editor employs 28-wcrd card
images for column binary.) The last card of
the deck must have "*ECF*' Leginning in cclunmn
8. ®Flip cards" may be included in the deck,
between the INPUT card and the first card to
be input. Only one file name may afppear on
the ccntrecl card and CE may specify the
desired mode, in octal, for the file. If OP
is not specified, a permanent file will be
created. If a PRIVATE or PROTECTED file of
the same name already exists, the deck will
not be input. Decks will not be input
"through links". Any errors discovered within
the deck will cause the entire deck not to be
input. The authorship of the file created 1is
the programmer number of the directory into
which the file 1is being placed. If this
directory is a common file, the authorship
will be zero unless an additional option
following the mode 1is wused to specify the
author. Focr example, the following card could
be used to input a file into MI416 CMFLO3 in
PROTECTED/READ-ONLY mode with '3812' as the
author:

INPUT M1416 CMFLO3 TAPE FAEF 104 3812

The BCD file NAME1 NAME2 is printed off-line.
If the file is not line marked, a blank word
is inserted at the beginning of the 1line to
insure single spacing and the first 84
characters of the record are printed. If the
file is line-marked, the first <character 1is
the carriage ccntrol character and the rest of
the 1line, up to 131 characters, is printed.

XX=YSS PRNT?

XX=*DPUNCH!

XX='YBPUNCH?

XX=17PUNCH"*

XX='PLCT?*

XX='DELETE"

P
[}
O]
wn
®
Q
or
(L4
Q
D:
-4
=
——d

12,69 3

j=H]
12
]
-]

(%]
(]
<

If the file is line-marked and the secondary
name is FAP or MAD, the file will Dbe
effectively XPANDed to 80 columns for grinting
with tabs regplaced by the appropriate number

of blanks and null characters deleted. A
blank word will be inserted in front of each
line t> 1insure single sracing. Sequence

nugbers will be inserted in columns 75-80.
The file itself remains unchanged.

If the secondary name is other than FAP or
MAL, the file will ke XPANDed to 132
characters by inserting sufficient blanks so
that tab stops come out at positions 11, 21,
31, (#10) ..., 121. Also, 1if the secondary
name is ALGOL, LISP, or LSPOUT, a blank
character will be inserted in front of each
line to insure single spacing. However, an
ALGOL file will be XPANDed to 132 characters
by interpreting tabs for cclumns 11, 16,
(¢+5)..., 66.

The BCL file NAME1 NAME2 1is printed with a
leading blank c¢cn each line to insure single
space printing. Line numbered files are
always rrinted single spaced.

The BCD file NAME1 NAME2 is punched off-line.
If the file is line-marked, just the first 80
characters per line of data will be fpunched.
Line-marked files will be XEANDed in the sanme
way as described under PRINT.

The binary card image file (28-word card
images) NAME1 NAME2 will be punched off-line.
The 7-9 punch and checksums should already be
included in the card image file.

The file NAME1 NAME2 (of any format) will be
punched off-line in a special card format
which may te relocaded ty the Disk Editor to
reproduce the file exactly. The file 1is not
deleted from the user's directory.

The file NAME1 NAME2 will te placed on the
plct ocutput tape to be processed on the
CalComp plotter. (see APM-1)

The file NAME1 NAME2 will ke deleted from the
current file directory. PRIVATE or PROTECTED
files may not be deleted. Deletion "through a
lipk"™ will not occur.

CTsS FHCGRAMMER'S GUILE

XX{="PRNDEL"', 'SSPRDL®,

'FLOCEL':

'DPUDEL?,

The file(s) will be
DP UNCHed, BPUNCHed,
respectively, and

chanyed to temporary.
files will not be changed
will files be changed
next time the file is

out, the file will be

other request for the
“DEL" rejuest will
deleted.

then

same f

cause€

———— . — —

Th2 Disk Editor is a background job which
times a day by the operaticns staff.
diractories are searched for OUTPUT RQUEST
a file is fcund, the editor ATTACHes to
diractory and processes the regquests found
Because the editcr "knows" who the user is,
not bs specified in the OUTPUT RQUEST file.
system lccks, the user will not ke akle to
RQUEST file while the Disk Editor is

Disk Editor after it is fprocessed.

Section AE.1

'BEUDEL’,

PRINTed,
TEUNCHed,

t he
(PRIVATE
to

“through a link".)
read or
deleted.

processing
OUTPUT RCUEST file will ke changed to temporary mode by
Af ter all CUTPUT RQUESTs

12/69 4

'7PULCEL',

SSPRNTed,

e o

or
mode will be
or PROTECTED
temporary, nor
The
loys
any
a
be

the user

Note that
following
file to

ile
the

is run several
The users' file
files. When such
the user's file
in OUTPUT RQUEST.
PROB PROG need

Due to the file
edit the OUTPUT
it. The
the

have bean processed, the editor may read cards from the
background input tape. As a result of the requests, the
2]litor may create three output tapes, namely punch tape,
print tage and carry ta pe. These are then the

r2sponsibility of the operations staff.

—— i ——— ——— — — v —— ———

The 7PUNCH card format is peculiar to the CTSS system at
M.I.T., so that it, perhaps, deserves description. The
7PUNCH cards are column binary cards which have punches 1in
rows 12-11-0-7-9 ot column one.

Word one 1in octal = 7WWS5WWTSSSSS

word two = full word logical checksum ¢f all words on the
card except the <checksum itself (dces not
inclyde columns 73-80).

Rz2maining words are data words.

WwWwww 1s the word-count of the number of data words
tc be taken from the card. If wwww LJLE.
(26) 8, there are wwww words actually on the
card (beginning with column 7). If wwww .G.
(26) 8, there is only one data word on the card
(columns 7,8,9) and it is tc be repeated in
ccre wuwww times.

sssss 1is a binary sequence number beginning with
Zero .

T is zero, except on the last card where it is a
one.

(END)

%))
m
4]
er
P
O
4]
o
tg
[N}
o
w
V¢
v}
-

e i - S ———

DAEMCON: Disk Cump and Reload
M. J. Bailey

For the purpose of user's file retrieval and catastrophe
reloading of the disk, the contents of the disk must be
written onto tape at some specified 1intervals. With the
former file system, the entire content of the disk was
written onto two sets of tapes at least once each day.

With the new file system a new approach is being taken to
the probler cf back-up tapes. A program called the DAEMON
runs as a console-less foreground user continuously, except
wh2n a complete reload is beiny performed. The operation of
the DAEMON will be controlled by the operator from the
consol2 kays under the guidance of on-line printer messages.
The DAEMON can fperform three separate functions. It may be
instructed to perform a complete dump, at which time the
entire contents cf the disk will be written onto tape. This
will normally be done once a week. The complete dump tapes
will bs divided int> two sections, one for the system files
(SDT) and ancther for the users*' files (UDT). The TLCAEMON
will be instructed to do incremental dumping as its normal
continuous operation. The incremental dumping will consist
of writing onto tapes (NFI') only those files which were
modified or created since the last incremental dump tape was
closed. The files will normally be written onto tagpe only
after a user 1lcgs cut. The volume of output to the
increm=2ntal dump tapes should ke considerably less than that
of the complete dump tape. The third function of the DAEMON
is to reload the system. An independent program will be
us2d to reload the system files (including the DAEMON
program) from the SDT1 tapes. As soon 3s the system files
ar2 loaded, the DAEMON will ©bLke <called to complete the
reloading from the remaining wuser dump tape (ULT) and
increm2ntal dump tapes (NFT). This final relcading will
also be performed during time-sharing.

Retrieval of specific files can be requested by specifying
th2 date of the last complete dump tzpe or specifying the
date and time of the desired version frem an incremental
dump tape. Details cf retrieval will be published at a
latar time.

(END)

- v o m omaas T &

'TSS PRCGRAMHER®S GUILCE

92}
a
)
(44
(S
Q
=
- 1]
ta
.
]
(]
-
Y
o
N
(<))
\c
b

Yisntification

o . e . e . s e iy .

Ra2trieval

Introduction

Files which have been 1lcst (e.g., 1inadvertently deleted)
from the disk may usually be retrievgg from history tapes.
Uni2r the DAEMON, there are two sorts of history tare: the
Complete Dump Tape (CDT), which includes both System and
Us2r Dump Tapes (SDI, ULCT); and the New File Tape (NFT), or
the incremental dump tape. CDTs are created weekly by the
DAEMCON at the request of the Operations Staff. These tagpes
represent a dumping cf the entire disk at a given point 1in
tim2; and, in particular, of a wuser's entire directory.
Alternate (i.e. every twc weeks) CDTs are saved for one
y2ar. NFTs, on the other hand, represent a dumping of files
which have been altered or created (not merely used) during
us2rs' console sessions. That is, when a user logs cut, the
DAEMON will deteramine whether any "new" files have appeared
and will dump any such files it finds. (This ©process 1is
usually perfcrmed within an hour after a given user 1logs
out; therefore, barring unforseen circumstances, back-up 1is
afforded tc any user whc does not log out, 1log in very
snortly thereafter, and lose a file created during the last
session.) NFTs are currently saved for only six weeks, due
to taps library limitations.

Dump _Maps
When the DAEMON fperfcrms dumping, it also produces 1listings
of the files dumpaed. These "dump maps™ contain time dumped,
problem number/proyrammer number, file names, and other
information. Binders containing print-outs of the 1listings
are kept in the [Cispatching Areas. The dump maps also
specify which set of reels (within the dumpiny period) is
involved in the right margin of the listing of files on the
reels. For NF1s, the time of dumping is sufficient;
howavar, note that the NFI' dump maps are crdered by time of
dumping only, and if a file was altered during several
different console sessions the dump map must be searched
carafully to find not merely an instance of a file's being
dumped, tut the instance of the file's being dumped which is
specifically desired.

Scope_of Requests

If several files are to ke retrieved from a CDT, it 1is
possible that a request for "entire directory" retrieval
would be a good 1idea. The retrieval prccess will not
disturb existing files (excertion: secondary mode files
which "2xist" only as U.F.D. entries, but have been removed
by tha storage collection mechanism), so that only missing
files will be regplaced. This approach is desirable in that

CTSS PRCGRAMMER'S GUICLE Section AE.2.01 12,69 2

raquests for too many individual files <can over-fill the
retrieve coerand's internal tables and necessitate a second
szan of the tape.

Both NFT and CDT retrievals will accept an asterisk (¥) as
the first or seccnd name of a3 file; the result will be
ratriaval of all files possessing the specified second or
first name, resgpectively.

’g,

[1¥7]

abmittin

ed L2

Reguests

"Retrieval Request Fcrms" are available in the Dispatching
Ar2a., They are to be filled out, time stamped, and fplaced
in the appropriate tray. The retrieval will bs run by the
Operations Staff as soon as possible.

M2ssages

Progress (or failure) regorts on retrievals will be placed
in the reguestor's directory as files named 'URGENT MAIL®' or
'URGENT POST'. They are headed with a row of asterisks, the
worils "MAIL FROM DAEMON RETRIEVE', and the date the
retrieval was run.

(END)

-d
-d
[1®]
N
[4))
[Ye)
-

Any prograeming system or prcgram under such a system that
is to be run as background under CTSS must observe certain
conventicns cr restricticns. These conventions arise due to
two main system rejuirements: that the tFtackground progranm
be interruptible and that changes of machine state (such as
2nablement for traps) are a CISS supervisor function illegal
for the ktackground tc perform. The main area of a progranm
aff2ctad is its input and output which must be timing
insansitive. (0f course, a background systeaz may -- and
most probably will -- place restrictions of its own on
programs under its ccntrcl. The MIT version of the Fortran
Moni tor System (FMS5) 1is an interesting example of a
background systewm, and is frequently wused; 1its internal
rastrictions can be found through CC-255, a Computation
Center Memorandur.)

Restrictions

Change of state:
All changes of state are trapped by the protection mode
hardware but certain ones are processed by the
supervisor and allovwed, such as EFTHM (enter
floating-point mode).

Tha following instructions are not allowed and, if
used, will cause an on-line diagnostic:

ECTHM LPI TIB
ES NT LRI
ESTHM SEA
ETM SEB

The instruction ENB (enable) is also not allowed, but
if used it will be treated by CTSS (which processes the
trap it causes) an an effective NCF (no operation) --
i.e., it will not e executed and control will be
returned tc the next instruction.

I/0 timing:
Input and Cutput must be programmed so that they are
not timing dependent; thus the LCHX (load channel)
instruction is prohibited. An RCHX (reset and 1load
channel) instruction, if given, must immediately follow
the select instruction. An excepticn is made for the
on-line printer and punch where up to 3 SPR's, SPU's
and/or NCF's can come Letween the Select and RCHX
instructions. If an RCHX is given that does not comply
with these conventions, it will still be executed but
its executicn may turn cn the I/O0 check light if it was

CTSS ERCGRAMMER'S GUILE Section AF.1 12,69 2

not given "“in time",
I/0 flag:

All I/0 compands (including TCH) must have a "1" in bit
20 (tag of 1 to FAP) to indicate that the information
is to be transferred tc or from B core. A diagnostic
will be given if this condition is nct nmet.

The FAP assembler accepts the pseduo-op, BCORE, which
autcmatically includes this bit 20 in all I/0O cosmands
such as I0CD, IORT, TCH, etc., and flags any 1illegal
instructions used.

I/0 units:
Only the following I/O0 units are available for
rackgrcund systems:

a. card reader, card punch, and printer

b. tape units A1-A5, A10, B1-BS, B10

C. A7, the chronolog clock

Referencing ct other uni ts will cause a
diagnostic.

Program stop:
Any intentional tackground syster stop shculd be
effected by an BIR instruction rather than an HPR. The
instruction counter is set differently on the two
instructions and due to this difference the HPR if
interrurted (e.g. by data channel trap) does does not
cause a genuine program stop. Exanmple:

A HT R Instruction counter set to A;
resumption after interrupt at A.
B HPR Instruction counter set to B+1,

resumption after interrupt at B+1.

Any FAP program using the BCORE pseudo-op will
automatically have all the HPR's flagged.

Console keys:

Operating procedures have been modified to 1limit
operator intervention or interaction with a background
system from the 7094 control console in such a way that
no foreground user or the CTSS supervisor is affected.
The address porticn of the console Kkeys (or "Panel
Input Switches") is used by the CTSS supervisor for
this function and therefore cannct be used by a
background systen. Operators can use the keys to
simulate the following functions:

a. initiating "a standard error" procedure.
(0Octal key code 1)

b. depressing the "Load Cards" button
(Octal key code 2)

C. depressing the "Clear & Load Cards" buttons,
(Octal key code 3)

(The cctal key codes are introduced by placing
appropriate keys down in positions 30-35, and are

called tc the attention of the CTSS supervisor by
placing key 21 down).

A "standard errcr" frocedure is defined as: storing
the instruction counter in a prearranged 1location and
transferring contrcl to another prearranjed location
(normally a transfer to a post-morter routine or to the
backgrcund system itself). The background system
specifies these two locations to the CTSS supervisor by
the fecllowing call:

15X DEFERR ,4
PZE ERRILC,, ERRTRA

whare DEFFERR contains: TIA =HDEFERR. ERRILC 1is the
locaticn where the instruction counter will be stcred
and ERRTRA is the location to which <control will be
transferred. The point of this procedure 1is that it
allows the cperator to take effective action 1in the
avent of some sort of *"hang-up"™ 1in the backgrcund
system, placing that system back into control if a
program running under it "runs away" from it.

Independent operation:

If the background system is to be designed to operate
independently of the CTSS supervisor, then the
backgrcund system must be able to verify 1its mode of
operation. A means of determining this so that a
switch can be set 1is to execute the following
instructions:

TSX TESTSS, 4
. (1,4 return if running
. independently
. (2,4 return if running
. with CTSS
TESTSS TIA L
L TRA 1,4

If running wunder the CTSS supervisor, the TIA |is
interpreted as a regular supervisor «call with a 2,4
return. If running independently, there is no ‘“other
core" to trap into and the TIA L is exs2cuted as a TRA
L; thus the 1,4 return is the net result.

CTSS FBRCGRAMMER'S GUICE Section AF.1 12/69 4

Timars:

The subroutines for determining the time operate
properly whether the background system 1s running
independently or not. The FMS subprogram GETTHM can be
used to read the date and time of day from the
chronolcg clock. The FMS subprogram TIMR can be used
to determine elapsed time from the interval timer
clock, although when running with CTSS the operation of
the interval timer clock is simulated and incrementing
takes place only every 200 ms. (as opposed ¢tc every
1760 th of a second when running independently).

The simulated cell S interval timer can also be used as
an alarm clock; this alarm clock is always enabled.

(END)

e oo e = RS me TR T T VR

CTSS PHRCGERAMHBER®S GUICE

%}
a
)
cr
v
Q
3]
a»
@
[
-
®)
N
[(¢))
\o
=]

Supervisor Entries Reference List

— —— —

AF.1 CHECK check tape I/0

AF.1 DEFERF define error procedure
AF.1 RSTIME reset UTIME

AF.1 SELECT does nothing

AF.1 TRA 1,4 does TRA 2,4

Privilejed Commands Only

none 6.36A1 * start tape write
none 6.3622 * finish tape write
none 636 CHK * check tape I/0
none CLOCIN read chronoloy
none ENTLIN enter input line for user
none FIND SB find standby user to kill
none HNGUS R hang up phone after LOGOUT
none KILL kill user
none NCTIM set user NOTIME code
none PRINT on-line print
none PUNCH on-line punch
none RSSWH reset user write buffer
none SCHEDL call scheduler
none VACUUM free all adopted consoles
Spacial Privilege
AG.7.€C1 SEILOC modif y supervisor
AH.2.06 DSCOFE ESL scope
All Users
AG.€.05 (EFTM) enter floating-trap mode
AG.6.05 (LFTHM) leave floating-trap mode
AG.8.03 CHNCOM go to next conmmand
AG.6.01 DEAD program exit, dead status
AG.€.017 DORMNT program exit, dorman status
AG.U4.06 FERRTN set file-error return
AG.€.C1 FNRIN go dormant, don't change ILC
AG.7.01 GETARY examine tlock of supervisor
AG.E.03 GEICLC get command location counter
AG.E.C3 GEICLS get commpand list
AG.B8.04 GETCOM get command parameter
AG.€.01 GETILC get ILC at last call to LCORMNT
AG.12.01 GETIME get date, time
AG.7.01 GETLOC examine supervisor
AG.6.06 GETMEM get memory bound
AG.8.05 GETOPT get option status
AG.8.05 GETSYS get subsystem status

AG.7.07 GETIWRD get A-core variable

CTSS ERCGRAMMER?'S

AG. 12,01
AG.7.09
AG.&.C5
AG.8.01
AG.8.05
AG.8.03
AG.8.03
AG.6.06
AG.8B.05
AG.8.05
AG.7.07
AG.6.08
4G.3.03
AG.12.C3
AG.3.03
AG.7.05
AG.1.01
AG.1.01

GTLYTHM
ISIN
LCoP1
NEXCOHM
RSOPT
SETCLC
SEICLS
SETMENM
SEJOPT
SETSYS
SETWRD
TILOCK
TSSFIL
UPCLOC
USRFIL
WHOAMI
WRFLX
WRFL XA

none

AG. 12,03
AG.12.03
AG.3.03

AG.1.04

AG.6.03

AG,7.02

AG. 1.1

AG.12.04
AG.1.C1

AG.6.03

AG.1.C2

AG.6.03

AG.1.02

AG. 1. 1

AG.1.02

none

CHEALL
CLOCOF
CLOCON
COMFIL
FORBID
GET BRK
GETCF

KILNBK
RDYTIM
RSSRB

S AVBRK
SEIBCD
SETBRK
SETF UL
S ET NBK
SETNCV
WSCOPE

i e e > s e -

AG.1.04
AG.1.05
AG.7.08
AG.1.01
AG.1.05
AG.1.0u4
AG.1.05
AG.1.05
AG.1.05
AG.1.05
AG.7.C8
AG.1.05

ALLOW
ATICON
GETBLP
RDFLXA
RDLINA
RD MESS
REDLIN
RELEAS
SET12
SET6
SETIBLP
SLAVE

GUILCE

v

<U)m

may not use)

Section AG.C 12,69 2

get file system date and time
get line no. of logged-in user
load option bits

load new command

turn off option bits

set command location counter
set command list

set memory bound

turn on option bits

set subksystem status

set A-core variable

set file interlock return
attach to public directory
update simulated interval timer
return from TSSFIL

get user identification parameters
write on console with c.r.
write on console

Anyone_But_ Background (FIB may use)

does nothing

turn off simulated interval timer
turn on simulated interval timer
attach to common file

forbid inter-program messages

get ILC at last interrupt

yet common file last attached to
kill no-treak mode

type ready message

reset accumulated unread input
reset console interrupt handler
put terminal in 6-bit mode

set handler location for interrupt
put terminal in 12-bit mode

do not wait for "break" char (c.r.)
turn off typewriter code conversion
send graphical characters to ARLS

allow inter-program message
attach remote console

get "blip"

read line from terminal

read attached console

read inter-program message
read attached console
release attached console

set mode of attached console
set mode of attached console
set "blip"

attach remote conscle as a slave

MO NNDAMSANa on
LCiJoo rovunaAanaon

7]
W
¢}
cr
Fl.
<
]
3»
@
L]
<
-d
N
Y
(=)
2
w

AG.6.02 SLEEP go dormant, restart automatically
AG.1.C5 SNDLIN send line to attached console
AG.1.05 SNLLNA send line to attached ccnsole
AG.6.02 WAIT wait for timer or input
none WRHIGH write high-speed lines
AG.1.04 WRMESS write inter-program message

ile _System
AG.7.03 ALLOT * set secondary storage allotment
AG.7.03 ATTACH ¥ attach to other directory
AG.7.04 ATTNAM find directory attached to
AG.2.08 BUFFER provide file system with buffer
AG.3.07 CHFILE change mcde, name of file
AG.2.08 CLOSE close file
AG.3.07 DELFIL delete file
AG.7.03 DELMFD * delete MFD entry
AG.2.08 FCHECK check on I/C completion
AG.3.07 FSTATE get file status
AG.2.08 FWAIT wait for I/C completion
AG.4.06 IOLCIAG find out what went wrong
AG.5.05 LABEL T label tape
AG.7.03 LINK * establish link
AG.5.05 MOUNT T ask for tape to be mounted
AG.7.03 MOVFIL * move file directory entry
AG.2.08 OPEN open a file
AG.2.08 RDFILE read file
AG.2.08 RDWAIT read file, wait until done
AG.3.06 RESETF reset all open files
AG.7.03 RSFILE * reset locked file
AG.7.03 SETFIL * set file status
AG.2.08 SETPRI set priority
AG.3.07 STORGE get storage allotment and usage
AG.5.05 TAFFIL T create tape entry in UFL
AG.2.08 TRFILE truncate file
AG.5.C05 UMOUNT T ask for tape to be unmounted
AG.7.03 UNLINK * remove 1link
AG.3.C7 UPDATE update file directory
AG.7.03 UELHMFD * add MFD entry
AG.5.05 VERIFY T verify tape label
AG.2.08 WRFILE write file
AG.2.08 HWRWAIT write file, wait until done

* Denctes privilege required
T Denotes tape call
S Denctes subsystem-restricted call

(END)

(@]
-
-a
<N
O
-

r
\\

Identificatiagn

Gan2ral I/C without format specification
RDFLXA, RDFLXB, RDFLXZ, WRFLX, WRFLXA, RSSRB

To read from or print on the console without format editing.
Usage
As suparvisor or library entries:

TSX RLFLXA,U4 optional (TIA =HRDFLXA)
P%E LOC,, 'n' or PTW LOC,,N

RDFL XA reads a line from the console and moves n
words into core beginning at location LOC. On
return, the AC will contain the value k, the
number >f (6-bit) characters read; that is, in
6-bit mode, the break character 1is the kth
character; and in 12-bit mode, the break
character is the k/2 <czharacter. The word
containing the break character and subsequent
words are padded with blanks. If the break
character is not received before the
sugervisor's input buffer is full, bit 21 of
the AC will be 1, indicating that another call
to RLDFLXA is regjuired to continue reading the
line. In this case, k will be a nmultiple of
six.

To type out in the current mode:

TSX WRFLXA,4 optional (TIA =HWRFLXA)
PEE LOC,,'n' or PTW LCC,,N

TSX WRFLX,U4 optional (TTA =HWRFLX)
PEZE LOC,, *n' or PTW LOJOC,,N

To force 6-bit mode:

TSX WRFLXA,U or TSX WRFLX,U4
MZE LOC,, 'n°*

To force 12-bit mode:

TSX WRFLXA,4 or TsX WRFLX,4
MON LOC,,'n®

WRFLXA will print n words beginning at 1location
LOC (n.LE. 14 in 6-bit mode; n.LE.28 in 12-bit
mode) . It does not add a carriaje return at
the end of the 1line and does not delete

CTsS FRCGRAMMER'S GUICE Section AG.1.01 12/69 2

trailing blanks.

WRFLX will print through the 1last ncn-blank
character within the n words beginning at
location LCC (n.LE.14 in 6-Fkit mode; n. LE. 28
in 12-bit mode). Trailing blanks will be
deleted and a carriage return inserted after
the last non-blank character.

As library subrcutines:
RDFLX:

ISX RLFLX, U4
P%ZE LOC,, 'n'

RDFLX will read a line from the console using
RDFLX A. It will -then strip the break
character from the 1line, pad any remaining
characters up to n words with blanks, and move
the n words into core beginning at 1location
LOC. If n is less than the number of words
read, the characters in excess will be 1lost
(n.LE.T4) . .

RDFLXB, RDFLXC:

MAD: A= RLCFLXB. (LOC,K) H A= RDFLXC. (LOC,K)
FORTRAN: A= RDFLXB (LOC,R) + A= RDFLXC (LCC,K)
FAE: TsX RDFLXB,4 or TSX RDFLXC,4
P2E LOC
PZE K
STg A
LocC is the beginning location of an array into

which information is to ke stored. If called
by MAD or FORTRAN, information will be stored
backwards from LOC. If called by FAP (i.e.,
P 2E prefix) , information will be stored
forward frcm LOC. The array LCC must be at
least (k+5)/6 words long. A line of mcre than
14 words may be read with one call. .

K contains the value k which is the number of
6-bit characters to be read.

A will contain a right adjusted integer equal
to the numker of 6-bit characters actually
read.

RUFL XB using RDFLXYA, moves k characters including
the break <character intc LOC. Remaining

Pl s N

RDFL XC

eset read-

RSSRB

[%]
(2]
c2
[]
(=
=]

characters up to k

is the same as
do not include the
ahead:

I'SX RSSRB, 4
PAR =0

L
m
Q
e
P
O
4}
2>
(]
-
[#]
aud
-
8]
N\
($)]
\©

are blank padded.

will reset all input waiting for the user
the supervisor's input buffers.

The argument is unused at present, but

be specified as 0.

(Y%

RDFLXB except that k and A
ktreak character.
optional (TIA =HRSSRB)
in
should

Return is made to 2,4.

(END)

CTSS PROGRAMMER®'*S GUIDE Secticn AG.1.02 £/69 1
Iientification
Set the conscle character mode switch.
SETFUL, SETBCD, SEINCV
Purpose
To set the ccnscle character mode switch.
Usage
As supervisor or library entry:

TSX SETIFUL,4 optional (TIA =HSETFUL)

Sets the consocle character mode switch to
"full®" 12-kit mode.

TSX SETIBCL,4 optional (TIA =HSETBCEL)

Restores the console character mode switch to
the "noreal"™ 6-bit BCD mode.

PSX SETNCV, 4 optional (TIA =HSETNCV)

Sets the «console <character mode switch to
allow input to be transmitted to the user
program without code conversion.

Upon return from any entry, the AC is zero if
the previcus setting was 6-bit mode, 1 if the
previous setting was 12-bit mode, or 2 if the
previous setting was no-convert mode.

All three library entries may be called by MAD
or Fortran programs.

2strictions

11 input waiting in the supervisor's buffers is reset
lost) if any of these calls are made.

(END)

-

@)
=i
1%
w
as)
-]
Q
[
=)
-1
a.
o |
1
=)
v
G
c
p=
<
t
v
(T
G
[
o
C
=l
;- 1
()
[
-
L)
[«]
(W8]
4 ¢]
[+
V<]
(o]

Identification

Console output
PRNTP, PRNTIPA, PRNTPC

To print a fenced message on the «console with a rocutine
which may be called by FORTRAN and MAD.

Usaje

As library subroutine:
MALC:

EXECUTE PRNTP. (MESS)

VECTOR VALUES MESS=$hollerith string$,777777777777K
FORTRAN:
CALL PRNTP (nH hollerith string)

PRNTP, the hollerith string up to the fence prints,
on the auser's console, 14 words per line. The
string may be c¢f any length. If the fence 1is
(377177777777)8, there will be no carriage
return at the end of the message. The fence
which Fortran automatically supplies 1is
(777777777777) 8.

PRNTPA, instead of PRNTP, inserts a carriage return
every 14th word, with no carriage return at
the end of the message.

PRNTPC, instead of PRNTP, inserts no carriage returns
at all. Users must supply what they wish 1in
order t> control the printing.

(END)

lal Jalal ronAMANDAMMETENDIC T TN C b s A AN 1 M DA~ 1
“ioo rgvuenanpoLnn o VU LV L PDTLULAVI N\TJe t s VY ray< 1
Ilentification

Inta2r-user communication
WRMESS, RDMESS, ALLOW, FORBIL

— e e s e

To provide the facility for users to communicate with each
other directly, several routines have teen added to the
supa2rvisor which allow the sending and receiving of messages
by way of the console input fruffers. Privacy screens have
been provided which ™allow® or "forbid" the sending of
m2ssages by specified users.

Method

1) Short messages may be sent to another user's
console input buffer.

2) Selectively, short messages may be received
in one's own console input buffer from other
users.

k)] The console input buffer may be read.

Usage

To send a message:
As superviscr entry:

TS X WRMESS, 4 (TIA =HWRMESS)
PZE =HPROBN
PZE =HPROGN

PZE LOC,,'n?

PROBN 1is the prcblem number of the receiver (5
character right adjusted with leading blank).

EBOGN is the programmer number of the receiver (4
digits right adjusted, leading blanks).

LOC 1is the beginning location of the message to be
sent (forward).

n is the numter of words 1in the nmessage
beginning at LOC. If n is larger than 12, a
value cf 12 will be used.

Upon return, if the AC is non-zero, it contains an error
col2 which indicates that the call was unsuccessful. The
following error codes have been assigned.

1 - The specified receiver is not a current user
of CTISS. (i.e. logged in).
2 - The receiver's input buffers are full.

CrssS ERCGRAMMER'S GUIDE Section AG.1.04 Page 2

3 - The receiver has not given fpermission for the
sender tc send messiages to his input buffer.

PPV - RV o

It the AC is zerc, the first word of the receiver's input
buffer will then contain an octal 77 in character 1, and the
sanier's problem number in characters 2-6. The second word
will contain the sender's programmer number, right adjusted
anl blank padded. The n words of the message will begin in
the third word. If n is less than 12 the terminal words of

ths 14 word buffer will ke blank padded.

To read a message from the input buffer:
As superviscr entry:

TsX RLCMESS, U (TIA =HRDMESS)
PZE LoZ,,'n?

ALEHA OPN EMPTY
Normal return

n words will be moved from the input buffer into
locations kteginning at LOC.

If the user's input buffer is empty at the
time of this call and ALPHA contains a zero,
the user is placed in input wait status. If,
however, ALPHA does not <contain a zero,
control returns to ALPHA.

To be selective about whc shall send messages to the user:
As supervisor entry:

ISX ALLOW, 4 (TIA =HALLOW)

PZE =HPROBN
PZE =HPROGN

PROBN is the problem number and PROGR 1is the
prcgrasmer number of the programmer who may
use WRMESS to send nmessages to the user's
console ingput tuffer. Each call tc ALLOW
overrides all previous calls.

If PROGN is zero, all programmers on problem
number PROEN may send messages.

If PROBN is zero, programmer FROGN may send
messages, whatever his proktlem number.

If bcth PROBN and PROGN are <zero, any
programmer may send messages.

(]
17;]
(1]
Q
o
[#]
1]

P

AV AS A4 ba 4o an

CTSS PROGRAMMER'S CUIDE
To lock everycne out:
As supervisor entry:
I'sX FORBID, 4

FORBID prevents any programs from

(TIA

=HFORBID)

sending lines to

the user's console input buffer.

(END)

Tdentification

Slave rerote consoles
ATTCON,RELEAS ,SNCLIN,SNDLNA, REDL IN, RDL INA,SLAVE,SET6,SET 12

Purpose

o allow multiple remote coneoles simultaneously to serve as
/0 devices for a single program.

Dzfinitions and Conventions

Tha2 console at which a user logs in is his home console.
Othar consoles associated with a user have be2n attached by
him, and they remain attached until he releases them.

A console attached to one user may not simultaneously be
attached tc any cther user. An attached <console may not
simultaneously be the home console of any user.

An attached console which automatically transcribes into its
output each character tyred into the attacher's home conscle
i3 an IQ slave. Similarly, an attached console which
imitates the hcme conscle's cutput 1is an 00 slave, An
attached console whose typed input appears as input at the

As described in AC.3, each console is permanently associated
with a 6-character console identification word. These

consola I.D.'s are central to the present facilities.

To attach a console, dial into the computer, and when the
ready message is typed, issue the command

DIAL probn prog

where fprobn prcg' is the user attaching the console. For
jatails, refer to section AH. 1.05.

A quit signal issued from an attached conscle causes it to
be detached; in additicn, if the <console remains inactive
for two minutes after keing detached, it will be
disconnected from the computer.

CTSS PRCGRAMMER'S GUICE Section AG.1.05 12769 2

Usage
To attach a console:
As superviscr e

ntry:
ISX ATICON, 4 (TIA =HATTICON)
PZE CONSOL

CONSOL is the location <containing the 6 character
console identification of the <console to be
attached.

Upon return, the AC will be 2zero if the designated
console is ' (HOME)', attachable, or already
attached to this user. The AC will be non-zero
and no attachment made, 1if the designated
console is attached to another, the hone
console of any user, or otherwise inaccessible.

To release a console:
As supervisocr entry:

ISX RELEAS,U (TIA =HRELEAS)
PLZE CONSOL

Upon return, the AC will be =zero if the designated
console was attached (and therefore is now
released) or was ' (HOME)'. 1In all other cases
the AC will be non-zero and no action taken.

To send a line:
As supervisor entry:

TSX SNDLIN,4 (TIA =HSNDLIN or =HSNCLNA)
PZE CONSOL
PZE LOC,,'n?
ALEFHA OPN FULL
normal return

The line to be sent to the designated console's output
buffer is n words long and legins at location
LOC.

SNDLIN eliminates trailing blanks and adds the carriage
return at the end of the line.

SNDLNA does not eliminate blanks and does not add the
carriage return kefore sending the line.

CONSCL If CCNSOL is ' (HOME)', the line is sent to the
user's hcme console output buffer. If the
designated console is not attached to the user,
return is to the normal rTeturn with the AC
non-zero.

CTSS PROGRAMMER'S GUIDE Section AG.1.05 12769 3

ALPHA If the output buffers at the designated console
are full and ALPHA is zero, the user 1is placed

in OUI'PUT WAIT status. If ALPHA does not
contain zero, control is immediately returned to
ALPHA.

To read a line:
As supervisor entry:

ISX REDLIN, 4 (TIA =HREDLIN)
PZE CONSOL
PZE LOoC,,'n?
ALPHA OPN EMPTY
normal return

REDLIN will move n words from the designated console's
input buffer to core beginning at location LOC.
If the move was successful, the AC is zero.

CONSOL If CONSOL is '(HOME) *, the line will be moved
from the home input buffers. If the designated
conscle is nct attached, no action 1s takem and
the normal return is taken with tha AC ncn-zero.

ALPHA If the designated console's input buffers are
empty, and ALPHA is zero, the ©program 1is put
into INPUT WAIT status. If the buffers are
enpty and ALPHA is not zero, control is returned
irmediately to ALPHA.

Alt2rnate form:
As superviscr entry:

TsX RELINA, 4 (TIA =HRDLINA)
PZE CONSOL
PZE LOC,,'n* or BLK LoC, ,N
PZE EMPTY
PZE ERROR
N PZE n?*

RDLINA will move n words from the input buffer to «core
storage beginning at LOC. The AC on return will
contain a character count indicating the number
of 6-bit characters read, including the break
character. If the line was incomplete (no break
character), kit 21 will ke on (4C000 bit in the
address field), and the character count will Dbe
a multiple of 6. (The character count returned
is identical 1in format to that returned by
RDFLXA. See section AG.1.01).

EMPTY Return will bte made to location EMPTY if the
input buffers do not contain a complete line. If
EMPTIY 1s 0, the program will be placed in

CTSS PROGRAMMER'S GUIDE Section AG.1.05 12,69 4

input-wait status.

ERROR If CONSOL is not attached, return 1is made to
EFECR. If ERROR is 0O, normal return is pade with
the AZ 0.

To create a slave:
As supervisor entry:

I'SX SLAVE, 4 (TIA =HSLAVE)
PZE CONSCL
PZE MODE

normal return

CONSOL If the designated console is attached, it is
made a slave according to MCDE and normal return
is made with AC zero. 1If it is not attached, no
acticn is taken and the normal return is taken
with non-zero AC. If CONSOL is *(HOME)*, this
call is ignored and AC is zero.

MODE There are three distinct slave modes (II1,00,1I0)
providing eight combinations for any single
censcle. The word at MODE is interpreted as
three pairs of letters. If any of the pairs is
reccgnized, the console 1is made to slave
accordingly. If MODE does not contain a
recognizable pair, the console is unslaved.

To set the character mode:
As supervisor entry:

ISX SET,4 (TIA =HSET6 or =HSET12)
PZE CONSOL

SET6 sets the designated console in 6-bit mode.

SET12 sets the designated console in 12-bit mode. They
both reset the input buffer unless the cocnsole is
already in the specified mode.

If the designated console 1is *(HCME)', the user's
console is mode-set. If the designated console
is not attached, return is made with non-zero
AC; otherwise, the AC is zero.

(END)

n3
oo
o
Q@
1]

@]
%]
1 %]
2>
e 4
o 4
tn
Lo

-
w
(%]
[4=]
L&)
v
td
n
®
(3}
o

Identification

MAD, FORTRAN on-line input ccmpatibility
{({CSH), .READ, .READL, .LOOK, .SCRDS

Purpose

MAD and FORTRAN on-line input statements compile as «calling
sequences to library subroutines. These subroutines use the
consola as the input device instead of the card reader. A
data list and format statement are required.

MAD: REAL FORMAT FMT, LIST
FAP: TSX .READ,4 or TSX .FKEADL,U4
STR FMT,,CIR or STR SYMTB,DIR,FMT

OPS

STR LIST,,ENDLST
OFS

SIR O

FCRTRAN: REAL FMTI, LIST
FAP: TISX (CSH),4
PZE FMT,,SWI ICH
oPS
STR
STQ LIST,t
OPS
TSX (RIN) ,4

MAD: LOOK AT FORMAT FMT,LIST
FAF: TISX .LOOK,4
STR FMI,,DIR or STR SYMTB,DIR,FMT

0PS

STR LIST,,ENDLST
OPS

STR O

FAP: TSX J.SCRDS,4.
PZE BUF,,'n?

.READ and (CSH) read lines from the console
according to the format FMT and LIST.

SWITCH 1if non-zero indicates that the format is
enclosed in parentheses and stored forward.

CES may be indexing or other instructicns.
LIST 1is the keginning location of the LIST.

ENDLST 1s the final location of the LIST.

CTSS PROGRAMMER'S GUIDE Section AG.1.06 8/65 2

DIR

oY uMmrn

. LCOK

«SCRDS

if zero the format is stored forwards. If
1, the format is stored tackwards.

in a MAL call refers to the start ({(botton)
of the symbocl table for this routine.

is the first (lowest) location of an array
intc which data will be read.

is an integer indicating the number of
words to be read into the array BUF.

reads one line from the console according
to the format specified by FMT. The next
time a read statement is encountered, the
same input will be processed. If more than
one line of input is requested by the
format, the same line will be used.

reads a line from the <consocle and stores
the number of words requested into the
buffer.

(END)

MAD, FORTRAN on-line output compatibility

(SPH), (SFHM),

Purpose

« FRINT, .COMNT, .SPRNT

(C

AN
[£))
W

b

MAD and FORTRAN on-line output statements compile as calling
sequences to library subroutines. These subroutines use the
console as the cutput device instead of the printer.

Usaje
MAD: PRINT FO
PRINT CN
FAP:

FORTRAN: PRIN
FAE:

FAE:

(SPH)

<-PRINT

PRINT

SWITCH

SYMTIB

OES

LIST (, t)

RMAT FMI', LIST FAEF: TSX
LINE FORMAT FMT, LIST TSX
TSX .PRINT, U4 or TSX .CONN
STR FMT,,DIR or STR SYMTB
CPS
STR LIST,,ENDLST
CPS
STR O

T FMT, LIST

TSX (SPH), 4
PZE FMT,,SWITCH
CPs

LDQ LIST,t

STR

OPS

TSX (FIL),u4
TSX .SPRNT, U4
PZE BUF,,'n?
and (SPHM) are synonymous,
and .COMNT are synonymous.
and (SPH) type on the console the
requested Lty the format FMT and

maximum line length is 22 words.

if non =zero indicates that the
stored forward.

in a MAD call refers to the start
the symbol table for this routine.

may be any indexing instructions.

is the beginning location of the

~-PRINT, U4
- COMNT, U
T, 4

+ DIR, FMT

output as
LIST. The

format is

{(bottom) of

list.

CTSS ERCGRAMMER'S GUITE Section AG.1.07 8/65 2

ENDL ST

DIR

BUF

n

is the final location of the list.

1f zero, the format is stored forwards. If
the format is stored tackwards, If anything
else, a symbocl table 1is 1implied. See MAL
manual for details.

is the first (lowest) location of an array
containing BCD information.

is the number of words in the array BUF.

(END)

9%}
%]
n
£0
o
«
co
o>
{
2
¢}
My
-
(321
(%]
[+=]
<
o
]
\n
®
Q
r

H
(

[l

-
(]
(]
b o)
b v]
Py

Ve

®
—

Identificatich

Print a comment
.PCOMT

Purpose

To print a comment from a MAL or FAP program on the

user's
zonsola without a format statement.

Usaje

MAD: PRINT COMMENT $MESSAGES$
FAE: TSX $.PCOMT, U

TXH *nt

BCI 'n' , MESSAGE

MESSAGE 1is a string of no more than 132 Hcllerith

characters, The characters may not include
dollar signms.

n is the number of BCD words to be printed.

(END)

(]
[+
-
L+
ta
tn
(]
Q
(34
'l-
[¢)
4}
LF]
9
.
-b
.
[}
\©
L~}
1Y
V5]
(]
-

Identification

Print variables without format
.PRSLT, .PRBCD, .PROCT

Purpose

To print a list of variatles on the user's console from a
MAD or FAP fprogram without specifying a format statement.

=

AD Manual, Chapter II, Section 2. 16

Usage
MAD: PRINI RESULTS list
PRINT BCD RESULTS list
PRINI OCIrAL results list

FAE: ISX $.PRSLT, 4 (or .PRBCD or .PROCT)
TXH SINTB

TXH A
TIX LIsTt1,,LISTN
TXH 0

SYMTB refers to the start (bottom) of the symbol
table for this routine.

A refers to a single element.
LIST1 refers to the block of data.
LISTN refers to the end of a block of data.
TXH 0 marks the end of the list.
The values of the variables designated by the
list are printed on the user's console

preceded by the corresponding variable name
and an equal sign, e.g.,

X = -12.4
Blocks are labeled as such and are printed
using a block format. Elements of three

and higher dimensions will be labeled with
the ejuivalent linear sutscript. If dummy
variables are included, the specific values
assigned to such variables and expressions
during execution will be preceded by *'...'.

CTSS ERCGRAMMER®S GUILE Section AG.1.09 Page 2

PRINT RESULTS (.PRSLT) causes the output to be
numeric (that 1is, integer or floating
point) .

PRINT BCD RESULTS (.PRBCD) causes the output to
be printed as BCD informaticn.

PRINT OCTAL RESULTIS (.PROCT) causes the output to
be fprinted as octal information.

(END)

CTSS CROCRAMMER!T CODTIDNE Saction A _1_10 Q7685 1
LR R - LR e NPl e B A S N N Wl W8S s\ e - ¢ W \l,v-l
Jientification

R2ad without list or format
-.RDATA, .RPDTA

Purpose

To rezad data from the console without specifying a list or a
format statement. The data items are identified by their
viriable names as they are typed. The data may be read and
printed with cne statement.

Reference

MAD Manual, Chapter II, Section 2.16 and 1.1

Rastrictions

An input line is limited to 72 characters. If character 72
is usad, an 1implied comma 1is interpreted as the 73rd
character. If more than 72 <characters are input in one
lin2, no 2rror message will be printed, but errors will
result in the ingput data.

Usage
MAD: READ CATA
FAP: ISX $.RDATA,U
TXH SYMTB
MAD: READ AND PRINT DATA
FAP: TSX $.RPDTA,4
TXH SYMTB

SYMTB is the start (bottom) of the symbol table for
this rcutine

READ DATA reads information fror 1lines typed on
the user's console, The values to be read and
the variable names are typed in a sequence of
fields of the following form

Vi =mnl1, V2 = n2, eceeees, Vk = nk *
where the V are variable names and the ni are
the ‘corresponding values. Reading 1is
ccntinued frem line to 1line until the
terminating mark **' is encountered.

READ AND PRINT DATA reads the data as explained
abcve, and then immediately prints it cut.

In case of an input error, a message 1is
printed on the user's console. Included 1in
this message are the type of input errcr, the
lire in which the error occurred, the column

CTSS ERCGRAMMER'S GUILE Section AG.1.10 8/6S 2

number in which the error was found, and the
recovery procedure. If the wuser wishes, he
may retype the offending 1line and all
succeeding ohnes, in order to continue.
Ctherwise, he may terminate his program by the
'QUIT® signal. He may then use the PM or any
other debugging command.

(END)

w
(3]
cl
[l]
=]
ty
W
[44)
C)
-r
r-l
Q
]
o
()]
.
-
-
-
o
\h
o

Identification

No-break mode
SETNBK, KILNEK

- i - ——

As the CTSS supervisor receives input characters from a
us2r, 1t normally waits to accumulate a whole 1line before
signalling the user that he has 1input, so that the user
program goes into input wait status until the break
character (carriage return) is struck at the console. A
special mode, no-break mode, is available for those

applications where the user program wishes to be informed of
input as soon as it arrives.

<

saje
As a supervisor or library entry:
TSX SEINBK,4 optional (TIA =HSETNEK)
SETNBK will cause the supervisor to set no-break mode
for the user. Subseguent calls to RDFLXA will

return as socn as any characters have Dbeen
typed.

ISX KILNBK,U optional (TIA =HKILNBK)

KILNBK will restore the normal mode.

(END)

@]
[
w
95}
¢l
[-¢}
@]
@
=
b1
ot
e
a1
=23
Vi
(%]
[
[t}
©
m
[%]
[(4]
(9]
-
'—l
C
=
e
@
»
-
-
N
c\
\.
o
>

Idantification

Print a message on the console
PRMESS, ERMESA

PRMESS provides a convenient way for the MAD programmer to
type output cn his ccnscle,

PRMESS. (SLIT ERAL$,VAR,VAR(O) ...N, ...)

PRMESS types the message which is the concatenaticn of
all its arguments. Any number of arguments may be
supplied. Note that MAD compiles the right code
if a literal string of more than six characters is
supplied as a single arqument (it produces several
arguments, one for each six-character chunk).
PRMESS calls WRF LXA for each 14 words it
accumulates and then calls WRFLX for the 1last 14
or fewer words srecified.

PRMESA works like PRMESS, but does not end the line with
a carriage return.

vactors may be specified in the form VAE(0)... N to tygpe
out a vectcr of N words running backwards in ccre,
or VAR(N) ...MINUSN (where MINUSN contains -N) to
type vectors stored forwards in core.

V'S M1 = STHE ANSWER IS$
PRMESS. (M1...3,BZEL.(DERBC. (I)) ,$ FURLCNGSS$)

Would type:
THE ANSWER IS 15 FURLONGS

If the value of I was 15.
(END)

(%]
1)
Q
c*
[.2
O
o]
J»
Q@
.
-
-
(€8]
(<)
~
(<))
(Y]
-

Full-mode ocutput frowm MAD prcgrams
PrR12, PR12A

Purpose

PR12 provides the MAD programmer with a convenient method of
producing output in upper and lower case without sacrificing
program readability.

Usaze
ER12. (SLITERAL$, VAR, VEC...N, etc)

FR12 takes its ECD arguments and expands them according
tc the escape conventions described below. It
calls WRFLXA for every 28 words it accurxulates,
and finishes with a call to WRFLX for the last 28
or fewer words.

PR122 works like PR12 except that it does rot end the
line with a carriage return.

Arguments tc PR12 and PR12A may ke specified 1like the
arguments tc PRMESS: that is, vectors running either
forwards or backwards in core may be printed as well as
single variables. PRMESS and PRMESA are secondary
(nz2jative) entry points to the program to save core space
for programs which call both. Output is produced by calling
WRFLX or WRFLXA with a prefix of MON, so that 12-bit mode is
forced and the current character mode switch is unchanged.

Escaps_Ccnventions

The character-escape conventions have been chosen to save
space and to have some mnemmonic value. The character which
signals an escape is the apostrophe ('). Any character not
przcaded by an apostrophe prints as itself, excert that
letters are rrinted in lower case. The following table shows
the mappiny performed.

input prcinted
A a

'A A

etc etc

-
-
@ s R e

CTSS PROGRAMMER'S GUIDE Section AG.1.13 6/693 2

7.

LS g

'y ;

1 red shift

12 black shift

'3 <

Ty >

'Q null

'5 %

vy tab

V¥ carriage return

Th2 following special operators are defined:

'6 enter BCD mode

7 return to full mode
'8 end cf argument

'g end cf all text

After '6 is recognized, no escape sequence except '7 and '8
will be active, and all letters will be upper case. When '8
is seen, PR12 immediately goes to the next arjument. When '9
is sean, PR12 dumps its ftuffer and returns.

Example

V'S M2 = $'7 NOT FOUND. *'GO CN') 8§
ER12A. ($'6'8%,N1, % '8$,N2,M2...10)

Might produce the following:
ALPHA OUTPUT not found. 30 on?

With no carriage return at the end of the line.

(END)

n
-2
"
9]
™
x1
[l]
4
3
>
K4
=
]
o)
-
[P2]
(a
(fe=}
-
L]
=
/2
L
]
*
-’
bl
&)
2>
(%]
.
b
L]
oy
F=
(<))
N\
[l
Vo)
-

PO =R O S-S0 5+

s —— i — i —— —

Print 12-bit lines
PRFULL,PRFULA,PRICHR

Purpose

To print a fenced or wunfenced message containing 12-bit
characters on the console with a routine that may be <called
by MAD.

MAD: FERFULL. (A, B...N)
PRFULA . (A,B,C...N)
ERTCHR. (SUER.)

FAP: TSX §$FRFULL,4 or ISX $PRFULA,U
PZE A or A,TAG
EFA B or B,TIAC

EAR C
PAR D,,N
BLK E,,M

TSX $PRTICHR,4
EAR SUER

PRTCHR.(SUBR.) causes each 12-bit output <character to be
given to 'SUPBR.' (by **EXECUTE SUBR.(CHAR)?") instead of
printing it. This mode may be terminated at any time by

TSX $PRTICHR,U4 or PRTCHR. (0)
PAR 0

PRFULL adds a carriage return at the end of the output
string, PRFULA does not.

The calling sequence is of indefinite length, all arguments
ar2 concatenated to form one continuous character string.
Blocks are normally rrocessed backward from X(0) to X(N); if
N is n23ative the block will be processed forward. 'X...0°?
is ignored. For 'PAR X,,N' arguments, if N>16383, it is
considered negative and the count actvally used is 32768-N\.
Any argument will be terminated if a fence (octal 77...77)
is encountered within it. The setting of the FUL-mode
switch (SETFUL, SETBCD) is not affected.

To facilitate the use of 12-rit characters from MAD and FAP
programs the character apostrophe has been made to wmodify
th2 character that follows it, usually into an otherwise
inaccessable 12-bit character but sometimes into a contrel
function. Upper cCase letters are normally converted 1into
low2r case. If an apostrophe is followed Ly a <character
that does not have a modification defined, th2 apostrophe is

CTSS EFCGRAMMER'S GUILE Section AG.1.14

ignored.

A complete list of modifications is:

'ddd where ddd is octal: the 12-bit character

octal code is ddd is printed

*d where 4 is 0 thru 7: the next d letters are
in the case opposite from that in which they

would otherwise have been printed
ignore the remainder of the current word

end of output string
"

&

2

black ribbon shift
print-off

hang-ug

1]

>

backspace

print succeeding letters in lower case
L

print-on

%

?

red ribbon shift

carriage return

null

backslash or cent sign

$

tab

print succeeding letters in upper case

6/69 2

whose

printed

end this argument and print the next exactly as given

.
[

<

(END)

@]
Lar]
w

]

"
oy
(]
[}
23
- 1]
<14
e
[gh}
o3
198
(]
[+
4
o
rr
%]
M

)

cr
[

Q

=3

o»
7]
.

[(%)
<
-3
-d
-
\\
[«a}
w
-

Iiantification

Unbuffared disk string read and write
DSKDMP, .DUME, .LOAD, CSKLOD

Purpose

To write or read a continuous block of core on (frcm) the
disk as a file. These routines are usually used for large
blocks of core, cr short files.

Usage

Two routines are available as supervisor entries and library
2ntri2as. An additional routine is availakle in the 1library
which may be called by MAD and Fortran programs.

To write a file cn the disk:
Core-B write arouand:

IsX .DUMP, U4
OPN FILHNAM
PZE LOC,,'n?

OPN establishes the mode of the file{; PZE is
temporary, PON is permanent, PTW and FTH are
read-only, protecteld.

FILNAM refers tc the file name which will be fplaced
in the current file directory, deleting any
older file of the same name.

LCC 1is the initial location from which 1n wcrds
will be written on the disk.

To read a file:
Core-B write around:

TSX .LOAD,4
PZE FILNAM
PZE LOC,,'n®
SLW M

n is the number of words to be read. It may be
larger than the actual file size with the
fcllowing restriction: 1L1CC+n-1 must be less
than the memory bound. FSTATE may be used to
estimate n.

M will contain the number of words actually
loaded, as a full word integer.

CTSS PROGRAMMER'S G UIDE Section AG.2.01 11765 2

Correspcnding library subroutine:

MAD: EXECUTE DSKDMP. (FILNAM,FIRST,N)
EXECUTE DSKLOD. (FILNAM,FIRST,N)
M = DSKLOD. (FILNAM,FIRST,N)
FCRTRAN: CALL CSKLOLC (FILNAM, FIRST,N)
CALL DSKDMP (FILNAM,FIRST,N)
A = DSKLOL (FILNAM,FIRST,N)

Core will be loaded or dJumped from FIRST-n+1
through FIRST. If the number of words ,m, in
the file is liess than n, the file will 1load
into the klock of <core through FIRST-n+m.
Bocth DSKDMP and DSKLOD -all the file systenm
directly, i.e., they do not <call the core-B
write arounds.

(E ND)

w
(3]
c
=i
<
)
W
(1
[¢]
[ald
poote
(o]
ool
b 1
7]
[]
L]
L)
(@]
L%}
-
-
-

Buffered disk infput
SEEK, .SEEK, .READK, ENDRD, .ENDRD, BREAD, VREAD, LCREAL

Purpose

To provide the facility to read fixed 1length, string or
lin=2-marked disk files in the buffered mode by <calls fron
FAP, MAD or FORTRAN frograams. Records may be <ccnverted
according to a format statement or may be transmitted
without conversion.

Met hod

Disk files to be read must Le located in the current file
directory, the hardware must be set in motion to locate the
first track of the file, a buffer must be assigned to the
fil2 and the tracks must be read to fill up the buffers.
All of this initial activity is accomplished by the user's
=all to SEEK in which he may specify buffer locations. If,
however, the user doesn't care to specify a buffer, SEEK
will assign available space Lty extending the memory bound.

R2ading is accomplished by moving logical records out of the
buffers into working core. When a buffer becomes empty, the
supervisor fills it by reading the next track of the file
into 1it. After sufficient data has Lkeen read from a file,
the user may release the buffer and put the file in inactive
status by a call to ENCREL.

e o i o . s e st st

The library subrcutines maintain a list of active files and
assigned buffers. There may be no more than 10 active files
and no more than 20 automatically assigned buffers.

Reading by calls to the core-B write arounds instead of the
library subroutines means that buffers are not automatically
assigned, cnly one buffer can be used, errors cause
execution of supervisor error procedures rather than the
library error procedures, and the write-arounds to the new
file systenm are used.

CTSS ERCGRAMMER'S GUIDE Section AG.2.02 11765 2

Usage

To open a file:
as core-B write arcund:

ISX JSEEK,4
PZE FILNAM
PZE BUF1

as library subroutine:

FAP,

BUF1, BUF2

SEEK

«SEEK

MAD, cr FORTRAN,
EXECUTE SEEK. (FILNAM,-BUF1-,-BUF 2-)

are initial locations of 432 word blocks of

core tc be used as buffers. If no buffer is
specified to the 1library subroutine, one
buffer will be assigned by extending the
memdry bound if core space pernits. If no
buffer space is available, the 1library error
procedure will be initiated. If two buffers
are prcvided, reading will be more efficient,
since I/0 may ke overlapped with processing.

calls SRCH which assigns a buffer, if needed,
by calling FREE and maintains an active file
table and buffer assignment table=.

does nct call SRCH.

To read a record:
as core-B wrote around:

TSX .READK,H4
PZE FILNAM
PZE LOC,t,n
PZE EPF

ECF SLW WC

ECF

words will be moved from the current buffer
associated with FILNAM and stored in a block
of core beginning at locaticn LOC. n may be
larger than the actual file size but LOC+n-1
must be less than the memory bound.

of non zero means skip n words without
transmissicn.

If an attempt is made to read beyond the last
word of the file FIINAMN, control is

c

1]

i
v
U
2 4]
=
C
)

WC

0
Q)

br
E

i
A

Lo I

LIST

FORMAT

BREAD

DREAD

VREAD

KAMMER S GUIDE Section AG.Z2.02

-
-
\.
[e)
wn
(o%)

transferred to location ECF.

upcn end of file return, the AC will <contain
the number of words actually read, as a full
word integer.

ary subroutine:
or MAD

> 0

EXECUTE BREAD. (FILNAM, IIST)
EXECUTE DREAD. (FILNAM, FORMAT, LIST)
WC=VREAD. (FILNAM, LIST)

is any mixture of single variables and block
notation vectors locating the variables toc be
read, if any.

is the location of the format by which the
variables in LIST will ke edited by (IOH).

will read the n words specified by the LIST.
n may be any size. No attention 1is paid to
logical record breaks. If the input file 1is
line-macrked, the line-marks will be moved as
data words.

reads logical records and edits them through
(ICH). Each call to DREAD reads at least one
logical record ; however, the format may
require the reading of more than one 1logical
record. If the file is line-marked, the 1line
marks delineate the logical records. If the
file is not line-marked, the 1logical Trecords
are 14 words. 1If fewer words are rejuested
than are available in the record, the excess
of the record is lost. The format may specify
the reading of more than one record; however,
if more words are requested from a specific
record than are availatle within that reccrd,
the library error procedure is initiated.

will read one 1logical record. A logical
record is either delineated by lire-marks, set
by SEIVBF, or assumed to bte 14 words. The

LIST may nct exceed 22 words. If the LIST 1is
longer than the logical record, the end of the
list will be padded with blanks. If the LIST
is shorter than the 1logical reccrd, the
rerainder cf the record will be lost. If the
record was fixed length, the sign of WC will
be minus. If the record was 1line-marked, WC
will be positive. WC is a progerly formatted
integer but Fortran may have some difficulty
because of the function naming conventions.

CTSS FRCGRAMMER'S GUILE Section AG,2,02 11,65 4

To close an ingput file:
as core-PR write around:

ISX . ENDRD,4
PZE FILNAM

as library subroutine:
FAP, MAD, or FORTRAN

EXECUTE ENDRD. (FILNAM)

ENDRD will delete the file from the active
table and release the kuffer.

file

(END)

(9]
3
wn
wn
ey
4]
(9]
(4
o
o
4 4
td
Lo
-
(¥2]
[4
=
-
©
ta
wn
1
(9]
or
hoe
4]
hEg
(4
(]
]
(3]
[¥9]
-
-
\\
(¢,
wn
b

Identification

Bufferad Disk Output
ASSIGN,.ASIGN,AFPEND,. APEND, .WRITE, FILE, .FILE,B-D-V-FWRITE

Purpose

To provide the facility to write fixed 1length, string or
line-marked disk files in the buffered mode. Records may be
converted according to a format statement or they may be
transmitted withcut conversion.

Met hod

The file must be defined and placed in an active file table
and buffers wmust be assigned. This initialization is
accomplished by ASSIGN or APPEND. Writing then causes data
to be moved from working core into the ‘Luffers. When a

buffer is full, it is written on a track of the disk by the
supervisor. A file in write status must ke closed by FILE
in order to assure that the last buffer has been written on
th2 disk and the file name 1is entered into the file
directory.

If th=2 library subroutines are used, an active file table
and assigned buffer table are maintained. There may be no
mor2 than 10 active files and 20 autoratically assigned
buffers. If the p[precgram is terminated by any terminal
library routine, all files in write status will be properly
closed. Any disk errors will initiate the 1ibrary disk
error procedures.

If the core-B write arounds (.ASSIGN, .AEEND and .WRITE) are
used and the program is terminated without going to .FILE or
EXIT, the file will be lost. EXIT has been wnmodified to
include a CLCSE., ($ALLS3). Any disk errors initiate 1I/0
system error procedures. Only one buffer can be used with
Zalls to the core-B write arounds.

For any given file, calls to the library subroutines may not
b2 intarmixed with calls to the core-B write arounds or 1I,/0
system entries. That is, buffers may not be assigned by
.ASIGN with reading being done by BWRITE, etc.

CTSS PROGRAMMER'S GUIDE Section AG.2.03 11765 2

Usage

To open a new file:
core-B write around:

ISX .ASIGN, 4
OPN FILNAM
PZE BUF1

as a library subroutine:

JPN

BUF1,BUF2,BUF3

ASSIGN

<-ASIGN

EXECUTE ASS1GN. (FILNAM, -BUF1-,-BUF2-,-E0F3-)

defines the mode: P2E is temporary, PON is
Fermanent, PIW and PTH are read-only
protected. The library sutroutine will define
the mode as permanent.

are the initial locations of 432 word blocks
of core to be used as buffers. If no buffer
is specified fcr the library subroutine call,
two buffers will be assigned by extending the
memory bound, if core space permits. If no
buffer space is available, the 1library error
procedure will be initiated. Writing with
only one buffer is extremely inefficient since
it forces the use of WRWAIT. Two buffers
greatly increase efficiency because this
allows use o0f the core-B buffering routine
BFWRIT. Three buffers make it possible to
overlap I/O with processing.

calls SRCH which assigns two buffers if
necessary bty calling FREE, and maintains an
active file table and buffer assignment table.
This allows terminal sutroutines tc <close
active files properly.

does nct call SRCH.

ASSIGN and .ASIGN If a file already exists named FILNAM, it

is deleted.

To op2n an old file in order to add information:
core-B write arcund:

TSX .APEND,U
PZE FILNAM
PZE BUF?1

a
9]
%]
Lab]
b]
1 4
i
Q)
[==
-
(&]
(]
(%]
()]
Q
cr
P
@]
<}
3>
(7]
(]
<
[WS)
-d
-
\\
cn
€]
v

as a library subroutine:
FAP, MAD or FORTRAN
EXECUTE APPEND. (FILNAM,-BUF1-,-BUF2-,-BUF3-)

APPEND is the same as ASSIGN except the file name is
located in the file directory and data to be
added to the file will ke written at the end
of the existing file.

To write a file:
core-B write arcund:

TSX .WRITE,u4
PZE FILNAM
PEE LOC,,'n?

n 1is the number cf words to be written into file
FILNAM beginning at location LOC.

as a library subroutine:
FAP, MAD or FORTRAN

EXECUTE BWRITE. (FILNAM, LIST)
EXECUTE DWRITE. (FILNAM, FCRMAT, LIST)
WC = VWRITE. (FILNAM, LIST)
WC = FWRITE. (FILNAM, LIST)

LIST 1is any mixture of single variables and block
notation vectors locating the variables to be
ocutput.

FORMAT is the format by which the variables in LIST
will be edited through (ICH).

BWRITE will write the n words specified by the LIST
as a record without line marks. LIST may be
any length.

DWRITE will write the n words specified by LIST as a
line-marked record after they have been edited
by (IOH). (3 .LE. n .LE. 22). If n .L. 3.
blanks will be filled in until the reccrd is 3
werds long. If the combination of FORMAT and
LIST specify a 1line longer than 22 words,
(ICH) will type an error message and then call
RECOUP.

VWRITE will write the n words specified by LIST as a
line-marked record. 3 .LE. n .LE. 22 (same
cenvention as DWRITE). WC will contain an
integer ejual to the number of words written

CTSS PROGRAMMER'S GUIDE Section AG.2.03 11765 4

FWRITE

WC

(nct including the 1line-mark). The actual
record length is WC+1,.

willi write a fixed 1l1length record without
line-marks., 1If the LIST is shorter than the
fixed length, tlanks will ke filled in. 1f
the LIST is longer than the fjixed length, only
the first vwords are written and the excess 1is
lost. The fixed length is assumed to be 14,
unless set by SETVB(F). WC will contain an
integer ejual to the number of words written,
the sign will be minus.

when WC is returned, it is the proper integer
format for the 1language of the calling

Frcgranm. Fortran, however may have sone
difficulty as a result of the mode of the
function convention. Fortran users should

equivalence WC with an integer variable.

To close an output file:
core-B write arocund:

TsX L.FILE,u
PZE FILNAM

as a library subroutine:

FAE,

FILE

«FILE

MAD, or FORTRAN
EXECUTE FILE. (FILNAM)

will cause any active buffers to be written on
the disk, FILNAM will be entered into the
current file directory, the buffers will be
set free, and the file removed from active
status. If the library sutroutines have been
used tc write the file, a call to any terminal
subroutine (EXIT, DUMP, etc.) will cause the
calling of FILE for all active files.

should be used only if the file was written by
the .WRITE write around.

(END)

Identification

- -

L3
[~}
¢
G
=
=
n
a3
t
=
«»
(93}
[}]
c
[]
(o]
[}]
(2]
a
(q]
“r
'-I
(]
=i
L7
Q)
L[]
N
L[]
<
-

7w AL A T

-
-
-

Addressable disk files

- RELR

Purpos

W

€

To allow disk files t> be treated as addressable secondary
Relative 1locations within a disk file may be
specified fer reading cr writing.

m2mory

Usaje

To open an addressable file:
core-B write arcund:

- RELRW

BUF1

TSX <RELRW,4
PZE FILNAM
PZE BUF1

will open an addressable file which may be
read or written. If writing, the wmode is
permanent.

is the initial location of a buffer whose size
shculd be at least 432 vords.

To read cor write an addressable file:
core-B write around:

raladr

ECF

I'SX .REALK, U4 TSX .WRITE,4
PZE FILNAM,,reladr

PZE LOC,,'n?

PZE EOF

is the relative location within the disk file
where the reading or writing will begin. The
first word is number 1. If reladr is outside
the limit of the file, the normal end-of-file
prccedure will be followed for reading or the
supervisor error procedure will be followed if
writing.

n words of core beginniag at locatien LOC will
be read from or written in the disk file
FILNAN.

Locaticn tc which control will be transferred
upon encountering an end of file.

o
W
o
®
b

CTSS FHECGRANHER®S GUITE Sec

(Y]
Yo

Identification

Set the length of fixed length records
SETVBF, SETVE

Purpose
Records which are read cr written by FWRITE or VREAL may be
fixad length. The normal fixed length is 14 words. If a
different length is desired, SETVBF may be used to specify
the length.
Usage
As a library subroutine:

MAT, FAP, or FORTRAN

B = 5EIVBF. (N)

SETVEF and SETVB are synonymous. Both nares are
prcvided because of the Fortran function
naming convention.

N 1is (location of) the number of words to be
ccnsidered for fixed length records by FWRITE
or VREAD. N may not ke greater than 22. If N
.GE. 22, the record length is szt to 22.

B will ccntain the previous setting of the fixed
record length.

(END)

Pk T o s Lo Ve Vol

e e s . G e o . . o

Sarvicas to 1lib
SRCH, BLK, FLK

Service rcut

N AT &

o
x
e
|
[
2
4]
[}
CQ
by
]
3
w
[44]
q]
cr
rl
Q
=]
b1
[
]
[8]
L[]
<
N
-
-
-l

rary disk routines
+» ENDF, CLOUT

ines are available to the 1library disk

subroutines to assign buffers, find files, maintain the

aztive file an
Usage

To search acti

not found

fcund

To assign a bu

BLK

error

normal

d buffer tables, and close ocut files.

ve file tatle:

I'SX SRCH,4

PZE FILNAM
not found
found

return means that FILNAM was not found in the
active file table.

returns with the status of FILNAM 1in the
address of the AC and a buffer number (1-20)
in the decrement of the AC. If the file is not
using an assigned buffer, the buffer number is
zeros. Write status is 1; read status 1is 2.
The sign is + if enough buffers are assigned
to use core-B buffering routines (BFREAD,
etc;). The sign is - if supervisor I/0 nmust
be used.

ffer:

TSX BLK,4
error return
normal return

searches the Luffer assignment table. If
there are no free buffers and there are fewer
than 20 assigned buffers, an attempt is made
to extend the memory bound by a call to FRER.

return 1is taken if there ars already 20
buffers assigned or the attempt to extend the
mepory bound was unsuccessful.

return is tiken with the .address of the buffer
in the address of the AC and the number of the
buffer (1-20) in the decrement of the AC.

CTSS EROGRAMMER'S GUILDE Section AG.2.06 11/65 2

To 2ntar a file in the active file table:

IsX PFLK, 4
PZE FILNAM
PFX status,,PTR1
PZE ,,PRT2
error return
normal return

status is 1 if writing, 2 if reading. The status
word is stored in the first free space in the
active file table.

PTR1,PTR2 1is the buffer number. If number is non-zero,
a pointer to the file in the active file table
is placed in the assigned buffer table.

PFX 1is PZE if enough buffers are assigned to use
core-B routines (BFREAD, BFWRITE) ; otherwise,
it is MEE.

arror return i1s taken i1f there are 10 active files
already.

To remove a file frorm the active tables:

TSX ENCF,4
PZE FILNAM

The buffer is freed, and the fil2 1is removed
from the active table. The file 1is not
clcsed.
To remove a file from the active tables:
ISX CLOUT, U
All the files are closed by calls to CLOSE and

BFCLOS E. All buffers are freed and returned
to "free storaga”,

(END)

@]
]
12
w
r
2]
(9]
(4]

Ilentification

Gan2rate file
«CLEAR

To create a ne

Cor2-B write a

~.CLEAR

OPN

>3]
e 1
i
=t
<h]
o
i
Q)
2
L]
(W)
[5L:]
%]
1]
Q)
ct
[1]
Q
=3
o>
@
L8]
[&]
~J
Py
- b
~N
(<))
wn

of zeros

w file which contains n zergs.

round:

I'sX .CLEAR, U4
OPN FILNAM,,'n'

will create a file of the name specified
FILNAM which will contain n zeros.
orening a nd closing of the file
accomplished by .CLEAR so that .ASIGN
.FILE shculd nct be called.

specifies the mode of the file: PZE
temporary, PON is permanent, PTW and PTH
read-only and protected.

-b

in
The
are
and

is
are

(END)

~ s

Identificaticn

Input and outgput
OPEN,BUFFER,RDFILE,RDWAIT,WRFILE ,WRWALT,THFILE
FCHECK,FWAIT,CLOSE,SET PRI

Purpos

o

Fil2s may be opened on any I,0 storage device for reading,
writing or reading and writing. A file which has been
successfully OPENed is said to be "active". A buffer may be
assigned 1f needed and priorities may be set for different
files.

It is assumed that the user is familiar with section AD.2
and AG.4.06 of this manual. In order to read or write a
£il=, the file must first be opened and in most cases a
buffer should be assigned. Calls to RDFILE or WRFILE
initiate the I/C for a relative location within the file.
The actual data transmission is not completed wupon return
from the call. A subsequent RDFILE, WRFILE, FCHECK, or
CLOSE 1is necessary tc complete the data transmission and I/
arror checking. BAll calling sequences will accept the two
extra argqurents for the werrcr procedure. Any arguments
which are not pertinent miy be specified as -0.

OFEN.($STATUS$,$ NAME1$,$ NAME2$,MCDE,DEVICE)

STATUS may be 'R' for read, "W for write or *'RW' for
read-wri te. (justification is not
significant).

MODE sgecifies the mode of a new file to be created
and may be the inclusive logical or of any of
the following octal values. If MODE 1is not
specified, a permanent file will be created.

000 - Permanent
001 - Temporary
002 - sSecondary
004 - Read-only
010 - Write-only
020 -~ Private -
100 - Protected '

DEVICE 1is pertinent cnly when creating a new file and
it specifies which I/0 device 1is desired. If
DEVICE 1is not specified, the system will

CTSS ERCGRAMMER'S GUILE Section AG.2.08 12,66 2

assign a device.
1 - Low speed drunm
2 - disk
3 - Tage

Errcr ccdes:

03. File is already in active status
04. More than ten active files

05. $STATUSS is illegal

07. Linking depth exceeded

08. File in 'PRIVATE' mode (different author)
09. Attempt tc write a 'READ-ONLY® file

10. Attempt to read a 'WRITE-CNLY' file

11. Machine or System error

12. File not found in U.F.D.

13. TIllegal device specified

14. Noc space allotted for this device

15. Space exhausted for this device

16. File currently being restored from tape
17. Input/Output error, see AG.U.06

18. Illegal use of M.F.D.

19, U.F.D. not found (i.e., OFEN through a link).

20. Attemgt tc reald secondary mode file.

Assign a buffer:

BUFFER. (3 NAME1%,$ NAME2$,BUF(N)...N)

BUFFER

BUF

In general a2 buffer should be assigned to an
open file for reading or writing.

The buffer space should be specified in block
notation as the beginning location of the
buffer and the size. The size must be 1large
enough to accomodate a physical record from
the 1,0 device,

is the buffer size and 432 seems to be the
going size.,

Error codes:

Sa2t priority:

03. File is nct an active file
Q4. Previocus I/0 out of bounds (membnd changed)
05. Buffer too small

06. Inpu§/0utput error, see AG.4.06

SETPRI. (PRIOR)

PRIOR

n
[{}]

¢]

et
P‘c
O

]

o
«Q
)8}
(]
cc
-
[38)
\\
(<))
(<))
(%9)

is used to assign priorities to certain tasks
which would otherwise bLe processed 1in the
order in which they were received. When files
are opened for reading ands/or writing, they
are assigned the priority set by the last call
to SETPRI. If there was no previous call to
SETPRI, all files will Le treated with equal

Caa

priority.

is an integer from 1 to 7. The higher the
value the lower the priority.

Errcr ccdes:

Standard error codes. See section AG.u4.06

R2al: RDFILE. ($§ NAME13,$ NAME2$,RELLOC,A(N) ...N,EOF ,EOFCT)

RDWAIT. (§ NAME1$,3 NAME2$, RELLOC,A(N) ...N,EOF,EOFCT)

RDFILE

RDWAIT

RELLCC

EQF

ECFCT

initiates the I/0 necessary to move N words of
data into location A(N) through A4f1) from file
NAME1 NAME2.

is a single call which incorporates RLCFILF and
FCHECK so that upon return, the data bhas all
been moved and all of tha error checking has
been done.

specifies the initial location within the file
frcm which reading is to begin. If RELLOC is
zero, reading continues from the word
fcllowing the last word read from the file.
On the first call to RDFPILE either O or 1
specifies the first word. ©Note that in a file
which is oren for reading and writing, there
are two separate pointers (i.e., the last word
read and the last word written).

is the 1location to whicbh contrel will be
transferred if the end of the file 1is
encountered before N words are available to
transwit into A. If RDFILE was called the
words have not actually been transmitted to A
sc that FCHECK or CLOSE is nescessary 1f data
from A is to ke used. The file is not closed
by enccuntering an end of file.

1s an integer variable which will contain the
number of words to be transmitted by the call
to RLFILE when the end of file was
encountered.

CTSS ERCGRAMMER'S GUILE Section AG.2.08 12,66 4

Errcr ccdes:

03. Pile is nct an active file
04, File is not in read status
05. Nc buffer assigned to this file
06. Previcus I/0 out of bounis (membnd changed)
07. Input/Output error, see AG.U.06
08. UL F.D. has been deleted
Write:

WRFILE. ($ NAME1$,$ NAME2S$, RELLOC,A (N)...N,EOF,EOFCT)
WRWAIT.($ NAME1$,$ NAME2$,RELLOC,A (N)...N,EOF, ECFCT)

WRFILE initiates the I/0 necessary to nmnove N words
frcm the array A(N) thru A(1) into the file
NAME1 NAMEZ2.

WRWAIT 1is a single call which incorporates WRFILE and
FCHECK so that upon return, the data has been
moved and error checking has been done.

RELLOC is the relative location within the file where
writing is to begin. If RELLOC 1is zero,
in the file. If RELLOC is zero on the first
call, writing will begin at the 1location

following the last word of the file. RELLOC
may not be larger than the current length of
the file.

ECF 1s the 1location to which «control will be
transferred if the N words to be written would
have to be written through the end of file
(i.e., if part of the record cculd be
contained within the file and the other part
would extend to outside the file). This does
not occur when appending to the file with a
RELLOC of zero where entire records are placed
at the end of the file.

EOFCT is an integer variable 1into which the 1I/0
system will store the number of words actually
tc be written when control was transferred to
EOF. An PCHECK 1s necessary as with any
WRFILE.

Errcr ccdes:

03. File’is not an active file

O4. File is not in write status

05. Nc buffer assigned to this file

06. Allotted space exhausted for this device

(%

Q2

ING L T o

TRFILE

4
z
11
v}
-
n
(]
o
)
tq
n
(]
(91
r
'n‘t
(%]
=}
o
G
[}
18]
(]
x
c——b
N
N
[]
(o)
N

07. Previcus I/0 out of bounds (membnd changed)

08. Input/ /Output error, see AG.4.,06

09. 1Illegal use of write-only file (ncp-zero
*RELLOC?')

10. Max file length exceeded

TRFILE. (% NAME13$,3 NAME2$,REILCC)

The tile NAME1 NAME2, which was previously
opened for writing, will be truncated (i.e.,
cut-off) immediately before the relative
location RELLOC, 1If RELLOC is less than the
read or write fpointers, they will be reset to
their original places, (i.e., the read to the
first word of the file and the write to after

the last word of the file).

Errcr ccdes:

FCHECK

FWAIT

FINISH

03. File is nct an active file
04. File is nct in write status
05. No buffer assigned to this file

06. Previcus I/0 out of bounds (membnd changed)

07. RELLOC larger than file length

08. Input/Output error, see AG.4.06

09. TIllegal use of write-only file (ncn-zero
*RELLOC ')

FCHECK. ($ NAME1$,$ NAME2$,FINISH)
FWAIT. ($ NAME1$,$ BNAME2S)

is used to check to see if a previous read or
write of a specific file bhas been ccnpleted
and checked for errors. Note that RDFILE,
WRFILE , TRFILE, and CLOSE incorporate an
automatic FCHECK at the beginniny so that if
FCHECK is not «called explicitly, any 1I/0
errors are detected one call 1later than the
call that caused the error.

is the same as FCHECK except that control will
not be returned to the user until all I,0 has
been ccmpleted and checked.

is the location to whic{ FCHECK will return
contrsl if the I/0 is completed and checked.
If the I/0 is not completed, FCHECK will take
the normal return. ’

CTSS PROGRAMMER'S G UIDE Section AG.2.08 12766 6

Error codes:

Close:

CLCSE

NAME1

03. File is not an active file
Ou, Previcus I/0 out of bounds (membnd changed
05. Input/Output error, see AG.4.06

CLOSE. ($ NAME13,-5 NAME2%-)

is used to close an active file and return it
to inactive status. CLCSE incorporates an
FCHECK for the last I/0 call and initiates and
FCHECKs the I/0 necessary to empty any waiting
output buffer.

may be 'ALL* and NAME2 not specified for all
active files tc be closed.

Errcr ccdes:

03. File is nct an active file

\
}

O4. Previouas 1/0 out of bounds (membnd changed)

05. InputsOutput error, see AG.4.06
0 6. Machine or System error

(END)

w
(]
CQ
=4
(e}
o
v
M
(@]
las
-
C
o=
o 13
(9]
.
N
)
<
0O

Faye 1

Load a file into a free area of core
LDFIL

—— i d i o

To load a file into a free area of <core, and then G[pass
control to a specitied function, giving information as to
wh2re the file has been 1loaded and how long it is.

Usage

FAF: ISX LCFIL, 4

PZE =H NAME?
PZ E =H NAME2
PZE FUNCT
- PZE ARGl -
- PZE ARG2 -
MAD: LDFIL. (3 NAME1$ NAME2%,FUNCT.,-ARG1- ,-ARG2-)

LDFIL loads the file NAME1 NAME2 and calls FUNCT
with the fcllowing call

FAP: TISX FUNCT,U
PZE LOLCACLC

- PZE ARGY -

- PZE ARG2 -

MAD: FUNCIr. (LOCAE, -ARG1-,-ARG2-)

LCDAD contains the exact word count (WC, as an
integer) of the file KAME1 KAME2, The file is
loaded into locations LODAD+1,...,LODAD+WC.

ARG1 ARG2 are optional arguments which LDFIL will
transmit, if present, to FUNCT.

A return from FUNCT will automatically mean a
return tc the program which called LDFIL with
all registers ex cept index register 4
preserved,

LDFIL uses FRER, FRET and CCLT in addition to
the 1I/0 system routines.

If sufficient space is not available to 1load
NAME1 NAMEZ, LDFIL will cCause a comment to be
printed (by FRER) and call EXIT.

(END)

-
(=]
-
(<))
(<))
-

AN

Ilantification

Buffered Input and Output
BFOPEN, BFREAL, EFWRII', EFCLOS, BFCODE

Purpose

Because entries to ccre-A and the file system involve guite
a1 bit of overhead, it is advisable to provide for buffering
and for all blocking and unblocking of buffers in core-B
routines and to> call the file system only to transmit full
records. These ("BF-package") 1library routines are
available to provide single or doutble tuffering in core-B.
Double buffering 1is definitely advantageous to f[frcgrams
which are "compute-limited"™ because it allows overlapping of
CPU time with I/C time. ’

Method

The file system is used for all actual I/C. In order to
read or write a file, the file must te opened with one or
two buffers specified. In the case of writing a file, one
axtra buffer is always needed to assiyn to the file systen;
n2w files files opened by BFOPEN will ke in the permanent
mode. Calls to BFREAD and BFWRIT cause words to be moved
from (to) a buffer to (from) the user's work area. When a
buffer is empty (full) it is refilled (emptied) using RDPILE
(WRFILE) with RELLOC=0. TIf a second buffer were assigned
(third in the case of a write file) it will then be used,
otherwise a call to FCHECK will be made in order to reuse
th2 sinjle buffer. Actual data transmission to or from a
file is initiated each time one of 1its buffers is empty
(Eull) . TI/C error checking is completed ty a call tc FCHECK
in the case c¢f a single buffered file or on a subseguent
all to RDFILE or WRFILE for double buffered files.

Rastrictions

Every call is a fixed length calling sequence so that each
arjumant must be specified, either explicitly or by
specifying -0. Only those arguments specifically stated as
optional, by the minus (-) ccnvention, may be specified by
_0.

All buffers nust be 432 words long and the location
specified in the calling sequence must spegify the lowest
cor2 location of the block because the data are locaded into
the buffers in the forward direction.

A maximup of ten files may be open at any one time.

CTSS ERCGRAMMER®S GUICE Section AG.2.10 1766 2

<
1

(1Y
Yol
[Jo]

o
o
]
-4
.o

MAD: BFOEEN. (STAT, NAME1, NAME2, BUF1 (432),-BUF2 (432)-,-BUP3(432) -,ERR)

FAP: ISX BFOPEN, 4
TXH STAT
TXH NAME1
TXH NAME?2

TXH BUF1}
TXH -BUF2-
T XH -BUF3-
TXH ERR
STAT may be *'R' for read, *W' for write - where

'R' or 'W' is left justified 1in the word.
(Any status other than ‘WY will be
interpreted by BFOPEN to be the same as 'R!
and passed to the file system as given in the
call. Thus, a status of *'RW' will enable the
user to read and write the file, using BFREAL
for reading and WRFILE for writing. Because
the BF-package considers the file open for
reading only, calls to BFWRIT would result in
an erroar return.

NAME1 NAME2 are the two locations containing the BCD nanme
of the file.

BUFn 1is the beginning 1location of a 432 word
buffer. Reading requires ons buffer for
single buffering and two for double. Writing
requires two buffers for single buffering and
three for doutle.

ERR is the location to which «control will be
transferred if an error is 2ncountered either
by the file system or by the buffering
rcutines.

READ - WRITE:
MAD: BFREAD.(NAHE1,NAME2,A(N)...H,ECF,ECFCT,ERB)

BFWRIT.(NANE J NAME2,A (K)...N,ERR)

FAP: 1SX BFREAD ,4 TSX BFWRIT,4
IXH NAME1 TXH NAME1
TXH RAME2 TXH NAME2
IXH A,,'n' TXH.A, , ' 0
1XH EPF TXH “*ERB

T XH EpFT 1

UMy AT AN R AL saT

. TN 8o ANDTYTNAT
LCId0 rovunAnnLnN O UULUL

9]
m
O
cr
et
O
f=t]
3»
@
.
[\
.
-
<
Y
N
[«
[«))
(%)

TXH ERR

BFREAD(BFWRIT) transmits N words of data from (to) the
current buffer assigned to file NAME1 NAME2
intc (from) location A(N) through A(1).

-4

r
-

o3
-

s the ntmber of words to be transmitted.

Q
-
b

EOF is the loca tion to which control is
transferred if the end of the data in the
file is reached before N words <can be
transferred to location A (N) through A{(1).
Fcr writing this does not apply since RELLOC
= 0.

EOFCT is an integer variable into which 1is placed
the numker of words actually read when
ccntrol was transferred to EOF.

CLOSE:
MAD: BFCLCS. (NAME1,NAME2, ERR}

BFCLCS 1is used to close an active file. If NAME?
NAME2 was a write file, the incomplete buffer
will be added to the file ba=fore closing. If
NAME?l is 'ALL*' and NAME2 is -0, all active
files will be closed.

ERROBS :
MAD: ERRCGD = BFCODE. (0}

FAP: TSX BFCODE, 4
S10 ERRCCD

BFCODE 1If called in the event of an =arror return,
gives a non-zero code word (key below) if the
error was detected by the buffering routines.
If the error was detected Ly the file systen,
ERRCOD will be zero, in which case the user
may call PRNTER or IODIAG to discover the
nature of the error.

1. Ico many active fjles - «call to
BFOPEN when ten files already were
opened by BFOPEN.

2. Not enough buffers given - Call to
BFOPEN to open a read (write) file
and no (only one) buffers
specified.

CIr'ssS FRCGRAMMER'S

3‘

GUITCE Section AG.2.10

Attempt to
not opened

Attempt to
opened for

(BF) read

by BFCPEN.

{BF) read (wWrite)

writing

(reading).

a

1,66

£
i

4

(write) a file

1o
e

(END)

U
Q2
c
)
<
o
w
(4]
Q
or
[l
Q
o]
>
Q
L
LS]
*
-
-
-
N)
N\,
[}
4]
—

Identificaticn

011 fil= systea write-arounds to new file systen

1o

urpose

In order to provide compatibility for programs (including
many commands) written for the old file system, a set of
write-arounds has been written which map the old disk calls
into the new ones. These are available as 1library
subroutines, and operate in core B. Unfortunately, this
mapping is necessarily imperfect. Following is a 1list of
the more painful and obvicus discrepancies.

1. There is no . FILDR. The U.F.D. (FILE) can be
opened and read with the same calls as any other
files.

2. There is no double-tuffering. Calls to .SEEK,
.APPEND, and .ASIGN use only the first buffer
specified in the call (the one specified 1in the
address).

3. It is not possible to have more than one file with
the same name. Therefore, a call to .ASIGN first
deletes any file that already exists with the
given name.

4, It is possible to create a file with a word count
of 0. No telling how this incompatibility will
show ug.

5. Restrictions 1s to zero or non-zero

relative addresses 1in <calls to .REALK/.WRITE
fcllowing a .RELRW rather than .SEEK/.ASIGN have
all been removed. Anything is l=g3al.

6. A1l files which are specifiel to be written as R1
or R2 will be written as read-only, prctected.
Files which are created as reai-only, protected
will be treated as R1. There are no files with
the former restrictions of R2.

A few conditicns which fcrmerly caused errors and no 1longer
do were considered important enough to simulats. WARNING -
since these ercor conditions are regognized by the
write-arounds rather thanm by the file system, attempts to
Jain more information about the error (e.g. via PRNTER) will
be misleading and meaningless.

1. WRELLOC too:’ large™ causes an EOF return fronm
WRFILE, but an error return from .WRITE.

CTSS PROGRAMMER'S GUIDE Section AG.2. 11 12/69 2

2. An FSTATE cn a file in active write status gives
valid information. For .PSTAT this results in an
€error return.

Error returns and error codes «constitute the area of
greatest inequality. The prefix of an error return is no
lonjer significant (i.e. if an error return is provided, the

comment is always sugpressed). Also error codes meaning
“"file not found"™ (5), "too mwmany active files" (2), and
®"track quota exhausted" (6) are translated, but all other

arrors are mapped into> the catch-all code 1 (illegal calling
sequence).

Approximate Mapping of 0l1ld Calls into New

- APEND FSTATE to check for existence of file

«ASIGN

.SEEK

-RELRW

. LOAD

.DUMP

« READK

.WRITE

.CLEAR

«FSTAT

-DLETE
- ERASE

OPEN for
BUFFER

CELFIL previous copy

OPEN for
BU F FER

OPEN for
BUFFER

OPEN for
BUFFER

OPEN for
RLFILE
CLOSE

CEL FIL
OPEN for
WRF ILE
CLOSE

RIWNAIT
WRWAIT
DELFIL
OPEN for

WRFILE n
CLOSE

"FSTATE

CELFIL

Writing

writing

reading

rzading and writing

reading

writing

wri ting
zeroes

CTSS FRCGRAMMER'S GUIDF Sccticn AG.2.11 12,69 3
.FILE CLOSE
- ENDRD
~.RENAM CHFILE
- RESET RESETF
.FILDR "Subroutine not found"

Mapping of Modes

Filz Creation (. ASIGN)

Assigned wmode Resulting mode
Temporary EEEEBEEE; ------
Permanent Perrnanent

Read-only, class 1
Read-only, class 2 Read only, Protected

Fila Testing (. FSTAT)

e . e e i e i st s o e i W~ A — o — . T — — i~ ———— ——— —— — — —— . " — . s o S, . . e, s, e

Actual mode Mode returned by .FSTAT

_—-—iemporary —————————————— Temporary
Read-Only Read only, class 1
Protected

All others Permanant

Not2 that a write-only file will appear toc a prograg using
.FSTAT to be permanent mode; the program may run into
Jifficulty if it then attempts to read the file.

«‘

(ENT)

-
-
-

~
-

Change the mcde cr the name cf a disk file.
CHMODE, RENAME, .RENAN

Purpose

To change the mode or the name of a disk file.

Usaje

To change mode:
as library subrcutine:

FAP: TSX CHMODE,4

FCRTRAN: A
MAD: A

MODE

PZE FILNAM
PZE MOLE

CHMODE (FILNAM,MODE)
CHMODE. (FILNAM, MCDE)

W

is 0 fcr temporary, 1 for permanent, 2 for
read only R1, 3 for read only R2. (R1 and R2
are READ-ONLY, PROTECTED).

will be zero if successful or will contain the
disk error code 1if the file cannot be found or
changed.

To change name ands/or mode:
as core-B write around

FAF: TISX .RENAM,U

OPN FILNAM,,NEWNAM

To chanje name:
as library subrcutine:

MAD: A
FCRTRAN: A

- REN AM

OPN

RENAME. (FILNAM, NEWNAM)
RENAME (FILNAM, NEWNAM)

replaces in the <current file directory the
file name specified by FILNAM by the new name
located at NEWNAM by <calling CHFILE. The
standard supervisor error procedure may be
followvwed.

specifies the mode of NEWNAM. PZ2E is
temporary, PON is permanent, PTW 1is R1, and
PTH i1s R2. {R1T and BR2 will be treated as
READ-ONLY, PROTECTED files in the new systen).

CTSS FRCGRAMMER®'S GUITCE Section AG.3.01 11/65 2

RENAME

has two tries at changing the name of FILNAM
to NEWNAM. If the first try fails because a
file by the name of NEWNAM already exists, an
attempt is made to delete this file with a

call tc the library subroutine DELETE. (if
the first try fails for any other reason, AT
will contain the error code from CHFILE). If

the 0ld version of NEWNAM cannot be deleted,
AC will contain the error code from DELETE.
When the old file NEWNAM has been deleted, the
second try at renaming FILNAM 1is made. If
this fails, AC will <contain the error code
from CHFILE.

If RENAME is successful the old file is given
the new name anl the mode is unchanged{ upon
return from RENAME, AC will contain zero. If
RENAME is unsuccessful, AC will <contain the
error code,

RENAME will not change the name of a 1linked
file. If FILNAM is linked, an error code of
octal 40 (dec. 32) is returned in the signed
AC.

(END)

Fada FRIAL
“ido

ny
a3
o]
Q

R
<o
[\]
-
-

~
N
-

= b}
v
faci 4
nn
Al
(%3}
[*p]
<

4
[}
i
%!
»
4]
cr
-
(<]

Identification

file from file directory

Dalata
DELETE, ERASE,

.DLETE, .ERASE

To delete a file:
core-B write around:

FAP: TSX .DLETE, U

PZE FILNAM

as library subroutine:

MAD: EXECUTE DELETE. (FILNAM) or A = DELETE. (FILNAM)
FCRTRAN: CALL DELETE (FILNAN) or A = DELETE (FILNAM)

. DLETE

DELETE

calls the supervisor entry DELFIL. The FILNAM
is removed from the current fil= directory and
the tracks are made availakle for other use.
Prctected, read-only, write-only, or private
files may not ke deleted by this routine. Aany
error will invoke the supervisor error
procedure.

calls the supervisor entry DELFIL. If the
file is linked, a message will be typed asking
if the file shculd really be deleted. If a

*linked' file is deleted, the 1link apnd file
name still exist in the current file directory
but the file to which they point 1is deleted.
1f the file (whether 1linked or not) 1is
protected, read-only, write-only, or Gprivate,
a message will be typed. Only the author may
delete a protected file.

Upon return, if the file is not deleted the AC
and A will <contain an I/D error code,
otherwise the AC and A will be zero.

CTSS ERCGRAMMER'S GUIDE Section AG.3.02

11,65 2

To erase just the name:

as core-Eg

write around:

ISX . ERASE,u
PZE FILNAM

as library subroutine:

M
Ly

1

AD
FORTRAN

ERASE

- ¥
- —

~
H “

XECUTE ERASE. (FILNAM) or A = ERASE. (FILNAM)
ALL ERASE (FILNAN) or A = ERASE(FILNAM)

is now the same as DELETE (.ERASE = _.DLETE).
In the earlier version of CTSS, as 3 result of
a call to ERASE, the ¢tracks were nct made
available for cther use and the user's track
count was not updated until the next time the

disk was lcaded.

(END)

UIDE SEction AG.3.013 6769 1

Identificaticn

Switch current file directcry

COMFIL, COMFL,

ISSFIL, USRFIL

To allow the user to switzh between his home file directory,
common file directories associated with his problem number,
or a public file directory.

Usage

To switch to a common file directory:
As supervisor or library entry:

CAL N
ISX COMFIL,U4
PZE BUSY

Optional:

COMFIL TIA =HCOMFIL

N

ccntains the integer of the common file
directory desired. Zero is the user's hone
file directory.

It is no longer possible for a file directory
to be "busy®™ but the <calliny seguence is
preserved for compatikility. Contrcl will
always return to 2,4.

Unlike the o0ld file system, active files are
now not reset when a directory switch cccurs.

As library subroutine:

MAD: COMFL. (N) or EXECUTE COMFL. (N)
FORTRAN: CALL CONFL(N)

To switch to a public file directory:
As superviscr or library entry:

TSSFIL

IsX TSSFIL,Uu optional (TIA =HTSSFIL)
- PAR PROB -
- PAR PROG -~
- PAR LOC -

switches the user to the file directory named
by PROB PRO5. The user is p2rmitted to switch
into any of the following directories:

CISS FRCGRAMMER'S GUILE SEction AG.3.03 6/69 2

USERFIL

1) his home file directory

2) any public file directory

3) his current directory

4) any comson file on his problem nusber, if
he has common-file privilege

Any other values for PRCB and FROG will result
in an error. If the third argument 1is
sugplied, a transfer will be made to LOC;
otherwise, the supervisor will print an error
message and place the user in DORMNT status.

If the arguments PRCB and PROG are not
supplied, the user will ke switched tc ‘the
system public file directory, M1416 CMFLO4.
This directory is composed of links to certain
files in the system file directory which are
in read-only, protected moide. The record
quota of the TSSFIL directory is 0, so that
the user may nct create files after a call to
TSSFIL.

I'SX USRFIL,4 optional (TIA =HUSRFIL)
restores the user to the directory he was in
before the call to TSSFIL. If TSSFIL was not
called, USRFIL does nothing.

Note: the library entries, TSSFIL and USRFIL,
may be called from MAD or Fortran prograums.

(END)

i e s s s . . . e . o

! 4
£ 3
]
¢°
-
4¢]
9]
¥
©
2]
tn
¢
QO
ot
e
Q
4]
113
(]
.
W
.
(]
i~
o
[{Y
€
[}
—

Query file status

FSTAT, .FSTAT

Purpose

To obtain the mode and werd count of a specified file.

Usaje

As superviscr or library entry:

TSX JFSTAT,uU optional (TIA =H.FSTAT)
PZE FILNAM

As library subrcutine:

MAD: A
FCRTRAN: A

- FSTAT

FSTAT. (FTILNAN)
ESTAT (FILNAM)

If the file is not found, the superviscr disk
error grrocedure is initiated.

Upon return from FSTAT, the AC or A will contain zero

CEN

WDCNT

if the file was not found. Ctherwise, it will
contain a word of the form OPN WDCNT.

is the mode of the file, PZE is temporary, PON
is permanent, PTW is R1, PTH is R2.

(the address and tag) is the word count of the
file.

(END)

CTSS FRCGRAMMER'S GUTCE Section AG.3.08 Page 1

Identification

e o ol e s e i o

G2t the name of next file
GTNAM

It a program creates an unknown numkter c¢f files, assigns
them sequential primary nimes, and uses them in a push down
list, it 1s necessary to be able to determine the next
available primary name. GTNAM performs the search for the

n2xt available name.
Usage

As library subroutine:
FAP, MAD or FORTRAN *

A = GTNAM.($bCLASSS$)

GTNAM searches fcr the first file which doces not
exist in the series of primary names ...001
thru ...999 with secondary name CLASS; then
tries to delete the following file, 1if any;
and returns in A the first BCD primary name
available i1n the series.

(END)

¥7)
"
o
[}

n
'
-
b
=
(]
o

-
W
=
-
L
k)

n
1)
[p]
-+
-
[}
el

Ilsntification

Drop files from active status

.RESET, RESET

F

To remove all wuser's files 1in active status from the

superviscr's
Usaje

Core-B write

.RESET

As suparvisor

RESETF

list of active files.

arcund:
TSX .RESET,4

will remove all the user's active files fron
the active status. 2All files in active write
status will be lost. All temporary files in
active read status will be deleted. This call
will not remove the user's active files fron
the library sukroutines' list of active fi]les.

or library entry:
TSX RESELF, U4 optional (TIA =HRESETF)

will reaove all the user's active files fronm
the active status. All files in active write
status will be lost. All temporary files in
active read status will be deleted. This call
will not remove the user's active files fron
the library sukroutines' list of active files.

(END)

e e e — o —— — —

File status, change name cor mode, or delete
CHFILE, DELFIL, FSTIATE, STORGE, UPDATE

Purpose

With the new I/0 system, as with the old, it is possible to
change the mode or name of a file, to delete a file, or
query the system about the status of a file. If the entry
in th2 current file directory 1is a 1link, these routines
r2f2r to the actual file not the link entry.

(=]

sage

!

Change:
CHFILE. (PCLDNM1$,30LDNM25, NEWMOD , INEWNM1$, SNEWNM2S)

OLDNM1 OLLCNM2 is the name of the file which is tc be
changed (right adjusted, blank padded). This
file may not Le in active status at the tinme
ot the change.

NEWMOD 1s the desired mode of the file.

NEWNM1 NEWNM2 is the desired name of the file.
NEWNM1 NEWNM2 may not ke the same as OLDNM1
OLDNMZ2. To change just the mode, the new name
must be specified as -0.

Error codes:

03. Attempt to change M.F.D. or U.F.D. file

C4. File not found in U.F.D.

05. 'LINKED' file not found

(6. Linking depth exceeded.

C7. Attempt to change *PRIVATE' file of another
user

08. Attempt to change ' PRCTECTED' file of another
user

09. Record qucta overflow

10. File already exists with name *NEWNM1 NEWNM2'

11. Machine or System error

12. File in active status

Delete:
DELFIL. (3 NAME1$,3 NAMEZS)
DELFIL will delete the file NAME1 NAME2 from the file

directory and the space is immediately
available for use within the record qucta.

CTSS FRCGRAMMER'S GUILE Section AG.3.07 12/66 2

Brror codes:

03. File not found in U.F.D.

O4. °"LINKED' file not found

05. Linking depth exceeded

06. File is PROTECTED, PRIVATE, READ-CONLY, or
WRITE-ONLY.

C7. Machire or system error

08. File in active status

Status:
FSTATE. ($ NAME1$,% NAME23,A(8) ...8)

Upon return, the array A will contain the fcllowing
information as integers:

A(8) = length of file in number of worids

A(7)= MOLE of file: MODE is negative and the ‘'OR!
mocdes if the O0.F.D. entry is a link.

A(6)= STATUS of file (1-4)

A (5)= DEVICE on which file resided (1-3)

A(4)= Address of next word to be read from file

A (3)= Address of next word to be writtan into file

A(2) = Date and time file was created «c¢r last

modified, format of U.F.D.
Date file was last referred to and 'AUTHOR' of
file, format of U.F.D.

b
—_—

—
A

[}]

STATUS is 1 inactive

2 oper for reading
3 open for writing
4

open for reading and writing

(N.B. "Open" means "opened by any user", not merely "opened
by a caller".)

DEVICE is 1 1Low speed drum
2 [isk
3 1Tape

Error codes:

C3. File not found in U.F.D.
ou4. *LINKED' file not found
C5. Linking depth exceeded

Siza:
STORGE. (DEV ICE, ALLOT, USED)
STCRGE may be nsed to determine the number of records

allotted and used on a2 particular device_ by
the files of the current file directory.

3
-3
%]
W
At
=8
(@]
@
=2
a
=14
= 4
g0}
=k]
L
D]
cz
r<
0O
ta
tn
(o]
Q
ct
(28
Q
[+
o
(2]
[¥8)
[]

~
-
o
N
)]
(2}
[P

ALLOT and USED are 1integer variables which, upon
return, will contain the number of records
allotted and used, respectively.

(3. Illegal DEVICE specified
O4. Machine or System error

Current UFD:
UPDATE.
UPDATE causes the I/0 system to replace the user's

U.F.D. (FILE) and the track usage table on
the disk with the up-to-date versions which

are maintained in core-A. The file systen
dces this updating automatically and,
therefore, UPDATE shoull not be called by the
user.

03. Machine or System error

(END)

- — — s e o — ——

o 3
< AL A r>

T
4
s
u
Usage

Standard:

(]
<
-nd
-]
0]
-

[{Y
0

ic supervisor disk control routinz provided a

h
tandard error procedure as well as a handle by which the
ser may supply his cwn procedure.

If a disk error occurs and the user has not
specified an error return, the supervisor will

type:
ILLEGAL CALL TO XXXXXX. NO ERRCE RETURN SPECIFIEL

and then call DORMNT so that debugging tools may
be used.

User's ogption:

The user may add another argument to the <calling
sequence of any disk supervisor or library entry,
in which he specifies the location of his error
routine. TIf the prefix of this argument is PZE, a
diagnostic will be printed and control will be
transferred to the specified 1location with an
error code in the AC, If the prefix of the
argument is MEE, the diagnostic will not be
printed but otherwise action will be the same as
F£E. The error codes are:

Illegal calling sequence PZE 1
Tco many active files (.G. 1C) PZ3E 2
User not found in Master File Directory PZE 3
Available sgpace on module exhausted PZE 4
File not found PZE 5
Allotted track gquota exhausted PZE 6

The error ccde of 1, "Illegal calling Sequence™ may result
from any of the following error conditions:

de

Illegal call to the .WRITE routine ; this occurs
if the call to .WRITE references a file which 1is
in active read status, or a file in relative
read-vwrite status where a relative address is not
specified, or if a relative address is sgecified
for a file not in relative read-write status or an
A1 mode file in relative read-write status.

Illegal call to the .CLEAR routine; this occurs
if the call references a file in active read
status or relative read-write status.

CTSS

PROGRAMMER'S GUIDE Saction AG. 4. 01 Page 2

Illegal call to the .FILE routine; this occurs if
the call references a file in activa read status.

Illegal call to the .READK routine; this occurs
if the call references a file not in active read
status, or if a relative address is specified for
a file not in relative read-write status.

Illegal call to the .ENDRD routine; this occurs
if the call references a file 1in _neither active
read nor relative read-write status.

Relative address too large for file; this occurs
if an atterpt is made to write into a relative
address greater than the 1length of the file
referred to.

File word count zero; this occurs on a call to
.DUMP with a wcrd count of 2zero, or a call to
«.FILE where no words have keen written; the disk
routine is so crganized that a file with a zero
word count may not exist.

Tried to rename read-only class 2.
Attempt to delete file in read-only mode.
File NAME1 NAME2 is not an active file; this

cccurs if a call to L.WRITE, FILE, .READK, or
.ENDRD references a file not in active status.

(END)

1]
[p]

o
a»
%]
(4=
(]
I
tg
1¥7]
1]
(p]
(R d
)=
Q
3
H
w

.02 3/65 1

< 3
=
ta
o

-
tn

Lb]

el JTal o]
Cioo

Identification

Library disk errcr procedure
SETERR, SNAF, RECOUP

Purpose

Th2 1library disk subroutines provije a1 standard error
procedure as well as handles by which the user may ©provide
his own error prccedure.

The library disk subroutines use a common routine which
maintains an active file table. If an unaxpected error
occurs, the offended routine calls SNAP which prints an
error message and calls RECOUP which in turn calls EXIT.
EXIT is able by means of the active file table to frroperly
CLOSE any active write files and save core so that the user
mi1y th2n use debug facilities. RECCUF and SETERR are
provided Sc that the user may supply his own error
procadure.

Usaje

SETERR:
MAD: EXECUTE SETERR. (-RETURN-,-ERROR-)
FCRTRAN: CALL SETERR (-N-,-ERRCR-)
FAP: TSX SETERR, 4
-PZE RETURN-
-PZE ERROR-

SETERR wmodifies SNAP so that if SNAP is called, ccntrol
will be transferred accordiny to RETURN without
disturbing any machine conditions.

RETURN 1is the error return location to which the
library disk routines should transfer for
unexpected errors. No message will be printed

frcm SNAP.
ERBCR is the 1location 1in which the 1logical
accumulator will be stor=d i.=s., the error

code from the disk routine.

N Should be set by an ASSIGN statement 1in
Fortran prcgrams in order to provide the error
return.

If only one argument is provided to SETERE, it will be wused
as the errcr return argument.

If no argument is provided to SETERR, the standard error
procedure will be reinstated.

S

Every call tc SEIERR supercedes the previous one.

CTSS ERCGRAMMER'S GUIDE Section AG.4.02 9,65 2

RECOUP:
CALL REZOUP (ERCODE, IR4 ,-IND-)

RECOUP may be supplied by the user 1if he wishes to
provide his own procedure. If no user RECOUP
is provided, the 1library version of RECOUP
merely calls EXIT.

ERCODE <contains the logical AC frcm the offended disk
routine, or the error code from (IOH).

Error codes:

1 Illegal <control character in format
statement.

2 Illegal character in data field.

3 Illegal character encountered in octal input
data.

IR4 (decrement) contains the contents of index
register 4 at the time of the call tc SNAP.
It should be used to reset 1index register 4
before returning to the I/0 routine.

IND contains the contents of the sense indicators
at the time of the error in the disk routine.
This argument is not present in the call from
(I0H).

Sense indicators contain (decrement) the return
locaticn if processing is to be continued.

SNAP:
The library disk subroutines normally supply SNAP
as the arror exit to the supervisor disk rcutines.
The call is, therefore, a TRA instead of a TSX and
the AC contains the disk error code.

If SNAP has not been modified by SETERR, it will
call PRNTER to print the standard error eessage,
then print the followiny message and call RECOUP.

XX CALLED SNAP FROM ABSCLUTE LOC NN. RECOUP
CALLEL.

XX is the name of the disk routine in which the
error occurred.

NN is the absolute octal location of the call to
SNAP.

(END)

«
~3
[8p3
tn
r
o]
(@]
[}
o
LE]
< 4
et
s
to
-
(1M
(%)
<
(5]
t3
ret
3]
)
(9]
o+
e
Q
3
b
(%]
=
(3]
(V9]
o
1Y
[Ve]
1]
—

Ilentification

End-of-file procedure for library subroutines
EOFXIT, SETECF, WRLCNP

EOFXIT provides a common end-of-file procedure for all
library subroutines which read tape or disk files. The user
is supplied a handle whereby he may supply his own
2nl-of -file procedure if he wishes.

Method
Th=2 standard library procedure 1is to call ECFXIT upon
ancounta2ring an end-of-file. EOFXIT prints a message and
calls EXIT. The user may call SETECF before reading and
thus modify EOFXIT to return to the user's eof rprocedure
rather than calling EXIT.

Usaje
EOFXIT:
The library routines call EOFXIT by:
ISX EOFXIT,4
PZE FILNAM
EOFXIT prints the message "END OF FILE READING NAME1
NAME2", It then calls EXIT, unless it has been
mpdified by SETIEOF.
SETECF :

FAF: TISX SETEOF,4
-PZE EOF-
-PZE FILNM1-
-PZE FILNM2-

MAD: EXECUL'E SETEOF. (-EOF-,-FILNM1-,-FILNM2-)
FORTRAN: CALL SETEOF (-N-, -FILNM1-, -FILNNZ2-)

SETEOF will modify EOFXIT to return to location EOF
in the user's program if an end-of-file 1is
encountered. If there are no arguments, the
standard ecf procedure is restored. Fach call
to SETEOF supercedes any previous call.

ECF 1is the 1location of the user's end-of-file
prccedure.

N must be set by an ASSIGN statement in Fortran

CrSS ERCGRAMMER'S GUICE Section AG.4.03 Page 2

i.e. ASSIGN 1 TO N
GO 10 N, (1,2)
i ASSIGN 2 TO N

-

M * o

2 of procedure

FILNM1,FILNM2 are the locations in which NAME1 and

WRDCNT:

NAME2, respectively, will Le stored by EOFXIT.
If FILNM2 is missing, the lojical tape number
will be stored in FILNM1. I1f both FILNM1 and
FILNM2 are missing, a single argument will be
assumed to be EOF or N.

FAP: TSX WRDCNT,U or TSX WRDCNT,4

PZE LOC STg LOC

MAD or FORTRAN: CALL WRDCET (ICC)

WRDCNT

LCC

can be called cnly after an end of file was
encountered by BREAD or VREAD.

will contain the number of words transmitted by
BREAD as a right adjusted integer. If WRDCNT is
called by a FORI'RAN program, the integer will be
in the decrement of LOC.

(E ND)

e —— - v—— —

Terminal procedure.
EXIT, EXITM, CLKOU1, ENDJOB, DUMP, PDUME

1o

urposs

To provide a common routine for the normal 1logical
tarmination of all programs. The option 1is provided for
placing the fprogram in CORMNT status so that ©post mortem
debugying may be used.

Usaie

EXIT, CLKOUT and ENDJOB are synonomous.

EXECUIE EXI 1.
EXECUTE CLKOUT.
EXECUTE ENDJOB.
END OF PROGRAM
ENDP OF FUNCTION

The message "EXIT CALLED. FM MAY BE TAKEN" will be
printed. EXIT calls CLOUT to <close all active
files. If no library routines <calling the file
system exist in the program, a dummy CLOUT will be
loaded from the likrary with EXIT.

EXECUTE DUMP.
EXECUTE PDUMP.

The exit message will be printel with the name
DUMP or PDUMP substitued for EXIT.

Any of the above calls cause all active files as
defined by library subroutines to be properly
closed and then a transfer to DORMNT.

EXECUTE EXITHM.
The message "EXITM CALLED. GOODBYE"™ will be

printed; active files will not be closed;
transfer will ke to DEAD.

(END)

|~
wn
o
Y
vo)
D
=

——— . — ———— ——— —

Error Exit from Math Library Routines
LDUME

Purpose

LDUMP is a subprcgram to which some 1library math routines
transfer upon encountering an error. The version of LDUMP
which is in the library is a call to EXIT, but the user may
provide his own version of LLUMP to provide recovery action.

Usaje

The calling sequence to LDUMP which is wussd by the math
routines is

FAE: CLA ARG1
LDQ ARGZ2
ISX LLCUMP, U
PZE NAME
TRA IN TC REFEAT RCUTINE
TRA OUT TO EXIT FROM ROUTINE
IN LXD TIR4, 4
TRA 0,4
our LXLC IR4, 4
TRA 1,4

ARG1 ccntains the first argument to the math
library subprogram.

ARG2 contains the second arqument, if any, to the
math library routine.

NAME ccontains the BCD name of the offending
routine.

IN is the return of 2,4 which the programmer
should use if he is writing his own LDUMP and
wishes tc repeat the offended subprogram
after he has corrected the error.

CUT 1is the return of 3,4 which thke prcgranmer
should use if he wishes to return from the
offended routine without repeating 1its
calculaticns.

(END)

D]
tn
Q
ct
3
[p]
O
o
i~}
[28]
<]
o
—b

AN

Identificaticn

Current I/C system ercor procedures
IDDIAG, FERRTN, PRNTER, PRDIAG

Purpose

There are three different ways that errcrs from the I,0
system can be handled: First, if the user does nothing, the
1/0 system will print a standard message and <call DORMNT.
Second, the user may call FERRTN to establish a single
ge2naral error return for all I/0 system errors. Third,
avary call to the I/0 system will accept two additicnal
arguments which specify an error return and a location into
which the error code will ke stored. These arguments agply
only to the call in which they appear; that is, if a general
r2turn has been specified, it will ke overridden for and
only for calls in which error return argum2nts occur. The
subroutines included in the I/0 (or file) system are those
listed in Secticn AD. 2.

Usage
1. Standard:;

If an error is encountered by tha TI/0 system
and the user has not supplied an error return

via FERRTN or via the optional additicnal
arguments to the I/0 system subroutine call,
the I/0 system will type a standard message
and call DORMNT so that debugginy tools may be
used. The typed message will include the
information available from IODIAG. Open files
will not be closed.

2. Single return:
MAD: OLCERR = FERRTN.(ERRLOJC)

FAP: TSX FERRTN, U4
PZE ERRLOC {nota2 PZE, not TXH)
SLW OLDER

FERRTN sets the standard I/0 system error return to
be location ERRLOC.

ERRLCC 1is the location to which control shculd be
transferred if the I/C system detects an
error. Upon entry to ERRLOC, index register 4
will contain the value set by tha call to the
I,/0 system that caused the error to be
detected. To continue execution by ignoring
the 1,0 call, transfer to 1, 4. To continue
execution Lty repeating the 1/0 call, transfer

3.

u.

S.

AO

B.

C1SS PROGRAMMER®S GUIDE S2ction AG.4.06 12/69 2

CLDERR

If ERRLOC is zero, the standard I/C error
rrccedure will be reinstated.

Upcn return frcm FERRTN, the AC will contain
the previous setting of the system error
return. Each call to FERRIN supercedes any
previous call.

Individual returns:

Each call to the I/C system entries will
accept two additional arguments at the end of
the call. The first is the location to which
control is to te transferred if an error 1is
encountered by the I/C system. The second, if
specified, is the location into which the
error code will be placed by the I/0 system.

Diagnostic informaticn:

IODIAG

IODIAG., (A{(7)...7)

may be called to obtain specific 1information
about the I/0 system error. Upon return, the
array A will contain the following
information:

A(7)= Location of call causing the errcr

A (6)= BCD name of entry resultiag in error
A(5)= Error code

A (4)= Input/Output error code (1-7)

A(3) = NAME!1 of file involved in error

A (2)= NAME2 of file involved in error

A(1) = Location of file system where error was

found (of no use to user)

Frinting of diagnostic:

Subrcutine: PRNTER. (-MASK-,-FCN.-)

Command:

PRNTER

MASK

PRNTER - MASK- .
The subroutine PRNTER may be called atter an
errdr in the I,0 system in order to print the
information that is availakle from IODIAG. 1In
other words, PRNTER is a routine which <calls
IOLIAG and formats and prints the information.
For usage cf the command, see AH.11.01.

If specified, bits in PASK call for the
printing of diftferent parts of the output

FCN .

B3AMMDDEeEC T NHOTNRD Carm &3 ~An A/ N nc 1770 Pl
nalitliien QD2 I VLUV L ST w LUl NJe s VU t&y V27 >
message. The messige parts and their

corresponding Ltits are:

200 the word * ERROR®

100 numeric error code
040 diagnostic

020 file name

010 routine name

004 location callad fronm
002 file system location
001 carriage return

If MASK equals zero or is not given, default
MASK of 375 is used.

If a function name is given, then instead of
printing, PRNTER calls FCN. by

EXECUT'E FCN. (BUFF,Z2)

where Z is the highest subscript of the
array BUFP, 2nd BUFF(2Z2)... EUFF (1)
contains the (BCD) message which would
otherwise have been printed. The called
function could then, for example, write
the errcr message into a file and
continue execution.

For the benefit of FAE subroutines, the
calling sequence is in fact

ISX FCN, 4
TXd B,,*'z!
IXH =z

where z = messaye size, B = BES 1location of
ressage buffer.

C. Subroutine: PRDIAG.

PRDIAG

Error codes

Standard

will format and print the information supplied
by TIOLIAG. No descriptive diagnostic 1is
prcvided by PRDIAG; it is offerad mainly for
those situations where core space 1is at a
premius.

error codes:

There are a few standard error codes which may
be returned frcm any of the I/C system calls.

CTSS PROGRAMMER'S GUIDE Section AG.4.06 1269 4

001. Illegal calling sequence or Protection
violation

002. Unauthorized use of priveleged call

100. Error reading or writing U.F.D. or M.FE.L.

101. U.F.LC. or M.F.D. not fcund, Machine error

Input/cutput error codes:

3‘
4.
Sa
6.

In many of the write-ups of the calls to the
I,0 system, one of the possible error codes is
labeled Input/Output error. For the most part
these errors are detected only after the 1I/0
has been completed and will, therefecre, be
regorted one call late. The actual error may
be diagnosed by the value of A(4) after a call
to IODIAG.

Parity errcr reading or writing file
Fatal error reading or writing file, cannot
continue
Available space exhausted on this device
rape file not mounted or not available
Illegal operation on this device
Physical end of tape sensed while writing
or
Logical End of Tape of tape passed trying to
cren a file
or :
End of tape file encountered unexpectedly.

(END)

w
3
]
(@]
(]
C
aw
o J
£ 4
to
o
-
in
(%]
=
b=
(9
[¢5]
[¥71
[}
[§]
o
>
G
q
%2l
(o]
-
WX
N
>
N
—

[BN
»
»

o i o — — e o S f

Write BCD pseudc tape with format conversion
.PUNCH, .PNCHL, .TAPWR, (SCH), (STH), (STHM)

Purpose

The MAD and FORIRAN BCD tape and punch statements are
compiled as calling sejuences to litrary subroutines. These
subroutines then simulate the writing of tape files by
calling the library disk routines.

Usagje
MAD: PUNCH FORMAT FPMT, LISI FAP: TSX .PUNCH,4
EUNCH ONLINE FORMAT FMT, LIST TSX . PNCHL,4
WRITE BCD TAPE N, FMT, LIST TSX L.TAPWR,U
FORTRA N: EUNCH FMI, LIST TSX (SCH) ,u
WRITE OUTPUT TAPE N, FMT, LIST TSX (STH) , 4

The FAP calling sequence comfpiled for MAD projrams is of the
form:
TSX .PUNCH,4 or TSX .TAEWR,U

STR N
S1R Fn71,,DIR or STR SYMTB,DIR,FMT
OPS
SI'R LIST,,ENDLST
OPS
STR O

Th2 FAP calling sejuence compiled for FORTRAN programs is of
the form:

CAL N

ISX (STH) ,4

PZE FMT,,SWITCH

OPsS
LDQ LIST
STR SHWI
OPS

TSX (FIL) .4

.PUNCH, .PNCHL, and (SCH) create or appand to a pseudo
tape line-marked file named .TAPE. 3

.TAPWR, (STH), and (STHM) create or append to a pseudo
tape line-marked file named .TAPE. 'n'

N contains the number of the pseudo tape to be
used (decrement for FORTRAN)

CES may be indexing instructions.

CTSS PROGRAMMER'S GUIDE Section AG.5.01 8/65 2

SWITCH is zero if the format 1s storeld backwards and

IST

L

DIR

re

non-zero> i1f the format is stored fcrward.

O

) .

[}

standard list processing

e
w
[}
D

< 2

LST are
E 1, 2,

w

N
C

It zero, the format is stored torward. If
one, the fcrmat is stored backward.

SWT 1f zerc with I format, the value is taken from

SYMTB

(FIL)

the decrement of location LIST. If ncn zero
with I tormat, the value 1s taken from the
address of location LIST.

in a MAD call, refers to the start (bottom) of
symbol table for this routine.

provides Ltlank padding; with (SCH) to 80
characters and with (STH) to 132 characters.

Disk errors will evoke the standard 1library
disk error procedure and format errors call
RECOUP.

(END)

&
3
[47]
tn
o
rc
C
(%]
e
ES
=
2
P}
to
-
tn
02
[4]
r~
L)
(]
n
[
(9]
ot
'd.
¢
.
o
e
e
~
[#)
wun
—

Identificaticn

——— o . it

R2ad1 BCD pseudo tape with format conversicn
.TAPRD, (TSH), (ISHM)

MAD and FORTRAN BCLC tape read statements compile as «calling
sequences to library subroutines which in turn call the
library disk routines to read pseudo tape files from disk.

Usaze

MAD: READ BCD TAPE N, FMNT, LIST
FAF: TSX .TAPRL,U4

SIR N

SI'R FMT,,CIR or STR SYMTB,DIR,FMT
opPs

STR LISTr,, ENDLST

oPsS

STR O

FORTRAN: READ INPUT TAPE N, FMT, LIST
FAP: CAL N
TSX (TSH) ,4
PZE FMT,,SWITCH
0PS
SIR
STQ LIST
OPS
I'SX (RTN), 4

(TSH) and (T'SHM) are synonymous.

(rsiH), (TsHM), and .TAPRD read records from the disk
file .1APE. n according to tha format and
list. The file may be 1line-marked c¢r fixed
length of 14 wcrds.

N contains the tape numker (decrement for
(ISH)) .

OPS may be isdexing ipstructions.

SWITCH of non-zero indicates the format 1s stored
forward.

DIR If zero, the format is stored forward. If
one, the format is storad backward.

LIST,,ENDLST are standard LIST processingj (see MOVE1l).

CrsS ERCGRAMMER's GUILE

SYNMTE

Section AG.5.02

in a MALD call refers to the start
the symbol table for this routine.

9,65

(bottom)

2

of

—
o]

~—

(@)
(&]
%]
tn
2]
o]
(@]
(o]
to
>
=
j& 4
k=
to
-
921
[]
2
(5]
t
red
n
1]
O
[
..4
o]
>
o
"
n
[faw]
(WS}
bl
Y
Vel
D
—

Identificaticn

Rzad and write binary pseudo tape.
(STB), (TSB), (WLR), (RLR)

- e o

FORTRAN programs which use tinary tape statements may be
compiled as background and run as foreground since the
library subroutines will simulate the tapes as disk files.

Rzstrictions

The subroutine .RBIN called by binary tape statements in a
MAD or MADTRAN translated program is not currently available
in the library.

FORTRAN: WRITE TAPE N, LIST
FAP: CAL N

ISX (STB), 4
OPS

LCQ LIST

SIR

OFS

TSX (WLR), U

FORTRAN: READ TAPE N, LIST
FAP: CAL N

ISX (ISB}, U
OPS

SIR

STQ LIST

OFS

TSX (RLR) ,b

N contains in the decrement the number of pseudo
tape.

CES may be indexing instructions.
(TSB) and (STB) read or write the number of vwcrds

sgecified in the LIST from the pseudo tape
file .TAPE. 'n' bty calling BREAD or BWRITE.

SS EROCRAMMER'S CUIDE Section AG.5.04 Page 1

Pseudo tapes; backspace, write end of file, rewind
.BSF, .BSR, .EF1, .RWT, (BST), (EFT), (RWT)

MAD and FORTRAN fprograms which refer to tapes are assigned
1isk space which is used to simulate the tape. These pseudo
tap2 files may then be referred to by the standard MAD and
FORTRAN statements which compile as callinjy sequences to the
appropriate library subroutines. These library subroutines
then simulate the functicns as far as possible on the pseudo
tap2 files.

Rzstrictions

The disk pseudoc tape files may not be backspaced and
th2r2fore the backspacing sultroutines do nothing but prlnt a
console message "BACKSPACE TAPE IGNORED".

Usage

MAD: BACKSPACE FILE OF TAPE N
BACKSPACE RECORD OF TAPE N
ENC OF FILF TAPE N
REWIND TAPE N

MADTRN: BACKSPACE N
ENCFILE N
REWIND N

FAP: TSX .BSF,4 or 1TSX LEFT,4 or TSX . RWT,4
I'XB N

FORTFAN: BACKSPACE N
END FILE N
REWIND N

FAF: CAL N CAL N CAL N
TsXx (BSsT) ,4 TISX (EFT).,4 TSX {RWT) , 4

.BSF and .BSR are syncaymous and simply transfer
to (BST).

(BST) does nothing kut print the console nmessage
"BACKSPACE TAPE I5NORED" and return.

.EFT and (EFT) close the pseudo tape file .TAPE.
'n' by calling the library subroutine FILE.

CTSS PROGRAMMER 'S GUIDE

. RWT and
'n'

Section AG.S.0U4

(RWI) close the pseudo tage
if it is active.

file

Page 2

.TAPE.

—~~

5]

-4

l =)

~—

SUIDE Section AG.5.05 12769 1

Us2 of tapes in foreground
MOUNT, UMOUNT, VERIFY, LABEL, TAPFIL

Purpose

Tip2s may be read and written by foregrcocund users either
with or withcut a ccnscle (PIB). The major difference
batwean the user-I/0 system interface for disks and tages is
that messages must be relayed to the machine operator to
mount and unmount certain tape reels. Otherwise the <calls
are the same calls as described for the new I/C systen.

Restricticns
Usars wishing to ase tapes must have an
administrative-allotted tape quota. Unlass otherwise

sp2cified (by user messages to the operatcr) reels will be
mounted with write rings.

Usage
Mount:
MOUNT. (-CHAN-, UNIT, MESSAG(N) ...N)

MOUNT must be used tc direct the I/D0 system to mount
a reel >f tape on the unit to be subsequently
referred tc as UNIT.

CHAN specifies which <channel is desired. "
specifies channel A; '2°' specifies channel B;
'0' or '-0' indicates "no preference".

UNIT specifies a logical wunit number (0 through
32767) by which the user will refer to this
reel in other calls.

MESSAG 1is the BCLC message which will be printed for
the operator in conjunction with the TI/0
system's mountinyg instructions. The message
should contain information about "file
prctecticn" (write ring or no write ring) and
reel identification. It should be stcred
"fcrwards" in memory,; that is, the first word
of the message should be in the
highest-subscripted location of a MAD array.
{This is not the order wtich MAD's VECTOR
VALUE's statement normally furnishes, and it
must be prcvided for.)

CITSS PROGRAMMER'S GUIDE Section AG.5.05 12,69 2
N is the numter of machine words in the message
(NJLE.2C) .
earror codes:

C3. No tape unit availakle on specified channel.
Q4. Tape file already exists.

Unmount:
UMOUNT. (UNIT,MESSAG (N)...N)
UMOUNT 1is used tc direct the I/0 system to dismount
a tape and free the corresponding tape drive

fcr other use.

UNIT 1is the logical wunit number as defined by
MOUNT .

MESSAG 1is the BCL message which will be printed for
the operator along with the TI/0 systenm
unmount ing message. It should include
information akout what to do with the reel.
(See discussicn under MCUKT.)

N 1is the number of machine words of MESSAG
(N. LE. 20).

error ccde:

03. Tape file in use,

Labeling: LABEL. (UNIT, LABL(N) ...N)

LIABEL must be used to write a lab2l on a new tape
before it is opened for writing.

UNIT has previcusly been definel by a call to
MOUNT.

LABL is the wunigue 1label for this reel which
provides identification and verification by
the user. (See discussion of array order
under MOUNT.)

N is the length cf LABL (N.LE.UW).
Error codes:

03. Tape file does not exist.
O4. Machine error or bad status.

CTSS ERCGRAMMER'S GUIDE Section AG.5.05 12769 3

(5. Mount failed - illegal operation

(key code 11).

06. Mount failed - operations difficulties

(key code 12).

Label verificaticn:

VERIFY

N

N

T, LABIL{N}...N)

YUPRTEV (INT
VERIFY. (UNI

must be called before opening a tape file for
reading in order to check the LABL on the reel

mounted on UNIT. This 1insures that the
operator has mounted the correct reel, The
file may not Lte opened until a correct

verificaticn has been made.

is the length cf LABL (N.LE.4).

Error codes:

03. Tape file does not exist.
04. Machine error or bad status.
05. Mount failed - illegal operation

(key ccde 11).

C6. Mount failed - operations difficulties

(Key code 12).

C7. Labels do not match.

TAPFIL.($ NAME13,3 NAME2$, UNIT, FILENC)

TAPFIL

FILENO

must be called to create an entry for the file
in the U.F.D. When a tape file 1is created,
its name, unit number, and file number are
entered in the U.F.D. The file may then and
later be OPENed for reading on the same UNIT
number without a call to TAEFIL. If a tape
file was created wunder a different file
directory, TAPFIL may be used to enter it 1in
the current file directory. If a tape file
was created on one UNIT and is to be read on a
different unit, it must be DELPILed from the
U.F.D. apnd then reentered with the new UNIT
number by a call to TAPFIL. Any nusber of
files may exist on one reel, There is a
restriction of one reel per file.

1S a sejuence number (integer or integer
variable) used to specify which file on the
reel will be referrel to as NAME1 NAME2. If a
user wishes to append a file to a reel, FILENO
must be 0" or "-0", When the file is CPENed,
the file system will assign the proper FILENO.

CTYSS PROGRAMMER'S G UIDE Saction AG.5.05 12/69 4

arror codes:

03. File already exists.
gu, fiachine cU system errol.
05. User has no tape Juota.

Aijitional Information

While the calls to the file system for tape usage wmay 1look
like other file system calls, there are some differences
bz2twe2n tape and disk/drum usage. The salient ones are
listed here.

Mount-tape requests are not gueued. Thus before any MOUNT
raquest is considered, the tape operator must have comglied
with any previous MOUNT request. Calls to MCUNT will result
in "Tapa-wait" status if another mount is already pending.
Calls to LABEL or VERIFY when the tape in dquestion is not
y2t mounted (mount pending) also result in tape-wait status.

It for some reason (e.g., no tape drive available) a
tap2-mount cannot be performed, the user is informed via an
error return when he tries tc LABEL/VERIFY. Since certain
tables are initialized during the mount process, these must
always be cleared - even when the MOUNT does not succeed.
I'h2 clearing occurs the first time LABEL or VERIFY, 1is
called if the MOUNT did not succeed. If the wuser changes
his mind and does not call LABEL or VERIFY after requesting
a MOUNT, he then paust call UMOUNT. UMOUNT is automatically
called during LOGOUT.

Should a user Quit after a MOUNT request but befcre the
required call tc UMOUNT (a bad practice), a tape drive will
b2 us2lassly assigned. The tape operator can remedy this
difficulty by depressing 1 certain set of console keys. The
tap2 will then be dismounted automatically.

A tap2 file must be opened either for reading or for
writing, not for both; record numbers must be consecutive
during reading or writing. Attempts to rewrite a tape file
will ra2sult in an error. When the physical end of tape 1is
reached, the file being written must be closed. Moreover,
th2 ra2cord being written is not retrievakle from the targe.
Consequently, the user must have the tapa unloaded (call
UMOUND) and a fresh tape mounted (calls tc MCUNT and LABEL).
The writing can then be resumed in a new file by TAPFILing,
OPENiny the new file and then writing that 1last record
aJjain. Fhysical records on tape are in tinary mode and are
433 (decimal) words long (except the last record of a file,
which may be shorter). The first word contains the record
number and, for the last record, the word count of the
racord.

(@}
]
n
¥2]
3]
o
o
9]
T
[
=
[5=]
£]
-
N
(1Y)
2
[}
%]
¥}
w
Q
ot
P
Q
=]
3
1]
W

[}

Once a tape label has been successfully created or verified,
subseyu2nt calls to VERIFY or LABEL are ignored. This is an
outgrowth of twc provisicns. First, it seemed a good idea
to allow rapid successive calls to VERIFY in case the user
wanted to search a list of label <candidates. Seccnd, to
expedite file retrieval performed by the operations staff,
it was necessary to allow superfluous calls to VERIFY, cnce
a tape had been successfully verified.

Tape usage is not multi-programmed. Thus a user spins tape

only wha2n his program is running in «core B. While this
situation is not as bad as it could be (tape 1I/0 is
p2rformed with interrupts), it okviously represents an

inherent simplification in our first effort to inccrporate
tapas as foreground I/O0 devices.

Format of Tapes
BTL (header label)
End of File mark
Data File 1
End of File mark
EOFL (end cf file label)
End of File rark
BI'L (hzader)
End of File

Data File 2

Data File n

End of File mark

ECFL

End of File mark

EOLTL (end cf lcgical tape 1label)

End of File rark

CrsS EECGRAMMER'S GUILE Section AG.5.05 12/69 6

Fcrmat of BTL

Word(s) Contents Description
1 GEbb60 Words 1-2 constitute
2 ObETLEL Beginning of Tape label
3 MITMAC .
4 000000
5 XXXXXX File number on
tape (in binary)
6 000000
1 XXXXXX Date file created
(file systenm format)
8 XXXX XX Mumber of days file
is to be retained
(usually « . . 999)
9-10 XXeooX File nanme
11- 14 XXeooX User supplied label

The only infcrmation currently read by Tapa Strategy on a
pra2viously created tape file is words 1, 2 and 11-14, The
rest may be apprcpriated. '

Fcrmat of ELTIL

1 LEOLT L
2-1u 0000-0

Fcrmat of EOFL

1 bbEOFL
2 Number of records in data file (bizary
int eger)
3- 14 €CC000

Fermat of Data_File i

Fil2 1 consists of 433-word records where

word 1 (Address of first word) =
number of the record within
this file.

(Cecrement of first word) = 0
unless this is the last record
of the file. Then it equals the
number of words in this last rec-
ord excluding word 1.

words 2-433 User supplied data.

(E ND)

W2
[4=]
[2a]
[$]
{7
2]
(1Y)
(9]
(g
™~
[#}
4]

B
73]

e R e —m———

Program status
DEAD, DORMNT, GETILC, FNRIN

Purpose
To remove a program from active status and place it in dead

or lormant status and to be able to know the locaticn of the
last call to DORMNT.

Usaje
DEAD: as supervisor cr library entry:
TSX DEAD,4 optional (TIA =HDEAL)
DEAD returns contrcl to the supervisor and places
the user in dead status. Pachine conditions
are not saved and memory bound is set to zero.

DORMNT: as superviser or library entry:

ISX TORMNT, 4 optional (TIA =HDORMNT)

DOEMNT returns control to the supervisor and rlaces
the user in dormant status. Machine
conditions, status, and memory bound are

saved. If the START command is issued, control
returns to 1,4, If a new program is read 1in,
the machine ccnditions, status, and memory
bound are overwritten.

GETILC: as supervisor entry:
I'SX GETILC,u4 (TIA =HGETILC)

Upon return, the AC will contain the value of
the instruction location counter at the time
when the user last entered dormant status.

FNRTN: as supervisor entry:
ISX FNRTN, 4 (TIA =HFNRTN)

FNRTN returns the user to dormant status and resets
the user's instruction location counter to the
value it had when he last entered dormant.

Rastrictions

DEAD, DORMNT and FNRIN result in an automatic logout if
called trom FIB.

CTSsS PROGRAMMER'S GUIDE Section AG.6.01 12/69 2

DEAD, DORMNT and PNRIN may result 1in the execution of a
command (subsystem), depending on the settings of the user's
subsyster status wcrds and options. Refer to sections
A3.8.05 and AH.10.03 for detaiis.

(ENT)

— e e o o e e e e e s e e

Interrupt execution for specified time
SLEEFE, WAIT

Purpos

Allow a user program to place itself 1in dormant status,
input-wait status, or timer-wait status, and be restarted
automatically after a sgecified time.

Usaje

Pa2riodic dormancy:
As a supervisor or likrary entry

CAL =n
TSX SLEEP, 4 (TIA =HSLEEP)

Tha program 1s placed in dormant status, and 1is
restored to working status after 'n' seconds have

passed.

San2ral form:
As a sufpervisor or library entry

WAIT.(MODE, N)

TSX WAIT,U (TIA =HWAIT)
EAR MODE
PAR N

N PZE 'pe

The program is placed in a waiting status as specified
by MCLCE, and will be restarted after 'n' seconds have
passed. (If *n' is 0, it will not be restarted.) MODE
is interpreted as follows:

0 - Timer-wait status: the program will be restarted
after 'n' seconds. No <commands are accepted.
Input 1lines are saved; the program 1is not
restarted vhen input iines arrive.

1 - Input-wait status: the prograr will be restarted
after 'n' seconds have elapsed or when an input
line is completed. If 'n' is zero, the progranm
will be restarted only when an 1input 1line 1is
comfpleted.

CTSS PBOGRAMMER'S GUIDE Section AG.6.02 12769 2

2 - Dormant status: the program will be restarted
after 'n' seconds. An input line while dormant
is interpreted a command. This mode is

as
egquivalent to SLEEP

(END)

4
x
ta
]
-
(€4}
Q
(2]
I
rn
[¥2]
(D
(o]
-
'.4
©Q
e}
1=
L]
)]

4

Intarrupt levels
GETBRK, SETBRK, SAVBRK

Purposs

In ordar to allow a program to ©Le interrupted from the
console but continue running in some other section, programs
m1y be organized to run on different interrurpt levels.

R2strictions

Command level is 0. Levels may be dropped to the maximunm
d2pth of 3.

— e ——

Command level and a program initially placed in working
status are at intercupt level O. A program may drop the
interrupt level and set the entry point for each 1level,
Durinjy axecution, the 1level may Lte raised either by a
program call to the superviscr or by the user sending the
intarrupt signal. The interrupt signal causes the interrurpt
level to be raised by 1 and control to be transferred to the
2ntry point previonusly specified by the program.

An interrupt at level O will be ignored, (i.e., an interrupt
cannot be used tc QUIT). Each interrupt will cause ‘the
supervisor tc print INT.n. where n is the 1level to which
control is to be transferred.

Usage
SETBRK:
as supervisor or library entry:
TSX SETBRK,U optional (TIA =HS ET ERK)
PZE ‘'loc!

SETIBRK sets the interrupt entry point for the current
level to the value of 1lcc and drcps the
interrupt level Lty 1.

SAVBRK:
as supervisor or liktrary entry:

IsX SAVBRK, 4 optional (TIA =H SA VBRK)

SAVBRK raises the interrupt level ty 1 and returns in
the AC the entry point corresponding to the
level just entered. If SAVBRK 1is called
within level O, the AC will be zero.

CT'sS FHRCGRAMMER®S GUIDE Section AG.6.03 Page 2
GETBRK:

1S supervisor or library entry:

18X GEIBRK,4

cptional (TIA = HGET ERK)
Upcn return, the AC will contain the value of

the i1nstruction location counter at the tinme
the user last "interrupted®".

(E ND)

[fp]
[4]
Pt
e/
<>]
42}
[¢]
(¢}
o+
rd-
Q
3
o
(4]
o
o
=
o]
I
v$)
O
-

-
-

Identificatich

Storage Mag
STOMAP

Purpose

To print a stcrage map giving the entry names and locations
ot all subprograms in core B.

Usage
As library subroutine:
IsX ST@MAP,U4
The subprogram origin and the entry names and
locations will be printed fcr all subprograms

in core-B.

(END)

CTCCS CROACDAMMEDYGS CNDTNDE Sactinn A 6
A & AT N AV L1 & - & - ~

(%] dra R LV Vo S W e S e

(%2l
o
W
1>
-

u3

Idsntification
Floating Point Tracg
.SETUP, (FET), (EFr'M), (LFTM)

Purpose

To provide a means of initializing for, interpreting,
racovaring from, or flushing the program because of
floating-point coverflow or underflow.

Wwhan the 7094 is operating in floating-point trap nmrode, a
tloating point operaticn which causes overflow or underflow
will also cause a machine trap. The subroutine (FPT)} will
interpret the trar and take appropriate action. Sonme
initialization must be done Lkefore the trap occurs tc enable
(FPT) to interpret the traps. .SETUP and (EFTM) are used 1in
th2 1initialization.

Usage

Mad and Fcertran both automatically compile a calling
saquence to .SETUP at the beginning of each main program. It
need be executed only once per progranm,

TSX .SETUP,4

The mnultigple tag mode (3 index mode) 1is
entered. Location 8 is set to TTR (FPT). The
flcating-pcint trap mode is established by a
call to (E¥Frm).

A floating-point underflow will cause the
execution cf the TTR (FPT) which will then
zero the offending register and return control
tc the 1instruction following the offending
flcating pcint instruction.

A floating-pecint overflow will <cause the
execution of the TTR (FPT) which will then
print a message on-line giving absolute and
relative locations of the offending
flcating-pcint instruction with the name of
the subprogram and the machine spill ccde.
(FET) then calls ERROR which prints a back
trace of the subprograms previously called, if
possible, and then calls EXIT.

CTSS ERCGRAMMER'S GUICE Section AG.6.05 Page 2

(tFTM) and (LFTM):
as superviscr or library entries:

(EFTM)

omn

A

ISX (EFTH) ,4 optional (TIA =H
TSX (LFTH) ,4 optional (TIA =H

enters floating-point trapping mode with
trapping mode simulated in core B

leaves the floating-point trapping mode.

The LOAD command enters the multiple tag mode
before completion. Consequently, a program
loaded with the relocatable 1loader will be
automatically initiated in 3 tajg mode.

(END)

(]
o
Ne]
<n
W
-

\\

Memory allctrent
GETMEM, SETMEM, GMEM, SMEM, EXMENM

o

urposeg

To provide a way of determining or expanding the current
m2mory allotment.

=
1w

thod

At load time the memory allotment is set by the number of
words raquired by the program. Memory protection, however,
can only be set in blocks of 256 words and is therefore set
to th2 next highest block of 256. If, during executicn, the
user wishes to change his memory allotment and/or
protection, SETMEM may be called.

R2strictions

Since mermory fprotection is set in blocks of 256 words, it is
possible that a program may store information Dbeyond the
m2mory allotment bound without <causing a prctection
violation. Hcwever, swapping is done by memory allotment
rather than memory protection, so that information thus
stored is lost during swapping.

Usage
As supervisor or library entries:

TSX GETMEM.,4 optional (TIA =HGETMENM)
CLA ='n°!
ISX SETMENM,U optional (TIA =HSETMEN)

GETMEM returns in the address portion of the AC the
current memory allotment.

SETMEM sets the memory allotment to the value of n
(low order 15 Lits). 1If n is (77777)8, all of
memory is allotted, including location
(77777) 8.

As library subroutines:
MAD or FORTRAN:

A = GMEM. (I)
A = SMEM. (J)
FAP: TSX 3MEM, U4 TSX SMEM, 4

3
PZE 1 PZE J
A STOC A

CTSS PROGRAMMER'S GUIDE Section AG.6.06 9,65 2

A and I Upcn return, will contain an 1integer giving
the current memory bound.

J «contains an integyer giving the memory bound
desired.

GMEM returns to the caller the current value of the
merory bound.

SMEM sets the memory bound to the value desired.

To extend memory bound:
As library subroatine:
MAD, FORTRAN cor FAP:

A = EXMEM. (INC)

INC contains an integer which will be used as an
increment to extend the memory bound.

A Upon creturn, A will <contain the npew nmemory
bcund which is the sum of the o0ld memory bound
and the increment in INC. If the sum is
greater than (77777)8 or if the prefix of the
argument is not PZE, TSX or TXH, return is
made with A and the AC set to <zero and the
memdo>ry bound is not extended.

(END)

CTSS ERCGRANMER'S GUIDE Section AG.6.07 Page 1

Identificatign

Fre2 or erasable storage management
FREE, FRER, FRET

Purpose

Ona technigue

of optimizing the amount of <core srpace

required by cne program is to have each subprogram within
th2 program take temposrary storage from a common pcol and
put it back when it is nc longer needed.

Usage

As a library subroutine:

AED:

FAF:

FREE

FRER

FRET

X=FREE (N) 5, X=FRER (N) §, X=FRET(N,X) $,
TSX FREE,4 TSX FRER, U TSX FRET,u4
PZE N PZE N EZE N

STA X STA X STA X

ccntains an integer specifying the size of the
block of storage.

contains (address) the address of the start or
lowest locaticn of the block of storage. If X
is returned as zero by FRER, no block could be
cbtained.

will find a block of storage either frcm free
stcrage or by extending memory bound. If more
space is rejuested than <can be found, the
fcllowing message will be printed, and EXIT is
called:

*nonnn LOCATIONS OF FREE STORAGE ARE
UNAVAILABLE

(nnponn is an octal number.)

serves the same function as FREE excert that
if not enough space is available, return will
be to the calling program with zero in the AC.

returns storage to free storage. If a block of
stcrage being returned overlaps memory bound
or any block previously returned, the
folloving messagye 1is printed and EXIT 1is
called:

¥ JTLLEGAL CALL OF FRET, BLOCK rrrrr SIZE
nonnn?

(crrrrc 1s a pointer to the block, ronnn 1is
size; both in cctal)

(END)

CTSS PROGRAMMER'S GULIDR Section AG.6.0

[¢9]
W

N
<]
(<]
-

Identificaticn
Reset file-wait return
TILOCK

A field called ILOCK exists within the UFD entry for each
fil2. This field contains the number of users who currently
have the ftile open fcr reading. If a user tries to write a
fil= when its ILOCK 1is greater than zero, he will
automatically be placed in file-wait status until noc more
users are reading the file. If a user tries to open a file
which is open for writing, he will also be placed in
file-wait status. IILOCK 1is a routine which has Dbeen
provided to allow the user to avoid file-wait. A call to
TILOCK in a program sets a general return which applies
until altered or removed to all 1I/C calls which wculd
otherwise invclve going into file-wait status. All
background programs which use the file system must provide
this call since any attempt to place background in file-wait
status causes the backgrcund job to stop.

Usaje
MAD: OLDRTN = TILOCK. (RETURN)
FAP: TSX TILOCK,4
PZE RETURN (note PZE rather than TXH)
SLW OLLDRTN
RETURN is the location to which «control will be

transferred if an I/0 call would normally result
in file-wait. If RETURN 1is zero, the normal
execution of file-wait will Le reinstated.

COLDRTN wupon return, the AC will contain the address of
the previcus return setting, if any.

(END)

To allow a MAD proyram tc cobtain buffer space by extending
m2mory bound, and to address the storage area obtained as a
subscripted array. This ©permits SAVED files of freshly
loajed programs to be reduced in size, since the buffer area
is not included in the SAVED file.

Usage

To oktain a buffer:

DIMENSION BUF (0)
A = GETBUF. (BUF, SIZE)

A block of core storage of length SIZE+1 is obtained by
extending the mwemory bound, The value of BUF is set to
the absolute address of BUF less the absolute address
of the last addressable location of this Dblock (i.e.
01d memory bound + SIZE), expressed in two's complement
forre, mcdulc 2.P. 15. The 014 memory tound 1is returned
in A.

Elerents of the array obtained by GETBUF may be
raferenced by

BUF (BUF + I)

(for the Ith element), where I may have a value from 0
to SIZE. Multiple =subscripts may also be used.
Dimension declarations will be of the form:

DIMENSION BOF (0, BLIM)
VECTOR VALUES BDIM = (dimension vector, see MAL manual)

Raferences are of the form:

BUF (I, BUFJ)
or BUF(I, J, BUF+K)
etc.

Tha last subscript (in the case of standard subscripts)
is always the one tc which the address contained in BUF
is added.

To return buffer to free storage:

SMEM. (A)

CTSS ERCGRAMMER'S GUITE Section AG.6.09 12/69 2

where A is the old memory bound previously returned by
GETEUF.

»

L“'.B.

-

2

are of the follcwing:

€

e}

A = GEIBUF.(B1, S1)
B = GETBUF. (B2, 52)
SMEM. (A)

This will release buffer B2 as well as B1, since the
SMEM call resets the memory bound below both buffers.

Example:
Assign a buffer toc a file
DIMENSION B (0)
CPEN,. (R, NAME1, NAME2)
GETBUF. (B, 432)
BUFFER.(NAME1, NAME2, B (B+432)...432)

{END)

guary or modify supervisor parameters
GETLOC, GLOC, GETARY, SETLOC, SLOC, SYPAR

To 2nable a user to examine a supervisor parameter. To
allow the system programmers to modify an A-core parameter.

Restrictions

SLOC and SETLOC may be used only by M1416 programmers.
GLOC, SLOC and SYPAR may not be called from FORTRAN programs
unl2ss the location is shifted to the address rather than
the decrement of LOC (or COLE).

Usage

Get the contents of a location:
As superviscr or library entry:

FAP: TSX GETLOC ,4 optional (TIA =HGETLOC)
PZE LOC
SLW WORD

As library subroutine:
MAD: WORLC = GLOC. (LOC)

Upon return, WORD will contain the contents of
the A-core location whose address is in LOC.

G2t the contents of a block c¢f A-core:
As supervisor Oor litrary entry:

FAE: TISX GETLOC,4 optional (TIA =HGETLOC)
PZE LOC,,'n'
P3E BUF
or
TSX GETARY,4
PZE LOC

PZE BUF,, 'n?
MAL: GETARY. (LOC, BUF (N)...N)
As a library subroutine:
MAD: GLOC. (LOC, BUF(N)...N)
Upon return, the 'n*' word array beginning at
BUF for a FAP call or BUF(¥ for a MAD call

will be set to the contents of the 'n' words
cf supervisor core beginning at LOC.

CTSS ERCGRAMMER'S GU ILE Section AG.7.01 12,69 2

Set th2 ccntents of a location:
As supervisor cr library entry:

Fak: CAL WORD
ISX SETLOC, 4 " optional (TIA =HSETLOC)
P3E LOC

As library subroutine:
MAD: EXECUTE SLOC.(WORD, LGC)

Upcn return, the A-core location whose address
is in LOC will be set equal to the contents of
WORD.

Get a superviscr parameter:
As library subroutine:

FAP: TSX SYPAR,U4
PZE CODE
ST® PARAN

MAD: PARAM = SYPAR. (CODE)
SYFAR returns a supervisor parameter in the AC.

CCCE contains a right adjusted integer which
ecifies which parameter is desired.

£Pp
0 ncthing
1 Last or lowest COMMON location used
2 COMMON length
3 First location loaded
4 Prcgram length (i.e., memory allocation)
5 System name
6-9 reserved
10+ Contents of A-core location

(E ND)

CTSS PROGRANMER'S SGLIDE Section AG.7.02 12769 1

e e e i o o o . e e s i e

Get common file number
GETCF, GETCFN

Purpose

GETCF will return the number of the common file directory to
which the user is currently switched.

Usage
As a supervisor entry:
TSX GETCF,4 (TIA =HGETCF)

Upon return, the AC will be zero if the user 1is
switched tc his own file directory. Otherwise,
the AC will contain the number of the common
file directory to which he is switched.

As a library subroutine:

FAP: TSX SGEICFN, 4
P£ZE CEN
STO CES

FCRTRAN: CFS = GEICFN (CFN)
MAD: CFS = GETCFN. (CFN)

Both CFN and CFS will be set to the current common
file directory number (0,1,2..). In Fortran,
the file directory number is returned as a
Fortran integer. This same valuz may be used
later to> call COMFL{CFN).

Ra2striction

If a user svwitches to a common file, and then uses ATTACH
(command or file systeam call) to switch to another user's
diractory, GETCF will return the numter of the commcn file
to which he was switched, and give no indication of his
current attached directory.

(END)

Iientification

Privileged users!' calls to the I/0 systen
UPDMFD, DELMFD, AITACH, ALLOT, MOVFIL
LINK, UNLINK, SETFIL, RSFILE

Purpose

Alministrators and certain commands and utility programs are
privileged tc alter the supervisor and the accounting files.
Cartain calls to the I/0 system may ke invoked only by the
privileged users c¢r octher wusers using the privileged
commands.

Mzthod

The accounting files contain the personal restriction codes
tor evary user of the system. When a user 1logs 1in, his
restriction codes are placed in a vector within the
suparvisor along with the other active users. When a user
invokes a coerpmand, his personal restriction code 1is 'OR'ed
togather with the code of the command to make wup the
restriction ccde which becomes part of his machine
conditions. The LOGIN ccmmand sets the low-order 6 octal
digits of the user restriction code.

1 User may use common files
2 User may use privileged calls to the I/0
systen.
4 User may modify "PROTIECTED™ files of other
users.
10 User may refer to "PRIVATE®" files of other
users.
20 User may modify the supervisor and I/0
system.
40 User may use the ESL display routines.
1C0 User may use the 6.36 supervisor entries.
200 User may not use disk-loaded commands, except
LOGIN and LOGOUT ("Restricted User", see
Section AA.1).
4C0 User may not alter file directory (not yet
implemented)
1000 User may modify standard options, subsystenm
status (see AG.8.05).
2000 User may remain logged in after systen
comedown initiated (system operators only).
1000000 User 1s Fkackground systemn.
2C0CCCC User is foreground.
4000000 User is FIB.
10CCCCC0 User is incremental dumper.
20000000 User is privileged command.

CTSS PROGRAMMER'S G UIDE Section AG.7.03 12769 2

A privileged ccmpand sets the 1, 2, 4, 10, 20 and 10C0 Dbits
on.

A command loaded while option i ee

sets the 1000 restricticn code Lkit, making the command
"subsystem privileged".

T

he bits which occupy the decrement may be moved 1left nine
bit-positions to indicate the .not. condition, except in the
case of the privileged ccmmanl bit.

[[==
i
1104
| o)
[

Update MFD:
UPDMFD. ($ PROBN$,$ PROGE)

UPDMFD places a new user (problem number programmer
number) in the master file directory. With
this call it is possible to update the MFD
during time sharing rather than having to wait
for a disk editor run.

ERCBN 1is the right adjusted proktlem number of the
form ANNNN. A is an alpha character, and NNKN
is a four digit number.

EROG 1s a one to four digit programmer number.
Ncte the right adjustment and blank paddiag.

Error codes:
(3. User already in M.F.D.

O4. Machine or System error
05. TIllegal PROBN (i.e., 0)

D2l2t2 from MFD:
DELMFD. ($ PROBN$,$ PROGS$)
DELMFD will remove a user fronm the master file
directcry. The DELMFD will not be permitted
if the usert's record count is not zero.

Error codes:

03. User not found in M.F.D.
C4. ULF.D. still in use.

Attach to UFTC:

(@]
+3
147]
tn
g

0
(w}
1]
w

=
n

o)

-
N
(73]
o2
1=4
2
=
[%2]

action AG.7.03 12769 3

G
14

ATTACH. ($ PROBN$,3 PRCGS)

ATTACH will attach the user's program to the file
directory of user PROBN PROG. The user now
has full access to the files and file
directocy of PROBN PROG within the 1limits of
his restriction code. Files which may have
been opened while attached to PRCEN PROG
rerain open even if the attachment 1s changed
to a different file directory.

Error codes:

03. User not found in M.P.D.
04. Machine or system error

Quota allotment:
ALLOTr. (CEVICE,QUOTA,USED)

ALLCT may be used to allot a quota of records for
each user, for each device by first ATTACHing
to the users' file directory and then calling
ALLOT.

DEVICE 1is an integer or integer variable specifying
the I/0 device,

1. Low-speed drunm
2. Disk
3. Tape

QUOTA is an integer or integer variable specifying
the number of records to ke allotted to the
user on the specified device. A record is
currently 432 words.

USED is normally not specified and should be used
only to correct an error 1in the nusber of
records used.

Error codes:
03. 1Illegal device specified
Move a file:
EOVFIL. (3 NAME1$,$ NAME23,3% PROBNE,$ PROGS)
MOVFIL 1s used to move the file NAME1 NAME2 from the
current file directory to the file directory
of PROBN PROG. Upon return from this call,

the file nc longer exists in the current file
directory.

CTSS PROGRAMMER'S GUIDE Section AG.7.03 12/69 &4

Error codes:

03.
04 .
05.
06.
7.
08.
09.
10.

File not found in current U,F.D.
{Unused ccde)

File is 'PROTECTED!

File already exists in 'PROGN PROG?®
Machine or System error

File already active.

Other U.F.D. not found

Illegal use of M.F.D.

Link to a file:

LINK. ($NAME13,$NAME23, $PROENS, $SPROGS, $SNAM 33, SNAMUS ,MODE)

LINK

NAME?

PROBN

NAM3

MODE

establishes a 1link 1in the <current file
directcry to a file in some other file
directory. Links may ke established to the
maximum depgth cf two, as specified by the
supervisor.

NAME2 is the name which will be used tc refer
to the file in the current file directory.

PROG specifies the file directory to which the
link is being made. This file directory may
contain the actual file or it may contain a
link tc some other directory.

NAMU4 is the name by which the file is known in
file directory PROBN PROG. Tf NAM3 NAM4 1is
not specified, it is assumed to be the same as
NAMEY1 NAME2.

is an integer or integer variable which will
be 'OR'ed with all the modes through all the
links to the actual file. The resulting
'OR'ed mode will be used as the mode in the
current file directory.

Error codes:

03.
ou.
05.
06.

File already in U0.F.D.

Machire or system error

'PROBN PROG' not found in pE.F.D.
Illegal use of M.F.D.

CTSS ERCGRAMMER'S GUIDRE Section AG.7.03 12769 5

Rzmove a link:
UNLINK. ($ NAME13,5 NAMEZ2$)

UNLINK will remove the U.F.D. wentry and the 1link
associated with NAME 1 NAME2, which was
established by LINK. NAME1 NAME2 is the npanme
used to refer to the file in the current file
directory, as it 1is in LI NK.

Error codes:

03. File not found in U.F.D.
04, File is nct a 'LINKED®' file
05. Machine or system error

Date a file:
SETFIL. (b} NAME1$,% NAME2$,DAYTIM,DATELU,MODE,DEVICE)

SETFIL 1is wused ©primarily Ly the file 1lcad and
retrieval fprograms to create an entry 1in a
file directory with a specific date and time.

DAYTIM 1is the date and time to be used as the date
and time last modified in the format of the
third word of a3 U.F.D.. (AD.2)

DATELU is to be used as the fourth word of a U.ZF.L.
and contains the date last used and *AUTHOR'.

Error codes:

(3. Illegal device
04. Machine or system error
05. File is a link

Unlock a file:
RSFILE. ($ NAME1$, $ NAME2$)

RSFILE 1is used to reset the ILOCK field in a file
entry when, due to machine or system error, a
file has become interlocked while no user is
using it. This entry may only be wused by
system programmers privileged to patch the
supervisor, and only while key 22 is down on
the operatcr's console (to prevent accidental
calls).

CITSS PROGRAMMER'S GUIDE Section AG.7.03 12/69 6

Error codes:

03. File not found

C4. Linked file nct found
05. Link depth exceeded

06. File is an active file
07. System or machine error

(END)

CcTss

Ll
0
(]
0
4
z
x 4
]
0
-
W2
(s
et
-4
[
e}
W
D
8]
+
o
o}
=
>
o
»
~
»
o
&

1269 1

G

Identificatichn

G2t directory attached to
ATTNAM

Purpose

ATTNAM returns the problem number and programmer number
(PROBNO,PROGNO) cf the directory currently attached to by
the file system. Cf. WHOAMI, AG.7.05.

Usage

As a supervisor or library entry:

MAD: ATTNAM. (A(N)...N) [N.LE.U]
FAP: I'SX ATTNAM, 4
PAR A,,'n" or: PTW A,,N

N PZE ‘'n°?
Optional:
ATTNAM TIA =HATINAM

On return, locations in array A will have been set as
follows:

MAD Contents FAP
A (N) PROBNO A

A(N-1) BROGNO A+
A(N-2) A UTHOR A+2
A {N-3) FPRIOR A+3

whare PRCBNO-PROGNO is the user's currently attached file
directory, FPRIOR is his file priority setting (set by
SETPRI) , and AUTHOR is his author numkter, in binary.

Only th2 standard errosr code 01 may e returned.

(END)

G

(@]
*3
45
4]
e
o
(@]
ool

-]

z

z
tmy
‘D

-
(93]
]
=
1~
3
k]

Section AG.7.05 12,69 1

Identificaticn

Obtain user status information frowm supervisor.
WHOANI

Purpose

To provide commands and user programs with such ppertinent
system parameters as user identification, system name, and

console identification. The subroutine operates at the
level of "whc is logged in and making the call," as orpposed
to "whose directcry is the call cominy from ™ - for which

latter, see ATTNAM, AG.7.04.

e

3a4e

As supervisor or library entry:

MAD:
WHCAMI. (A(N)...N) [N.LE.7]
FAP:
ISX WHOAMI ,4
CPN A.,'n? (OPN=PZE or TXH; n .LE. 7)
Optional:
WHOAMI TIA =HWHOAMI

On return, lccations in array A will have been set as
follows:

MAD Contents FAP
A (N) PROBNO A

A(N-1) EROGNO A+
A (N-2) SYSNAM A+2
A(N-3) IDCOLE A+3
A(N-4) LOGIN A+ 4
A(N-5) UFDNM A+5
A (N-6) UNAME A+ 6

where PRCBNGC is froblem number, PROGNO is programmer number,
SYSNAM is the six-character system name of the currently
oparating version of CTsSs, IDCODE is the console
identificaticn ccde, LOGIN is the name of the login command
(changed during test sessions), UFDNM is the wuser's hone
file directory, and UNAME 1is the user's name (last six
characters only).

(END)

SUTCF Section AG.7.06 6/69 1

e e am — —— —

Find named items in superviscr
CUOMLOC, SNATCH, GAC, ACORE

— e e i e

A user program often wishes to know the location in core A
of som2 supervisor data itenm. COMLOC returns the A-core
location of any variable in CTSS comnmon. SNATCH copies
supervisor common intd core B for later examination by GAC.
ACORE returns the locaticn in core A of any supervisor entry
point and the load origin of the module containing the
entry.

Usage
As library entries:
LOC = COMLOC.(SYMBOL, -ERR-)

COMLOC is called with the left-adjusted BCD name of a
symbol in CTSS common. It returns the integer
value which is the lozation of the symbol in core
A.

BERR 1is the location to which a transfer is to be made
if SYMEOL is not found. If ERR is not supplied and
SYMBOL is not found, COMLOC will print an error
comment and return zero.

The first time COMLOC 1is called, it switches to
the system public file by a call to TSSFIL and
reads in the current system common symbol table,
extending the memory bound and packing the table
intc ccre. (The <common symbol table is named
"COMx00 SYMIB'"™ where "x" is the fourth letter of
the <current system name returned by WHOAMI.)
COMLOC then searches the takle for a symbol
matching its first argument. Subsequent calls to
COMLOC do not reguire re-reading the symbel table.

S NAT CH.
CONTS = GAC. (SYMBOL, -OFFSET~)

SNATCH on the first call, calls CCMLOC to determine the
size of CIS3 common, extends the memory bound to
make room for it in core B, and calls GETARY to
move all of supervisor coasmon to core B.
Subsequent calls tc SNATCH 3just «call GETARY to
refresh the saved copy of supervisor common.

CrSS PROGRAMMER 'S GUIDE Section AG.7.06 6,69 2

GAC retrieves the contents of SYMBOL4OFFSET at the
time <c¢f the 1last call to SNATCH by <calling
COMLOC. (SYMBOL), adding the integer OFFSET (if
supplied)y, and looking 1in the saved «copy of
supervisor common. If SYMBOL is not fcund by
COMLOC, an errcr message is printed and zero is
returned. 35ince GAC does not call the supervisor
or do 1I/0, it is very fast.

WORD = ACORE.(NAME, -ERR-)

ACORE 1is called with the left-adjusted name of a CTSS
module entry point. It returns a word which has
the location 1in <core A of the wentry in the
decrerent, and the location of the origin of the
module containing the entry in the address. If
ERR is supplied and NAME is not found, a transfer
will be made to the lakel ERR. If NAME 1is not
fcund and no error return is specified, an error
message is printed and zero is returned.

The first time ACORE is called, it switches to the
system public file and reads the file ™ (LOAD
FILE)" intc core, packing it and extending memory
bound as necessary. This file 1is a conplete
description of how the CTSS supervisor was loaded;
it is written by the system loader every time the
CTSS system is brought up. ACCRE then returns to
the previous directory by a call to USRFIL, and
s2arches the core copy of the loading information
for an entry name matching its first argument.
Subsequent calls to ACORE do not require rereading
of " (LOAD FILE)",

Examples

177

To find the number of users logged in:
NU = GLOC. (COMLOC. ($NUSERS$))

To print out the names of all logged-in users:
S NAT CH.
T'H LL, FOR I = 1, 1, I .G. 40
W'R GAC. ($PROBNS$, I) .E. O, T*'C LL
FRMESS. (GAC. (SUNAMES, I))

LL C'E

Not2 that the UNAME and PROBN arrays will be consistent.

(END)

Identification

User A-core variable
SETWRD, GETWRD

Purpose

Each logged-in user has one 1location in core A in the
suparvisor common vector "UARRAY". The GETWRD and SETWRL
entries are provided so that the user may examine and set
this locaticn. The CTSS supervisor makes no use of this
location; it 1s provided for such applications as multi-pass
compilers, which may wish to pass options or success and
failur2 indications from one pass to another.

Usage
As a supervisor or library entry:

I'SX SEIWRL,u4 optional (TIA =HSETWRD)
PAR WORD

This call will set the user's UARRAY location to
the contents of WORD. The previous value will be
returned in the logical AC.

TSX GEIWREL, 4 optional (TIA =HGETWRD)
-PAR USERNO-

This call will return the contents of the UARRAY
location beloging to USERNO in the logical AC. 1If
USERNO is not specified, the current user's UARRAY
contents will ke returned.

Both SETWRD and GETWRD can Lte <called by MAD or FORTRAN
programs.

It is possible to use these entries for inter-user
communication, since one user may look at another's UARRAY
location. PFor example, to examine the UARRAY location
belonging to PROB PRO3, the following Q}D code will work:

INDEX = ISIN. (PRGB, PROG)

W'R INDEX .E. O, T'O NOTIN

HISWRD = 5LOC. (INDEX + COMLCC. ($UARRAYS))
or

HISWRD = SETWRD. (INDEX)

The other user's UARRAY value will be returned in the
variable HISWRD. If the user PROB PRCG is not logged in, the
program will transfer to the label NOTIN.

(END)

[£5]
1]
-
[€)]
)]
r=
(o)
[&)
n
({3}
«Q
or
'J‘
[»)
He
e

n
4
«

Identification

Blip character
SETBLP, SETBLPF

(=]

urpose

The CTSS supervisor has a feature which allows the user to
ra2quest that a sejuence of characters bLe typed every few
seconds of execution. The SETBLP and GETBLP entries are
provided to set the character sequence and time interval,
and to find out their current value.

As a supervisor cr library entry:

TSX SELEBLP,UY optional (TIA =HSETBLP)

PAR CHARS

PAR N
This call will set the blip sequence to the three
12-bit characters contained in CHARS. The blip
will be typed every N seconds. If N is zero, the
blip feature is inhibited. (This 1is the state

when the user first logs 1in.)

TSX GETBLP,U optional (TIA =HGETELP)
PAR CHARS
PAR N

This call will return the current blip setting in
CHARS and the current blip interval in N.

(END)

CTSS ERCGRAMMER'S GUIDE Section AG.7.09 12,69 1

Iientificaticn

G2t line number of logyed-in user
ISIN

o

urpose

>

11 pasr-user arrays in CISS supervisor cormon are indexed by
a "line number"™ c¢r "logical unit number® which 1is assigned
to a user when he dials up. The maximum value for this index
is "N", an assembly parameter for the supervisor. ISIN
raturns the logical unit number for a user, given his
problem and gprogrammer number.

Usage

As a supervisor or library entry:

TSX ISIN, 4 optional (TIA =HISIN)
PAR PROB

PAR PROG

SLW LOUN

ISIN returns the logical unit number of PROB PROG 1in
the AC. If PROB PROG is not log¢ged in, zero 1is
returned.

ISIN may be called by MAD or FORTRAN programs.

(END)

CTSS PROGRAMMER?'S

22

LTDE Section AG.8.00 Page 1

Identificaticnh

Gena2ral discussion of MACRO command programs
Purposes

It is sometires desirable or convenient to be able to
initiate one command which results in the automatic
execution of several commands. Tools have been provided on
savaral programming levels for initiating and controlling
chains of cormands.

Discussigcn

Th2re are at least three levels of user interest in chain or
macro cormand prcgrams: 1) writing commands which may be
usel within chains, 2) initiating chains from within a high
level prcgramming language, 3) 1initiating <chains at the
machine language and supervisory call level of programming.

Commands may be thought of as being subroutines without the
conventional subroutine linkage. A standard command linkage,
however, has been prcvided within the supervisor so that
command arguments will always be available and retrievable
from a standard place. All commands should terminate with a
=all to CHNCOM rather than one of the «conventional
programming terminal routines. CHNCCM will <continue a
command chain, if there is one, or <call DORMNT (or DEAD,
depending on the memory bound) if there 1is no chain.
Routines that will fetch the command arguments are COMARG,
which is callable by MAD st FORTRAN programs, and GETCOM,
which is the supervisor entry.

A
Two routines are available for executing single commands
from the program level: NEXCOM is a limited-use supervisor
entry and XECOM is a more flexible subroutine which may be
calied by MAD or FORTRAN programs.

Chains of commands may be constructed in a simple way as BCD
line-marked cr line-numbered disk files and executed by the
MAD or FORTRAN callable subroutine SCHAIN or by the command
RUNCOM. SCHAIN and RUNCOM do a lot of the housekeeping and
set up calls tc the apprecpriate supervisor entries.

On the more detailed level, chains may be constructed within
th2 supervisor, the command location counter may be set or
interrogated, and the chains may be executed and chained by
calls to supervisor entries. On this programming level wmany
of the hcusekeeping details must be handlel by the user.

(END)

CTSS PROG

Identificaticn

- ——— e . ——— o o

Single command
XECOM, NEXCOM,

Purpose

RAMMER 'S GUIDE Section AG.8.01 Page 1

NCOM

To allow the user to execute a single command from the

program level

usage

NEXCOM:

rather than the command level.

as superviscr entry:

CAL COMAND
LCQ ARG1
TSX NEXCOHM,U (TIA =HNEXCONM)

as library subroutine:

COMAND

ARG1

NEXCOM

XECOM:

NCOM. (COMAND ,ARG1)

contains the BCD name, right justified, of the
command to be executed.

is stored as the first argument in the current
command buffer. If there is to be no argument
to COMANC, ARG1 should be the fence. If COMAND
expects an argument list and ARG1 is not a
fence, the previous contents of the current
conmand buffer will be used with ARG1 as the
first argument.

places the contents of the AC and MQ 1in the
current command buffer and places the user in
waiting-command status. Note that a fence is
not placed in the command tuffer following the
argument. Control 1is not returned to the
calling program except as may have been
pre-arranged by CHNCOM.

as library subroutine:

MAD,

COMAND

LIST

FORTRAN, FAP:
K = XECOM. (COMAND, LIST)
EXECUTE XECOM. (COMAND,LIST)

contains the BCD name of the desired command.
Right justification is not necessary.

is any legal list specifying locations which
contain the BCD names of the arquments

CTSS PROGRAMMER'S GUIDE Section AG.8.01 Page 2

XECOM

afpfropriate to the command. Right
justification is not necessary but the number
of items in the list must be .LE. 18.

will be zero if execution was successful; non
zero if failure.

builds a chain of SAYE, CCMAND, RESUME and
calls CHNCOM. Thus control will be returned to
the calling program after execution of COMANEL,
if COMANDL called CHNCONM.

(END)

*3
[90]
tn
LR
o
o
(o]
o
2
=
tn
20
-
wn
(4]
=]
to
(43}
I
D
b
f
-’
D
3
(-3
4
x

(@]
?.,
[4

Iiantification

MACRO comrmand
SCHAIN

Purpose

To allow the user to build a macro command program as a BCLC
disk file and call for its execution from the program level
rather than command level. A macro command program is a
chain of commands which can le executed by issuing just one
command, with or without arguments.

s —— o c————

SCHAIN is the subroutine call which 1is the equivalent of the
RUNCOM command. For a complete explanation, see section
AH.10.01 , RUNCOM.

Usage
MAD, FORTRAN or FAP:

A =

SCHAIN. (FILNAM,-ARGY1,ARG2....ARGN-)
EXECUTE sC

HAIN. (FILNAM,-ARG1, ARG2....ARGN-)

FILNAM specifies the BCD file containing the
chain of commands to be executed. The
secondary name need not be BCD as is required
for RUNZONM.

ARG'S are locaticns of BCD names of specific
arguments to Lte substituted for the duamy
arguments specified by the CHAIN

pseudo-command. They may ke single c¢r 1list
variables and the names need not be right
justified.

A Upon return may contain a word of the
form...XXX, which is not an error, but the
primary name of a SAVED file representing the
last dormant status yielded by the 1last
cormand ir the chairn.

SCHAIN will intersperse SAVE's and RESTCR's or
RESUME's so that the chain specified in FILNAM
may be of any length. Control is returned to
the calling prcgram upon completion of the
chain. I'he chain may 1include any nusber of
RUNCOM specifications, since nesting and
recursion are possible.

(END)

(l
(1=}
b4
[iew)
i
tn
T
[lp)]
(g
|-4
[»)
3
>
1

0

[o]
0
o
A
©
o]
Q
D
—

Chain control
CcHNCOM; (GET,G,SET,S) CLS; (GET,G,SET,S) CLC

Purpose

To allow a user to set up and control chains of commands
from the program level rather than command 1level. These
routin2s are close to the supervisory 1level and require
detailed contrcl by the user.

Met hod

In order to build a chain of commands, the BCD name cf each
command and its arguments must first exist in a fenced
vactor. The vector for each desired command is then moved
into a command buffer within the supervisor and entered into
its ra2lative location within the command list (CLS) by the
supervisor rcutine SEFCLS. The relative Jlocation of the
first command to be executed in the command list is entered
into th2 ccmmand locatiorn counter (CLC) and the 1length of
the command chain is entered into the supervisor by SETCLC.

Execution of the chain is initiated and continued by calls
to CHNCOM. Commands can only be <chained if each cospmand
terminates by calling CHNCOM so that the next command in the
chain can be 1initiated. The <calling sequence to CHNCZOM
specifies whether or not the <calling program has a
significant core image which might be useful to the next
command in the chain. CEXCOM does some housekeeping before
calling the pext command in the chain: 1) sets memory bound
to zero if no <core 1image was specified 1in the calling
sequence, 2) sets the instruction location counter to be the
word following the calling sejuence to CHNCOM, 3) increments
CLC by 1, and 4) moves the next command buffer into the
current command buffer or calls DEAD or DCEMNT if no command
remains in the chain.

Restrictions

A command list must be .LE. 5 commands.
Each command btuffer with fence must be .LE. 20 words.

CTSS ERCGRAMMER'S GUILE Section 4G.8.03 Page 2

Usage

To enter a cozmand in the command list or zommand buffer:
As supervisor or litrary entry:

I'sXx SETCLS,u optional (TIA =HSETCLS)
PBE TAB,,'n®

e 2 o

TAB BCI 1,command

BCI 1, arg?

ocr 7777777717177

As library subrcutine:
MAL or FORTRAN:

SETCLS

SCLS

TAB

EXECUTE SCLS. (TAB,N)

moves 20 words from TAB into the Nth command
buffer in the command 1list, or 1into the
current command buffer if N is 0. A <call to
SEICLS with ® = 0, does not initiate a
command. A call ¢to NEXCOM or XECOM is
required tc initiate the command.

interprets MAD and FORTRAN calling seJuences
which specify Lackward arrays and moves the
words from TAB only to and including the fence
int> the command list.

is the location of the fenced command table
(« LE. 20 words) containing the command and its
arquments in BCD(right Jjustified and blank
padded). The fence is interpreted by the
cormand and SCLS not by SETCLS.

specify the position within the command 1list
(.LE. 5 . N = 0 specifies the current command
buffer.

To copy a command from the command list or command buffer:
As superviscr or library entry:

TSX GEICLS,4 optional (TIA = HGET CLS)
PEE BUFF,,*'n"

As library subrcutine:
MAL or FCRTRAN:

GETCLS

EXECUTE GCLS. (BUFF,N)

moves 20 words from the nth command buffer of
the cormmand list into locations beginning at
BUFF.

(@]
&)
v
w
"2
j~¥]
(@]
(]
23
1]
=t
=14
(<]
=5}
w
(9]
cs
r4
()
<]
(a4
[
Q
4
O
(@]
¢
(9]
(¥S]
rg
W
o2
)
iad

GCLS interprets MAD or FORTRAN calliny sequences,
calls GETCLS and stores the <command buffer
backwards in BUFF. Only the words to and
including the fence are moved into BUFF.

BUFF wmust be at least 20 words lcong for GETCLS.

To set the command location counter:
As a supervisor or library entry:

CLA A
ISX SETCLC,u optional (TIA =HSETCLC)

As a library subroutine:

MAD or FORTRAN:
EXECUTE SCLC. (M,N)

A contains a word of the form PZ2E m,,n. Both
SEICLC and SCLC set the command 1location
counter to m and the number of the last
command in the chain to n.

M or » 1is the number of the command in the command
list which is the next to te executed. (m .LE.

5) .

N cr n 1is the number of the 1last command in the
command list. (n .LE. 95).

To query the command location counter:
As superviscr or library entry:

IPSX GETCLC,4 optional (TIA =HGETCLC)
S18 A

As library subroutipe:
MAD or FORTRAN

A = GCLC (M,N)
M will be set to the value of the command
locaticn ccunter i.e., the position within the

command list of the next command t¢ be
executed. (m .LE. 5).

¥ will be set to the position of the last
command in the command list. (n .LE. 5).

A will be set to a word of the form PZE m,,n.

CTSS PROGRAMMER'S GUIDE Section AG.8.03 Page
To initiate or continue a chain:
As superviscr entry:

TSX CHNCOM,4 (TIA =HCHNCOH
PBE '3

~—

As library subrcutine:
MAL or FORTRAN:

EXECUTE CHNCOM (J)

FAP: CAL = *'j° or TSX CHNCOM, U
TSX CHNCOM,4 PZE 'j

J or j j=0 specifies to CHNCOM that no core image

available for the next command. j=1 means that

a core image is availakle and may be used
the next command.

CHNCCM determines whether or not another compand

exists in the chain. If one exists, it
initiated. If no chain exists; DORMNT
called if j=1, DEAD is called if j=0.

(E ND)

CTSS DPROGRAMMER 'S ZOIDE Section AG.B.QU

Identificaticn

e = o w4 . s i e S

Fz2tch a current command argument
GETCOM, COMARG

—— e ds > —

As superviscr or library entry:

ISX GETCOM, U optional (TIA

P %E 'net

GETCCM returns, in the logical AC, the
of the user's latest command,

Page 1

=HGR TCOM)

argument
of the

current command buffer. The command itself is

nupber 0. The arguments may be numbered

including the fence.

As library subroutine:
MAD, FORTRAN or FAP:

COMARG. (N)
COMARG. (N, B)
XECUTE COMARG.(N,B)

o

A
A
E

1-19,

The Nth argument of the current command buffer

is transferred to A and/or B.

(END)

(&)
(%)
-
PO

N
[4))
Ne
-

Specify user cptions, subsystem status
SETOPT, RSOPT, LDOPT, GEIOPT, SETSYS, GETISYS

To allow a user cr his subsystem to modify the settings of
his standard options, subsystem nare, and subsysten
condition mask. Also to allow a user to examine his current
options and subsystem status.,

- e — e et

Associated with each user, there are three status words
maintained in the supervisor <containing his standard
options, his subsystem name, and his subsystem ccndition
code mask and last condition code.

User standard options occupy a half-word (18 bits), and are
intarprated as follows:

e ————— D LT T +

| | user options |
D e — +

1 Search user UFL first for command

2 Search user or systerm files (not both) for command

4 PRESETF if command resets dormant prog.

10 User subsystem trap enabled

20 Inhibit guit signals for user

40 Current user program is suksystem
100 Automatic save before loading subsystenm
200 User is 'dialalkle’

The two low order bits are taken together to specify
four modes cf command file searching:

0 Search system files then user files (normal mode)
1 Search user files then system files

2 Search system files only

3 Search user files only

The following disk-loaded commands are always taken froa
the system files (provided that the user is allowed to
use thenm):

CTSS EFRCGRAMMER®'S GUILE Section AG.8.05 12/69 2

LOGIN

LCGOQUT

OTOLOG (user may nct issue)

DAENMON (incremental dumper only)

DSDUMP (incremental dumper only)

DSLOAD (incremental dumper only)

FIEMON (FIE user and FIBMON only)
OPTIION (subsystem-rrivileged user only)

The RESETF bit specifies that if there is a dormant core
image left from the 1last command, and the command
currently beiny fprocessed does not preserve this core
image (i.e. not SAVE, MYSAVE, START, RSTART, SUBSYS,
ENDLOG, RESETF, or any B-core transfer command: USE,
DEBUG, PM, etc.), any active files will be reset by a
call to BESETF instead of being closed normally. This
provides compatibility with previous versions of CTSS.

The subsystem trap enable bit causes all program calls
going to LCEALC or DORMNT (including errors) to simulate a
call to NEXCOM fcr the command SuUBSYS, provided that the
call does not come from the user's sulsystem (opticn bit
40 off), and causes all new conmands issued from the
terminal to pass through the subsystem processor (with
the excepticn of exempt commands).

Th2 quit-inhibit bit causes all quit signals to be
ignored for the user. Program status will be unaffected
if the user attempts to quit and buffered outpot will
not ke reset. N.B. The only way to stop a non-guittable
program that has gone into a 1loop 1is to fcrce an
automatic 1lcgqout by hanging up the data-phone (or
turning off power to the terminal). Use this feature at
your own risk!

The subsystem execution kit, if on at command locad tinme,
causes a new core image being loaded to have subsystenm
privileges if the wuser does not have the subsysten
privilege himself. Program <calls going to dead or
dormant status will execute normally if this bit is on,
regardless cf the setting of the subsystem trap bit.

The subsystem save bit if set causes the subsystem
processor to simulate a '"MYSAVE progn T' before it locads
the subsysten.

The dial-permit bit allows remote terminals to attach to
the user via the DIAL command. See section AH.1.05 for
datails.

Th2 usar's subsystem name is interpreted as a six-character
command name, which may be any system command or a user
Jisk-loaded command (SAVED file).

CTCC DONCDAMMRD 1C " HTNR Cartinn A A 05 12 4,60 2
L A AVNS VI LR AS L Ay -~ VAU L A A R A 31 e Ve Vv l‘_IV/ 4
t————— - ———— b ———— $———— - $m———— $————— +
| subsystem nanme |
o - ——— [$ o ——— b m——— +

The subsyster ccndition code mask is a half-word quantity
split into two 9-bit fields. The high order 9 bits are
2xaminad by the subsystem processor if the user has a core
image left; the low crder 9 bits are examined if there |is
currently no core image. Within each 9-ftit field, the bits
are interpreted as fcllows:

Trap new command

Trap direct program call ('DEAD', 'DORMNT')
Trap CHNCOM if end of chain or no chain set up
Trap error condition (file system, PMV, etc.)

OJ:N_;

1

Th2 subsystem condition code occupies the high order 18 bits
of the subsystenm conditicn mask word. The low order 9 bits
of thasa 18 indicate which of the possikle subsystem trap
conditions occurred to cause the subsystem processor to be
antared (zero if the SUBSYS command was issued directly by
the user or his frogram). T'he following 8 bits specify ar
arror code 1f the subsystem condition code was 10 ('error'),
in orlsr to indicate the type of error that occurred. This
is not yet implemented, and the error code will be returned
1s 0. The high order (sign) bit is on if there was a
dormant core image left.

D tomm— - e L i +
|1 error | code | condition mask |
td-—————- fmmm————— tm——————— b ———— +

Usage
To set (turn on) bits in the option status word:
As a library entry ...

FAP: I'SsX SETOPT, 4 or TSX SETOPT,Uu
VFD 036/°'bits" FAR BITS

BITS VFD 036/'bits"'
MAD: A = SETOPT. (BITS)

The bits specified as 'bits' will be C(ORed with the
current contents of the wuser's option word and the
result will replace bits 18-35 (right half) of the
option word. The previous value will be returned in
the accunulator.

To reset {turn cff) bits in the option word:

CTSS EFCGRAMMER'S GUICE Section AG.8.05 12,68

As a library entry ...

FAP: TSX RSOPT,4 or TSX RSOPT, 4
VFL 036/'tkits? PAR BITS

BITS VFD 036/'bits?

MAD: A = RSOPI. (BITS)

Th2 specified bits will be masked out of the <current

contents of the ofption word, and the result

will

r2place bits 18-35 of the option word. The previous

contents will be returned in the accumulator.
To set the ccntents cf the option word:
As a surervisor or library entry ...

FAP: ISX LDOPT,u or ISX LDCET,4
VFL 036/'Lkits?* PAR BITS

BITS VFD 036/'bits?®
MAD: A = LDOPr. (BITS)
The specified bit confiquration will replace
current contents of bits 18-35 of the option word.
0ld value will be returned in the accumulator.
To 2xamine current option settings:

As a supervisor 3¢ library entry ...

FAP: TSX GEIOPT,U4 (optional TIA =HGETOPT)
- SLW A - :
MAD: A = GETOPT. (0)

Location A and the accumulator will <contain
sa2ttings of all available options in bits 18-35.

the
The

the

In

additicn, the left half will contain status flags

partaining to> the user's current core image.

In

particular, bits 12-17 specify the current typewriter

input mode as follows:

6-bit mode

12-bit mode
No-convert mode
Nc-break mode
Graphic input mode

OF N 2O

1

Also, bit 11 will be on 1if the core-B simulated

interval timer is running.

(@)
3
1&)]
n
"
4.]
(@]
Cn
to
o
Iz
<
tn
o
-
n
(o]
<
(5]
(3w}
rz
[¥7]
(0
(9]
(24
b
Q
t
-]
1]
(4 ¢]
(=)
[$2}
and
o
~
[¢)}
\c
(%2

To specify subsystem name and condition mask:

As a supervisor or library entry ...

FAP: TSX SETSYS, 4 (optional TIA =HSETSYS)
PAR COMMND
PAR MASK

MAD: SETSYS. (COMMNL, MASK)

The user's subsystem name will be replaced by COMMNE;
the subsystem condition word will be set to the
contents of MASK. Ooption bit 10 (subsystem trap
anable) is set by this call.

To examine subsystem status:

As a supervisor or library entry ...

FAP: TSX SETSYS,u (optional TIA =HGETSYS)
PAR COMMNL
PAR MASK

MAD: GETSYS.(COMMND, MASK)

COMMND will contain the user's current subsystem name.
MASK will be set to the contents of the subsysten
conditicn werd. Example: If the subsystem condition
word contains 4C0004004016, this indicates that the
subsystem is to be called in for any call to CHNCOM
attempting to gc dead or dormant because there 1is no
chain set up (604004 mask), for any error not leaving a
core image (000010 mask) and for a program call to LEAL
(000002 mask) ; the subsystem will not be called in for
any new compand from the terminal (except SUBSYS of
course) , for an error leaving a core image, or for a
program call to DORMNT. The condition code of 400004
indicates that the user?s program called CHNCOM and
f21ll out because no chain was set up, and that the call
to CHNCOM sfpecified a core image (400000 bit on).

. S A e Sl w— o

Only *GETOFT"* and ' GETSYS"* may ke called by a
subsystem-restricted user from any program (or command)
othar than his subsysten.

(END)

(@]
ng
=0
(]
]
o
2%
4
4
[©]
]
-
wn
[}
o
-
o
tn
9]
(]
Q0
o+
[
Q
e}
(-4
G
.
0
fo}
—
o
3
ua
14
—

-
-
-
-

Identificaticn

Trace of Subroutine Calls.
ERROR

urposz

ERROR is a subprcgram which may be called by FaP, MAD, or
FORTRAN programs in crder to trace backwards to the main
subprojram through the most recently executed chain of
subroutine calls.

Restrictions

If FAP subprograms are used, they should include the linkage
director and the instruction to save the contents of index
r2gistar 4 must be included in the first twenty instructions
of the subprcgranm.

Each subprogram executed must have at least one argument.

If ERROR is unable tc ccmplete the trace, the following
m2ssage is printed and contrcl is returned to the calling
projranm.

TRACE FAILURF IN *sub?®
EXIT FROM ERROR

MAD, FORTRAN, or FAP:
ERROR. (MESS)

MESS is a BCD fenced message of .LE. 132 characters
which will be printed on the user's console
when ERROR is enterei.

ERROR will trace back to the main program through
the last subroutine calls and print comments
of the fcllowing type and then return control
to the calling progran.

C (MESS)
ENTRY ERROR CALLED BY ‘'sub1?
ENTRY ‘*sub1' CALLED BY 'sub2’

ENTRY ‘*subn' CALLED BY (MAIN)
EXIT FROM ERROR

(END)

CTSS PROGRAMMER S

12

Identificaticn

/
p]
-
2
£l
wn
©
O
ot
Q
-]
B
P
-
D
>
=
o]

[
€2

U A e ae

BCD or spread-octal to binary

BCDEC, BCOCT

-Purpose

To convert the BCD or spread-octal representation of an
integer to the equivalent binary integer.

Usage

BCD to binary:

As library subroutine:

FCRTRAN: ECUIVALENCE (XNUM, NUM)

XNUM = BCDEC (X)

MAC: NUM = BCDEC. (X)

FAF: TSX BCDEC, 4

X

N UM

P ZE X
STO NOM

is the 1location of the BCD word to be
converted. X is assumed to be a BCD decimal
integer and 1leading blanks and signs are
ignored. :

and the AC will contain the right-justified
binary integer equivalent to the absoclute
value cf X.

Spread-octal to binary:
As library subroutine:

FCRTBAN: EQUIVALENCE(XNUM,NUM)

XNUM = BJOCT(X)

MAD: NUM = BCOCT. (X)

FAP: TSX BCOCT,4

NUM

PZE X
STO NUM

is the location of the spreai-octal word to be
converted. X is assumed to be a BCD octal
integer and 1leading blanks and sign are
ignored.

and the AC will <contain the right-justified
binary integer equivalent to the absolute
value of X.

(END)

]
3
8
¥2]
et
‘o
[ip]
0
o]
H
k
¥
{m
o o]
-
[F2]
N
(=]
14
(b}
n
(F7]
®
[p]
(ad
|
o]
3
-4
la

Binary to BCD
DEFBC, DELEC,

—— . de - ——

B

[ew]
N
o
W
Ve
D
—

1+

DERBC

ibrary subroutine:

MAL or FORTRAN:

DEFBC

DELEC

DERBC

DEFBC. (K)
DELBC. (K)
DERBC. (K)

W H

A
A
A
will contain a BCD decimal number (modulo
§99999) , right-justified and zero padded.

ccnverts the full 35 bit word (sign is
ignored) K into a BCD decimal number.

converts the left half of Kk (sign is 1ignored)
into a decimal BCD number.

converts the right half of K into a decimal
BCD number.

(END)

CTSS PROGRAMMER'S ZUIDE

n
D
e}
g
|nte
(o)
=]
>
"

o

Identificaticn

Binary to spread-octal
0CABC, 0OCDBC, OCLBC, OCRBC

Purpose

To convert binary fields to spread-octal which
for printing.

Usaje
As library subroutine:

MAL or FORTRAN:

A = OCABC. (X)
A = OCDBC.(X)
A = OCLBC.(X)
A = OCRBC. (X)

X <contains the birary number to bLe

(o]
w
D]
»
[Vie]
®
—

is suitable

converted

A will contain the <converted value in spread

octal, i. e., six bits for =ach
(0-7).

OCABC converts the address field of X
with leading blank.

octal digit

to 5 digits

0CDBC converts the decrement field of X to S5 digits

with leading tklank.

OCLBC converts the left half of X to 6

digi ts.

OCRBC converts the right half of X to 6 digits.

(END)

(o]
2
1)
i

4
& 3
ta
to
L J
47]
[}
et
[
&}
92
D
(]
-
.-‘
]
=
1
N
—
(o)
(=)
' —
o
Y
w2
kY]
—

€

Identificaticn

Justificaticn and padding
B#EL, %EL, LJUSTI, RJUST

-— — e - —-—

To allow the

user to> 1left or «right Jjustify and/or to

interchange blanks and zeros.

Usage

Justificaticn library sukroutines:

FAF: TISX LJUST, 4 TSX RJUST, U4
PZE WORD PZE WCRD
S X STEg X

MACL: X = LJUST. (WORD) X = RJUST. (WORD)

FORTRAN: I = LJUST (WORD) I = RJUST (WORL)

WORD <contains the wcrd to be justified. Upon return
the AC contains the adjusted word.

LJUST by left shifting, leading blanks are regplaced
by trailing blanks. Leading 2zeros are not
replaced. If the word is all blanks, “bbbbb*"
is returned.

RJUST by right shifting, trailing blapnks are

replaced by leading blanks. If the word is
all blanks, "bkkbib*" is returned.

Intarchangje leading zero and blanks, likrary subroutine:

MAL, FORI'RAN or FAP:

B3EL

£EL

A = BZEL (B) A = ZEL (B)

ccntains the word to be modified. Upon
return, the AC and A will contain the podified
wcrd.

replaces leading zeros with blanks. If B is
zZzero, "bbbEkbO" gill be returned.

replaces leading blanks with zeros. If B 1is
all blanks, "00000L" will ke returned.

(END)

CT5S ERGGRANMNHMER'S GUIDE Section AG.10.05 Page 1

General purpcse input/output conversion
(TOH), (RTN), (FIL), IOHSIZ, STQUO

Purpose

G2na2ral purpose conversion of BCD to binary or binary to BCTC
for input or output, respectively, according to a format and
data list.

Raf2rance

CC 186 FCRTRAN and MAD Fcrmat Specifications Spall

A standard 22 word buffer 1is assumed to be located at
(77742) 8. Presetting of <certain wupper core 1locations
indlicates whether input or output conversion is desired. If
input is indicated, the contents of the tuffer is converted
according to the specified format and stored in the
locations specified by the list. If output is indicated,
data from the list specification is converted according to
th2 format and stored in the buffer.

Th2 actual I,0 data transmission to or from the buffer must
be per formed by an I/0 routine. Appropriate calling
sz2quences to the I/0 routines and (ICH) are compiled by MAL
and FOBRTRAN for any read/write statements which specify a
format. Data or format ertrors cause (ICH) to call RECOUP.

Usaje

Output, tinary to BCD:

Fortranm: MAD:
TSX USRSTH,H4 TSX USRSTH,U4
PZE FORMAT,,SWITCH PZE FORMAT,,SWNT
RTN . RTN -
LDC SYMEOL,t STR FIRST,,LAST
STR .
IsX (FIL) ,4 STR O
USRSTH Set upper USRSTH Set upper
core locs core locs
TRA* (Ioﬁkw‘ TRA* (IOH)
ouT . = ouT .

TRA 2,4 : TRA 2,4

CTSS EFR

Input, BCD t

Fortran

RTN

USRTSH

IN

FORMAT

SWITC

SWT

SYMBCL, t

FIRST

LAST

(FIL)

CGRAMMER'S GUILE Section AG.10.05 Page 2

O binary:

: MAD:

TSX USRTSH,U TSX USRTSH,U

EZE FORMAI,,SWITCH PZE FORMAT,,SWT

RTN .

STR .

ST¢G SYMEOL,t STR FIRST,,LAST

TSX (RTN) ,4 STR O

Set ugper core USRTSH Set upper core

TRA* (IOH) TRA* (IOH)

- IN L]

TRA 1,4 TRA 1,4
is the beginning location of the desired
format.

H is zero 1if ¢the format 1is enclosed in
rarentheses and stored backwards in core,
SWITCH is non zero if the format 1is enclosed
in parentheses and stored forward in core
(e.g. E‘CI)Q
is zero if format is forward. SWT is <cne, if
the format is stored backward.
locates the variable to be converted. A 1lcop

may be included here

for arrays or a series of

LDC, STR. After each variatle is converted by
(IOH) , return i1s made following the STR 1in
order to find the next variable to be
ccnverted.

is the starting location of the list.

is the final location of the list. LAST may be
lower in core than FIRST. If the 1list 1is of
length one, LAST is zero.

is called to indicate that all the output data
has been converted and ®The current buffer
should be truncated.

cT

U

U

IOHSIZ:

STQUO:

SS PRO

STR O

(RTN)

SRSTH

SRTSH

MAD,

MAD,

S ASE S,

RAMMER'S GIUIDE Section AG.10.05 Page 3

[p]

terminates the list in a MAD zall.

is called upon completion of the 1input data
list. It restores the original (IOH)
initializaticn (i.e., trap cells).

is the user's cutput transmission program. It
must initialize the appropriate upper «core
locations Lkefore calling (IOH). After each
line image is completed in the buffer, (IOH)
will return to OUT with index register 4 set
in such a way that "CLA 1,4% will put into the
address of the AC the location of the buffer
and in the decrement of the AC the number of
words in the buffer.

For MAD programs, USRSTH will be ..TAEWR and
for FORTRAN rrrograms it will be (STH) or
(STHM) .

is the user's input transmission progranm. It
must initialize the appropriate upper core
locaticns, read in the first buffer 1load and
then call (IOH). Control is then returned to
PIRST and the first data word is converted and
placed in the MQ upon entry to (IOH) by way of
the STR. Successive words are converted 1into
the MQ by subsegquent STR's.

An STR fcllowing depletion of the input buffer
causes (IOH) to return contrcl to IN in order
to read the next record.

Por MAD prcgrams, USRTSH will be L.TAERD and
for FORI'RAN it will be (TSH) or (TSHM).

FAP, cr FORTRAN

TSX IOHSIZ,4
PZE N

ccntaining non-zero indicates to (IOH) that
the diagnostic that "the field width of the
format has been exceeded" should be
suppressed. An N of zero resets the normal
mode of printing the diagnostic.

FAP, cr FORTRANR

CTSS PROGRAMMER'S GUIDE Section AG.10.05 Page 4

TSX

The

STQUO,4

next I/0 statement will be ipnitiated

without resetting the ftuffer, that 1is, the

line pcinter is left where it was at the
conclusion of the last I/C <call. This is
normally used 1n conjunction with the N
modifier. (CC-186 for description of formats).

The following locations must be set before (ICH) 1is called

for conversion:

(77737)8 address

Tag

decrenent
prefix
(77740)8 address
tag

decrement
prefix

(77741 € address

tag
decrement

prefix

(77742)8

{(17771)8 address

Location of sukroutine that (IOH) calls
for input or output. This address
corresponds to INPUT cr CUTPUT.

0

+1 if format stored backwards -1 if
format stored forwards

TXL if FORTRAN type call TXH if MAL type
call

location of first word of format
statement.
0
user's index register 4 on initial entry
to the input-output subroutine.
TXL for on-line printer TXH for all
other I/0

scratch area for (ICH) to wuse for
output. The number of words in the
cutput record is stored here.

0

maximum number of columns available in
input or output record (may not exceed
132).

TXL for cutput (binary to BCD). TXH for
input (BCD to binary).

The beginning of a 2z word buffer from
which BCD data is converted to binary or
into which BCD data 1is placed after
binary tc BCD conversion.

location of symbol table (if any)

0 address the address of RTN as RIN is the

location to which programs should return
af ter callimrg (IOH).

(END)

Pt PP

Fortran integers tos/from full word integers.
FINT, MINT

Purpose

Fortran II integers occupy the decrement portion of a
computer word. Most other systems, including MAD, use full
word integers. These twc routines will <convert fronm
J2crement to full word or from full word to decrement.

Usage
As a library subroutine:

Fortran: EQUIVALENCE (A,J)

A = FINT (I) I = MINT (J)
MAD: J= FINT. (I) I = MINT. (J)
INTEGER J, FINT., I INTEGER I, MINT., J
FAF: 1TISX FINT,U TSX MINT,U4
PAE I PZE J
sSTO J STO I

I is a full word (MAD) integer.
J 1is a decrement (FORTRAN) integer.
A 1is equivalent to J.

FINT converts from full word to decrement integer.
If the integer is too large, the fcllowing
message will be printed and the integer will
be taken modulo 32768.

MAD INTEGER EXCEEDS 32767

MINT converts from decrement integer to full word.

(END)

@]
%]
[%]
n9
Ls]
(]
(]
e}
a»
j«d 4
o
42}
Lo
-
i
(]
(4=}
-
€I
e
tn
o
)
T
P
-
()
[}
©
2
~\
[$,]

Identification

Complement, OR, and AND functions
COM, ORA, ANA

Purpose

COM exa2cutes the machine instruction CGCM, CRA executes
anl ANA executes ANA.

Usage
FORTRAN: COMA = COM (A)
ORABC = CRA (B,C)
ANADE = ANA (D, E)
MAL: COMA = COM. (A)
ORABC = ORA. (B,C)
ANADE = ANA. (D, E)

On return from CCM, the arithmetic AC will <contain
complement ('one's ccmgplement') of A.

On returnr frcocm ORA, the arithmetic AC will <contain
result of 'oring* B and C. On return from ANA,
arithmatic AC will contain the result of *anding®' D and

wn
-

ORA,

the

the
the
B.

(END)

@]
*3
|4¢]
tn
ro
to
©
(@]
o
LE]
€ 4
< 4
<]
0
-
(fl
(@]
<
4
[w]
[©]
47]
0
Q
c*
-
>
(o]
O
[€9)
~
[<)]
(<))
-

Identification

Internal conversion cf stored data according to a format.
DECODE, ENCODE

——— . Lo o . —

To encode (tc BTCD representation) or decode (from BCD
rapresantation) data in machine rapresentation, according to
a MAD/FOERTRAN format statement.

Usage

As library subrcutine:

FCET RAN: A DECODE (FMT, TEXT, LIST)

MAD: A = DECCDE. (FMT, TEXT, LIST)
FAE: ISX $LCECOTLE, 4

PZE FMT

PZE T EXT

PZE ARG 1

PZE ARGN
STO A

Tha FAF call may also simulate FORTRAN and MAD calls:

FORTRAN #AD
TSX $GECODE U TSX $DECODE, 4
TSX FMT TXH FMT
TSX TEXT TXH TEXT
TSX ARG TXH ARG1
TSX ARGN TSX ARGK(Jj) , ,ARGK (m)
STO A TXH ARGN

STO A

where

PMT refers to the format statemant to be used in
converting the data.

1) In a FORTRAN (or PFORTRAN siamulated)
call, it may be a setting from a call to
SETFMT. If SETFMT is not used it should
be the H-specificaticn of the format
sfatement, €.9e,

< A = DECODE(5H(51I3),TEXT,list)
The format is expected stored in reverse
order with FMT pointing to the first
location (normal FORTRAN compilation).

CTSS ERCGRAMMER'S GUITLE Section AG.10.09 3766 2

TEXT

LIST

2) In a MAD (or MAD simulated) call, FmMT
should point to the first location of
the format statement, the format being
stored 1in reverse order (normal MAD
compilation).

3) In a FAP call, where the prefixes are
PZE's, FMT should point to the first
location of the format statement, the
format being storel forwards.

is an array which contains the BCD to be
decoded, or into which BCD information will
be stored after encoding. If the call was
from a FORTRAN or MAD program (or FORTRAN or
MAD simulated program), the array is stored
backwards. Otherwise the array 1is stored
forwards.

NOTE: In calls to DECODE, each new item of
TEXT must start in a new machine location.
Due tc the way records are transmitted, the
memory bound should be at least 21 words past
the start of the 1last record. This 1is
ensured with normal loading procedure.

is a list of arguments. It can be any length
and may be single variables, subscripted or
nct, cr MAD lists e.g. A(i)...A(n).

Not allowed are FORTRAN implied *DO' 1loops,
and FAP tagged variables.

is a integer giving either:

1) For ENCOLE, the length of the resultant
text.

2) For LECOLE, the number of words picked
up from TEXT in order to fill the list.

"A" wil]l be zero if the calling segquence is

not recognized by COLT or if no arguments are

specified in LIST.

(END)

@)
3
3]
[%]
n
=b]
(@]
(@]
£0
e 1]
ja 4
et 4
(]
tQ
»
i
C
a
=
I
4]
\n
©
(9]
o+
[
()
3
(-]

Il2ntification

Binary/BCD Conversion
prsC, OTBC, BTDC, ETOC

Convert decimal or spread-octal BCD numbers to binary;
convert kinary tc decimal or spread-octal BCD.

Restriction

Th2se routines are usable from FAP programs only. They may
not ke called directly from MAD or FORTRAN programs, since
the calling sequences are incompatible.

Usaje

Decimal-to-binary conversion

LDG DEC
TSX DTBC , 4
SLW BIN

BIN will contain the binary integer represented by the
bcd string contained in DEC.

Octal-to-binary conversion

LDQ OCT
TSX OTr BC, 4
SLW BIN

After the call, BIN will contain the binary integer
raprasented by the spread-octal nuasber contained in

Binary-tc-decimal conversion

LDQ BIN
TSX BT DC, 4
SLW DEC

After the call to BTDC, DEC will contain the bcd
rapresentation of the binary integer found in BIN.

Binary-to-octal conversion

LDQ BIN
TSX BTOCtu
SLW oCr =

After the call to BTO€, the spread-octal representation
of the high order 18 bits of BIN will be returned. The

CTSS PROGRAMMER'S G UIDE Section AG.10.10 12769 2

low order 18 bit of BIN will be returned left-adjusted
in the M(Q, to be used for another call to BTOC. I.e.

the fecllewing ccde will store the spread-octail
ranracAan +atbsAan FAar a1 N6 Fidbo ~F DTHE S 4L 1,~,~-,t:,\,:
LvtlLCDCll Lavaosi 'S [8 (e ¥ S § R i ALD VL LA 4 U Ll dvea Lo

OCT and CCT+1:

LDbQ BIN
TSX Broc, 4
SLW 0oCT
TSX B1IOC, U
SLW cr+41

(END)

o
o
=
2
2]
W
-
[%7
G2
=
(9]
e
147]
(")
Q
(ad
"-
Q
]
tow
<
f
-
=y
.
-
-
-
o
AN
[#2)
Ye)
—

PAD, BZL, NZL, ZBL, NBL

Allow the user tc pad a bcd word with arbitrary 1leading
charactars.

Usage

Arbitrary padding:

caL WORD
T SX PAD, 4
PAR =HAAAAAA
PAR =RBBBBBB
SLW RESULT

All leading A's will be replaced by B's, and the result
returned in the logical AC.

Exarple - tc¢c convert ! XYZ' to "xx%YYZ':
TSX PAD, 4
PAR =H (blanks)
PAR HESREXS

The following entries make internal calls to PAD:
BZL - Replace leading zeros by tlanks
NZL - Replace leading zeros by nulls
ZBL - Replace leading blanks by zeros
NBL - Replace leading blanks by nulls

Calling sequences are all of the form

CAL WORD

TS XxXx,u4

SLW RESULT
Restriction

Thase routines may be used by FAP <calling programs only;
they may not be called directly bty MAD or FORTRAN prcgrams.

3

(ENL)

)
[¢0]
9]
(8]
4]
or
Pl
C
=
]
()]
.
-
C\
.
-
[}
—b
N
N\,
o
Vel

Identification

Left and right justification
ADJ, LJ, RJ

Left or right justify a character string within an arbitrary

Ganaral form:

CAL WORL

TSX ADJ,u4
EAR =HABARAA
PAR SWIICH
SLW RESULT

If SWITCH is zerd, leading A's will tecome trailing A's
(left- justificatiorn); if SWITCH is non-zero, trailing
A's will become leading A's (right-justification).

Example - to convert ! XYZ' to 'XYZ '
IsX ALCJ, 4
PAR =H {blanks)
FAR =0 (left-justify)

SLW RESULT
The following entries make internal calls to ADJ:
RJ - Right-adjust, field of blanks i
LJ - Left-adjust, field of blanks

Calling sequences for these entries are of the form

CAlL WORT

TSX XX, 4

S1w RESULT
Restriction

e . o e — . .

These routines may be called from FAP programs only; the
calling sequences are incompatikle with MAD and FORTRAN
forms.

(END)

cr
]
-
(@]
Py
W
-
&
N
N
(V]
-

|
(¢}
ot]
o>

(%]
€
-
(]
to
w
(¢}]
(¢]

To convert leading 2zerces <c¢r blanks to null characters
(octal 57) for use in output formatting of BCD inforsmation.

Usage
MAD: A = BZ57. (B)
FAP: ISX BZS57,4
PAR B
STO A
Location B contains the word to ke converted. On return,

both A and the AC contain the converted result.

(END)

(@)
3
tn
tn
o
o
[}
9
0
-
iz
=
0
j4]
-
4]
(%]
«<
(=]
[
ta
n
[0
Q
e
[
3
2
(%]
b
b
(]
-—d
o
fu
4]
m
-

Identificatichn

Variabls length calling seguence processor
COLT, SELAR, MDL

To provide one routine which general purpose subroutines
might call tc interpret variable-length Ccalling segquences
J2narated by MAL, FORIRAN or FAP. This routine will
determine the type of calling-program and the number and
typ2 of arguments in the calling-progranm.

Usage

Local definitions:
Program is the routine which is calling COLT.
Calling-program 1is the routine which is calling
the prcgraunm.

COLT, as a library subroutine:

TSX COLT,U4
PZE IRWY

IR4 contains, in the decrement, the contents of
index register 4 at the time the program was
called.

AC ufpon return, will contain, in the decrement,
the number of arguments in the calling
sequence tc the program and, in the address, a
code specifying the type of the
calling-program. The codes are:

0 unknown, or no arguments
1 FAP

2 FORIRAN

3 MAD

Index register 4 will contain the two's corplement
of the 1location in the <calling-program to
which the program should return, 1i.e., the
locaticn fcllowing th2 calling sequence.

CTSS FRCGRAMMER'S GUILE Section AG.11.01 Page 2

SLLAR; what type of arygument:

CAL* COLT
STA SELAR
CAL ARG

AXT RETURR,]

SELAR TIRA * %

RETUR

ARG

RETURN

SELAR

AC

MDL, MAD list

.N EE Y

is the argument from the calling-program
which is tc be examined.

is the location to which SEILAR is to return.

will place a code in 1index register 1
indicating the type of argument
C unknowun
1 FAP
2 TFORTRAN
3 MAD single argument
4 MAD list with TIX
5 MAD list with STR

upon return, will contain in the left half the
significant part of the argument (TXH, TSX
etc.)

processor:

CAL* £OLT
ARS 18

STA MCL
Cal ARG

MDL TSX %,

ARG

AC

is the MAD list argument from the
calling-program to be examined.

upcn return will comntain:
address - number of words in the list
decrement - the increment to be wused in
indexing (+1 or -1)
prefix - TXH (plus) if the 1list |is
forward or TXL (minus) if the
list is backward.

(END)

CTSS PROGRAMMERT'S GUIDE Section AG.11,02 pPage 1

Identificaticn

Datarmine type of calling program and FILKNAM

GN AM

Purpose

To provide a routine which general purpose routines might
call to determine the type of calling-program and a file

name if one be rejuested.

Usaje

Local definitions:
Program is the routine which is calling GNAM.
Calling-program is the routine which is calling
the progran.

As library subroutine:

OFN

IR Y

FILNANM

AC

TSX GNAM,U4
PZE IRU
-0OPN FILNAM-

may be PZE, TXH, or TSX.

contains, in the decrement, the contents of
index register 4 at the time the program was
called.

{cptional) is the first of two <consecstive
locations in which the file name will be
stcred (forward if P%E, backward if TXH) . The
file name is assumed to Le located by the
first argument in the calling segquence to the
progec am.

will contain a code, right-adjusted integer,
srecifying the type of the calling-progranm.

0 unknown

1 FAP

2 FORTRAN

3 MaD

(END)

CTSS FRCGRAMMER®S GUILE Section AG.

1 4
vt

-

n-"
VI

n
o1l
V]
a\

Ji2ntification

List transmission
MDVEl, MOVE2, MOVE3

To tramsmit data specified bty an arqument 1list from the
calling program to the called program or transmit any 1list
sp2cified data from one place to another. The argument
lists may be MAD, FORIRAN or FAP and the data arrays may be
forward or backward.

Usage
As library subroutine:

I'SX MOVE1l 4

opP BGDATA,, ~ENDATA-
OPN

ISX MOVE2, 4

op BEGLSZ,,-ENDLST

ALPHA OPN
SIR DATOUT,,LSTOUT
BETA OPN

TSX MOVE3,4

opP may be TSX, TXH, PZE, TIX or STR. The
decrement argument may be used only with TIX
and STR.
TSX and TXH signify a single argument or
backward array base.
PZE signifies a single argument or forward
array base.
TIX and STR signify an argument 1list whose
beginning location is specified in the address
and whcse ending location is specified in the
decrement. Note that the list may be forward
or backward dependingy on whether the address
is less than or greater than the decrerent.

BGDATA is the beginning location of a block of core
in the program in which the data will be
stcred.

ENDATA (specified only when CP is TIX or STR) is the
ending location of the data block.

BEGLST 1s the begining location o¢f the 1ist which
specifies the data to ke moved.

ENDLST (specified only when OP is TIX or STR) is the
ending lccaticn of the argumant list,

CTSS ERCGRAMMER'S GUILE Section AG.11.03 Page 2

ALEHA

STR

DATOUT

LSTOUT

OPN

MOVE

MOVE2

MCVE3

is the return from MOVE2 at which time the AC
contains the first data item as specified by
BEGLST.

causes the storing of the AC in the data block
specified by BGDATA. If this fills the data
block, return is made to DATOUT and the AC 1is
reaningless. The next data item from the 1list
is then placed in the AC and return is made to
BETA. If there is no next item in the 1list,
return is made to LSTOUT.

If BEGLST was specified as an array Dbase,
successive STR's will cause the transmission
of successive elements of the array. The
number >f elements thus transmitted ©must be
controlled by the user.

is the return location if the data block is
full. The AC is meaningless. MCVE1 may now be
called again to initialize another data blcck.

is the return location if the 1list is
exhausted MOVE2 may be <called to specify
another 1list or another STR may be executed if
moving an array.

may be any programming to establish loops and
use or modify the AC if desired.

initializes addresses and indexingy for tke
data block and also initializes the STIR trarg
cells to entries to this routine.

initializes addresses and 1indexing for the
list, initializes the trap cells if not
already done, and gets the first data item 1in
the AC.

restores the trap cells.

(END)

)
-
-
©
4=
*o
o

-

v
m
€l
cr
rh
<
a»
@
[

CTSS PROGRAMNMER®S SUIDE

> . . o s e <l D

Nam2 a format or file name
SETFMT, SETNAM

urpose

To simplify FORTRAN calls to the library disk —routines by
providing formats and file names with labels which then may
bz us2d in calling sejuences to library routines.

{[=]
o

349

FORTRAN: CALL SErNAM (FILNAM,12H NAME1 NAME2)
CALL SETFMT (FORMAT, NH (eevces))

FILNAM 1is the location which is to contain a pointer
to the actual file name NAME1 NAME2.
NAME1 NAME2 are the actual primary and
secondary nimes of the file, right-justified.

FORMAT 1is the location which is to contain a ©pointer
to the actual format.

pointer is a word which contains in the address
portion the adiress of the first word of
either the format or file name. The left half
will ccontain a ISX if the call was made by a
Portran or FAP program or a TXH if the call
was made by a MAD progran. Bit pcsitions
12-17 will contain (77)8.

These two rcutines allow the library disk routines to
ba called with FILNAM and FORMAT as argquments instead
of the actual BCD information,

i. e., CALL DWRITE (FILNAM, FCRMAT, LIST)
instead of CALL DWRITE (12H NAME1 NAME2, nH(....), LIST)

(END

193]
{
€l
-
s
(o]
=0
- 13
(9]
.
-
[\ %]
.
(<]
-
[
N,
o}
N
-

CTSS PROGRAMBER®S GUIDE

Get the date and time of day
GETIME, GETTIM, GIDYTM

Purpose
To provide the user with the current date and time of day.

The formats in which information is returned differ; they
are described under Usage.

Th2 time is computed by using values from the interval timer
to update the last reading of the chronolog clock (last time
som2one logged in). TIhe interval timer is incremented sixty
times a second.

Usage

1 GETIME

As supervisor or library entry:

TSX GETIME, U4 optional (TIA =HGET IME)
SLW TIME
STQ DATE

Upon return, the logical AC will <contain
the time of day as an integer in 60ths cf a
seccnd. T'he MQ will contain the date in BCTD
as "MMDDYYV.

2) GETTHM
As library subroutine:

MAD, FORTRAN or FAP
CALL GETTM (DATE, TIME)

DATE 1is the location in which the date will be
stcred in the BCD form “mMM/DDb™,

TIME 1is the location in which the time will be
stored in the BCD form "HHRME.M" . HH 1is the
hour of the day (0-23) and MM.M is the minutes
after the hour to one tenth of a minute
(0-59.9).

3) GTDYTM

As superviscor or library entry:

CTSS FRCGRAMMER'S GUILE Section AG.12.01 5/66 2

MAD
TIME = GTDYTM. {0O)

FAF

ISX GTDYTM,4 optional (TIA =HGTDYIM)
SLW T IME

TIME 1is the location in which the date apnd time
will be stored in (binary) "file systen
format", See Section AD.2 for the
description of date and time last modified
U.F.D./M.F.D. itenms.

(END)

CTS5 PROGRAHHER®S G UIDE Section AaG.1712.02 Page i

Identification

Timer interrupt and stop watch
TIMER, JCBTM, RSCLCK, STOPCL, KILLTR, TIFMLFT, RSTRTN

Purpose

To provide the user with the ability to time parts of a
projram and/or set a time limit on parts of a progranm.

Method

The foreground supervisor normally runs with the clock
function turned off. A call to any of these time routines
will turn the clock on. The interval timer is then used to
tim2 the function as specified by the wuser. The interval
time is incremented sixty times a second so that all integer
tim2s will be in 60ths of a second.

Rastrictions

The simulated clock (core B interval timer cell) may cause
an intarrupt only every 200 milliseconds Ltecause that is how
often it is updated by the supervisor, but it will be
increm2nted every 60th of a second. The -execution of any
command (2.3., MACBO or CHAIN) will turn the clock function
off. The job time is initiated to 73 minutes upon the first
=3l1ll to the timer rather than at the actual beginning of the
job. CLOCON and CLOCOF should not be wused 1if the timer
routines are being used.

Usage

All of the entries may be called by MAD, FAP or FORTRAN. If
th2 prefix to the argqument is non-zero (i.e., MAD or TXH in
FAP) the integer variable will be full word integers. If
ths prefix is zero>, the integers will be in the decrement.

To initialize or reset the stop watch to zero:
EXECUTE RSCLCK.

To read the elapsed execution time since the 1last call to
RSCLCK:

EXECUTE STOPCL. (J)

J is an integer variable which will contain the

time used since the last «call to RSCLCK in
60ths cf a second.

To read the elagsed execution time since the first
initialization of the clock:

CTSS PROGRAMMER'S GUIDE Section AG.12.02 Page 2
EXECUTE JOBTHM. (J)

J 1is an integer variable which will contain the
elapsed execution time since the first call tc
one of the timer routines in 60ths of a
second.

To initialize an elapsed time interrupt, i.2., an alarm
zlock:
FORTRAN: AS5SISN S TO N
CALL TIMER (J,N)
MALC: EXECUTIE TIMER. ({J,S)
FAP: TISX TIMER, U
P3E J
PZE S

J 1s an integer variable specifying the 1length
of time in 60ths of a second ¢that the <clock
may run before interrupting.

S 1is the statement (location) to which <control
should transfer when the tige, to the nearest
200 milleseconds, has elapsed.

TIMER Only nine calls to TIMER may be stacked. Any
more than nine will be ignorei.
To continue the instructions which were interrupted by the
alarm clock:
EXECUTE RSTRTN.
To void the last setting of the alarm clock:
EXECUTE [KILLTR.
To provide fcreground/background compatibility to job tinme
ramaining:
EXECUTE TIMLPT. (J)

J 1is an integer variable which will contain the
amount of time in 60ths of a second which the
job has remaining to run. The first «call to
any of the timer routines will initialize the
job run time tc 72 hrs. The job run time for
background jobs is taken fros the

identification card.

(END)

Iientification

Simulated interval timer
CLOCQON, CLOCCF, UPCLOC

rurpose
To caus2 the supervisor to simulate the interval timer for
the user.

Restriction

—— —— —— ——— G ——

Th2se routines should not be used if one of the fcllowing
routines is to be used:
TIMER, JOBIM, RSCLCK, STOPCL, KILLTR, TIMIFT, RSTRTN.

Ma2thod

If the clock function is on, the B core intarval timer cell
(location 00005) will be updated by the supervisor at each
time burst (200 milliseccnds) or onmn a zcall to UPCLOC. It
will b2 updated by the elapsed time (running time, nct real
time) in 60ths «c¢f a second. Any B-core interval timer
ovarflow trap will be interpreted at the time of the update.
Th2 status of the simulated interval timer is not affected
by commands which preserve the current core 1image: START,
SAVE, EM, LEBUG, etc. In addition, it is restored from a
saved file by RESUME or CONTIN. The <clock function 1is
normally off.

Usaje

Turn the clock fuanction on:
As superviscr or library entry:

I'sX CLOCON, 4 optional (TIA =HCLOCON)

Turn the cleck function cff:
As supervisor or likrary entry:

TSX CLOCOF,4 optional (TIA =HCLOCOF)

Update the clock and check for trap:
As superviscr or library entry:

PSX UPCLOC, 4 optiomal (TIA =HUPCLOC)

(END)

- e e wm A ms Ty o v

CTSS EHFCGRABHER®S GG ILCE Section A

Identificaticn

Print time used
RDYTIN

To print a ‘'ready messayge' on the terminal 1indicating
running time and swap time wused since the 1last ‘'ready
m2ssajy2'. The ready message is identical to that printed by
the superviscr con calls to DEAD and DORMNT, and is of the
form:

R ttt, ttt+sss.sss

wh2re 'sss.sss' 1is the swap time used 1in seconds and
'ttt.ttt' is the execution time used, also in seconds.

M2 thod

The superviscr maintains incremental user <charge time and
running time to aid the user in judging efficiency of his
programs. The RDYTIM entry is a user interface into the same
program used by the superviscr in printing realy lines.
Usaje

As a superviscr cr library entry:

TSK RDYTIM,4 (optional TIA =HRDYTIMN)

(END)

List of miscellaneous library sukroutines:

Tha following is a 1list of miscellaneous TSLIB1 subroutines.
Further information or one page write-ups may be obtained
from the consultants.

DFAD DFSB DFMP ECEXIT DFDE SFDFP

IOSET TIOEAR TIOEND I0OSCP IOITR

(SLO) (SLI)

.01300 .01301 .01311 .03310 .03311

MAXO MA X1 XMA X0 XMAX1

MINO MIN1 XMINO XMI N1

MOD XMeD

XSIGN SIGN XLOC

DIM IDIM INT XINT XFIX

EXP EXP (1 EXP (2 EXP(3

ACOS ASIN ATAN ATN cos SIN
LOG SQRT SQR TAN coT TANH
SIMCS XSMEQ XSIMEQ XDETRM XDTRA DETCS

FL IP RANNO SETU INDY DPNV

(END)

Identificaticn

Floating-Point Overflow and Underflow
(FPT)

Purposes

To process the underflows and overflows which may occur
juring the execution of floating-point operations.
Underflows are set to zera, the lowest possible absolute
number, and overflows halt execution.

Mz2thod

An underflow or cverflow autcmatically causes a transfer of
control to location 8 with the lozatjon of the instruyction
following the offending instruction stored in the address of
location 0. A spill code is stored in the decrement of 0.
If an underflow condition exists, (PPT) places zero in the
proper register and transfers back to the instruction
following the floating-point instruction which caused the
underflow.

If an overflow ccnditicn exists, (FPT) proceeds to do the
following:

1. It prints on one line the comment:

FLO-POINT OV-FLOW AT OCT ICC xxxxx ABS,
or xxXxxx REL, PROG name SPILL xxXxxx

2. It then calls the library subprogram ERROR, which
prints an error traceback, if possible, enabling
the user to determine the control path leading to
the error.

3. After this information is complete, EXIT is
called.

Th2 spill codes are produced as follows:

Oparation AC MQ Decr. Portion Spill Cdéde
Bits in octal
12 14 15 16 17
Add, Subtract Underflow O o 0 0 1 01
Multiply, and Underflow Underflow 0 0 0 1 1 03
Round ~ Overflow 0 o 1 1 0 06
Overflow Overflow o 0 1 1 1 07
Divide Underflow g 1 ¢ 0 1 11
Underflow 0 1 0o 1 0 12

-

CTSS PROGRAMMER?®'S GUIDE Section AG.13.01 8/65 2

Underflow Underflow
Overflow

10 1 13
15

C o
—
-
o
-

Effa2ctive Address

of a Doukle-Precision

Instruction is 044, 1 uo
(except DST)

A transfer tc (FPr) is placed in register 8 by .SETUP, a
call to which is automatically inserted into every FPORTRAN
anl MAD rmain program compiled at the Computation Center.

(END)

CTSS FRCGRAMMER!S GUTILCE Section AH.1.01 12769 1

Loy out any previous user of this console; identify the new
user; initialize accounting information for the new user.

Usaje

--> login prcbn nanme
W HHMM. M
Password
--> private password
STANDBY LINE HAS BEEN ASSIGNED
YOU HAVE XXXXXX
PRCBN FROG LOGGED IN MM/DD/YY HHMM.M FROM UNITID
LAST LOGOUT WAS MM/DD,YY HHMM. M FRCM UNITID
HOME PILE CIRECITORY IS PROBN UFDNM
-message of the day-
CTSS BEING OUSELC IS SYSNAM
R 4.183+.133

PROBN is the user's problem number, assigned to his project
by the IPC administrative office.

NAME is the user's last name, of wich only the 1last six
~haracters are used.

PASSWORD 1is the user's private password, which must match
that found in the accounting files before the wuser can be
logged in. After typing 'Password', the computer turns off
the printing mechanism of the console, so that the password
will not appear on the page.

PROG is the user's assigned prograsmer number which
corresponds tc the ccmbinaticn of PROBN, NAME, and PASSWORD.

XXXXXX may be any ccmbination of the following files:

MAIL BOX - Mail from other users

URGENT MAIL - Mail from the systen

PROGL SAVELC - Saved file from automatic logout. See
section AH.1.02 concerning automatic
logout. -

UNITID 1is the console identification code

UFDNM 1is the user's home file directory, if not the same as
his prograsmer number. This line omitted if UFDNM is same as
PROG.

CTSS PROGRAMMER'S GUIDE Section AH. 1.01 12769 2

MESSAGE OF THE DAY 1is the contents, if any, of the file
*MESSAG TODAY' in the putlic file directory M1416 CMFLO4,
and contains infcrmaticn of interest to the user.

SYSNAM 1is the pame cf the current version of CTSS.

=

sLLO

2]
1=}

€55a9€S

ALREADY LOGGED IN
The user is already logged in from the same console. No
further action is taken.

PROBN IS NCT A PROBLEM NUMBER
A problem number consists of a letter (usually 'cC¢,
"M, *N*', or 'T*), followed by one to four digits. The
proktler number supplied on the command line does not
satisfy this reguirement,

PROBN NAME NCT FCUND IN LIRECTORY
The combination of groblem number and name is not in
the accounting files.

PASSWORD NCT FOUND IN LIRECTORY
The password sugplied is incorrect for the user PROBN
NAME,

NO TIME ALLOTTELC FOR I'HIS SHIFT
The user has zero time allotment for the current shift.
Sea TTEEEK, AH. 1.04.

YOUR ACCCUNT IS CGUI OF FUNDS
The user's account 1is overdrawn. He should make
arrangements with the IPC administrative office, e.g.
submit a new requisitiocn.

YOUR ACCOUNT HAS REACHED ITS TERMINATICN DATE
The user's account has expired. He should nmake
arrangements with the administrative office.

USER MAY NOT USE THIS CONSOLE
Tha user's unit group restricts him to specific
consoles, of which the current console is not one.

UNIT GROUP n NOT FOUND
Systenr error, the user's unit group as specified in the
primary accounting file does not appear in the unit
group f-ile. Notify the systems staff.

IF YCU LCG IN, YOUR FIB JOB WILL BE DELETED

DO YOU WISH T0 LOG 1IN,
The user is currently logged in on FIB. If he replies
'yes', the fib job will be logged out, and he will be
logged in; otherwise the fik joL will continue to run.

@)
]
n
n
o
1e]
(]
(i
pie]
b
I‘
z
[$7)
o
-
tn
(D]
«
(5]
(3]
tn
n
(1%
[¢]
(ad
'-Io
(¢}
j$]
>
o
-
>
b
Y
o
Y
4,
\0
w

PROBN PROG ALREADY LOGGED IN FROM UNITID
The user is already logged in from a different conscle.
Notify the administrative staff in